forked from alibaba/TinyNeuralNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aten_schema.py
5830 lines (4261 loc) · 220 KB
/
aten_schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from abc import abstractmethod
from ...operators.torch.base import OperatorConverter
class ATenAbsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::abs(Tensor self) -> (Tensor)'''
pass
class ATenAbsoluteSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::absolute(Tensor self) -> (Tensor)'''
pass
class ATenAcosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::acos(Tensor self) -> (Tensor)'''
pass
class ATenAcoshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::acosh(Tensor self) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)
aten::adaptive_avg_pool2d(Tensor self, int[2] output_size) -> (Tensor)'''
pass
class ATenAdaptiveAvgPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)
aten::adaptive_avg_pool3d(Tensor self, int[3] output_size) -> (Tensor)'''
pass
class ATenAdaptiveMaxPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)'''
pass
class ATenAdaptiveMaxPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenAdaptiveMaxPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)
aten::adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))'''
pass
class ATenAddSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddBatchDimSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_add_batch_dim(Tensor self, int batch_dim, int level) -> (Tensor)'''
pass
class ATenAddReluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> (Tensor)
aten::_add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddbmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddcdivSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)'''
pass
class ATenAddcmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> (Tensor)'''
pass
class ATenAddmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddmmActivationSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_addmm_activation(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False) -> (Tensor)'''
pass
class ATenAddmvSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAddrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenAdjointSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::adjoint(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenAffineGridGeneratorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::affine_grid_generator(Tensor theta, int[] size, bool align_corners) -> (Tensor)'''
pass
class ATenAliasSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alias(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenAliasCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alias_copy(Tensor self) -> (Tensor)'''
pass
class ATenAlignAsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_as(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAlignTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_tensors(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAlignToSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::align_to(Tensor(a) self, str[] names) -> (Tensor(a))
aten::align_to.ellipsis_idx(Tensor(a) self, str[] order, int ellipsis_idx) -> (Tensor(a))'''
pass
class ATenAllSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::all(Tensor self) -> (Tensor)
aten::all.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::all.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenAlphaDropoutSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::alpha_dropout(Tensor input, float p, bool train) -> (Tensor)'''
pass
class ATenAmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::amax(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)'''
pass
class ATenAminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::amin(Tensor self, int[1] dim=[], bool keepdim=False) -> (Tensor)'''
pass
class ATenAminmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_aminmax(Tensor self) -> (Tensor, Tensor)
aten::_aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)
aten::aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max)
aten::aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)'''
pass
class ATenAmpForeachNonFiniteCheckAndUnscaleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_amp_foreach_non_finite_check_and_unscale.functional(Tensor[] self, Tensor found_inf, Tensor inv_scale) -> (Tensor[] self_out, Tensor found_inf_out)'''
pass
class ATenAmpUpdateScaleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_amp_update_scale.functional(Tensor self, Tensor growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> (Tensor, Tensor growth_tracker_out)'''
pass
class ATenAndSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::__and__.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::__and__.Tensor(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAngleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::angle(Tensor self) -> (Tensor)'''
pass
class ATenAnySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::any(Tensor self) -> (Tensor)
aten::any.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor)
aten::any.dimname(Tensor self, str dim, bool keepdim=False) -> (Tensor)'''
pass
class ATenArccosSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arccos(Tensor self) -> (Tensor)'''
pass
class ATenArccoshSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arccosh(Tensor self) -> (Tensor)'''
pass
class ATenArcsinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arcsin(Tensor self) -> (Tensor)'''
pass
class ATenArcsinhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arcsinh(Tensor self) -> (Tensor)'''
pass
class ATenArctanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctan(Tensor self) -> (Tensor)'''
pass
class ATenArctan2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctan2(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenArctanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::arctanh(Tensor self) -> (Tensor)'''
pass
class ATenArgmaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)'''
pass
class ATenArgminSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> (Tensor)'''
pass
class ATenArgsortSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argsort(Tensor self, int dim=-1, bool descending=False) -> (Tensor)
aten::argsort.dimname(Tensor self, str dim, bool descending=False) -> (Tensor)'''
pass
class ATenArgwhereSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::argwhere(Tensor self) -> (Tensor)'''
pass
class ATenAsStridedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_strided(Tensor(a) self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor(a))'''
