--Work in Progress--
- Adiabatic Quantum Computing
- Barren Plateaus
- Classical Implementation
- Complexity Theory
- Parameterized Quantum Circuits
- Physical Realization of Qubits
- Quantum Annealing
- Quantum Boltzmann machines
- Quantum Classification
- Quantum Clustering
- Quantum Convolutional Neural Networks
- Quantum Generative Adversarial Networks
- Quantum Information and Computing
- Quantum Machine Learning
- Quantum Nearest Neighbors Algorithm
- Quantum Neural Networks
- Quantum Optimization
- Quantum Perceptron
- Quantum Speedup-Advantage-Supremacy
- Simulated Annealing
- Superconducting Qubits
- Unsupervised Learning
- Variational Quantum Algorithms
[Albash & Lidar] Adiabatic Quantum Computing. Reviews of Modern Physics. [Quantum Information and Computing]
[Adiabatic Quantum Computing]
(Adiabatic Model)
@Article{albash2018adiabatic,
Title = {Adiabatic quantum computation},
Author = {Albash, Tameem and Lidar, Daniel A},
Journal = {Reviews of Modern Physics},
Year = {2018},
Number = {1},
Pages = {015002},
Volume = {90},
Publisher = {APS},
URL = {https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002}
}
[Andriyash et al] Can quantum Monte Carlo simulate quantum annealing?. arXiv. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Monte Carlo]
(Adiabatic Model)
@Article{andriyash2017can,
Title = {Can quantum Monte Carlo simulate quantum annealing?},
Author = {Andriyash, Evgeny and Amin, Mohammad H},
Journal = {arXiv preprint arXiv:1703.09277},
Year = {2017},
URL = {https://arxiv.org/abs/1703.09277}
}
[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@Article{batle2016multipartite,
Title = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
Author = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
Journal = {Quantum Information Processing},
Year = {2016},
Number = {8},
Pages = {3081--3099},
Volume = {15},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}
[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Classical Implementation]
(Adiabatic Model)
@Article{gaitan2012ramsey,
Title = {Ramsey numbers and adiabatic quantum computing},
Author = {Gaitan, Frank and Clark, Lane},
Journal = {Physical review letters},
Year = {2012},
Number = {1},
Pages = {010501},
Volume = {108},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}
[Altshuler et al] Anderson localization makes adiabatic quantum optimization fail. PNAS. [Adiabatic Quantum Computing]
[Quantum Optimization]
(Adiabatic Model)
@Article{altshuler2010anderson,
Title = {Anderson localization makes adiabatic quantum optimization fail},
Author = {Altshuler, Boris and Krovi, Hari and Roland, J{\'e}r{\'e}mie},
Journal = {Proceedings of the National Academy of Sciences},
Year = {2010},
Number = {28},
Pages = {12446--12450},
Volume = {107},
Publisher = {National Acad Sciences},
URL = {https://www.pnas.org/content/107/28/12446}
}
[Bravyi & Terhal] Complexity of stoquastic frustration-free Hamiltonians. Siam journal on computing. [Adiabatic Quantum Computing]
[Quantum Annealing]
(Adiabatic Model)
@Article{bravyi2010complexity,
Title = {Complexity of stoquastic frustration-free Hamiltonians},
Author = {Bravyi, Sergey and Terhal, Barbara},
Journal = {Siam journal on computing},
Year = {2010},
Number = {4},
Pages = {1462--1485},
Volume = {39},
Publisher = {SIAM},
URL = {https://arxiv.org/abs/0806.1746}
}
[Lidar et al] Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics. [Approximation to Adiabatic Theorem]
[Adiabatic Quantum Computing]
(Adiabatic Model)
@article{lidar2009adiabatic,
title={Adiabatic approximation with exponential accuracy for many-body systems and quantum computation},
author={Lidar, Daniel A and Rezakhani, Ali T and Hamma, Alioscia},
journal={Journal of Mathematical Physics},
volume={50},
number={10},
pages={102106},
year={2009},
publisher={American Institute of Physics}
}
[Aharonov et al] Adiabatic quantum computation is equivalent to standard quantum computation. SIAM review. [Adiabatic Quantum Computing]
[Adiabatic Simulation]
(Adiabatic Model)
@Article{aharonov2008adiabatic,
Title = {Adiabatic quantum computation is equivalent to standard quantum computation},
Author = {Aharonov, Dorit and Van Dam, Wim and Kempe, Julia and Landau, Zeph and Lloyd, Seth and Regev, Oded},
Journal = {SIAM review},
Year = {2008},
Number = {4},
Pages = {755--787},
Volume = {50},
Publisher = {SIAM},
URL = {https://epubs.siam.org/doi/10.1137/080734479}
}
[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
(Adiabatic Model)
@InCollection{battaglia2005deterministic,
Title = {Deterministic and stochastic quantum annealing approaches},
Author = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
Booktitle = {Quantum Annealing and Other Optimization Methods},
Publisher = {Springer},
Year = {2005},
Pages = {171--206},
URL = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
[Quantum Monte Carlo]
(Adiabatic Model)
@Article{battaglia2005optimization,
Title = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
Author = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
Journal = {Physical Review E},
Year = {2005},
Number = {6},
Pages = {066707},
Volume = {71},
Publisher = {APS},
URL = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}
[Olivera et al] The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Information & Computing. [Complexity Theory]
[Adiabatic Quantum Computing]
@article{oliveira2005complexity,
title={The complexity of quantum spin systems on a two-dimensional square lattice},
