-
Notifications
You must be signed in to change notification settings - Fork 0
/
cost_function.py
151 lines (135 loc) · 4.9 KB
/
cost_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from utils import *
from Models.Flights import Flight
import feasible_flights
from constants import *
import math
from flightScores import *
import constants_immutable
from classRules import *
import math
def sigmoid(x):
return 1 / (1 + math.exp(-x))
## Customizable
def cabin_to_class_cost(PNR,Curr_Subclass):
"""
Returns the class to class mapping cost inside a cabin.
Input: PNR Object,Current Subclass
Returns: Cost (configurable)
"""
subclass_list=PNR.sub_class_list
feasible_classes=[]
for Class in subclass_list:
feasible_classes.extend(classChange[Class])
if(Curr_Subclass in feasible_classes):
return int(-PNR_Score(PNR)*constants_immutable.Class_change_cost)
else:
return int(PNR_Score(PNR)*constants_immutable.Class_change_cost)
def cost_function(PNR,flight_tuple, cabin_tuple):
"""
Calculates the cost function for each PNR to flight mapping.
Calculation done as follows: cost = a*log(s1) + b*log(s2) + c*log(s3)
where, s1 = flight quality score
s2 = PNR score
s3 = class difference score
"""
if(flight_tuple is None):
return -NON_ASSIGNMENT_COST*PNR_Score(PNR)*2
s1 = flight_quality_score(PNR, flight_tuple) + 10
s2 = PNR_Score(PNR) + 10
s3 = class_difference_score(PNR,cabin_tuple)
if(s3==0):
return -100*NON_ASSIGNMENT_COST*PNR_Score(PNR)
s3 = sigmoid(s3) + 10
cost = weight_flight_map*math.log(s1) + weight_pnr_map*math.log(s2) + weight_cabin_map*math.log(s3)
return cost
def PNR_Score(PNR):
"""
Calculates the PNR score for each PNR.
Calculation done as follows: score = a*s1 + b*s2 + c*s3
where, s1 = PNR_SSR
s2 = PNR_loyalty
s3 = PNR_pax
"""
return sigmoid(PNR.get_pnr_score())
def flight_quality_score(PNR, flight_tuple):
"""
Calculates the flight quality score for each PNR to flight mapping.
"""
first_flight = constants_immutable.pnr_flight_mapping[PNR.pnr_number][0]
last_flight = constants_immutable.pnr_flight_mapping[PNR.pnr_number][-1]
Arrival_Delay_inHours = abs((last_flight.arrival_time - flight_tuple[-1].arrival_time).total_seconds())/3600
DelayScore = 0
# Treating preponing and postponing differently for departure
Departure_Delay_inHours = (first_flight.departure_time - flight_tuple[0].departure_time).total_seconds()/3600
if (Departure_Delay_inHours <= -6):
DelayScore += 0.00000001
elif(Departure_Delay_inHours < 0):
DelayScore += 10
elif (Departure_Delay_inHours <= 6):
DelayScore += STD6h
elif (Departure_Delay_inHours <= 12):
DelayScore += STD12h
elif (Departure_Delay_inHours <= 24):
DelayScore += STD24h
elif (Departure_Delay_inHours <= 48):
DelayScore += STD48h
else:
DelayScore += 0.00000001
if(Arrival_Delay_inHours <= 6):
DelayScore += arrDelay6h
elif(Arrival_Delay_inHours <= 12):
DelayScore += arrDelay12h
elif(Arrival_Delay_inHours <= 24):
DelayScore += arrDelay24h
elif(Arrival_Delay_inHours <= 48):
DelayScore += arrDelay48h
else:
DelayScore += 0.00000001
# if(Departure_Delay_inHours <= 6):
# DelayScore += STD6h
# elif(Departure_Delay_inHours <= 12):
# DelayScore += STD12h
# elif(Departure_Delay_inHours <= 24):
# DelayScore += STD24h
# elif(Departure_Delay_inHours <= 48):
# DelayScore += STD48h
# else:
# DelayScore += 0.00000001
# ConnectionScore -> If proposed flight solutions's length increases, score decreases
# If proposed original flight solutions's length decreases, score increases
ConnectionScore = connection_constant - len(flight_tuple) + len(constants_immutable.pnr_flight_mapping[PNR.pnr_number])
return sigmoid(DelayScore*ConnectionScore)
def class_difference_score(PNR, cabin_Tuple):
"""
Calculates the class difference score for each PNR to flight mapping.
"""
Cabin_Cost = {
# Based on Empirical Cost values of flight tickets of these classes
"EC": 1,
"PC": 1.5,
"BC": 3,
"FC": 6
}
# Downgrades are penalized more than upgrades are rewarded
# Score returned is 1 ( log(1) == 0 )
upgrade_multiplier = 1.3
downgrade_multiplier = 1.0/1.5
sug_sum = 0
pre_sum = 0
for i in range(len(cabin_Tuple)):
sug_sum += Cabin_Cost[cabin_Tuple[i]]
for i in range(len(PNR.sub_class_list)):
pre_sum += Cabin_Cost[PNR.get_cabin(PNR.sub_class_list[i])]
sug_sum /= len(cabin_Tuple)
pre_sum /= len(PNR.sub_class_list)
ratio = sug_sum/pre_sum
if(ratio > 1 and upgrade):
return upgrade_multiplier*ratio
elif(ratio > 1 and not upgrade):
return 0.0
elif ratio==1:
return 1
elif(ratio < 1 and downgrade):
return downgrade_multiplier*ratio
elif(ratio < 1 and not downgrade):
return 0.0