-
Notifications
You must be signed in to change notification settings - Fork 2
/
albanoRomance.trprobs
1804 lines (1803 loc) · 527 KB
/
albanoRomance.trprobs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#NEXUS
[ID: 1071186586]
[This file contains the trees that were found during the MCMC
search, sorted by posterior probability. "p" indicates the
posterior probability of the tree whereas "P" indicates the
cumulative posterior probability.]
begin trees;
translate
1 ALBANIAN_GHEG,
2 ALBANIAN,
3 ALBANIAN_TOSK,
4 ARAGONESE,
5 ARPITAN,
6 ASTURIAN,
7 BALEAR_CATALAN,
8 CATALAN,
9 CATALAN_2,
10 CORSICAN,
11 DALMATIAN,
12 EMILIANO_CARPIGIANO,
13 EMILIANO_FERRARESE,
14 EMILIANO_REGGIANO,
15 FRENCH,
16 FRIULIAN,
17 GALICIAN,
18 GASCON,
19 ITALIAN,
20 ITALIAN_GROSSETO_TUSCAN,
21 JUDEO_ESPAGNOL,
22 LANGUEDOCIEN,
23 LIGURIAN_GENOESE,
24 LIGURIAN_RAPALLO,
25 LIGURIAN_STELLA,
26 LOMBARD_BERGAMO,
27 LOMBARD_PLESIO,
28 NEAPOLITAN_CALABRESE,
29 NONES,
30 NONES_FASSANO,
31 NONES_GARDENESE,
32 OCCITAN_ARANESE,
33 PIEMONTESE_BARBANIA,
34 PIEMONTESE_CARMAGNOLA,
35 PIEMONTESE_LANZO_TORINESE,
36 PIEMONTESE_VERCELLESE,
37 PORTUGUESE,
38 ROMAGNOL_RAVENNATE,
39 ROMANIAN,
40 ROMANIAN_2,
41 ROMANIAN_MEGLENO,
42 ROMANSH_GRISHUN,
43 ROMANSH_SURMIRAN,
44 ROMANSH_SURSILVAN,
45 ROMANSH_VALLADER,
46 SARDINIAN,
47 SARDINIAN_CAMPIDANESE,
48 SARDINIAN_LOGUDARESE,
49 SICILIAN_UnnamedInSource,
50 SPANISH,
51 TURIA_AROMANIAN,
52 VALENCIAN,
53 VLACH;
tree tree_1 [p = 0.008, P = 0.008] = [&W 0.007568] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_2 [p = 0.007, P = 0.014] = [&W 0.006559] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_3 [p = 0.006, P = 0.020] = [&W 0.006054] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_4 [p = 0.004, P = 0.024] = [&W 0.003532] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_5 [p = 0.004, P = 0.027] = [&W 0.003532] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_6 [p = 0.003, P = 0.030] = [&W 0.003027] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_7 [p = 0.003, P = 0.033] = [&W 0.002523] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_8 [p = 0.003, P = 0.035] = [&W 0.002523] ((37,(17,((((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_9 [p = 0.003, P = 0.038] = [&W 0.002523] ((11,((((53,51),41),(40,39)),(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_10 [p = 0.003, P = 0.040] = [&W 0.002523] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_11 [p = 0.003, P = 0.043] = [&W 0.002523] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_12 [p = 0.003, P = 0.045] = [&W 0.002523] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_13 [p = 0.002, P = 0.047] = [&W 0.002018] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_14 [p = 0.002, P = 0.049] = [&W 0.002018] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_15 [p = 0.002, P = 0.051] = [&W 0.002018] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_16 [p = 0.002, P = 0.053] = [&W 0.002018] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_17 [p = 0.002, P = 0.055] = [&W 0.002018] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_18 [p = 0.002, P = 0.058] = [&W 0.002018] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_19 [p = 0.002, P = 0.060] = [&W 0.002018] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_20 [p = 0.002, P = 0.062] = [&W 0.002018] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_21 [p = 0.002, P = 0.064] = [&W 0.002018] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_22 [p = 0.002, P = 0.066] = [&W 0.002018] ((37,(17,(((47,(48,46)),((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_23 [p = 0.002, P = 0.067] = [&W 0.001514] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_24 [p = 0.002, P = 0.069] = [&W 0.001514] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_25 [p = 0.002, P = 0.070] = [&W 0.001514] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_26 [p = 0.002, P = 0.072] = [&W 0.001514] ((17,(37,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_27 [p = 0.002, P = 0.073] = [&W 0.001514] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_28 [p = 0.002, P = 0.075] = [&W 0.001514] ((17,(37,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_29 [p = 0.002, P = 0.076] = [&W 0.001514] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_30 [p = 0.002, P = 0.078] = [&W 0.001514] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_31 [p = 0.002, P = 0.079] = [&W 0.001514] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_32 [p = 0.002, P = 0.081] = [&W 0.001514] ((37,(17,(((47,(48,46)),(((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_33 [p = 0.002, P = 0.082] = [&W 0.001514] ((37,(17,(((47,(48,46)),(((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_34 [p = 0.002, P = 0.084] = [&W 0.001514] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_35 [p = 0.002, P = 0.085] = [&W 0.001514] ((40,(39,(((53,51),41),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_36 [p = 0.002, P = 0.087] = [&W 0.001514] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_37 [p = 0.002, P = 0.088] = [&W 0.001514] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_38 [p = 0.002, P = 0.090] = [&W 0.001514] ((15,(5,((22,(32,18)),((52,((9,8),7)),((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_39 [p = 0.002, P = 0.091] = [&W 0.001514] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_40 [p = 0.002, P = 0.093] = [&W 0.001514] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_41 [p = 0.002, P = 0.094] = [&W 0.001514] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_42 [p = 0.002, P = 0.096] = [&W 0.001514] (((15,5),((22,(32,18)),((52,((9,8),7)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_43 [p = 0.002, P = 0.097] = [&W 0.001514] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_44 [p = 0.002, P = 0.099] = [&W 0.001514] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_45 [p = 0.002, P = 0.100] = [&W 0.001514] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_46 [p = 0.002, P = 0.102] = [&W 0.001514] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_47 [p = 0.002, P = 0.103] = [&W 0.001514] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_48 [p = 0.001, P = 0.104] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),(((22,(32,18)),(52,((9,8),7))),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_49 [p = 0.001, P = 0.105] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_50 [p = 0.001, P = 0.106] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((22,(32,18)),(52,((9,8),7))),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_51 [p = 0.001, P = 0.107] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((22,(32,18)),((52,((9,8),7)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_52 [p = 0.001, P = 0.108] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_53 [p = 0.001, P = 0.109] = [&W 0.001009] ((17,(37,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_54 [p = 0.001, P = 0.110] = [&W 0.001009] ((37,(17,((((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_55 [p = 0.001, P = 0.112] = [&W 0.001009] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_56 [p = 0.001, P = 0.113] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_57 [p = 0.001, P = 0.114] = [&W 0.001009] ((17,(37,(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_58 [p = 0.001, P = 0.115] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_59 [p = 0.001, P = 0.116] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,((((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((24,(25,23)),(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(29,(15,5))))),(((22,(32,18)),(52,((9,8),7))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_60 [p = 0.001, P = 0.117] = [&W 0.001009] (((22,(32,18)),((15,5),((52,((9,8),7)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_61 [p = 0.001, P = 0.118] = [&W 0.001009] (((15,5),((22,(32,18)),((52,((9,8),7)),((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_62 [p = 0.001, P = 0.119] = [&W 0.001009] ((17,(37,(((((45,(43,(44,42))),(31,30)),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_63 [p = 0.001, P = 0.120] = [&W 0.001009] ((8,(9,(7,(52,(((22,(32,18)),(15,5)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_64 [p = 0.001, P = 0.121] = [&W 0.001009] ((8,(9,(7,(52,(((22,(32,18)),(15,5)),((47,(48,46)),(((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_65 [p = 0.001, P = 0.122] = [&W 0.001009] ((15,(5,((22,(32,18)),((52,((9,8),7)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),(((37,17),((50,21),6)),4)))))),(2,3),1);
tree tree_66 [p = 0.001, P = 0.123] = [&W 0.001009] ((15,(5,((22,(32,18)),((52,((9,8),7)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_67 [p = 0.001, P = 0.124] = [&W 0.001009] ((15,(5,((22,(32,18)),((52,((9,8),7)),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_68 [p = 0.001, P = 0.125] = [&W 0.001009] (((15,5),((22,(32,18)),((52,((9,8),7)),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_69 [p = 0.001, P = 0.126] = [&W 0.001009] (((15,5),((22,(32,18)),((52,((9,8),7)),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_70 [p = 0.001, P = 0.127] = [&W 0.001009] (((15,5),(((22,(32,18)),(52,((9,8),7))),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((47,(48,46)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_71 [p = 0.001, P = 0.128] = [&W 0.001009] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_72 [p = 0.001, P = 0.129] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_73 [p = 0.001, P = 0.130] = [&W 0.001009] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_74 [p = 0.001, P = 0.131] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_75 [p = 0.001, P = 0.132] = [&W 0.001009] ((37,(17,((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_76 [p = 0.001, P = 0.133] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_77 [p = 0.001, P = 0.134] = [&W 0.001009] ((17,(37,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_78 [p = 0.001, P = 0.135] = [&W 0.001009] ((17,(37,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_79 [p = 0.001, P = 0.136] = [&W 0.001009] ((37,(17,(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_80 [p = 0.001, P = 0.137] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_81 [p = 0.001, P = 0.138] = [&W 0.001009] ((37,(17,((((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_82 [p = 0.001, P = 0.139] = [&W 0.001009] ((37,(17,(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_83 [p = 0.001, P = 0.140] = [&W 0.001009] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_84 [p = 0.001, P = 0.141] = [&W 0.001009] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_85 [p = 0.001, P = 0.142] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_86 [p = 0.001, P = 0.143] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_87 [p = 0.001, P = 0.144] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_88 [p = 0.001, P = 0.145] = [&W 0.001009] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_89 [p = 0.001, P = 0.146] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_90 [p = 0.001, P = 0.147] = [&W 0.001009] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_91 [p = 0.001, P = 0.148] = [&W 0.001009] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_92 [p = 0.001, P = 0.149] = [&W 0.001009] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_93 [p = 0.001, P = 0.150] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_94 [p = 0.001, P = 0.151] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_95 [p = 0.001, P = 0.152] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_96 [p = 0.001, P = 0.153] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_97 [p = 0.001, P = 0.154] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_98 [p = 0.001, P = 0.155] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_99 [p = 0.001, P = 0.156] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_100 [p = 0.001, P = 0.157] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_101 [p = 0.001, P = 0.158] = [&W 0.001009] (((31,30),((45,(43,(44,42))),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_102 [p = 0.001, P = 0.159] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_103 [p = 0.001, P = 0.160] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_104 [p = 0.001, P = 0.161] = [&W 0.001009] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_105 [p = 0.001, P = 0.162] = [&W 0.001009] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_106 [p = 0.001, P = 0.163] = [&W 0.001009] ((28,((20,19),((((53,51),(41,(40,39))),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_107 [p = 0.001, P = 0.164] = [&W 0.001009] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_108 [p = 0.001, P = 0.165] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_109 [p = 0.001, P = 0.166] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_110 [p = 0.001, P = 0.167] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_111 [p = 0.001, P = 0.168] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_112 [p = 0.001, P = 0.169] = [&W 0.001009] (((53,51),(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_113 [p = 0.001, P = 0.170] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_114 [p = 0.001, P = 0.171] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_115 [p = 0.001, P = 0.172] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_116 [p = 0.001, P = 0.173] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_117 [p = 0.001, P = 0.174] = [&W 0.001009] (((45,(43,(44,42))),((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_118 [p = 0.001, P = 0.175] = [&W 0.001009] (((53,51),(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_119 [p = 0.001, P = 0.176] = [&W 0.001009] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_120 [p = 0.001, P = 0.177] = [&W 0.001009] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_121 [p = 0.001, P = 0.178] = [&W 0.001009] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_122 [p = 0.001, P = 0.179] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_123 [p = 0.001, P = 0.180] = [&W 0.001009] (((53,51),(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_124 [p = 0.001, P = 0.181] = [&W 0.001009] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_125 [p = 0.001, P = 0.182] = [&W 0.001009] (((53,51),(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_126 [p = 0.001, P = 0.183] = [&W 0.001009] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_127 [p = 0.001, P = 0.184] = [&W 0.001009] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_128 [p = 0.001, P = 0.185] = [&W 0.001009] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_129 [p = 0.001, P = 0.186] = [&W 0.001009] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_130 [p = 0.001, P = 0.187] = [&W 0.001009] ((15,(5,(((22,(32,18)),(52,((9,8),7))),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_131 [p = 0.001, P = 0.188] = [&W 0.000505] ((43,(44,(42,(45,((31,30),((16,(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((53,51),(41,(40,39))),11),((28,(20,19)),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_132 [p = 0.001, P = 0.188] = [&W 0.000505] ((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_133 [p = 0.001, P = 0.189] = [&W 0.000505] (((31,30),((45,(43,(44,42))),((16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((49,((28,(20,19)),((((53,51),41),(40,39)),11))),10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_134 [p = 0.001, P = 0.189] = [&W 0.000505] (((((45,(44,(43,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))),(2,3),1);
tree tree_135 [p = 0.001, P = 0.190] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_136 [p = 0.001, P = 0.190] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_137 [p = 0.001, P = 0.191] = [&W 0.000505] (((43,(44,42)),(45,((31,30),((((24,(25,23)),(29,(((36,(35,(34,33))),(27,26)),((38,13),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_138 [p = 0.001, P = 0.191] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_139 [p = 0.001, P = 0.192] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4))))))))))),(2,3),1);
tree tree_140 [p = 0.001, P = 0.192] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_141 [p = 0.001, P = 0.193] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((29,(24,(25,23))),(38,(13,(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_142 [p = 0.001, P = 0.193] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_143 [p = 0.001, P = 0.194] = [&W 0.000505] ((((((45,(44,(43,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))),(2,3),1);
tree tree_144 [p = 0.001, P = 0.194] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,((47,(48,46)),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_145 [p = 0.001, P = 0.195] = [&W 0.000505] (((31,30),((45,(43,(44,42))),((16,((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_146 [p = 0.001, P = 0.195] = [&W 0.000505] (((45,(43,(44,42))),((31,30),((16,(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_147 [p = 0.001, P = 0.196] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_148 [p = 0.001, P = 0.196] = [&W 0.000505] ((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))),(2,3),1);
tree tree_149 [p = 0.001, P = 0.197] = [&W 0.000505] ((((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_150 [p = 0.001, P = 0.197] = [&W 0.000505] (((45,(43,(44,42))),((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_151 [p = 0.001, P = 0.198] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,((47,(48,46)),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_152 [p = 0.001, P = 0.198] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_153 [p = 0.001, P = 0.199] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_154 [p = 0.001, P = 0.199] = [&W 0.000505] ((43,((44,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_155 [p = 0.001, P = 0.200] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_156 [p = 0.001, P = 0.200] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_157 [p = 0.001, P = 0.201] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_158 [p = 0.001, P = 0.201] = [&W 0.000505] ((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,((47,(48,46)),10)))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))),(2,3),1);
tree tree_159 [p = 0.001, P = 0.202] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_160 [p = 0.001, P = 0.202] = [&W 0.000505] (((43,(44,42)),(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_161 [p = 0.001, P = 0.203] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_162 [p = 0.001, P = 0.203] = [&W 0.000505] ((43,(44,(42,(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_163 [p = 0.001, P = 0.204] = [&W 0.000505] ((43,((44,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_164 [p = 0.001, P = 0.204] = [&W 0.000505] ((44,(43,(42,(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_165 [p = 0.001, P = 0.205] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10)))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_166 [p = 0.001, P = 0.205] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_167 [p = 0.001, P = 0.206] = [&W 0.000505] (((45,(43,(44,42))),((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_168 [p = 0.001, P = 0.206] = [&W 0.000505] ((43,((44,42),(45,((((31,30),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10))))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_169 [p = 0.001, P = 0.207] = [&W 0.000505] ((30,(31,((45,(43,(44,42))),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((20,19),(((((53,51),41),(40,39)),11),(28,(49,10)))))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_170 [p = 0.001, P = 0.207] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_171 [p = 0.001, P = 0.208] = [&W 0.000505] ((45,((44,(43,42)),((((31,30),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_172 [p = 0.001, P = 0.208] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_173 [p = 0.001, P = 0.209] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_174 [p = 0.001, P = 0.209] = [&W 0.000505] (((45,(43,(44,42))),((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_175 [p = 0.001, P = 0.210] = [&W 0.000505] (((16,(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((45,(44,(43,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((48,47),46),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_176 [p = 0.001, P = 0.210] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_177 [p = 0.001, P = 0.211] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_178 [p = 0.001, P = 0.211] = [&W 0.000505] (((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_179 [p = 0.001, P = 0.212] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_180 [p = 0.001, P = 0.212] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(((16,(29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_181 [p = 0.001, P = 0.213] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_182 [p = 0.001, P = 0.213] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_183 [p = 0.001, P = 0.214] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_184 [p = 0.001, P = 0.214] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_185 [p = 0.001, P = 0.215] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_186 [p = 0.001, P = 0.215] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((17,(37,((50,21),6))),4))))))))),(2,3),1);
tree tree_187 [p = 0.001, P = 0.216] = [&W 0.000505] ((43,((44,42),(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_188 [p = 0.001, P = 0.216] = [&W 0.000505] ((43,((44,42),(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_189 [p = 0.001, P = 0.217] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_190 [p = 0.001, P = 0.217] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_191 [p = 0.001, P = 0.218] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_192 [p = 0.001, P = 0.218] = [&W 0.000505] ((19,(20,(28,((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_193 [p = 0.001, P = 0.219] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_194 [p = 0.001, P = 0.219] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,((44,43),42)),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_195 [p = 0.001, P = 0.220] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_196 [p = 0.001, P = 0.220] = [&W 0.000505] (((49,10),(((28,(20,19)),((((53,51),41),(40,39)),11)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_197 [p = 0.001, P = 0.221] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_198 [p = 0.001, P = 0.221] = [&W 0.000505] (((49,10),((28,(20,19)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_199 [p = 0.001, P = 0.222] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_200 [p = 0.001, P = 0.223] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_201 [p = 0.001, P = 0.223] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_202 [p = 0.001, P = 0.224] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_203 [p = 0.001, P = 0.224] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_204 [p = 0.001, P = 0.225] = [&W 0.000505] ((47,((48,46),((49,10),(((((53,51),41),(40,39)),11),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_205 [p = 0.001, P = 0.225] = [&W 0.000505] ((45,((43,(44,42)),((31,30),((((24,(25,23)),(16,(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((32,(22,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_206 [p = 0.001, P = 0.226] = [&W 0.000505] ((43,(42,(44,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_207 [p = 0.001, P = 0.226] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_208 [p = 0.001, P = 0.227] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10)))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_209 [p = 0.001, P = 0.227] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_210 [p = 0.001, P = 0.228] = [&W 0.000505] ((44,((43,42),(45,((31,30),((((24,(25,23)),((29,16),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_211 [p = 0.001, P = 0.228] = [&W 0.000505] ((43,(42,(44,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_212 [p = 0.001, P = 0.229] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_213 [p = 0.001, P = 0.229] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_214 [p = 0.001, P = 0.230] = [&W 0.000505] ((43,((44,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_215 [p = 0.001, P = 0.230] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_216 [p = 0.001, P = 0.231] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))),(2,3),1);
tree tree_217 [p = 0.001, P = 0.231] = [&W 0.000505] ((44,((43,42),(45,((31,30),((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10)))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_218 [p = 0.001, P = 0.232] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_219 [p = 0.001, P = 0.232] = [&W 0.000505] ((43,((44,42),(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_220 [p = 0.001, P = 0.233] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_221 [p = 0.001, P = 0.233] = [&W 0.000505] ((43,((44,42),(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_222 [p = 0.001, P = 0.234] = [&W 0.000505] (((31,30),((45,(44,(43,42))),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_223 [p = 0.001, P = 0.234] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_224 [p = 0.001, P = 0.235] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_225 [p = 0.001, P = 0.235] = [&W 0.000505] ((43,((44,42),(45,((31,30),(((47,(48,46)),((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_226 [p = 0.001, P = 0.236] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_227 [p = 0.001, P = 0.236] = [&W 0.000505] (((16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((45,(43,(44,42))),(31,30)),((47,(48,46)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_228 [p = 0.001, P = 0.237] = [&W 0.000505] (((31,30),((45,((44,43),42)),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_229 [p = 0.001, P = 0.237] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_230 [p = 0.001, P = 0.238] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_231 [p = 0.001, P = 0.238] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_232 [p = 0.001, P = 0.239] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_233 [p = 0.001, P = 0.239] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_234 [p = 0.001, P = 0.240] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((((53,51),41),(40,39)),(28,(20,19))),(11,((49,(47,(48,46))),10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_235 [p = 0.001, P = 0.240] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),41),(40,39)),(11,(49,10))))),(((45,((44,43),42)),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_236 [p = 0.001, P = 0.241] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_237 [p = 0.001, P = 0.241] = [&W 0.000505] ((45,((43,(44,42)),((31,30),(16,(((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_238 [p = 0.001, P = 0.242] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_239 [p = 0.001, P = 0.242] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_240 [p = 0.001, P = 0.243] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_241 [p = 0.001, P = 0.243] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_242 [p = 0.001, P = 0.244] = [&W 0.000505] ((17,(37,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))))),((52,((9,8),7)),((32,(22,18)),(15,5)))),4)))),(2,3),1);
tree tree_243 [p = 0.001, P = 0.244] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_244 [p = 0.001, P = 0.245] = [&W 0.000505] ((16,((((45,(43,(44,42))),(31,30)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_245 [p = 0.001, P = 0.245] = [&W 0.000505] ((16,(((45,(44,(43,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_246 [p = 0.001, P = 0.246] = [&W 0.000505] ((31,(30,((45,(43,(44,42))),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_247 [p = 0.001, P = 0.246] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_248 [p = 0.001, P = 0.247] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_249 [p = 0.001, P = 0.247] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_250 [p = 0.001, P = 0.248] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_251 [p = 0.001, P = 0.248] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_252 [p = 0.001, P = 0.249] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_253 [p = 0.001, P = 0.249] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,((44,43),42)),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_254 [p = 0.001, P = 0.250] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_255 [p = 0.001, P = 0.250] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_256 [p = 0.001, P = 0.251] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),((((48,47),46),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_257 [p = 0.001, P = 0.251] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_258 [p = 0.001, P = 0.252] = [&W 0.000505] ((17,(37,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_259 [p = 0.001, P = 0.252] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_260 [p = 0.001, P = 0.253] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((49,(28,(20,19))),((((53,51),41),(40,39)),11)),10)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_261 [p = 0.001, P = 0.253] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_262 [p = 0.001, P = 0.254] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_263 [p = 0.001, P = 0.254] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_264 [p = 0.001, P = 0.255] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_265 [p = 0.001, P = 0.255] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)))))),((52,((9,8),7)),((32,(22,18)),(15,5)))),4)))),(2,3),1);
tree tree_266 [p = 0.001, P = 0.256] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_267 [p = 0.001, P = 0.256] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),41),(40,39)),(11,((49,(47,(48,46))),10))))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_268 [p = 0.001, P = 0.257] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,((47,(48,46)),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_269 [p = 0.001, P = 0.257] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_270 [p = 0.001, P = 0.258] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_271 [p = 0.001, P = 0.258] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(38,(13,(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_272 [p = 0.001, P = 0.259] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_273 [p = 0.001, P = 0.259] = [&W 0.000505] ((45,((44,(43,42)),((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_274 [p = 0.001, P = 0.260] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_275 [p = 0.001, P = 0.260] = [&W 0.000505] ((17,(37,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_276 [p = 0.001, P = 0.261] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_277 [p = 0.001, P = 0.261] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_278 [p = 0.001, P = 0.262] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_279 [p = 0.001, P = 0.262] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((32,(22,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_280 [p = 0.001, P = 0.263] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_281 [p = 0.001, P = 0.263] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(38,(13,(((36,(35,(34,33))),(27,26)),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4))))))))))),(2,3),1);
tree tree_282 [p = 0.001, P = 0.264] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_283 [p = 0.001, P = 0.264] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_284 [p = 0.001, P = 0.265] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),(28,(20,19))),(11,((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_285 [p = 0.001, P = 0.265] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_286 [p = 0.001, P = 0.266] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_287 [p = 0.001, P = 0.266] = [&W 0.000505] ((16,(((45,(44,(43,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_288 [p = 0.001, P = 0.267] = [&W 0.000505] ((16,(((45,((44,43),42)),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_289 [p = 0.001, P = 0.267] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_290 [p = 0.001, P = 0.268] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_291 [p = 0.001, P = 0.268] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_292 [p = 0.001, P = 0.269] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_293 [p = 0.001, P = 0.269] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_294 [p = 0.001, P = 0.270] = [&W 0.000505] ((43,((44,42),(45,((31,30),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_295 [p = 0.001, P = 0.270] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_296 [p = 0.001, P = 0.271] = [&W 0.000505] (((31,30),((45,(43,(44,42))),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_297 [p = 0.001, P = 0.271] = [&W 0.000505] ((44,((43,42),(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_298 [p = 0.001, P = 0.272] = [&W 0.000505] ((43,((44,42),(45,((31,30),((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_299 [p = 0.001, P = 0.272] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_300 [p = 0.001, P = 0.273] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_301 [p = 0.001, P = 0.273] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_302 [p = 0.001, P = 0.274] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_303 [p = 0.001, P = 0.274] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_304 [p = 0.001, P = 0.275] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((28,(20,19)),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((((53,51),41),(40,39)),11),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_305 [p = 0.001, P = 0.275] = [&W 0.000505] (((31,30),((45,(43,(44,42))),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_306 [p = 0.001, P = 0.276] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_307 [p = 0.001, P = 0.276] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_308 [p = 0.001, P = 0.277] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_309 [p = 0.001, P = 0.277] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_310 [p = 0.001, P = 0.278] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_311 [p = 0.001, P = 0.279] = [&W 0.000505] ((17,(37,(((50,21),6),(((((45,((44,43),42)),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_312 [p = 0.001, P = 0.279] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_313 [p = 0.001, P = 0.280] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_314 [p = 0.001, P = 0.280] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_315 [p = 0.001, P = 0.281] = [&W 0.000505] ((((44,43),42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_316 [p = 0.001, P = 0.281] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_317 [p = 0.001, P = 0.282] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,(38,(13,(((34,(35,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_318 [p = 0.001, P = 0.282] = [&W 0.000505] ((45,(((44,43),42),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_319 [p = 0.001, P = 0.283] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_320 [p = 0.001, P = 0.283] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(17,(37,(((50,21),6),4))))))))))),(2,3),1);
tree tree_321 [p = 0.001, P = 0.284] = [&W 0.000505] ((((45,(44,(43,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_322 [p = 0.001, P = 0.284] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_323 [p = 0.001, P = 0.285] = [&W 0.000505] ((17,(37,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_324 [p = 0.001, P = 0.285] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_325 [p = 0.001, P = 0.286] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_326 [p = 0.001, P = 0.286] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_327 [p = 0.001, P = 0.287] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_328 [p = 0.001, P = 0.287] = [&W 0.000505] ((((45,(44,(43,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_329 [p = 0.001, P = 0.288] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_330 [p = 0.001, P = 0.288] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_331 [p = 0.001, P = 0.289] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_332 [p = 0.001, P = 0.289] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_333 [p = 0.001, P = 0.290] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(44,(43,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_334 [p = 0.001, P = 0.290] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_335 [p = 0.001, P = 0.291] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((49,((47,(48,46)),10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_336 [p = 0.001, P = 0.291] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_337 [p = 0.001, P = 0.292] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_338 [p = 0.001, P = 0.292] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_339 [p = 0.001, P = 0.293] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_340 [p = 0.001, P = 0.293] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_341 [p = 0.001, P = 0.294] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_342 [p = 0.001, P = 0.294] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),(37,(17,(((50,21),6),4)))))))))),(2,3),1);
tree tree_343 [p = 0.001, P = 0.295] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((49,((47,(48,46)),10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_344 [p = 0.001, P = 0.295] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((((28,20),19),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_345 [p = 0.001, P = 0.296] = [&W 0.000505] ((((53,51),41),((40,39),(11,((49,10),((28,(20,19)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_346 [p = 0.001, P = 0.296] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((49,(47,(48,46))),10),((28,(20,19)),(((29,(24,(25,23))),((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_347 [p = 0.001, P = 0.297] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((((28,20),19),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((52,((9,8),7)),((22,(32,18)),(15,5))),(((45,(43,(44,42))),(31,30)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_348 [p = 0.001, P = 0.297] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_349 [p = 0.001, P = 0.298] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_350 [p = 0.001, P = 0.298] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(37,(17,(((50,21),6),4))))))))))),(2,3),1);
tree tree_351 [p = 0.001, P = 0.299] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,((47,(48,46)),10)))))),((22,(32,18)),((52,((9,8),7)),(15,5)))),4)))),(2,3),1);
tree tree_352 [p = 0.001, P = 0.299] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,((44,43),42)),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(17,(37,(((50,21),6),4)))))))))))),(2,3),1);
tree tree_353 [p = 0.001, P = 0.300] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_354 [p = 0.001, P = 0.300] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_355 [p = 0.001, P = 0.301] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((32,(22,18)),(15,5)))),4)))),(2,3),1);
tree tree_356 [p = 0.001, P = 0.301] = [&W 0.000505] ((((53,51),41),((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_357 [p = 0.001, P = 0.302] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_358 [p = 0.001, P = 0.302] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_359 [p = 0.001, P = 0.303] = [&W 0.000505] (((53,51),(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_360 [p = 0.001, P = 0.303] = [&W 0.000505] (((53,51),((41,(40,39)),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_361 [p = 0.001, P = 0.304] = [&W 0.000505] ((41,((53,51),((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_362 [p = 0.001, P = 0.304] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_363 [p = 0.001, P = 0.305] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((28,(20,19)),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_364 [p = 0.001, P = 0.305] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_365 [p = 0.001, P = 0.306] = [&W 0.000505] ((53,(51,(41,((40,39),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_366 [p = 0.001, P = 0.306] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_367 [p = 0.001, P = 0.307] = [&W 0.000505] ((53,(51,(41,((40,39),(11,(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_368 [p = 0.001, P = 0.307] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),((31,30),16)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_369 [p = 0.001, P = 0.308] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((47,(48,46)),((((32,(22,18)),(52,((9,8),7))),(((45,(43,(44,42))),(31,30)),(15,5))),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_370 [p = 0.001, P = 0.308] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,((47,(48,46)),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_371 [p = 0.001, P = 0.309] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_372 [p = 0.001, P = 0.309] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_373 [p = 0.001, P = 0.310] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_374 [p = 0.001, P = 0.310] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_375 [p = 0.001, P = 0.311] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_376 [p = 0.001, P = 0.311] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_377 [p = 0.001, P = 0.312] = [&W 0.000505] ((41,((53,51),((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_378 [p = 0.001, P = 0.312] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),(((47,(48,46)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_379 [p = 0.001, P = 0.313] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,(38,(13,(((36,(35,(34,33))),(27,26)),(14,12)))))),((((45,((44,43),42)),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_380 [p = 0.001, P = 0.313] = [&W 0.000505] ((41,((53,51),((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_381 [p = 0.001, P = 0.314] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_382 [p = 0.001, P = 0.314] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_383 [p = 0.001, P = 0.315] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(((22,(32,18)),(52,((9,8),7))),(15,5))),4)))),(2,3),1);
tree tree_384 [p = 0.001, P = 0.315] = [&W 0.000505] (((((53,51),41),(40,39)),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_385 [p = 0.001, P = 0.316] = [&W 0.000505] (((((53,51),41),(40,39)),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_386 [p = 0.001, P = 0.316] = [&W 0.000505] ((17,(37,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))))),(((22,(32,18)),(52,((9,8),7))),(15,5))),4)))),(2,3),1);
tree tree_387 [p = 0.001, P = 0.317] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_388 [p = 0.001, P = 0.317] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_389 [p = 0.001, P = 0.318] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_390 [p = 0.001, P = 0.318] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_391 [p = 0.001, P = 0.319] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_392 [p = 0.001, P = 0.319] = [&W 0.000505] (((53,51),(41,((40,39),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_393 [p = 0.001, P = 0.320] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_394 [p = 0.001, P = 0.320] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_395 [p = 0.001, P = 0.321] = [&W 0.000505] ((11,(((53,51),(41,(40,39))),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_396 [p = 0.001, P = 0.321] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4)))))))))))))),(2,3),1);
tree tree_397 [p = 0.001, P = 0.322] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_398 [p = 0.001, P = 0.322] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_399 [p = 0.001, P = 0.323] = [&W 0.000505] ((((50,21),6),((37,17),((((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4))),(2,3),1);
