-
Notifications
You must be signed in to change notification settings - Fork 574
/
Copy pathostrack.py
113 lines (82 loc) · 3.48 KB
/
ostrack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import numpy as np
import cv2
import os
from os import path as osp
import sys
from pathlib import Path
sys.path.insert(0, str(Path(__file__).resolve().parent / "pytracking"))
from pytracking.lib.test.evaluation.video2seq import video2seq
from pytracking.lib.test.evaluation import Tracker
from pytracking.lib.utils.video_utils import frames2video
def vis_traj(seq, output_boxes):
frames_list = []
for frame, box in zip(seq.frames, output_boxes):
frame = cv2.imread(frame)
x, y, w, h = box
x1, y1, x2, y2 = map(lambda x: int(x), [x, y, (x + w), (y+h)])
frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), thickness=2)
frames_list.append(frame)
return frames_list
# seq.frames[1:]
def build_ostrack_model(tracker_param):
tracker = Tracker('ostrack', tracker_param, "inpaint-videos")
return tracker
def get_box_using_ostrack(tracker, seq, output_dir=None):
output = tracker.run_sequence(seq, debug=False)
tracked_bb = np.array(output['target_bbox']).astype(int)
return tracked_bb
if __name__ == '__main__':
video_path = './example/remove-anything-video/ikun.mp4'
coordinates = [290, 341]
num_points = 1
sam_ckpt_path = '/data1/yutao/projects/IAM/pretrained_models/sam_vit_h_4b8939.pth'
output_dir = './results'
tracker_param = 'vitb_384_mae_ce_32x4_ep300'
seq, fps = video2seq(
video_path,
coordinates,
[num_points],
"vit_h",
sam_ckpt_path,
output_dir)
tracker = Tracker('ostrack', tracker_param, "inpaint-videos")
print('Tracker: {} {} {} , Sequence: {}'.format(tracker.name, tracker.parameter_name, tracker.run_id, seq.name))
output = tracker.run_sequence(seq, debug=False)
tracked_bb = np.array(output['target_bbox']).astype(int)
trajectory_file = osp.join(output_dir, seq.name, 'trajectory.txt')
np.savetxt(trajectory_file, tracked_bb, delimiter='\t', fmt='%d')
# # vis frames
frames_list = vis_traj(seq, output['target_bbox'])
vis_dir = osp.join(output_dir, seq.name, 'vis_bboxes')
if not osp.exists(vis_dir):
os.mkdir(vis_dir)
for idx, frame in enumerate(frames_list):
cv2.imwrite(osp.join(vis_dir, '{:05d}.jpg'.format(idx)), frame)
# def video_inpaint(seq: Sequence, tracker: Tracker, inpaint_func=None):
# print('Tracker: {} {} {} , Sequence: {}'.format(tracker.name, tracker.parameter_name, tracker.run_id, seq.name))
# output, inpainted_frames = tracker.run_video_inpaint(seq, debug=False, inpaint_func=inpaint_func)
# sys.stdout.flush()
# return inpainted_frames
# def inpaint_handler(prompt_bbox, image):
# # function to perform frame-wise inpaint
# return image
# inpainted_frames = video_inpaint(video_seq, tracker)
# frames2video(inpainted_frames, f'{args.output_dir}/{video_seq.name}_inpainted.mp4', fps)
# shutil.rmtree('./frames')
# frames = video_seq.frames
# print(frames)
# frame_i = frames[5]
# import cv2
# from skimage.io import imsave
# print(frame_i)
# # Load the image into frame_i
# frame_i = cv2.imread('image.jpg')
# # Check the type and shape of frame_i
# print(type(frame_i), frame_i.shape)
# # Convert from BGR to RGB color format if necessary
# if frame_i.ndim == 3 and frame_i.shape[2] == 3:
# frame_i = cv2.cvtColor(frame_i, cv2.COLOR_BGR2RGB)
# # Save the converted image
# imsave('test5.jpg', frame_i)
# print(video_seq.ground_truth_rect, fps)