-
Notifications
You must be signed in to change notification settings - Fork 0
/
cvrp_io.py
573 lines (495 loc) · 22 KB
/
cvrp_io.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# -*- coding: utf-8 -*-
################################################################################
""" This file implements the necessary functionality for reading TSPLIB CVRP
problem instance files, additional constraints from the said files, and
generating new random instances.
"""
# Written in Python 2.7, but try to maintain Python 3+ compatibility
from __future__ import print_function
from __future__ import division
from builtins import range
import os
import re
import random
from collections import namedtuple
from math import pi, radians, cos, sin, asin, sqrt, acos, modf
from itertools import groupby
from sys import stderr
import numpy as np
from scipy.spatial.distance import pdist, cdist, squareform
__author__ = "Jussi Rasku"
__copyright__ = "Copyright 2022, Jussi Rasku"
__credits__ = ["Jussi Rasku"]
__license__ = "MIT"
__maintainer__ = "Jussi Rasku"
__email__ = "[email protected]"
__status__ = "Development"
################################################################################
k_re = re.compile(r"-k([0-9]+)[\.-]")
def _haversine(pt1, pt2):
"""from http://stackoverflow.com/questions/4913349/
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
The distance should be within ~0.3% of the correct value.
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [pt1[0], pt1[1], pt2[0], pt2[1]])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
km = 6367 * c
return km
def _degrees_and_minutes_to_radians(x):
""" Adapted from Reneilt 1991 TSPLIB article / TSPFAQ """
PI = 3.141592
mins, degs = modf(x)
return (degs + 100 / 60.0 * mins) * PI / 180.0
def _geo(pt1, pt2):
""" Adapted from Reneilt 1991 TSPLIB article / TSPFAQ
this togehter with the _degrees_and_minutes_to_radians conversion produces
the same results than the optimal solution on the original GEO TSP files."""
RRR = 6378.388
latitude_i_rads, longitude_i_rads = pt1
latitude_j_rads, longitude_j_rads = pt2
q1 = cos(longitude_i_rads - longitude_j_rads)
q2 = cos(latitude_i_rads - latitude_j_rads)
q3 = cos(latitude_i_rads + latitude_j_rads)
return int(RRR * acos(0.5 * ((1.0 + q1) * q2 - (1.0 - q1) * q3)) + 1.0)
def _att(pt1, pt2):
dx = pt1[0] - pt2[0]
dy = pt1[1] - pt2[1]
r = sqrt(dx ** 2 + dy ** 2) / 10.0
t = int(r)
return t + 1 if t < r else t
def calculate_D(pts, opts=None, tsplib_distances_type='EUC_2D'):
pdtype = 'euclidean'
postprocess = lambda M: M
if tsplib_distances_type == 'MAX_2D':
pdtype = 'chebyshev'
elif tsplib_distances_type == 'MAN_2D':
pdtype = 'cityblock'
elif tsplib_distances_type == 'CEIL_2D':
postprocess = lambda D: np.ceil(D).astype(int)
elif tsplib_distances_type == 'FLOOR_2D':
postprocess = lambda D: np.floor(D).astype(int)
elif tsplib_distances_type == 'EUC_2D':
postprocess = lambda D: np.round(D).astype(int)
elif tsplib_distances_type == 'ATT':
pdtype = lambda v, w: _att(v, w)
elif tsplib_distances_type == 'GEO':