tree tree_400 [p = 0.001, P = 0.323] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_401 [p = 0.001, P = 0.324] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))))),((22,(32,18)),((52,((9,8),7)),(15,5)))),4)))),(2,3),1);
tree tree_402 [p = 0.001, P = 0.324] = [&W 0.000505] (((((53,51),41),(40,39)),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_403 [p = 0.001, P = 0.325] = [&W 0.000505] ((11,(((53,51),(41,(40,39))),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((48,47),46),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_404 [p = 0.001, P = 0.325] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_405 [p = 0.001, P = 0.326] = [&W 0.000505] ((17,(37,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)))),((32,(22,18)),((52,((9,8),7)),(15,5)))),4)))),(2,3),1);
tree tree_406 [p = 0.001, P = 0.326] = [&W 0.000505] (((53,51),(41,((40,39),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_407 [p = 0.001, P = 0.327] = [&W 0.000505] (((((53,51),41),(40,39)),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_408 [p = 0.001, P = 0.327] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_409 [p = 0.001, P = 0.328] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_410 [p = 0.001, P = 0.328] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((28,(20,19)),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_411 [p = 0.001, P = 0.329] = [&W 0.000505] ((51,(53,((41,(40,39)),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_412 [p = 0.001, P = 0.329] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_413 [p = 0.001, P = 0.330] = [&W 0.000505] ((11,(((53,51),(41,(40,39))),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_414 [p = 0.001, P = 0.330] = [&W 0.000505] ((41,((53,51),((40,39),(11,(((47,(48,46)),(49,10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_415 [p = 0.001, P = 0.331] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_416 [p = 0.001, P = 0.331] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_417 [p = 0.001, P = 0.332] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_418 [p = 0.001, P = 0.332] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_419 [p = 0.001, P = 0.333] = [&W 0.000505] ((53,(51,(41,((40,39),(11,(((28,(20,19)),((47,(48,46)),(49,10))),((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_420 [p = 0.001, P = 0.334] = [&W 0.000505] (((((53,51),41),(40,39)),(11,(((28,(20,19)),((49,(47,(48,46))),10)),((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_421 [p = 0.001, P = 0.334] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_422 [p = 0.001, P = 0.335] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),(((47,(48,46)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),((31,30),16)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_423 [p = 0.001, P = 0.335] = [&W 0.000505] ((41,((53,51),((40,39),(11,((28,(20,19)),((49,((47,(48,46)),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_424 [p = 0.001, P = 0.336] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_425 [p = 0.001, P = 0.336] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_426 [p = 0.001, P = 0.337] = [&W 0.000505] ((28,(((((53,51),41),(40,39)),11),((20,19),((49,10),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4)))))))))))),(2,3),1);
tree tree_427 [p = 0.001, P = 0.337] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_428 [p = 0.001, P = 0.338] = [&W 0.000505] ((41,((53,51),((40,39),(11,(28,((20,19),((49,10),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_429 [p = 0.001, P = 0.338] = [&W 0.000505] ((((((53,51),41),(40,39)),11),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_430 [p = 0.001, P = 0.339] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_431 [p = 0.001, P = 0.339] = [&W 0.000505] (((53,51),(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,((44,43),42)),(31,30)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_432 [p = 0.001, P = 0.340] = [&W 0.000505] ((41,((53,51),((40,39),(((49,(47,(48,46))),10),((28,(20,19)),(11,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_433 [p = 0.001, P = 0.340] = [&W 0.000505] (((49,10),((((53,51),(41,(40,39))),11),((28,(20,19)),(((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_434 [p = 0.001, P = 0.341] = [&W 0.000505] ((((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_435 [p = 0.001, P = 0.341] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((29,(24,(25,23))),((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_436 [p = 0.001, P = 0.342] = [&W 0.000505] ((10,(49,(((((53,51),41),(40,39)),11),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_437 [p = 0.001, P = 0.342] = [&W 0.000505] (((49,10),(((((53,51),41),(40,39)),11),((28,(20,19)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_438 [p = 0.001, P = 0.343] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_439 [p = 0.001, P = 0.343] = [&W 0.000505] ((28,((20,19),((49,((47,(48,46)),10)),(((((53,51),41),(40,39)),11),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_440 [p = 0.001, P = 0.344] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_441 [p = 0.001, P = 0.344] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_442 [p = 0.001, P = 0.345] = [&W 0.000505] ((28,(19,(20,(((47,(48,46)),(49,10)),((((53,51),(41,(40,39))),11),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_443 [p = 0.001, P = 0.345] = [&W 0.000505] ((28,((49,10),((20,19),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_444 [p = 0.001, P = 0.346] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_445 [p = 0.001, P = 0.346] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((47,(48,46)),((52,((9,8),7)),((32,(22,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_446 [p = 0.001, P = 0.347] = [&W 0.000505] ((28,((20,19),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((49,10),(((((53,51),41),(40,39)),11),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_447 [p = 0.001, P = 0.347] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_448 [p = 0.001, P = 0.348] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_449 [p = 0.001, P = 0.348] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(49,10))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_450 [p = 0.001, P = 0.349] = [&W 0.000505] ((49,(10,(((28,(20,19)),((((53,51),41),(40,39)),11)),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_451 [p = 0.001, P = 0.349] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_452 [p = 0.001, P = 0.350] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(34,(35,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_453 [p = 0.001, P = 0.350] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_454 [p = 0.001, P = 0.351] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((((45,(44,(43,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_455 [p = 0.001, P = 0.351] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12)))))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),(17,(37,(((50,21),6),4)))))))))),(2,3),1);
tree tree_456 [p = 0.001, P = 0.352] = [&W 0.000505] ((17,(37,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_457 [p = 0.001, P = 0.352] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_458 [p = 0.001, P = 0.353] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_459 [p = 0.001, P = 0.353] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_460 [p = 0.001, P = 0.354] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_461 [p = 0.001, P = 0.354] = [&W 0.000505] ((((50,21),6),((37,17),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4))),(2,3),1);
tree tree_462 [p = 0.001, P = 0.355] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_463 [p = 0.001, P = 0.355] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((45,(44,(43,42))),((31,30),16)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_464 [p = 0.001, P = 0.356] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_465 [p = 0.001, P = 0.356] = [&W 0.000505] (((49,10),((28,(20,19)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_466 [p = 0.001, P = 0.357] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_467 [p = 0.001, P = 0.357] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_468 [p = 0.001, P = 0.358] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_469 [p = 0.001, P = 0.358] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_470 [p = 0.001, P = 0.359] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_471 [p = 0.001, P = 0.359] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_472 [p = 0.001, P = 0.360] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_473 [p = 0.001, P = 0.360] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(44,(43,42))),(31,30)),(16,(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_474 [p = 0.001, P = 0.361] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,((((45,(43,(44,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_475 [p = 0.001, P = 0.361] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_476 [p = 0.001, P = 0.362] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_477 [p = 0.001, P = 0.362] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_478 [p = 0.001, P = 0.363] = [&W 0.000505] ((28,((20,19),((49,10),((((53,51),(41,(40,39))),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_479 [p = 0.001, P = 0.363] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,(38,(13,(((36,(35,(34,33))),(27,26)),(14,12)))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_480 [p = 0.001, P = 0.364] = [&W 0.000505] ((28,((20,19),(((49,(47,(48,46))),10),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_481 [p = 0.001, P = 0.364] = [&W 0.000505] ((28,((20,19),(((47,(48,46)),(49,10)),(((((53,51),41),(40,39)),11),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_482 [p = 0.001, P = 0.365] = [&W 0.000505] ((37,(17,(((50,21),6),((((45,(43,(44,42))),(((31,30),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_483 [p = 0.001, P = 0.365] = [&W 0.000505] (((40,39),(((53,51),41),(11,((28,(20,19)),(((47,(48,46)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_484 [p = 0.001, P = 0.366] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_485 [p = 0.001, P = 0.366] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_486 [p = 0.001, P = 0.367] = [&W 0.000505] (((53,51),(41,((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_487 [p = 0.001, P = 0.367] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_488 [p = 0.001, P = 0.368] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_489 [p = 0.001, P = 0.368] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_490 [p = 0.001, P = 0.369] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_491 [p = 0.001, P = 0.369] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),((49,10),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_492 [p = 0.001, P = 0.370] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_493 [p = 0.001, P = 0.370] = [&W 0.000505] ((41,((53,51),((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))))),(2,3),1);
tree tree_494 [p = 0.001, P = 0.371] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_495 [p = 0.001, P = 0.371] = [&W 0.000505] (((53,51),(41,((40,39),(11,((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_496 [p = 0.001, P = 0.372] = [&W 0.000505] ((28,((20,19),((((53,51),(41,(40,39))),11),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_497 [p = 0.001, P = 0.372] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_498 [p = 0.001, P = 0.373] = [&W 0.000505] ((11,(((28,(20,19)),((((53,51),41),(40,39)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_499 [p = 0.001, P = 0.373] = [&W 0.000505] ((53,(51,(41,((40,39),(11,((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))))),(2,3),1);
tree tree_500 [p = 0.001, P = 0.374] = [&W 0.000505] ((40,(39,(41,((53,51),(11,((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))))),(2,3),1);
tree tree_501 [p = 0.001, P = 0.374] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_502 [p = 0.001, P = 0.375] = [&W 0.000505] ((40,(39,(((53,51),41),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_503 [p = 0.001, P = 0.375] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_504 [p = 0.001, P = 0.376] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((49,10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_505 [p = 0.001, P = 0.376] = [&W 0.000505] ((11,((49,10),((((53,51),41),(40,39)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_506 [p = 0.001, P = 0.377] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),((49,10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_507 [p = 0.001, P = 0.377] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((31,30),16),(((45,(44,(43,42))),(((22,(32,18)),(52,((9,8),7))),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_508 [p = 0.001, P = 0.378] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,((44,43),42)),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_509 [p = 0.001, P = 0.378] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((28,(20,19)),(((49,(47,(48,46))),10),((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))))))),(2,3),1);
tree tree_510 [p = 0.001, P = 0.379] = [&W 0.000505] ((41,((53,51),((40,39),(11,(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_511 [p = 0.001, P = 0.379] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_512 [p = 0.001, P = 0.380] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((29,(24,(25,23))),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_513 [p = 0.001, P = 0.380] = [&W 0.000505] (((53,51),(41,((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_514 [p = 0.001, P = 0.381] = [&W 0.000505] ((51,(53,(41,((40,39),(11,(((28,(20,19)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((32,(22,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_515 [p = 0.001, P = 0.381] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),((49,(47,(48,46))),10)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_516 [p = 0.001, P = 0.382] = [&W 0.000505] ((28,((20,19),((49,10),(((((53,51),41),(40,39)),11),(((24,(25,23)),((29,16),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((32,(22,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_517 [p = 0.001, P = 0.382] = [&W 0.000505] ((28,((20,19),(((24,(25,23)),((((45,((44,43),42)),(31,30)),(29,16)),(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((49,10),((((53,51),(41,(40,39))),11),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_518 [p = 0.001, P = 0.383] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((((28,(20,19)),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_519 [p = 0.001, P = 0.383] = [&W 0.000505] ((11,((((53,51),41),(40,39)),((28,(20,19)),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_520 [p = 0.001, P = 0.384] = [&W 0.000505] ((51,(53,(41,((40,39),(11,((49,((47,(48,46)),10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,((44,43),42)),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))))))),(2,3),1);
tree tree_521 [p = 0.001, P = 0.384] = [&W 0.000505] (((40,39),(41,((53,51),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,((((45,(43,(44,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_522 [p = 0.001, P = 0.385] = [&W 0.000505] ((40,(39,(41,((53,51),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))))),(2,3),1);
tree tree_523 [p = 0.001, P = 0.385] = [&W 0.000505] ((40,(39,(((53,51),41),(11,(((47,(48,46)),(49,10)),((28,(20,19)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))))),(2,3),1);
tree tree_524 [p = 0.001, P = 0.386] = [&W 0.000505] ((41,((53,51),((40,39),(11,(((49,(47,(48,46))),10),((28,(20,19)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_525 [p = 0.001, P = 0.386] = [&W 0.000505] ((51,(53,((41,(40,39)),(11,((49,((47,(48,46)),10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_526 [p = 0.001, P = 0.387] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((47,(48,46)),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_527 [p = 0.001, P = 0.387] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_528 [p = 0.001, P = 0.388] = [&W 0.000505] ((11,((((53,51),41),(40,39)),(((28,(20,19)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_529 [p = 0.001, P = 0.388] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_530 [p = 0.001, P = 0.389] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((47,(48,46)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(44,(43,42))),(31,30)),(16,(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_531 [p = 0.001, P = 0.390] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),11),(((49,(47,(48,46))),10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_532 [p = 0.001, P = 0.390] = [&W 0.000505] ((21,(50,(6,(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((29,(24,(25,23))),(((35,(34,33)),(36,(27,26))),((38,13),(14,12)))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((32,(22,18)),(15,5))))),4)))),(2,3),1);
tree tree_533 [p = 0.001, P = 0.391] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_534 [p = 0.001, P = 0.391] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_535 [p = 0.001, P = 0.392] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_536 [p = 0.001, P = 0.392] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_537 [p = 0.001, P = 0.393] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_538 [p = 0.001, P = 0.393] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_539 [p = 0.001, P = 0.394] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(17,(37,(((50,21),6),4)))))))))),(2,3),1);
tree tree_540 [p = 0.001, P = 0.394] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_541 [p = 0.001, P = 0.395] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_542 [p = 0.001, P = 0.395] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_543 [p = 0.001, P = 0.396] = [&W 0.000505] ((21,(50,(6,(((37,17),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)))),(2,3),1);
tree tree_544 [p = 0.001, P = 0.396] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_545 [p = 0.001, P = 0.397] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,((((45,(44,(43,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_546 [p = 0.001, P = 0.397] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_547 [p = 0.001, P = 0.398] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,((44,43),42)),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_548 [p = 0.001, P = 0.398] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((45,(44,(43,42))),(31,30)),(16,((((48,47),46),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_549 [p = 0.001, P = 0.399] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((52,((9,8),7)),((22,(32,18)),(15,5))),(((45,(43,(44,42))),(31,30)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_550 [p = 0.001, P = 0.399] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),(16,(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_551 [p = 0.001, P = 0.400] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_552 [p = 0.001, P = 0.400] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_553 [p = 0.001, P = 0.401] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_554 [p = 0.001, P = 0.401] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_555 [p = 0.001, P = 0.402] = [&W 0.000505] ((21,(50,(6,(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)))),(2,3),1);
tree tree_556 [p = 0.001, P = 0.402] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_557 [p = 0.001, P = 0.403] = [&W 0.000505] ((41,((53,51),((40,39),(28,((20,19),((11,(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_558 [p = 0.001, P = 0.403] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(37,(17,(((50,21),6),4))))))))),(2,3),1);
tree tree_559 [p = 0.001, P = 0.404] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(37,(17,(((50,21),6),4)))))))))),(2,3),1);
tree tree_560 [p = 0.001, P = 0.404] = [&W 0.000505] ((21,(50,(6,(((37,17),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)))),(2,3),1);
tree tree_561 [p = 0.001, P = 0.405] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_562 [p = 0.001, P = 0.405] = [&W 0.000505] ((((50,21),6),(((37,17),(((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)),(2,3),1);
tree tree_563 [p = 0.001, P = 0.406] = [&W 0.000505] ((37,(17,(((50,21),6),(((((((45,(43,(44,42))),(31,30)),16),(29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_564 [p = 0.001, P = 0.406] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_565 [p = 0.001, P = 0.407] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_566 [p = 0.001, P = 0.407] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),(37,(17,(((50,21),6),4))))))))),(2,3),1);
tree tree_567 [p = 0.001, P = 0.408] = [&W 0.000505] ((37,(17,(((50,21),6),(((((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,((47,(48,46)),10)))),((52,((9,8),7)),((32,(22,18)),(15,5)))),4)))),(2,3),1);
tree tree_568 [p = 0.001, P = 0.408] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_569 [p = 0.001, P = 0.409] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_570 [p = 0.001, P = 0.409] = [&W 0.000505] ((28,((20,19),((11,(49,10)),((((53,51),41),(40,39)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_571 [p = 0.001, P = 0.410] = [&W 0.000505] ((6,((50,21),(((37,17),((47,(48,46)),((((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4))),(2,3),1);
tree tree_572 [p = 0.001, P = 0.410] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_573 [p = 0.001, P = 0.411] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_574 [p = 0.001, P = 0.411] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_575 [p = 0.001, P = 0.412] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_576 [p = 0.001, P = 0.412] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,((((45,(44,(43,42))),(31,30)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_577 [p = 0.001, P = 0.413] = [&W 0.000505] ((((50,21),6),(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)),(2,3),1);
tree tree_578 [p = 0.001, P = 0.413] = [&W 0.000505] ((21,(50,(6,(((37,17),((47,(48,46)),((((45,(44,(43,42))),(31,30)),(16,((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4)))),(2,3),1);
tree tree_579 [p = 0.001, P = 0.414] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),(11,(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_580 [p = 0.001, P = 0.414] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_581 [p = 0.001, P = 0.415] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_582 [p = 0.001, P = 0.415] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((24,(25,23)),((16,(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_583 [p = 0.001, P = 0.416] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((45,(43,(44,42))),(31,30)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_584 [p = 0.001, P = 0.416] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),(11,((49,(47,(48,46))),10))),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))),(2,3),1);
tree tree_585 [p = 0.001, P = 0.417] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_586 [p = 0.001, P = 0.417] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_587 [p = 0.001, P = 0.418] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((24,(25,23)),((16,(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_588 [p = 0.001, P = 0.418] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_589 [p = 0.001, P = 0.419] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_590 [p = 0.001, P = 0.419] = [&W 0.000505] ((16,(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_591 [p = 0.001, P = 0.420] = [&W 0.000505] (((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((45,(44,(43,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_592 [p = 0.001, P = 0.420] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(16,((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_593 [p = 0.001, P = 0.421] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_594 [p = 0.001, P = 0.421] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(16,(((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_595 [p = 0.001, P = 0.422] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_596 [p = 0.001, P = 0.422] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_597 [p = 0.001, P = 0.423] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_598 [p = 0.001, P = 0.423] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_599 [p = 0.001, P = 0.424] = [&W 0.000505] (((50,21),(6,(((37,17),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4))),(2,3),1);
tree tree_600 [p = 0.001, P = 0.424] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_601 [p = 0.001, P = 0.425] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),(37,(17,(((50,21),6),4)))))))),(2,3),1);
tree tree_602 [p = 0.001, P = 0.425] = [&W 0.000505] ((28,((20,19),((11,((49,(47,(48,46))),10)),((((53,51),41),(40,39)),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_603 [p = 0.001, P = 0.426] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((45,((44,43),42)),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_604 [p = 0.001, P = 0.426] = [&W 0.000505] ((28,((20,19),((11,(49,10)),((((53,51),41),(40,39)),(((((45,((44,43),42)),(31,30)),16),((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_605 [p = 0.001, P = 0.427] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12)))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_606 [p = 0.001, P = 0.427] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,((47,(48,46)),(49,10))),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_607 [p = 0.001, P = 0.428] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_608 [p = 0.001, P = 0.428] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),(11,((49,(47,(48,46))),10))),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_609 [p = 0.001, P = 0.429] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_610 [p = 0.001, P = 0.429] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_611 [p = 0.001, P = 0.430] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_612 [p = 0.001, P = 0.430] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((45,(43,(44,42))),((31,30),16)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_613 [p = 0.001, P = 0.431] = [&W 0.000505] ((((50,21),6),(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4)),(2,3),1);
tree tree_614 [p = 0.001, P = 0.431] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_615 [p = 0.001, P = 0.432] = [&W 0.000505] ((((50,21),6),(((37,17),((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4)),(2,3),1);
tree tree_616 [p = 0.001, P = 0.432] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_617 [p = 0.001, P = 0.433] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_618 [p = 0.001, P = 0.433] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_619 [p = 0.001, P = 0.434] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_620 [p = 0.001, P = 0.434] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_621 [p = 0.001, P = 0.435] = [&W 0.000505] ((21,(50,(6,(((37,17),((47,(48,46)),(((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4)))),(2,3),1);
tree tree_622 [p = 0.001, P = 0.435] = [&W 0.000505] ((20,(19,(28,((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,((44,43),42)),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_623 [p = 0.001, P = 0.436] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_624 [p = 0.001, P = 0.436] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_625 [p = 0.001, P = 0.437] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((28,(20,19)),(((53,51),(41,(40,39))),11)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_626 [p = 0.001, P = 0.437] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_627 [p = 0.001, P = 0.438] = [&W 0.000505] (((28,(20,19)),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_628 [p = 0.001, P = 0.438] = [&W 0.000505] ((28,(19,(20,((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_629 [p = 0.001, P = 0.439] = [&W 0.000505] ((28,(((20,19),(11,((47,(48,46)),(49,10)))),((((53,51),41),(40,39)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_630 [p = 0.001, P = 0.439] = [&W 0.000505] ((28,(20,(19,((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_631 [p = 0.001, P = 0.440] = [&W 0.000505] ((28,(19,(20,((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_632 [p = 0.001, P = 0.440] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_633 [p = 0.001, P = 0.441] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_634 [p = 0.001, P = 0.441] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_635 [p = 0.001, P = 0.442] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_636 [p = 0.001, P = 0.442] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_637 [p = 0.001, P = 0.443] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_638 [p = 0.001, P = 0.443] = [&W 0.000505] ((37,(17,((((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_639 [p = 0.001, P = 0.444] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_640 [p = 0.001, P = 0.445] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_641 [p = 0.001, P = 0.445] = [&W 0.000505] ((28,((20,19),((11,((49,(47,(48,46))),10)),((((53,51),41),(40,39)),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_642 [p = 0.001, P = 0.446] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_643 [p = 0.001, P = 0.446] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_644 [p = 0.001, P = 0.447] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_645 [p = 0.001, P = 0.447] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_646 [p = 0.001, P = 0.448] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_647 [p = 0.001, P = 0.448] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_648 [p = 0.001, P = 0.449] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((32,(22,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_649 [p = 0.001, P = 0.449] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_650 [p = 0.001, P = 0.450] = [&W 0.000505] ((37,(17,((((32,(22,18)),(52,((9,8),7))),(((45,(44,(43,42))),(31,30)),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10)))),((24,(25,23)),((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_651 [p = 0.001, P = 0.450] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10)))),((24,(25,23)),(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(29,(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_652 [p = 0.001, P = 0.451] = [&W 0.000505] ((37,(17,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(16,(15,5)))))),(((50,21),6),4)))),(2,3),1);
tree tree_653 [p = 0.001, P = 0.451] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))),(2,3),1);
tree tree_654 [p = 0.001, P = 0.452] = [&W 0.000505] ((15,(5,((22,(32,18)),((52,((9,8),7)),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_655 [p = 0.001, P = 0.452] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_656 [p = 0.001, P = 0.453] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4)))))))))),(2,3),1);
tree tree_657 [p = 0.001, P = 0.453] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_658 [p = 0.001, P = 0.454] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))),((24,(25,23)),(29,(((38,13),(((34,(35,33)),(36,(27,26))),(14,12))),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_659 [p = 0.001, P = 0.454] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((49,10),(((((53,51),41),(40,39)),11),((20,19),(28,(15,5))))))))),(((50,21),6),4)))),(2,3),1);
tree tree_660 [p = 0.001, P = 0.455] = [&W 0.000505] ((37,(17,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((24,(25,23)),(29,(((38,13),(14,12)),((36,(27,26)),((35,(34,33)),(15,5)))))))))),(((50,21),6),4)))),(2,3),1);
tree tree_661 [p = 0.001, P = 0.455] = [&W 0.000505] ((37,(17,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(((45,(43,(44,42))),(31,30)),(16,(((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))),((24,(25,23)),(29,(((38,13),(((34,(35,33)),(36,(27,26))),(14,12))),(15,5))))))))),(((50,21),6),4)))),(2,3),1);
tree tree_662 [p = 0.001, P = 0.456] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),(((45,(43,(44,42))),(31,30)),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),((24,(25,23)),(29,(((38,13),(((36,(35,(34,33))),(27,26)),(14,12))),(15,5)))))))),(((50,21),6),4)))),(2,3),1);
tree tree_663 [p = 0.001, P = 0.456] = [&W 0.000505] ((37,(17,(((((45,(43,(44,42))),(31,30)),((22,(32,18)),(52,((9,8),7)))),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),((24,(25,23)),(29,(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_664 [p = 0.001, P = 0.457] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((24,(25,23)),(29,(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(15,5)))))))),(((50,21),6),4)))),(2,3),1);
tree tree_665 [p = 0.001, P = 0.457] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),((((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)),((24,(25,23)),(29,(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_666 [p = 0.001, P = 0.458] = [&W 0.000505] ((((32,18),(22,((52,((9,8),7)),((15,5),(((((45,((44,43),42)),(31,30)),16),(((28,(20,19)),((((53,51),41),(40,39)),11)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(49,10)))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),2),3,1);
tree tree_667 [p = 0.001, P = 0.458] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),(((45,((44,43),42)),(31,30)),(16,((((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(15,5)))))),(((50,21),6),4)))),(2,3),1);
tree tree_668 [p = 0.001, P = 0.459] = [&W 0.000505] ((37,(17,((((47,(48,46)),((22,(32,18)),(52,((9,8),7)))),((((45,(44,(43,42))),(31,30)),16),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_669 [p = 0.001, P = 0.459] = [&W 0.000505] ((37,(17,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),((((45,(44,(43,42))),(31,30)),16),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((24,(25,23)),(29,(((38,13),(((34,(35,33)),(36,(27,26))),(14,12))),(15,5)))))))),(((50,21),6),4)))),(2,3),1);
tree tree_670 [p = 0.001, P = 0.460] = [&W 0.000505] (2,((5,(15,(((22,(32,18)),(52,((9,8),7))),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))))),((37,17),(((50,21),6),4)))))),3),1);
tree tree_671 [p = 0.001, P = 0.460] = [&W 0.000505] (((37,17),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(((45,(43,(44,42))),(31,30)),(16,(((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(15,5))))))),(((50,21),6),4))),(2,3),1);
tree tree_672 [p = 0.001, P = 0.461] = [&W 0.000505] ((37,(17,((((47,(48,46)),((22,(32,18)),(52,((9,8),7)))),(((45,(43,(44,42))),(31,30)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))),(16,(15,5)))))),(((50,21),6),4)))),(2,3),1);
tree tree_673 [p = 0.001, P = 0.461] = [&W 0.000505] ((17,(37,((((45,(44,(43,42))),((22,(32,18)),(52,((9,8),7)))),((((31,30),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),(15,5))),(((50,21),6),4)))),(2,3),1);
tree tree_674 [p = 0.001, P = 0.462] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((24,(25,23)),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(16,(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_675 [p = 0.001, P = 0.462] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((28,(20,19)),((((53,51),41),(40,39)),11)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_676 [p = 0.001, P = 0.463] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,(((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((53,51),(41,(40,39))),11))),(49,10)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_677 [p = 0.001, P = 0.463] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),(((25,24),23),(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(29,(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_678 [p = 0.001, P = 0.464] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),(((45,((44,43),42)),(31,30)),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))),((24,(25,23)),(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),(29,(15,5)))))))),(((50,21),6),4)))),(2,3),1);
tree tree_679 [p = 0.001, P = 0.464] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))),((24,(25,23)),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(15,5)))))),(((50,21),6),4)))),(2,3),1);
tree tree_680 [p = 0.001, P = 0.465] = [&W 0.000505] ((17,(37,((((22,(32,18)),(52,((9,8),7))),(((45,((44,43),42)),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10)))),(16,(15,5))))),(((50,21),6),4)))),(2,3),1);
tree tree_681 [p = 0.001, P = 0.465] = [&W 0.000505] ((37,(17,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(((45,((44,43),42)),(31,30)),(16,((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((24,(25,23)),(29,((38,13),((((36,(35,(34,33))),(27,26)),(14,12)),(15,5)))))))))),(((50,21),6),4)))),(2,3),1);
tree tree_682 [p = 0.001, P = 0.466] = [&W 0.000505] ((37,(17,((((22,(32,18)),(52,((9,8),7))),((((45,(43,(44,42))),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))),(29,(((38,13),(((35,(34,33)),(36,(27,26))),(14,12))),((24,(25,23)),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_683 [p = 0.001, P = 0.466] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((((35,34),33),(36,(27,26))),((38,13),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_684 [p = 0.001, P = 0.467] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_685 [p = 0.001, P = 0.467] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_686 [p = 0.001, P = 0.468] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_687 [p = 0.001, P = 0.468] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),((((35,34),33),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_688 [p = 0.001, P = 0.469] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_689 [p = 0.001, P = 0.469] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),(38,(13,(((36,(35,(34,33))),(27,26)),(14,12)))))),(16,(((45,((44,43),42)),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_690 [p = 0.001, P = 0.470] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_691 [p = 0.001, P = 0.470] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_692 [p = 0.001, P = 0.471] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_693 [p = 0.001, P = 0.471] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_694 [p = 0.001, P = 0.472] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,((47,(48,46)),(49,10))),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_695 [p = 0.001, P = 0.472] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_696 [p = 0.001, P = 0.473] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_697 [p = 0.001, P = 0.473] = [&W 0.000505] ((6,((50,21),(((37,17),((47,(48,46)),((((45,(43,(44,42))),(31,30)),(((24,(25,23)),((29,16),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((22,(32,18)),((52,((9,8),7)),(15,5)))))),4))),(2,3),1);
tree tree_698 [p = 0.001, P = 0.474] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_699 [p = 0.001, P = 0.474] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_700 [p = 0.001, P = 0.475] = [&W 0.000505] ((((50,21),6),(((37,17),(((47,(48,46)),(((((45,(43,(44,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)),(2,3),1);
tree tree_701 [p = 0.001, P = 0.475] = [&W 0.000505] ((((50,21),6),(((37,17),(((((31,30),16),((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((45,((44,43),42)),((52,((9,8),7)),((22,(32,18)),(15,5)))))),4)),(2,3),1);
tree tree_702 [p = 0.001, P = 0.476] = [&W 0.000505] ((6,((50,21),(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((29,(24,(25,23))),((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4))),(2,3),1);
tree tree_703 [p = 0.001, P = 0.476] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_704 [p = 0.001, P = 0.477] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_705 [p = 0.001, P = 0.477] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_706 [p = 0.001, P = 0.478] = [&W 0.000505] ((37,(17,(((50,21),6),(((((45,(44,(43,42))),(31,30)),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,((47,(48,46)),10)))))),(((22,(32,18)),(52,((9,8),7))),(15,5))),4)))),(2,3),1);
tree tree_707 [p = 0.001, P = 0.478] = [&W 0.000505] ((6,((50,21),(((37,17),(((((45,(43,(44,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4))),(2,3),1);
tree tree_708 [p = 0.001, P = 0.479] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_709 [p = 0.001, P = 0.479] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_710 [p = 0.001, P = 0.480] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_711 [p = 0.001, P = 0.480] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_712 [p = 0.001, P = 0.481] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_713 [p = 0.001, P = 0.481] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_714 [p = 0.001, P = 0.482] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((24,(25,23)),((49,(47,(48,46))),10))),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_715 [p = 0.001, P = 0.482] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,((44,43),42)),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_716 [p = 0.001, P = 0.483] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_717 [p = 0.001, P = 0.483] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_718 [p = 0.001, P = 0.484] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_719 [p = 0.001, P = 0.484] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_720 [p = 0.001, P = 0.485] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_721 [p = 0.001, P = 0.485] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(16,((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_722 [p = 0.001, P = 0.486] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_723 [p = 0.001, P = 0.486] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_724 [p = 0.001, P = 0.487] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_725 [p = 0.001, P = 0.487] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),(13,(38,(14,12)))))),((((45,(44,(43,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_726 [p = 0.001, P = 0.488] = [&W 0.000505] (((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_727 [p = 0.001, P = 0.488] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(37,(17,(((50,21),6),4)))))))))),(2,3),1);
tree tree_728 [p = 0.001, P = 0.489] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_729 [p = 0.001, P = 0.489] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(44,(43,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_730 [p = 0.001, P = 0.490] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(44,(43,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_731 [p = 0.001, P = 0.490] = [&W 0.000505] ((28,((20,19),((((53,51),41),(40,39)),((11,((49,(47,(48,46))),10)),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(16,(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_732 [p = 0.001, P = 0.491] = [&W 0.000505] ((28,((20,19),(((((53,51),41),(40,39)),(11,(49,10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_733 [p = 0.001, P = 0.491] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),((24,(25,23)),(((((45,(43,(44,42))),(31,30)),16),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_734 [p = 0.001, P = 0.492] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_735 [p = 0.001, P = 0.492] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_736 [p = 0.001, P = 0.493] = [&W 0.000505] (((45,((44,43),42)),((31,30),(16,((((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_737 [p = 0.001, P = 0.493] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_738 [p = 0.001, P = 0.494] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_739 [p = 0.001, P = 0.494] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_740 [p = 0.001, P = 0.495] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_741 [p = 0.001, P = 0.495] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((45,(44,(43,42))),(31,30)),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_742 [p = 0.001, P = 0.496] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_743 [p = 0.001, P = 0.496] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_744 [p = 0.001, P = 0.497] = [&W 0.000505] ((((44,43),42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_745 [p = 0.001, P = 0.497] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_746 [p = 0.001, P = 0.498] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_747 [p = 0.001, P = 0.498] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),16),((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,((47,(48,46)),10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_748 [p = 0.001, P = 0.499] = [&W 0.000505] ((17,(37,(((50,21),6),((((((45,(43,(44,42))),(31,30)),16),(((29,(24,(25,23))),((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_749 [p = 0.001, P = 0.499] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_750 [p = 0.001, P = 0.500] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4)))))))))))),(2,3),1);
