diff --git a/doxygen/09_ReleaseNotes.dox b/doxygen/09_ReleaseNotes.dox index 3a36df8f62..a1d29bb103 100644 --- a/doxygen/09_ReleaseNotes.dox +++ b/doxygen/09_ReleaseNotes.dox @@ -20,7 +20,7 @@ Bug fixes: ---- 1. Fixed support for CUDA 8 and older. 2. Replaced deprecated ``__linux`` macro with ``__linux__`` making GeNN compatible with compiler on POWER9 Linux. - +3. Fixed bug where the initialisation of neuron groups which are identical apart from one needing an RNG could be incorrectly merged. Release Notes for GeNN v4.3.3 (PyGeNN 0.4.3) ==== diff --git a/doxygen/11_Tutorial.dox b/doxygen/11_Tutorial.dox index de5c8e7e34..28b670e0b1 100644 --- a/doxygen/11_Tutorial.dox +++ b/doxygen/11_Tutorial.dox @@ -186,9 +186,9 @@ int main() \section BuildingSimUnix Building the simulator (Linux or Mac) On Linux and Mac, GeNN simulations are typically built using a simple Makefile which can be generated with the following command: \code ->> genn-create-user-project.sh tennHHModel tenHHSimulation.cc +>> genn-create-user-project.sh tenHHModel tenHHSimulation.cc \endcode -This defines that the model is named tennHHModel and the simulation code is given in the file `tenHHSimulation.cc` that we completed above. +This defines that the model is named tenHHModel and the simulation code is given in the file `tenHHSimulation.cc` that we completed above. Now type \code >> make @@ -198,22 +198,22 @@ Now type So that projects can be easily debugged within the Visual Studio IDE (see section \ref Debugging for more details), Windows projects are built using an MSBuild script typically with the same title as the final executable. A suitable solution and project can be generated automatically with the following command: \code ->> genn-create-user-project.bat tennHHModel tenHHSimulation.cc +>> genn-create-user-project.bat tenHHModel tenHHSimulation.cc \endcode -his defines that the model is named tennHHModel and the simulation code is given in the file `tenHHSimulation.cc` that we completed above. +his defines that the model is named tenHHModel and the simulation code is given in the file `tenHHSimulation.cc` that we completed above. Now type \code ->> msbuild tennHHModel.sln /p:Configuration=Release +>> msbuild tenHHModel.sln /p:Configuration=Release \endcode \section RunningSim Running the Simulation You can now execute your newly-built simulator on Linux or Mac with \code ->> ./tennHHModel +>> ./tenHHModel \endcode Or on Windows with \code ->> tennHHModel_Release +>> tenHHModel_Release \endcode The output you obtain should look like \code diff --git a/doxygen/12_Tutorial_Python.dox b/doxygen/12_Tutorial_Python.dox index d6e1bb6ecf..84cd0cb9be 100644 --- a/doxygen/12_Tutorial_Python.dox +++ b/doxygen/12_Tutorial_Python.dox @@ -18,7 +18,7 @@ from pygenn.genn_model import GeNNModel \endcode Two standard elements to the model definition are setting the simulation step size, the name of the model and the precision to simulate with: \code -model = GeNNModel("float", "tennHH") +model = GeNNModel("float", "tenHH") model.dT = 0.1 \endcode \note @@ -64,7 +64,7 @@ This completes the model definition in this example. The complete `tenHH.py` fil \code from pygenn.genn_model import GeNNModel -model = GeNNModel("float", "tennHH") +model = GeNNModel("float", "tenHH") model.dT = 0.1 p = {"gNa": 7.15, # Na conductance in [muS] @@ -115,7 +115,7 @@ This completes the first version of the script. The complete `tenHH.py` file sho \code from pygenn.genn_model import GeNNModel -model = GeNNModel("float", "tennHH") +model = GeNNModel("float", "tenHH") model.dT = 0.1 p = {"gNa": 7.15, # Na conductance in [muS] diff --git a/doxygen/14_Tutorial_Python.dox b/doxygen/14_Tutorial_Python.dox index b9c9cbdd5e..316fe4b648 100644 --- a/doxygen/14_Tutorial_Python.dox +++ b/doxygen/14_Tutorial_Python.dox @@ -11,7 +11,7 @@ First, copy the files from Tutorial 1 into a new directory and rename the ``tenH \endcode Finally, to reduce confusion we should rename the model itself. Open `tenHHRing.py`, change the model name inside, \code -model = GeNNModel("float", "tennHHRing") +model = GeNNModel("float", "tenHHRing") \endcode You will also need to import some additional PyGeNN functions and constants: \code @@ -21,7 +21,7 @@ from pygenn.genn_wrapper import NO_DELAY \endcode \section SynapseMatrix Defining the Detailed Synaptic Connections -We want to connect our ten neurons into a ring where each neuron connects to its neighbours. In order to initialise this connectivity we need to add a sparse connectivity initialisation snippet at the top of ``tennHHRing.cc``: +We want to connect our ten neurons into a ring where each neuron connects to its neighbours. In order to initialise this connectivity we need to add a sparse connectivity initialisation snippet at the top of ``tenHHRing.cc``: \code ring_model = create_custom_sparse_connect_init_snippet_class( "ring", @@ -93,7 +93,7 @@ ring_model = create_custom_sparse_connect_init_snippet_class( calc_max_row_len_func=create_cmlf_class( lambda num_pre, num_post, pars: 1)()) -model = GeNNModel("float", "tennHHRing") +model = GeNNModel("float", "tenHHRing") model.dT = 0.1 p = {"gNa": 7.15, # Na conductance in [muS] @@ -183,7 +183,7 @@ ring_model = create_custom_sparse_connect_init_snippet_class( calc_max_row_len_func=create_cmlf_class( lambda num_pre, num_post, pars: 1)()) -model = GeNNModel("float", "tennHHRing") +model = GeNNModel("float", "tenHHRing") model.dT = 0.1 p = {"gNa": 7.15, # Na conductance in [muS]