pass
class ATenAsStridedCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_strided_copy(Tensor self, int[] size, int[] stride, int? storage_offset=None) -> (Tensor)'''
pass
class ATenAsTensorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::as_tensor(Tensor(a) data, *, int? dtype=None, Device? device=None) -> (Tensor(b|a))'''
pass
class ATenAsinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::asin(Tensor self) -> (Tensor)'''
pass
class ATenAsinhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::asinh(Tensor self) -> (Tensor)'''
pass
class ATenAtanSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atan(Tensor self) -> (Tensor)'''
pass
class ATenAtan2Schema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atan2(Tensor self, Tensor other) -> (Tensor)'''
pass
class ATenAtanhSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atanh(Tensor self) -> (Tensor)'''
pass
class ATenAtleast1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_1d(Tensor self) -> (Tensor)
aten::atleast_1d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAtleast2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_2d(Tensor self) -> (Tensor)
aten::atleast_2d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAtleast3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::atleast_3d(Tensor self) -> (Tensor)
aten::atleast_3d.Sequence(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenAutocastToFullPrecisionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_autocast_to_full_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled) -> (Tensor(a))'''
pass
class ATenAutocastToReducedPrecisionSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_autocast_to_reduced_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled, int cuda_dtype, int cpu_dtype) -> (Tensor(a))'''
pass
class ATenAvgPool1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=[0], bool ceil_mode=False, bool count_include_pad=True) -> (Tensor)'''
pass
class ATenAvgPool2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=[0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)'''
pass
class ATenAvgPool3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=[0, 0, 0], bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> (Tensor)'''
pass
class ATenBaddbmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> (Tensor)'''
pass
class ATenBatchNormSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor)'''
pass
class ATenBatchNormBackwardElemtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor mean_dy, Tensor mean_dy_xmu, Tensor count) -> (Tensor)'''
pass
class ATenBatchNormBackwardReduceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor)'''
pass
class ATenBatchNormElemtSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> (Tensor)'''
pass
class ATenBatchNormGatherStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)'''
pass
class ATenBatchNormGatherStatsWithCountsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor)'''
pass
class ATenBatchNormImplIndexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)'''
pass
class ATenBatchNormStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)'''
pass
class ATenBatchNormUpdateStatsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor)'''
pass
class ATenBernoulliSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bernoulli(Tensor self, *, Generator? generator=None) -> (Tensor)
aten::bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> (Tensor)
aten::bernoulli.Tensor_functional(Tensor self, Tensor p, *, Generator? generator=None) -> (Tensor)'''
pass
class ATenBilinearSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> (Tensor)'''
pass
class ATenBinaryCrossEntropySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=1) -> (Tensor)'''
pass
class ATenBinaryCrossEntropyWithLogitsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=1) -> (Tensor)'''
pass
class ATenBincountSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bincount(Tensor self, Tensor? weights=None, int minlength=0) -> (Tensor)'''
pass
class ATenBinomialSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> (Tensor)'''
pass
class ATenBitwiseAndSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_and.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_and.Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_and.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseLeftShiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_left_shift.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseNotSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_not(Tensor self) -> (Tensor)'''
pass
class ATenBitwiseOrSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_or.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)
aten::bitwise_or.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenBitwiseRightShiftSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_right_shift.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> (Tensor)
aten::bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)'''
pass
class ATenBitwiseXorSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bitwise_xor.Tensor(Tensor self, Tensor other) -> (Tensor)
aten::bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> (Tensor)
aten::bitwise_xor.Scalar(Tensor self, Scalar other) -> (Tensor)'''
pass
class ATenBlockDiagSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::block_diag(Tensor[] tensors) -> (Tensor)'''
pass
class ATenBmmSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bmm(Tensor self, Tensor mat2) -> (Tensor)'''
pass
class ATenBroadcastTensorsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::broadcast_tensors(Tensor[] tensors) -> (Tensor[])'''
pass
class ATenBroadcastToSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::broadcast_to(Tensor(a) self, int[] size) -> (Tensor(a))'''
pass
class ATenBucketizeSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor)
aten::bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> (Tensor)'''
pass
class ATenCartesianProdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cartesian_prod(Tensor[] tensors) -> (Tensor)'''
pass
class ATenCatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cat(Tensor[] tensors, int dim=0) -> (Tensor)
aten::cat.names(Tensor[] tensors, str dim) -> (Tensor)'''
pass
class ATenCauchySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cauchy.functional(Tensor self, float median=0., float sigma=1., *, Generator? generator=None) -> (Tensor)'''
pass
class ATenCcolIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ccol_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenCcolIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ccol_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenCdistSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cdist(Tensor x1, Tensor x2, float p=2., int? compute_mode=None) -> (Tensor)'''
pass
class ATenCeilSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::ceil(Tensor self) -> (Tensor)'''
pass
class ATenCeluSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::celu(Tensor self, Scalar alpha=1.) -> (Tensor)'''
pass
class ATenChainMatmulSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chain_matmul(Tensor[] matrices) -> (Tensor)'''
pass
class ATenChalfSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chalf(Tensor self, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenChannelShuffleSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::channel_shuffle(Tensor self, int groups) -> (Tensor)'''
pass
class ATenCholeskySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky(Tensor self, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskyInverseSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky_inverse(Tensor self, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskySolveSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> (Tensor)'''
pass
class ATenCholeskySolveHelperSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> (Tensor)'''
pass
class ATenChooseQparamsOptimizedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)'''
pass
class ATenChunkSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::chunk(Tensor(a -> *) self, int chunks, int dim=0) -> (Tensor[])'''
pass
class ATenClampSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor)
aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)'''
pass
class ATenClampMaxSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp_max(Tensor self, Scalar max) -> (Tensor)
aten::clamp_max.Tensor(Tensor self, Tensor max) -> (Tensor)'''
pass
class ATenClampMinSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clamp_min(Tensor self, Scalar min) -> (Tensor)
aten::clamp_min.Tensor(Tensor self, Tensor min) -> (Tensor)'''
pass
class ATenClipSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clip(Tensor self, Scalar? min=None, Scalar? max=None) -> (Tensor)
aten::clip.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> (Tensor)'''
pass
class ATenCloneSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::clone(Tensor self, *, int? memory_format=None) -> (Tensor)'''
pass
class ATenCoalesceSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_coalesce(Tensor self) -> (Tensor)
aten::coalesce(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenCoalescedSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_coalesced.functional(Tensor self, bool coalesced) -> (Tensor)'''
pass
class ATenCol2imSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col2im(Tensor self, int[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> (Tensor)'''
pass
class ATenColIndicesSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col_indices(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenColIndicesCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::col_indices_copy(Tensor self) -> (Tensor)'''
pass
class ATenColumnStackSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::column_stack(Tensor[] tensors) -> (Tensor)'''
pass
class ATenCombinationsSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::combinations(Tensor self, int r=2, bool with_replacement=False) -> (Tensor)'''
pass
class ATenComplexSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::complex(Tensor real, Tensor imag) -> (Tensor)'''
pass
class ATenComputeLinearCombinationSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_compute_linear_combination(Tensor input, Tensor coefficients) -> (Tensor)'''
pass
class ATenConcatSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::concat(Tensor[] tensors, int dim=0) -> (Tensor)
aten::concat.names(Tensor[] tensors, str dim) -> (Tensor)'''
pass
class ATenConjSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conj(Tensor(a) self) -> (Tensor(a))
aten::_conj(Tensor(a) self) -> (Tensor(a))'''
pass
class ATenConjCopySchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_conj_copy(Tensor self) -> (Tensor)'''
pass
class ATenConjPhysicalSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conj_physical(Tensor self) -> (Tensor)
aten::_conj_physical(Tensor self) -> (Tensor)'''
pass
class ATenConstantPadNdSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::constant_pad_nd(Tensor self, int[] pad, Scalar value=0) -> (Tensor)'''
pass
class ATenContiguousSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::contiguous(Tensor(a) self, *, int memory_format=0) -> (Tensor(a))'''
pass
class ATenConv1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] dilation=[1], int groups=1) -> (Tensor)
aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], str padding="valid", int[1] dilation=[1], int groups=1) -> (Tensor)'''
pass
class ATenConv2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] dilation=[1, 1], int groups=1) -> (Tensor)
aten::conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], str padding="valid", int[2] dilation=[1, 1], int groups=1) -> (Tensor)'''
pass
class ATenConv3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], int[3] padding=[0, 0, 0], int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor)
aten::conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, int[3] stride=[1, 1, 1], str padding="valid", int[3] dilation=[1, 1, 1], int groups=1) -> (Tensor)'''
pass
class ATenConvDepthwise2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::_conv_depthwise2d(Tensor self, Tensor weight, int[2] kernel_size, Tensor? bias, int[2] stride, int[2] padding, int[2] dilation) -> (Tensor)'''
pass
class ATenConvDepthwise3dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_depthwise3d(Tensor self, Tensor weight, int[3] kernel_size, Tensor? bias, int[3] stride, int[3] padding, int[3] dilation) -> (Tensor)'''
pass
class ATenConvTbcSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> (Tensor)'''
pass
class ATenConvTranspose1dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, int[1] stride=[1], int[1] padding=[0], int[1] output_padding=[0], int groups=1, int[1] dilation=[1]) -> (Tensor)'''
pass
class ATenConvTranspose2dSchema(OperatorConverter):
@abstractmethod
def parse(self, node, attrs, args, graph_converter):
'''aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, int[2] stride=[1, 1], int[2] padding=[0, 0], int[2] output_padding=[0, 0], int groups=1, int[2] dilation=[1, 1]) -> (Tensor)'''
pass