Result Evaluation Notes: DCG Discounted Cumulative Gain $$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i}-1}{log_2(i+1)}$$ $rel_i$ $2^{rel_i}-1$ $log_2(i+1)$ $=$ 2 3 1 3 3 7 1.6 4.4 1 1 2 0.5 $\sum$ 7.9 More results → higher DCG → normalize Notes: iDCG Ideal Discounted Cumulative Gain $$iDCG_p = \sum_{i=1}^{|REL|} \frac{2^{rel_i}-1}{log_2(i+1)}$$ $rel_i$ $2^{rel_i}-1$ $log_2(i+1)$ $=$ 3 7 1 7 2 3 1.6 1.9 1 1 2 0.5 $\sum$ 9.4 Notes: nDCG Normalized Discounted Cumulative Gain $$nDCG_p = \frac{DCG_p}{iDCG_p}$$ $$7.9 \div 9.4 = 0.8$$ Perfect ranking: $1.0$ Notes: What's the perfect ranking? Online testing A/B testing Notes: