Quantized OPs that are natively not supported by PyTorch (and possibly TFLite). But some of them can be translated to quantized TFLite through extra configuration.
Operator | Minimum Supported PyTorch Version |
---|---|
abs |
/ |
atan |
/ |
atan2 |
/ |
bmm |
/ |
clamp_max |
/ |
clamp_min |
/ |
cos |
/ |
elu |
/ |
exp |
/ |
glu |
/ |
group_norm |
/ |
hardsigmoid |
/ |
instance_norm |
/ |
layer_norm |
/ |
log |
/ |
log_softmax |
/ |
matmul |
/ |
mm |
/ |
pad |
1.7.0 |
pow |
/ |
prelu |
/ |
reciprocal |
/ |
silu |
/ |
sin |
/ |
softmax |
/ |
sqrt |
/ |
std |
/ |
sum |
/ |
torch.nn.ConstantPad1d |
1.7.0 |
torch.nn.ConstantPad2d |
1.7.0 |
torch.nn.ConstantPad3d |
1.7.0 |
torch.nn.ConvTranspose2d |
1.7.0 |
torch.nn.GLU |
/ |
torch.nn.GRU |
1.13.0 |
torch.nn.GroupNorm |
/ |
torch.nn.Hardsigmoid |
/ |
torch.nn.InstanceNorm1d |
/ |
torch.nn.InstanceNorm2d |
/ |
torch.nn.LSTM |
1.13.0 |
torch.nn.LayerNorm |
/ |
torch.nn.LogSoftmax |
/ |
torch.nn.PReLU |
/ |
torch.nn.RNN |
/ |
torch.nn.SiLU |
/ |
torch.nn.Softmax |
/ |
torch.nn.ZeroPad2d |
1.7.0 |
truediv |
/ |
var |
/ |
Operators | Notes |
---|---|
abs |
For TFLiteConverter, set rewrite_quantizable=True |
bmm |
For TFLiteConverter, set rewrite_quantizable=True |
clamp_max |
For TFLiteConverter, set rewrite_quantizable=True |
clamp_min |
For TFLiteConverter, set rewrite_quantizable=True |
elu |
No action needed |
glu |
No action needed |
log_softmax |
For QATQuantizer/PostQuantizer, set config={"set_quantizable_op_stats": True} For TFLiteConverter, set rewrite_quantizable=True |
matmul |
For TFLiteConverter, set rewrite_quantizable=True |
prelu |
No action needed |
silu |
No action needed |
softmax |
For QATQuantizer/PostQuantizer, set config={"set_quantizable_op_stats": True} For TFLiteConverter, set rewrite_quantizable=True |
sum |
For TFLiteConverter, set rewrite_quantizable=True |
torch.nn.GLU |
No action needed |
torch.nn.LogSoftmax |
For QATQuantizer/PostQuantizer, set config={"set_quantizable_op_stats": True} For TFLiteConverter, set rewrite_quantizable=True |
torch.nn.PReLU |
No action needed |
torch.nn.SiLU |
No action needed |
torch.nn.Softmax |
For QATQuantizer/PostQuantizer, set config={"set_quantizable_op_stats": True} For TFLiteConverter, set rewrite_quantizable=True |
truediv |
For TFLiteConverter, set rewrite_quantizable=True |
{sqrt, reciprocal} |
For TFLiteConverter, set rewrite_quantizable=True |
Operators | Notes |
---|---|
{add, clamp} |
|
{add, relu6} |
|
{add, torch.nn.ReLU6} |
|
{torch.nn.BatchNorm2d, clamp} |
|
{torch.nn.BatchNorm2d, torch.nn.Conv2d} |
PTQ only. |
{torch.nn.BatchNorm2d, torch.nn.Conv2d, torch.nn.ReLU} |
PTQ only. |
{torch.nn.BatchNorm2d, torch.nn.ReLU} |
|
{torch.nn.BatchNorm2d, torch.nn.ReLU6} |
|
{torch.nn.BatchNorm3d, torch.nn.ReLU} |
|
{torch.nn.BatchNorm3d, torch.nn.ReLU6} |
|
{torch.nn.Conv1d, torch.nn.BatchNorm1d} |
|
{torch.nn.Conv1d, torch.nn.BatchNorm1d, torch.nn.ReLU} |
|
{torch.nn.Conv1d, torch.nn.BatchNorm1d, torch.nn.ReLU6} |
|
{torch.nn.Conv1d, torch.nn.ReLU} |
|
{torch.nn.Conv1d, torch.nn.ReLU6} |
|
{torch.nn.Conv2d, clamp} |
|
{torch.nn.Conv2d, torch.nn.BatchNorm2d} |
|
{torch.nn.Conv2d, torch.nn.BatchNorm2d, clamp} |
|
{torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU} |
|
{torch.nn.Conv2d, torch.nn.BatchNorm2d, torch.nn.ReLU6} |
|
{torch.nn.Conv2d, torch.nn.ReLU} |
|
{torch.nn.Conv2d, torch.nn.ReLU6} |
|
{torch.nn.Conv3d, torch.nn.BatchNorm3d} |
|
{torch.nn.Conv3d, torch.nn.BatchNorm3d, torch.nn.ReLU} |
|
{torch.nn.Conv3d, torch.nn.BatchNorm3d, torch.nn.ReLU6} |
|
{torch.nn.Conv3d, torch.nn.ReLU} |
|
{torch.nn.Conv3d, torch.nn.ReLU6} |
|
{torch.nn.ConvTranspose1d, torch.nn.BatchNorm1d} |
PTQ only. Only PyTorch 1.11.0+ is supported |
{torch.nn.ConvTranspose2d, clamp} |
|
{torch.nn.ConvTranspose2d, torch.nn.BatchNorm2d} |
|
{torch.nn.ConvTranspose2d, torch.nn.BatchNorm2d, clamp} |
|
{torch.nn.ConvTranspose2d, torch.nn.BatchNorm2d, torch.nn.ReLU} |
|
{torch.nn.ConvTranspose2d, torch.nn.BatchNorm2d, torch.nn.ReLU6} |
|
{torch.nn.ConvTranspose2d, torch.nn.ReLU} |
|
{torch.nn.ConvTranspose2d, torch.nn.ReLU6} |
|
{torch.nn.ConvTranspose3d, torch.nn.BatchNorm3d} |
PTQ only. Only PyTorch 1.11.0+ is supported |
{torch.nn.Linear, clamp} |
|
{torch.nn.Linear, torch.nn.BatchNorm1d} |
for PTQ, only PyTorch 1.8.0+ is supported |
{torch.nn.Linear, torch.nn.BatchNorm1d, clamp} |
|
{torch.nn.Linear, torch.nn.BatchNorm1d, torch.nn.ReLU6} |
|
{torch.nn.Linear, torch.nn.ReLU} |
|
{torch.nn.Linear, torch.nn.ReLU6} |