author={Oliveira, Roberto and Terhal, Barbara M},
journal={arXiv preprint quant-ph/0504050},
year={2005}
}
[Aharonov et al] Adiabatic computation is equivalent to standard quantum computation. arXiv. [Adiabatic Quantum Computing]
[Adiabatic Simulation]
(Adiabatic Model)
@Article{aharonov2004adiabatic,
Title = {Adiabatic computation is equivalent to standard quantum computation},
Author = {Aharonov, D and van Dam, W and Kempe, J and Landau, Z and Lloyd, S and Regev, O},
Journal = {arXiv preprint quant-ph/0405098},
Year = {2004},
URL = {https://arxiv.org/pdf/quant-ph/0405098.pdf}
}
[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing]
[Classical Implementation]
[Quantum Annealing]
(Adiabatic Model)
@Article{farhi2001quantum,
Title = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
Journal = {Science},
Year = {2001},
Number = {5516},
Pages = {472--475},
Volume = {292},
Publisher = {American Association for the Advancement of Science},
URL = {https://science.sciencemag.org/content/292/5516/472}
}
[Farhi et al] Quantum computation by adiabatic evolution. arXiv. [Adiabatic Quantum Computing]
(Adiabatic Model)
@Article{farhi2000quantum,
Title = {Quantum computation by adiabatic evolution},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Sipser, Michael},
Journal = {arXiv preprint quant-ph/0001106},
Year = {2000},
URL = {https://arxiv.org/pdf/quant-ph/0001106.pdf}
}
[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Optimization]
(Adiabatic Model)
@Article{apolloni1989quantum,
Title = {Quantum stochastic optimization},
Author = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
Journal = {Stochastic Processes and their Applications},
Year = {1989},
Number = {2},
Pages = {233--244},
Volume = {33},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{cerezo2021cost,
title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
journal={Nature communications},
volume={12},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Barren Plateaus]
[Quantum Machine Learning]
@article{holmes2021connecting,
title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
journal={arXiv preprint arXiv:2101.02138},
year={2021}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{patti2020entanglement,
title={Entanglement devised barren plateau mitigation},
author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
journal={arXiv preprint arXiv:2012.12658},
year={2020}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{skolik2021layerwise,
title={Layerwise learning for quantum neural networks},
author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
journal={Quantum Machine Intelligence},
volume={3},
number={1},
pages={1--11},
year={2021},
publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{volkoff2021large,
title={Large gradients via correlation in random parameterized quantum circuits},
author={Volkoff, Tyler and Coles, Patrick J},
journal={Quantum Science and Technology},
volume={6},
number={2},
pages={025008},
year={2021},
publisher={IOP Publishing}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{marrero2020entanglement,
title={Entanglement induced barren plateaus},
author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
journal={arXiv preprint arXiv:2010.15968},
year={2020}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus]
[Quantum Convolutional Neural Networks]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{pesah2020absence,
title={Absence of barren plateaus in quantum convolutional neural networks},
author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
journal={arXiv preprint arXiv:2011.02966},
year={2020}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Barren Plateaus]
@article{sharma2020trainability,
title={Trainability of dissipative perceptron-based quantum neural networks},
author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2005.12458},
year={2020}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{wang2020noise,
title={Noise-induced barren plateaus in variational quantum algorithms},
author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2007.14384},
year={2020}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{grant2019initialization,
title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
journal={Quantum},
volume={3},
pages={214},
year={2019},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mcclean2018barren,
title={Barren plateaus in quantum neural network training landscapes},
author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
journal={Nature communications},
volume={9},
number={1},
pages={1--6},
year={2018},
publisher={Nature Publishing Group}
}
[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Classical Implementation]
(Adiabatic Model)
@Article{gaitan2012ramsey,
Title = {Ramsey numbers and adiabatic quantum computing},
Author = {Gaitan, Frank and Clark, Lane},
Journal = {Physical review letters},
Year = {2012},
Number = {1},
Pages = {010501},
Volume = {108},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}
[Matsuda et al] Ground-state statistics from annealing algorithms: quantum versus classical approaches. New Journal of Physics. [Classical Implementation]
[Quantum Annealing]
@article{matsuda2009ground,
title={Ground-state statistics from annealing algorithms: quantum versus classical approaches},
author={Matsuda, Yoshiki and Nishimori, Hidetoshi and Katzgraber, Helmut G},
journal={New Journal of Physics},
volume={11},
number={7},
pages={073021},
year={2009},
publisher={IOP Publishing}
}
[Martonak et al] Quantum annealing of the traveling-salesman problem. Physical Review E. [Classical Implementation]
[Quantum Annealing]
@article{martovnak2004quantum,
title={Quantum annealing of the traveling-salesman problem},
author={Marto{\v{n}}{\'a}k, Roman and Santoro, Giuseppe E and Tosatti, Erio},
journal={Physical Review E},
volume={70},
number={5},
pages={057701},
year={2004},
publisher={APS}
}
[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing]
[Classical Implementation]
[Quantum Annealing]
(Adiabatic Model)
@Article{farhi2001quantum,
Title = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
Journal = {Science},
Year = {2001},
Number = {5516},
Pages = {472--475},
Volume = {292},
Publisher = {American Association for the Advancement of Science},
URL = {https://science.sciencemag.org/content/292/5516/472}
}
[Arunachalam & de Wolf] Guest column: A survey of quantum learning theory. ACM SIGACT News. [Quantum Machine Learning]
[Probably Approximately Correct Learning]
[Complexity Theory]
(Gate Model)
@Article{arunachalam2017guest,
Title = {Guest column: A survey of quantum learning theory},
Author = {Arunachalam, Srinivasan and de Wolf, Ronald},
Journal = {ACM SIGACT News},
Year = {2017},
Number = {2},
Pages = {41--67},
Volume = {48},
Publisher = {ACM New York, NY, USA},
URL = {https://dl.acm.org/doi/abs/10.1145/3106700.3106710}
}
[Aaronson and Arkhipov] The computational complexity of linear optics. Annual ACM symposium on Theory of computing. [Quantum Speedup-Advantage-Supremacy]
[Complexity Theory]
@InProceedings{aaronson2011computational,
Title = {The computational complexity of linear optics},
Author = {Aaronson, Scott and Arkhipov, Alex},
Booktitle = {Proceedings of the forty-third annual ACM symposium on Theory of computing},
Year = {2011},
Pages = {333--342},
Publisher = {Association for Computing Machinery},
URL = {https://dl.acm.org/doi/pdf/10.1145/1993636.1993682}
}
[Olivera et al] The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Information & Computing. [Complexity Theory]
[Adiabatic Quantum Computing]
@article{oliveira2005complexity,
title={The complexity of quantum spin systems on a two-dimensional square lattice},
author={Oliveira, Roberto and Terhal, Barbara M},
journal={arXiv preprint quant-ph/0504050},
year={2005}
}
[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms]
[Quantum Optimization]
[Parameterized Quantum Circuits]
@article{amaro2021filtering,
title={Filtering variational quantum algorithms for combinatorial optimization},
author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
journal={Quantum Science and Technology},
year={2021},
publisher={IOP Publishing}
}
[Benedetti et al] Hardware-efficient variational quantum algorithms for time evolution. Physical Review Research. [Time Evolution (Hamiltonian Simulation)]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{benedetti2021hardware,
title={Hardware-efficient variational quantum algorithms for time evolution},
author={Benedetti, Marcello and Fiorentini, Mattia and Lubasch, Michael},
journal={Physical Review Research},
volume={3},
number={3},
pages={033083},
year={2021},
publisher={APS}
}
[Benedetti et al] Variational Inference with a Quantum Computer. Physical Review Applied. [Variational Inference]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{benedetti2021variational,
title={Variational inference with a quantum computer},
author={Benedetti, Marcello and Coyle, Brian and Fiorentini, Mattia and Lubasch, Michael and Rosenkranz, Matthias},
journal={Physical Review Applied},
volume={16},
number={4},
pages={044057},
year={2021},
publisher={APS}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@article{bharti2021noisy,
title={Noisy intermediate-scale quantum (NISQ) algorithms},
author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
journal={arXiv preprint arXiv:2101.08448},
year={2021}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{cerezo2021cost,
title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
journal={Nature communications},
volume={12},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{egger2021warm,
title={Warm-starting quantum optimization},
author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
journal={Quantum},
volume={5},
pages={479},
year={2021},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Barren Plateaus]
[Quantum Machine Learning]
@article{holmes2021connecting,
title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
journal={arXiv preprint arXiv:2101.02138},
year={2021}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{mangini2021quantum,
title={Quantum computing models for artificial neural networks},
author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
journal={EPL (Europhysics Letters)},
volume={134},
number={1},
pages={10002},
year={2021},
publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{patti2020entanglement,
title={Entanglement devised barren plateau mitigation},
author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
journal={arXiv preprint arXiv:2012.12658},
year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{perez2021one,
title={One qubit as a Universal Approximant},
author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
journal={arXiv preprint arXiv:2102.04032},
year={2021}
}
[Plekhanov et al] Variational quantum amplitude estimation. arXiv. [Variational Quantum Algorithms]
[Amplitude estimation]