pdtype = lambda v, w: _geo(v, w)
elif tsplib_distances_type == 'EXACT_2D':
pass
else:
raise ValueError("Unknown distance method")
if opts is None:
return postprocess(squareform(pdist(pts, pdtype)))
else:
return postprocess(cdist(pts, opts, pdtype))
def read_OPT_CVRP(file_name):
solution = [0]
opt_f = None
opt_k = None
re_k = k_re.findall(file_name)
if re_k:
opt_k = int(re_k[0])
file_ext = os.path.splitext(file_name)[1]
count_k = 0
with open(file_name, "r") as f:
for l in f.readlines():
if file_ext == ".opt":
if "route" in l.lower():
if not opt_k:
count_k + 1
_, routestring = l.split(":")
p_idxs = [int(s) for s in routestring.split()]
first_node = True
for p_idx in p_idxs:
if first_node and solution[-1] != 0:
solution.append(0)
solution.append(p_idx)
first_node = False
if "cost" in l.lower():
_, coststring = l.split()
# tries to convert to int and if it fails to float
opt_f = None
try:
opt_f = int(coststring)
except ValueError:
opt_f = float(coststring)
else:
raise NotImplementedError("This solution file is not supported (yet)")
if len(solution) > 1:
solution.append(0)
if count_k or not opt_k:
opt_k = count_k
elif opt_k != count_k:
print("WARNING: the vehicle count in file name and solution differ", file=stderr)
return solution, opt_f, opt_k
ProblemDefinition = namedtuple('ProblemDefinition',
['size', 'coordinate_points', 'display_coordinate_points',
'customer_demands', 'distance_matrix', 'capacity_constraint', 'edge_weight_type'])
def read_TSPLIB_CVRP(directory, file_name):
""" Returns a namedtuple (N, points, dd_points, demands, D, C, ewt) where
* N is the size of the problem,
* points has the coordinates of the depot (index 0) and customers,
note: points can be None if the file does not have NODE_COORD_SECTION
* dd_points has the DISPLAY coordinates,
note: is usually None as files containing DISPLAY_DATA_SECTION are rare
* demands is a list of demands with the depot demand (index 0) set to 0
* D is the distance matrix as a numpy 2D ndarray,
* C is the vehicle capacity constraint, can be None if it is not set
* ewt is the EDGE_WEIGHT_TYPE
The reader supports following TSPLIB (Reinelt, 1991) fields:
NAME
TYPE
DIMENSION
CAPACITY
EDGE_WEIGHT_FORMAT (FUNCTION/FULL_MATRIX/
LOWER_ROW/LOWER_DIAG_ROW/
UPPER_ROW/UPPER_DIAG_ROW/
LOWER_COL)
EDGE_WEIGHT_TYPE (MAX_2D/MAN_2D/EXACT_2D/CEIL_2D/EUC_2D/EXPLICIT/GEO/ATT)
NODE_COORD_TYPE
and sections:
EDGE_WEIGHT_SECTION
NODE_COORD_SECTION
DEMAND_SECTION
DEPOT_SECTION
DISPLAY_DATA_SECTION
However, these are ignored (but see read_TSBLIB_additional_constraints):
SVC_TIME_SECTION
DISTANCE
SERVICE_TIME
Reinelt, G. (1991). Tsplib a traveling salesman problem library. ORSA
journal on computing, 3(4):376-384
"""
with open(directory + file_name + ".vrp", "r") as fh:
# pylint: disable=unsubscriptable-object
section = None
section_pos = 0
ij_section_pos = {'i': 0, 'j': 0}
N = 0
C = None
points = None
dd_points = None
demands = None
D = None
D_needs_update = False
edge_weight_type = None
edge_weight_format = None
depot_ids = []
for l in fh.readlines():