tree tree_751 [p = 0.001, P = 0.501] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((48,47),46),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_752 [p = 0.001, P = 0.501] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_753 [p = 0.001, P = 0.502] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_754 [p = 0.001, P = 0.502] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_755 [p = 0.001, P = 0.503] = [&W 0.000505] (((31,30),((45,(43,(44,42))),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_756 [p = 0.001, P = 0.503] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_757 [p = 0.001, P = 0.504] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_758 [p = 0.001, P = 0.504] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),16),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_759 [p = 0.001, P = 0.505] = [&W 0.000505] ((6,((50,21),(((37,17),(((47,(48,46)),(((45,(43,(44,42))),(31,30)),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))))))),((22,(32,18)),((52,((9,8),7)),(15,5))))),4))),(2,3),1);
tree tree_760 [p = 0.001, P = 0.505] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_761 [p = 0.001, P = 0.506] = [&W 0.000505] ((45,((43,(44,42)),((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_762 [p = 0.001, P = 0.506] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_763 [p = 0.001, P = 0.507] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),(37,(17,(((50,21),6),4))))))))))),(2,3),1);
tree tree_764 [p = 0.001, P = 0.507] = [&W 0.000505] ((((50,21),6),(((37,17),(((47,(48,46)),((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),(((22,(32,18)),(52,((9,8),7))),(15,5)))),4)),(2,3),1);
tree tree_765 [p = 0.001, P = 0.508] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_766 [p = 0.001, P = 0.508] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),((((32,(22,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_767 [p = 0.001, P = 0.509] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_768 [p = 0.001, P = 0.509] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_769 [p = 0.001, P = 0.510] = [&W 0.000505] ((16,(((45,((44,43),42)),(31,30)),((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_770 [p = 0.001, P = 0.510] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_771 [p = 0.001, P = 0.511] = [&W 0.000505] ((45,((43,(44,42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_772 [p = 0.001, P = 0.511] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_773 [p = 0.001, P = 0.512] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_774 [p = 0.001, P = 0.512] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_775 [p = 0.001, P = 0.513] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),(28,(20,19))),(11,(49,10)))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_776 [p = 0.001, P = 0.513] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_777 [p = 0.001, P = 0.514] = [&W 0.000505] ((42,(44,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_778 [p = 0.001, P = 0.514] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),16),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_779 [p = 0.001, P = 0.515] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((29,(24,(25,23))),((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_780 [p = 0.001, P = 0.515] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_781 [p = 0.001, P = 0.516] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),(28,(20,19))),(11,(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_782 [p = 0.001, P = 0.516] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_783 [p = 0.001, P = 0.517] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),16),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_784 [p = 0.001, P = 0.517] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_785 [p = 0.001, P = 0.518] = [&W 0.000505] ((45,((43,(44,42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_786 [p = 0.001, P = 0.518] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_787 [p = 0.001, P = 0.519] = [&W 0.000505] ((45,(((44,43),42),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_788 [p = 0.001, P = 0.519] = [&W 0.000505] (((45,((44,43),42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_789 [p = 0.001, P = 0.520] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_790 [p = 0.001, P = 0.520] = [&W 0.000505] ((16,(((45,(44,(43,42))),(31,30)),((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_791 [p = 0.001, P = 0.521] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_792 [p = 0.001, P = 0.521] = [&W 0.000505] ((16,(((45,((44,43),42)),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_793 [p = 0.001, P = 0.522] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_794 [p = 0.001, P = 0.522] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_795 [p = 0.001, P = 0.523] = [&W 0.000505] ((31,(30,((45,(43,(44,42))),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_796 [p = 0.001, P = 0.523] = [&W 0.000505] (((45,((44,43),42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_797 [p = 0.001, P = 0.524] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((((53,51),41),(40,39)),(28,(20,19))),11),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_798 [p = 0.001, P = 0.524] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_799 [p = 0.001, P = 0.525] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_800 [p = 0.001, P = 0.525] = [&W 0.000505] ((45,((44,(43,42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_801 [p = 0.001, P = 0.526] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_802 [p = 0.001, P = 0.526] = [&W 0.000505] ((45,((44,(43,42)),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((((53,51),41),(40,39)),(28,(20,19))),11),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_803 [p = 0.001, P = 0.527] = [&W 0.000505] (((44,(43,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_804 [p = 0.001, P = 0.527] = [&W 0.000505] (((44,42),(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_805 [p = 0.001, P = 0.528] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_806 [p = 0.001, P = 0.528] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_807 [p = 0.001, P = 0.529] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(44,(43,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_808 [p = 0.001, P = 0.529] = [&W 0.000505] ((21,(50,(6,(((37,17),(((47,(48,46)),((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((22,(32,18)),((52,((9,8),7)),(15,5))))),4)))),(2,3),1);
tree tree_809 [p = 0.001, P = 0.530] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_810 [p = 0.001, P = 0.530] = [&W 0.000505] ((43,((44,42),(45,(((31,30),16),(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_811 [p = 0.001, P = 0.531] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_812 [p = 0.001, P = 0.531] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_813 [p = 0.001, P = 0.532] = [&W 0.000505] (((31,30),((45,(43,(44,42))),(16,(((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_814 [p = 0.001, P = 0.532] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_815 [p = 0.001, P = 0.533] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_816 [p = 0.001, P = 0.533] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_817 [p = 0.001, P = 0.534] = [&W 0.000505] ((21,(50,(6,(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))))),4)))),(2,3),1);
tree tree_818 [p = 0.001, P = 0.534] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((53,51),(41,(40,39))),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_819 [p = 0.001, P = 0.535] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_820 [p = 0.001, P = 0.535] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_821 [p = 0.001, P = 0.536] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_822 [p = 0.001, P = 0.536] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),((((45,(43,(44,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))),(2,3),1);
tree tree_823 [p = 0.001, P = 0.537] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_824 [p = 0.001, P = 0.537] = [&W 0.000505] ((16,(((45,(43,(44,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_825 [p = 0.001, P = 0.538] = [&W 0.000505] ((16,(((45,(44,(43,42))),(31,30)),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_826 [p = 0.001, P = 0.538] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_827 [p = 0.001, P = 0.539] = [&W 0.000505] ((6,((50,21),(((37,17),((47,(48,46)),(((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((49,((28,(20,19)),((((53,51),41),(40,39)),11))),10))),((22,(32,18)),((52,((9,8),7)),(15,5)))))),4))),(2,3),1);
tree tree_828 [p = 0.001, P = 0.539] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_829 [p = 0.001, P = 0.540] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((53,51),41),(40,39)),(((20,19),11),(28,(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_830 [p = 0.001, P = 0.540] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((20,(28,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_831 [p = 0.001, P = 0.541] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_832 [p = 0.001, P = 0.541] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,((20,19),((((53,51),41),(40,39)),11))),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_833 [p = 0.001, P = 0.542] = [&W 0.000505] ((16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_834 [p = 0.001, P = 0.542] = [&W 0.000505] ((16,((((24,(25,23)),(29,(((36,(35,(34,33))),(27,26)),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_835 [p = 0.001, P = 0.543] = [&W 0.000505] ((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10)))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_836 [p = 0.001, P = 0.543] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_837 [p = 0.001, P = 0.544] = [&W 0.000505] ((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((((53,51),41),(40,39)),11),((28,(20,19)),(49,((47,(48,46)),10)))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_838 [p = 0.001, P = 0.544] = [&W 0.000505] (((27,26),((36,(35,(34,33))),((14,12),((38,13),(29,((24,(25,23)),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((((45,(43,(44,42))),(31,30)),16),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_839 [p = 0.001, P = 0.545] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,(((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((((28,20),19),(((((53,51),41),(40,39)),11),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_840 [p = 0.001, P = 0.545] = [&W 0.000505] ((16,(((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_841 [p = 0.001, P = 0.546] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((((53,51),41),(40,39)),((28,(20,19)),(11,(49,10)))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_842 [p = 0.001, P = 0.546] = [&W 0.000505] ((16,((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((45,(43,(44,42))),(31,30)),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_843 [p = 0.001, P = 0.547] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((16,(((41,((53,51),(40,39))),11),((28,(20,19)),((47,(48,46)),(49,10))))),((((45,(43,(44,42))),(31,30)),(((22,(32,18)),(52,((9,8),7))),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_844 [p = 0.001, P = 0.547] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),((47,(48,46)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_845 [p = 0.001, P = 0.548] = [&W 0.000505] ((16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_846 [p = 0.001, P = 0.548] = [&W 0.000505] ((16,(29,(((38,13),(((36,(35,(34,33))),(27,26)),(14,12))),((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_847 [p = 0.001, P = 0.549] = [&W 0.000505] ((36,((27,26),((35,(34,33)),((14,12),((38,13),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(44,(43,42))),(31,30)),16),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_848 [p = 0.001, P = 0.549] = [&W 0.000505] ((38,(13,((((34,(35,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_849 [p = 0.001, P = 0.550] = [&W 0.000505] ((38,(13,((((35,(34,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_850 [p = 0.001, P = 0.550] = [&W 0.000505] ((38,(13,((((35,(34,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_851 [p = 0.001, P = 0.551] = [&W 0.000505] ((38,(13,((((34,(35,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),(((28,(20,19)),((((53,51),(41,(40,39))),11),(49,((47,(48,46)),10)))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_852 [p = 0.001, P = 0.551] = [&W 0.000505] ((14,(12,(((35,(34,33)),(36,(27,26))),((38,13),(29,((24,(25,23)),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((((45,((44,43),42)),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),(37,(17,(((50,21),6),4))))))))))))),(2,3),1);
tree tree_853 [p = 0.001, P = 0.552] = [&W 0.000505] ((38,(13,((((35,(34,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_854 [p = 0.001, P = 0.552] = [&W 0.000505] (((35,(34,33)),((36,(27,26)),((14,12),((38,13),(29,((24,(25,23)),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_855 [p = 0.001, P = 0.553] = [&W 0.000505] ((26,(27,((36,(35,(34,33))),((14,12),((38,13),(29,((24,(25,23)),((((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))),(16,(((45,((44,43),42)),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))))),(2,3),1);
tree tree_856 [p = 0.001, P = 0.553] = [&W 0.000505] (((35,(34,33)),((36,(27,26)),((14,12),((38,13),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_857 [p = 0.001, P = 0.554] = [&W 0.000505] ((14,(12,(((34,(35,33)),(36,(27,26))),((38,13),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_858 [p = 0.001, P = 0.554] = [&W 0.000505] (((34,(35,33)),((36,(27,26)),((14,12),((38,13),(29,((24,(25,23)),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_859 [p = 0.001, P = 0.555] = [&W 0.000505] (((27,26),((36,(35,(34,33))),((14,12),((38,13),(29,((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))))),(2,3),1);
