-
Notifications
You must be signed in to change notification settings - Fork 1
/
Train.php
91 lines (71 loc) · 3.25 KB
/
Train.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
<?php
// Training Variables
$desired_error = 0.0001;
$max_epochs = 5000;
$current_epoch = 0;
$epochs_between_saves = 1; // Minimum number of epochs between saves
$epochs_since_last_save = 0;
// Training Data
$data = dirname(__FILE__) . "/MyVisualTraningData.data";
// Initialize pseudo mse (mean squared error) to a number greater than the desired_error
// this is what the network is trying to minimize.
$pseudo_mse_result = $desired_error * 10000; // 1
$best_mse = $pseudo_mse_result; // keep the last best seen MSE network score here
// Initialize ANN
$num_input = 96;
$num_output = 96;
$num_neurons_hidden_1 = 160;
$layers = array($num_input, $num_neurons_hidden_1, $num_output);
$num_layers = count($layers);
// Create ANN
$ann = fann_create_standard_array ($num_layers , $layers);
if ($ann) {
echo 'Training ANN... ' . PHP_EOL;
$log = fopen('traning_mse_save_log.txt', 'w');
// Configure the ANN
fann_set_training_algorithm ($ann , FANN_TRAIN_RPROP);
fann_set_activation_function_hidden($ann, FANN_SIGMOID_SYMMETRIC);
fann_set_activation_function_output($ann, FANN_SIGMOID_SYMMETRIC);
// Read training data
$train_data = fann_read_train_from_file($data);
// Check if pseudo_mse_result is greater than our desired_error
// if so keep training so long as we are also under max_epochs
while(($pseudo_mse_result > $desired_error) && ($current_epoch <= $max_epochs)){
$current_epoch++;
$epochs_since_last_save++;
// See: http://php.net/manual/en/function.fann-train-epoch.php
// Train one epoch
//
// One epoch is where all of the training data is considered
// exactly once.
//
// This function returns the MSE error as it is calculated
// either before or during the actual training. This is not the
// actual MSE after the training epoch, but since calculating this
// will require to go through the entire training set once more.
// It is more than adequate to use this value during training.
$pseudo_mse_result = fann_train_epoch ($ann , $train_data );
echo 'Epoch ' . $current_epoch . ' : ' . $pseudo_mse_result . PHP_EOL; // report
// If we haven't saved the ANN in a while...
// and the current network is better then the previous best network
// as defined by the current MSE being less than the last best MSE
// Save it!
if(($epochs_since_last_save >= $epochs_between_saves) && ($pseudo_mse_result < $best_mse)){
$best_mse = $pseudo_mse_result; // we have a new best_mse
// Save a Snapshot of the ANN
fann_save($ann, dirname(__FILE__) . "/MyVisualANN.train.net");
echo "Saved MyVisualANN.train.net ANN." . PHP_EOL; // report the save
$epochs_since_last_save = 0; // reset the count
// Log the MSE
fwrite($log, $pseudo_mse_result . PHP_EOL);
}
} // While we're training
// Save the final network
echo 'Training Complete! Saving Final Network.' . PHP_EOL;
fann_save($ann, dirname(__FILE__) . "/MyVisualANN.finished.net");
fann_destroy($ann); // free memory
// Log final MSE
fwrite($log, $pseudo_mse_result . PHP_EOL);
fclose($log);
}
echo 'All Done!' . PHP_EOL;