line = l.strip()
if not line:
continue
# Parse fields
if ':' in line:
field, value = line.split(":", 1)
field = field.strip()
if 'TYPE' == field:
if not 'CVRP' in value and not 'TSP' in value:
raise IOError("Only CVRP TSPLIB files are supported")
elif 'DIMENSION' in field:
N = int(value) - 1 # depot excluded
elif 'CAPACITY' in field:
C = int(value)
elif 'EDGE_WEIGHT_TYPE' in field:
edge_weight_type = value.strip()
if edge_weight_type not in ["MAX_2D", "MAN_2D", "EXACT_2D",
"CEIL_2D", "FLOOR_2D", "EUC_2D",
"EXPLICIT", "GEO", "ATT"]:
raise IOError("Only matrix and euclidian distance notation is supported")
elif 'EDGE_WEIGHT_FORMAT' in field:
edge_weight_format = value.strip()
# Section handling
else:
if 'EOF' in line:
break
if 'EDGE_WEIGHT_SECTION' in line:
section = 'EDGE_WEIGHT_SECTION'
D = np.zeros((N + 1, N + 1))
ij_section_pos = {'i': 0, 'j': 0}
if (edge_weight_format == "LOWER_ROW"):
ij_section_pos['j'] = 1
elif (edge_weight_format == "UPPER_ROW" or
edge_weight_format == "LOWER_COL"):
ij_section_pos['i'] = 1
elif 'DEMAND_SECTION' in line:
demands = [None] * (N + 1)
section = 'DEMAND_SECTION'
section_pos = 0
elif 'DEPOT_SECTION' in line:
section = 'DEPOT_SECTION'
section_pos = 0
elif 'NODE_COORD_SECTION' in line:
section = 'NODE_COORD_SECTION'
points = [[None, None] for i in range(N + 1)]
if edge_weight_type != 'EXPLICIT':
# sometimes coordinates are incorrectly not given in
# DISPLAY_DATA_SECTION even if a matrix is defined.
D_needs_update = True
section_pos = 0
elif 'DISPLAY_DATA_SECTION' in line:
if points is None:
section = 'DISPLAY_DATA_SECTION'
dd_points = [[None, None] for i in range(N + 1)]
D_needs_update = False
section_pos = 0
else:
section = ''
elif 'SVC_TIME_SECTION' in line:
section = 'SVC_TIME_SECTION'
else:
if section == 'EDGE_WEIGHT_SECTION':
distances = line.split()
# print distances, section_pos, edge_weight_format
for d in distances:
D[ij_section_pos['i']][ij_section_pos['j']] = float(d)
D[ij_section_pos['j']][ij_section_pos['i']] = float(d)
if (edge_weight_format == "LOWER_ROW"):
# incrementer
ij_section_pos['i'] += 1
if ij_section_pos['i'] == ij_section_pos['j']:
ij_section_pos['i'] = 0
ij_section_pos['j'] += 1
elif (edge_weight_format == "UPPER_ROW" or
edge_weight_format == "LOWER_COL"):
# incrementer
ij_section_pos['i'] += 1
if ij_section_pos['i'] == len(D):
ij_section_pos['j'] += 1
ij_section_pos['i'] = ij_section_pos['j'] + 1
elif (edge_weight_format == "FULL_MATRIX"):
# incrementer
ij_section_pos['i'] += 1
if ij_section_pos['i'] == len(D):
ij_section_pos['j'] += 1
ij_section_pos['i'] = 0
elif (edge_weight_format == "LOWER_DIAG_ROW"):
# incrementer
ij_section_pos['i'] += 1
if ij_section_pos['i'] == ij_section_pos['j'] + 1:
ij_section_pos['i'] = 0
ij_section_pos['j'] += 1
elif (edge_weight_format == "UPPER_DIAG_ROW"):
# incrementer
ij_section_pos['i'] += 1
if ij_section_pos['i'] == len(D):
ij_section_pos['j'] += 1
ij_section_pos['i'] = ij_section_pos['j']
elif section == 'NODE_COORD_SECTION':
coords = line.split()
x = float(coords[1])
y = float(coords[2])
# According to TSPLIB format spec. the GEO coordinates
# are of format degrees.minutes. Convert to radians
# BUT FIX THE ISSUE WITH THE NEGATIVE MINUTES THE
# ORIGINAL SPEC HAS!
if edge_weight_type == 'GEO':
x = _degrees_and_minutes_to_radians(x)
y = _degrees_and_minutes_to_radians(y)
# print("lat, lon (in rads) : %.2f, %.2f"%(x,y))
points[section_pos][0] = x
points[section_pos][1] = y
section_pos += 1
elif section == 'DISPLAY_DATA_SECTION':
coords = line.split()
x = float(coords[1])
y = float(coords[2])
dd_points[section_pos][0] = x
dd_points[section_pos][1] = y
section_pos += 1
elif section == 'DEMAND_SECTION':
demand = line.split()
c = float(demand[1])
demands[section_pos] = c # pylint: disable=unsupported-assignment-operation
section_pos += 1
elif section == 'DEPOT_SECTION':
value = int(line)
if value > 0:
depot_ids.append(value)
if len(depot_ids) > 1:
raise IOError("multi depot problems not supported")
fh.close()
if edge_weight_type == 'EXPLICIT' and not (
((edge_weight_format in ['FULL_MATRIX', 'LOWER_ROW', 'LOWER_DIAG_ROW']) and \
ij_section_pos['i'] == 0 and ij_section_pos['j'] == len(D)) or \
(edge_weight_format in ['UPPER_ROW', 'LOWER_COL'] and \
ij_section_pos['i'] == len(D) and ij_section_pos['j'] == len(D) - 1) or \
(edge_weight_format == 'UPPER_DIAG_ROW' and \
ij_section_pos['i'] == len(D) and ij_section_pos['j'] == len(D))
):
# print edge_weight_format, ij_section_pos
raise IOError("Explicit distance matrix did not have enough values")
if D_needs_update:
D = calculate_D(points, None, edge_weight_type)
if edge_weight_type == "EXPLICIT":
# check if the matrix had integer dinstances (as they often have)
D_int = D.astype(int)
if np.all((D - D_int) == 0):
D = D_int
# depot is not node 0!
if depot_ids and depot_ids[0] > 1:
# make sure depot is the 0
idx_0 = depot_ids[0] - 1
row_col_permutation = [idx_0] + list(range(0, idx_0)) + list(range(idx_0 + 1, len(D)))
for i in range(N):
D[:, i] = D[row_col_permutation, i]
for i in range(N):
D[i, :] = D[i, row_col_permutation]
if demands is not None and len(demands) > 0:
demands = [demands[idx_0]] + demands[:idx_0] + demands[idx_0 + 1:]
if points is not None and len(points) > 0:
points = [points[idx_0]] + points[:idx_0] + points[idx_0 + 1:]
if dd_points is not None and len(dd_points) > 0:
dd_points = [dd_points[idx_0]] + dd_points[:idx_0] + dd_points[idx_0 + 1:]
if edge_weight_type == "GEO":
dd_points = points
points = None
return ProblemDefinition(N, points, dd_points, demands, D, C, edge_weight_type)
namedtuple('AdditionalConstraints',
'vehicle_count_constraint maximum_route_cost_constraint service_time_at_customer')
def read_TSBLIB_additional_constraints(custom_tsplib_file):
""" An unofficial/custom and optional way of storing route cost/length/
duration constraint in a TSBLIB file as an additional DISTANCE, VEHICLES
and SERVICE_TIME fields (e.g. in CMT instances).
Also SVC_TIME_SECTION is supported but only if the service time is set to
the same value for all customers.
"""
K = None
L = None
ST = None
reading_service_time_section = False
with open(custom_tsplib_file) as fh:
for l in fh.readlines():
if reading_service_time_section:
nid, nst = l.split()
if "." in nst:
nst = float(nst)
else:
nst = int(nst)
if ST is not None and nst != ST:
raise IOError("Only single (same) service time for all customers is supported")
elif nid != 1:
ST = nst
if "DISTANCE" in l:
if "." in l:
L = float(l.split()[-1])
else:
L = int(l.split()[-1])
if "SERVICE_TIME" in l:
if "." in l:
ST = float(l.split()[-1])
else:
ST = int(l.split()[-1])
if "VEHICLES" in l:
K = int(l.split()[-1])
if "SVC_TIME_SECTION" in l:
reading_service_time_section = True
return K, L, ST
def generate_CVRP(N, C, muC, sdC, regular=False, R=200.0):
""" Generate new random CVRP with N customer points and capacity of C.