tree tree_860 [p = 0.001, P = 0.555] = [&W 0.000505] (((24,(25,23)),(((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)),((28,(20,19)),(((((45,(43,(44,42))),(31,30)),16),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_861 [p = 0.001, P = 0.556] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_862 [p = 0.001, P = 0.557] = [&W 0.000505] ((24,((25,23),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10))),(16,((((45,((44,43),42)),(31,30)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_863 [p = 0.001, P = 0.557] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_864 [p = 0.001, P = 0.558] = [&W 0.000505] ((28,((20,19),(((((53,51),(41,(40,39))),11),(49,10)),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,((44,43),42)),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_865 [p = 0.001, P = 0.558] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))),((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),((((45,(43,(44,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_866 [p = 0.001, P = 0.559] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),(49,10)),(((24,(25,23)),((29,16),(((45,(43,(44,42))),(31,30)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_867 [p = 0.001, P = 0.559] = [&W 0.000505] ((51,(53,(41,((40,39),((11,(49,10)),((28,(20,19)),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((45,((44,43),42)),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_868 [p = 0.001, P = 0.560] = [&W 0.000505] (((((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10)))),((16,((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,(44,(43,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_869 [p = 0.001, P = 0.560] = [&W 0.000505] ((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((((((53,51),41),(40,39)),11),((28,(20,19)),(49,10))),((((45,((44,43),42)),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(((37,17),((50,21),6)),4)))))),(2,3),1);
tree tree_870 [p = 0.001, P = 0.561] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((16,((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),((((45,(44,(43,42))),(31,30)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_871 [p = 0.001, P = 0.561] = [&W 0.000505] ((28,((20,19),((((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)),((16,(29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_872 [p = 0.001, P = 0.562] = [&W 0.000505] ((((50,21),6),(((37,17),(((((45,(43,(44,42))),(31,30)),16),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10))))),((52,((9,8),7)),((22,(32,18)),(15,5))))),4)),(2,3),1);
tree tree_873 [p = 0.001, P = 0.562] = [&W 0.000505] ((28,((20,19),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((11,(49,10)),((((53,51),41),(40,39)),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_874 [p = 0.001, P = 0.563] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(((38,13),(((36,(35,(34,33))),(27,26)),(14,12))),((29,16),((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),(37,(17,(((50,21),6),4))))))))),(2,3),1);
tree tree_875 [p = 0.001, P = 0.563] = [&W 0.000505] ((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(16,(((45,(44,(43,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_876 [p = 0.001, P = 0.564] = [&W 0.000505] ((((38,13),(((36,(35,(34,33))),(27,26)),(14,12))),((29,(24,(25,23))),((16,(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_877 [p = 0.001, P = 0.564] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(37,(17,(((50,21),6),4))))))))))))),(2,3),1);
tree tree_878 [p = 0.001, P = 0.565] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((24,(25,23)),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_879 [p = 0.001, P = 0.565] = [&W 0.000505] (((25,23),(24,((29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_880 [p = 0.001, P = 0.566] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),(((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))),((((45,((44,43),42)),(31,30)),16),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_881 [p = 0.001, P = 0.566] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((((((53,51),41),(40,39)),11),((28,(20,19)),((47,(48,46)),(49,10)))),(16,(((45,(43,(44,42))),(31,30)),(((52,((9,8),7)),((32,(22,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_882 [p = 0.001, P = 0.567] = [&W 0.000505] ((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_883 [p = 0.001, P = 0.567] = [&W 0.000505] ((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((((28,(20,19)),(((53,51),(41,(40,39))),11)),(49,10)),((((45,((44,43),42)),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(37,(17,(((50,21),6),4)))))))),(2,3),1);
tree tree_884 [p = 0.001, P = 0.568] = [&W 0.000505] ((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(16,(((45,(43,(44,42))),(31,30)),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_885 [p = 0.001, P = 0.568] = [&W 0.000505] (((44,42),(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_886 [p = 0.001, P = 0.569] = [&W 0.000505] ((42,(44,(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_887 [p = 0.001, P = 0.569] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_888 [p = 0.001, P = 0.570] = [&W 0.000505] ((43,(42,(44,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_889 [p = 0.001, P = 0.570] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),(((28,(20,19)),((((53,51),41),(40,39)),11)),((49,(47,(48,46))),10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_890 [p = 0.001, P = 0.571] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((29,(24,(25,23))),(((35,(34,33)),(36,(27,26))),((38,13),(14,12)))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_891 [p = 0.001, P = 0.571] = [&W 0.000505] ((((45,(43,(44,42))),(31,30)),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_892 [p = 0.001, P = 0.572] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_893 [p = 0.001, P = 0.572] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_894 [p = 0.001, P = 0.573] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_895 [p = 0.001, P = 0.573] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_896 [p = 0.001, P = 0.574] = [&W 0.000505] ((((50,21),6),(((37,17),((47,(48,46)),(((((45,((44,43),42)),(31,30)),16),(((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((22,(32,18)),((52,((9,8),7)),(15,5)))))),4)),(2,3),1);
tree tree_897 [p = 0.001, P = 0.574] = [&W 0.000505] ((((44,43),42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_898 [p = 0.001, P = 0.575] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_899 [p = 0.001, P = 0.575] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10)))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_900 [p = 0.001, P = 0.576] = [&W 0.000505] (((45,(44,(43,42))),((31,30),(16,(((29,((24,(25,23)),((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((47,(48,46)),(49,10))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_901 [p = 0.001, P = 0.576] = [&W 0.000505] (((((45,(43,(44,42))),(31,30)),16),((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((32,(22,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_902 [p = 0.001, P = 0.577] = [&W 0.000505] ((16,((((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((45,(43,(44,42))),(31,30)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_903 [p = 0.001, P = 0.577] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4))))))),(2,3),1);
tree tree_904 [p = 0.001, P = 0.578] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),((((53,51),(41,(40,39))),11),((49,(47,(48,46))),10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_905 [p = 0.001, P = 0.578] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((47,(48,46)),((22,(32,18)),((52,((9,8),7)),(15,5)))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_906 [p = 0.001, P = 0.579] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,(((34,(35,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_907 [p = 0.001, P = 0.579] = [&W 0.000505] ((44,(43,(42,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,((47,(48,46)),10))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_908 [p = 0.001, P = 0.580] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_909 [p = 0.001, P = 0.580] = [&W 0.000505] ((43,(44,(42,(45,((31,30),(16,((((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12))))),((28,(20,19)),((((53,51),41),(40,39)),(11,((49,(47,(48,46))),10))))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_910 [p = 0.001, P = 0.581] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,((47,(48,46)),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_911 [p = 0.001, P = 0.581] = [&W 0.000505] ((43,((44,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))))),(2,3),1);
tree tree_912 [p = 0.001, P = 0.582] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_913 [p = 0.001, P = 0.582] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((32,(22,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_914 [p = 0.001, P = 0.583] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((49,(47,(48,46))),10)))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_915 [p = 0.001, P = 0.583] = [&W 0.000505] (((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_916 [p = 0.001, P = 0.584] = [&W 0.000505] ((14,(12,(((35,(34,33)),(36,(27,26))),((38,13),(29,((24,(25,23)),((((((53,51),41),(40,39)),(28,(20,19))),(11,(49,10))),((((45,(43,(44,42))),(31,30)),16),((((32,(22,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_917 [p = 0.001, P = 0.584] = [&W 0.000505] ((38,(13,((((35,(34,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),(((28,(20,19)),((((53,51),(41,(40,39))),11),(49,10))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_918 [p = 0.001, P = 0.585] = [&W 0.000505] ((38,(13,((((34,(35,33)),(36,(27,26))),(14,12)),(29,((24,(25,23)),(16,(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),(((45,(43,(44,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_919 [p = 0.001, P = 0.585] = [&W 0.000505] ((44,((43,42),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10)))),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),(((37,17),((50,21),6)),4))))))))),(2,3),1);
tree tree_920 [p = 0.001, P = 0.586] = [&W 0.000505] ((((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((45,(43,(44,42))),(31,30)),16),((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_921 [p = 0.001, P = 0.586] = [&W 0.000505] ((44,(42,(43,(45,((31,30),((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(16,((47,(48,46)),(((52,((9,8),7)),((22,(32,18)),(15,5))),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_922 [p = 0.001, P = 0.587] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),(((37,17),((50,21),6)),4)))))))))),(2,3),1);
tree tree_923 [p = 0.001, P = 0.587] = [&W 0.000505] ((24,((25,23),((29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_924 [p = 0.001, P = 0.588] = [&W 0.000505] (((16,((24,(25,23)),(29,(((35,(34,33)),(36,(27,26))),((38,13),(14,12)))))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),(((45,(43,(44,42))),(31,30)),(((47,(48,46)),((52,((9,8),7)),((22,(32,18)),(15,5)))),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_925 [p = 0.001, P = 0.588] = [&W 0.000505] (((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))),((((45,(44,(43,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))),(2,3),1);
tree tree_926 [p = 0.001, P = 0.589] = [&W 0.000505] ((17,(37,(((47,(48,46)),(((22,(32,18)),(52,((9,8),7))),((((45,((44,43),42)),(31,30)),16),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),((24,(25,23)),((29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))),(15,5))))))),(((50,21),6),4)))),(2,3),1);
tree tree_927 [p = 0.001, P = 0.589] = [&W 0.000505] ((((38,13),(((36,(35,(34,33))),(27,26)),(14,12))),(29,((24,(25,23)),(((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))),(16,(((45,(44,(43,42))),(31,30)),((((22,(32,18)),(52,((9,8),7))),(15,5)),((47,(48,46)),((37,17),(((50,21),6),4)))))))))),(2,3),1);
tree tree_928 [p = 0.001, P = 0.590] = [&W 0.000505] (((24,(25,23)),((29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_929 [p = 0.001, P = 0.590] = [&W 0.000505] ((37,(17,(((50,21),6),((((((45,(44,(43,42))),(31,30)),16),((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,((47,(48,46)),10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),4)))),(2,3),1);
tree tree_930 [p = 0.001, P = 0.591] = [&W 0.000505] (((43,(44,42)),(45,((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))),(2,3),1);
tree tree_931 [p = 0.001, P = 0.591] = [&W 0.000505] (((44,42),(43,(45,((31,30),(16,(((29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),((37,17),(((52,((9,8),7)),((32,(22,18)),(15,5))),(((50,21),6),4))))))))),(2,3),1);
tree tree_932 [p = 0.001, P = 0.592] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((29,(24,(25,23))),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))),((28,(20,19)),(((((53,51),41),(40,39)),11),((47,(48,46)),(49,10))))),(((52,((9,8),7)),((22,(32,18)),(15,5))),(((37,17),((50,21),6)),4)))))),(2,3),1);
tree tree_933 [p = 0.001, P = 0.592] = [&W 0.000505] ((44,(42,(43,(45,((31,30),(16,((((24,(25,23)),(29,((38,13),((((35,34),33),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),(((22,(32,18)),((52,((9,8),7)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4))))))))))),(2,3),1);
tree tree_934 [p = 0.001, P = 0.593] = [&W 0.000505] (((45,(43,(44,42))),((31,30),(16,((((24,(25,23)),(29,((38,13),(((35,(34,33)),(36,(27,26))),(14,12))))),(((((53,51),41),(40,39)),11),((28,(20,19)),(49,10)))),((47,(48,46)),(((22,(32,18)),((52,((9,8),7)),(15,5))),((37,17),(((50,21),6),4)))))))),(2,3),1);
tree tree_935 [p = 0.001, P = 0.593] = [&W 0.000505] (((53,51),(41,((40,39),(11,((28,(20,19)),((49,10),(((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12))))),((((45,(43,(44,42))),(31,30)),16),(((52,((9,8),7)),((22,(32,18)),(15,5))),((47,(48,46)),((37,17),(((50,21),6),4)))))))))))),(2,3),1);
tree tree_936 [p = 0.001, P = 0.594] = [&W 0.000505] ((37,(17,((((47,(48,46)),(((((45,(44,(43,42))),(31,30)),16),((24,(25,23)),(29,((38,13),(((36,(35,(34,33))),(27,26)),(14,12)))))),((28,(20,19)),(((((53,51),41),(40,39)),11),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_937 [p = 0.001, P = 0.594] = [&W 0.000505] ((37,(17,((((47,(48,46)),(((45,(43,(44,42))),(31,30)),((16,((24,(25,23)),(29,((38,13),(((34,(35,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10))))),((52,((9,8),7)),((22,(32,18)),(15,5)))),(((50,21),6),4)))),(2,3),1);
tree tree_938 [p = 0.001, P = 0.595] = [&W 0.000505] ((37,(17,(((47,(48,46)),((((45,(43,(44,42))),(31,30)),((16,(29,((24,(25,23)),((38,13),(((35,(34,33)),(36,(27,26))),(14,12)))))),(((28,(20,19)),((((53,51),41),(40,39)),11)),(49,10)))),((52,((9,8),7)),((22,(32,18)),(15,5))))),(((50,21),6),4)))),(2,3),1);