Demand of customers is randomly generated with mean of muC and standard
deviation sdC.
returns (N, points,demands, D, C)
"""
points = []
demands = []
points.append((0.0, 0.0)) # Depot at 0,0
demands.append(0)
sumc = 0.0
alpha = pi / 4.0
for _ in range(N):
if regular:
alpha += (2 * pi / N)
r = R
else:
# Random angle
alpha = random.random() * 2 * pi
r = R * random.gauss(1.0, 0.33)
pt_x = r * cos(alpha)
pt_y = r * sin(alpha)
c = min(C, max(1.0, random.gauss(muC, sdC)))
sumc += c
points.append((pt_x, pt_y))
demands.append(c)
# points[0][2] = -sumc
D = calculate_D(points)
return ProblemDefinition(N, points, None, demands, D, C, None)
def as_VRPH_solution(sol):
""" Return a string containing the solution in the format used by VRPH
(Groër et al 2010) """
vrph_sol = []
vrph_sol.append(max(sol) + 1)
visit_depot = False
for node in sol:
if node == 0:
visit_depot = True
elif visit_depot:
vrph_sol.append(-node)
visit_depot = False
else:
vrph_sol.append(node)
vrph_sol.append(0)
return vrph_sol
def as_OPT_solution(cost, sol):
routes = [[0] + list(r) + [0] for x, r in groupby(sol, lambda z: z == 0) if not x]
opt_str = ""
for ri, route in enumerate(routes):
opt_str += "Route #%d: " % (ri + 1)
opt_str += "\t".join(str(n) for n in route if n != 0)
opt_str += "\n"
if cost == int(cost):
opt_str += "Cost : %d\n" % int(cost)
else:
opt_str += "Cost : %.2f\n" % cost
return opt_str
def write_TSPLIB_file(tsplib_file_path, D,
d=None, C=None, L=None, selected_idxs=None,
float_to_int_precision=None):
if not selected_idxs:
selected_idxs = list(range(len(D)))
write_cvrp = False
if tsplib_file_path[-4:].lower() == ".vrp":
write_cvrp = True
with open(tsplib_file_path, 'w') as problem_file:
problem_file.write("NAME: temporary\n")
if write_cvrp:
problem_file.write("TYPE: CVRP\n")
if C:
problem_file.write("CAPACITY: %d\n" % C)
else:
problem_file.write("CAPACITY: %d\n" % len(D))
if L:
problem_file.write("DISTANCE: %d\n" % L)
else:
problem_file.write("TYPE: TSP\n")
problem_file.write("COMMENT: temporary CVRP or TSP problem\n")
problem_file.write("DIMENSION: %d\n" % len(selected_idxs))
problem_file.write("EDGE_WEIGHT_TYPE: EXPLICIT\n")
problem_file.write("EDGE_WEIGHT_FORMAT: UPPER_ROW\n")
problem_file.write("EDGE_WEIGHT_SECTION\n")
for ii, i in enumerate(selected_idxs):
for j in selected_idxs[ii + 1:]:
if float_to_int_precision is not None:
problem_file.write(str(int(D[i, j] * float_to_int_precision)))
else:
problem_file.write(str(D[i, j]))
problem_file.write(" ")
if ii != len(selected_idxs) - 1:
problem_file.write("\n")
if write_cvrp:
problem_file.write("DEMAND_SECTION\n1 0\n")
if d:
for i in range(2, len(d) + 1):
problem_file.write("%d %d\n" % (i, int(d[i - 1])))
else:
for i in range(2, len(D) + 1):
problem_file.write("%d 1\n" % i)
problem_file.write("DEPOT_SECTION\n")
problem_file.write("1\n")
problem_file.write("-1\n")
problem_file.write("EOF")