[Parameterized Quantum Circuits]
@article{plekhanov2021variational,
title={Variational quantum amplitude estimation},
author={Plekhanov, Kirill and Rosenkranz, Matthias and Fiorentini, Mattia and Lubasch, Michael},
journal={arXiv preprint arXiv:2109.03687},
year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{schuld2021effect,
title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
journal={Physical Review A},
volume={103},
number={3},
pages={032430},
year={2021},
publisher={APS}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{skolik2021layerwise,
title={Layerwise learning for quantum neural networks},
author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
journal={Quantum Machine Intelligence},
volume={3},
number={1},
pages={1--11},
year={2021},
publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{volkoff2021large,
title={Large gradients via correlation in random parameterized quantum circuits},
author={Volkoff, Tyler and Coles, Patrick J},
journal={Quantum Science and Technology},
volume={6},
number={2},
pages={025008},
year={2021},
publisher={IOP Publishing}
}
[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{gil2020input,
title={Input redundancy for parameterized quantum circuits},
author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
journal={Frontiers in Physics},
volume={8},
pages={297},
year={2020},
publisher={Frontiers}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{marrero2020entanglement,
title={Entanglement induced barren plateaus},
author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
journal={arXiv preprint arXiv:2010.15968},
year={2020}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus]
[Quantum Convolutional Neural Networks]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{pesah2020absence,
title={Absence of barren plateaus in quantum convolutional neural networks},
author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
journal={arXiv preprint arXiv:2011.02966},
year={2020}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Barren Plateaus]
@article{sharma2020trainability,
title={Trainability of dissipative perceptron-based quantum neural networks},
author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2005.12458},
year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@inproceedings{tacchino2020variational,
title={Variational learning for quantum artificial neural networks},
author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
pages={130--136},
year={2020},
organization={IEEE}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{wang2020noise,
title={Noise-induced barren plateaus in variational quantum algorithms},
author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2007.14384},
year={2020}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{grant2019initialization,
title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
journal={Quantum},
volume={3},
pages={214},
year={2019},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Sim et al] Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
(Gate Model)
@article{sim2019expressibility,
title={Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms},
author={Sim, Sukin and Johnson, Peter D and Aspuru-Guzik, Al{\'a}n},
journal={Advanced Quantum Technologies},
volume={2},
number={12},
pages={1900070},
year={2019},
publisher={Wiley Online Library}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Variational Quantum Algorithms]
@article{verdon2019learning,
title={Learning to learn with quantum neural networks via classical neural networks},
author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
journal={arXiv preprint arXiv:1907.05415},
year={2019}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mcclean2018barren,
title={Barren plateaus in quantum neural network training landscapes},
author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
journal={Nature communications},
volume={9},
number={1},
pages={1--6},
year={2018},
publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mitarai2018quantum,
title={Quantum circuit learning},
author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
journal={Physical Review A},
volume={98},
number={3},
pages={032309},
year={2018},
publisher={APS}
}
[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
[]
(Gate Model)
@Article{farhi2014quantum,
Title = {A quantum approximate optimization algorithm},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
Journal = {arXiv preprint arXiv:1411.4028},
Year = {2014},
URL = {https://arxiv.org/abs/1411.4028}
}
[Kjaergaard et al] Superconducting Qubits:
Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing]
[Physical Realization of Qubits]
[Superconducting Qubits]
@article{kjaergaard2020superconducting,
title={Superconducting qubits: Current state of play},
author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
journal={Annual Review of Condensed Matter Physics},
volume={11},
pages={369--395},
year={2020},
publisher={Annual Reviews}
}
[Krantz et al] A quantum engineer's guide to superconducting qubits. Applied Physics Reviews . [Physical Realization of Qubits]
[Superconducting Qubits]
@article{krantz2019quantum,
title={A quantum engineer's guide to superconducting qubits},
author={Krantz, Philip and Kjaergaard, Morten and Yan, Fei and Orlando, Terry P and Gustavsson, Simon and Oliver, William D},
journal={Applied Physics Reviews},
volume={6},
number={2},
pages={021318},
year={2019},
publisher={AIP Publishing LLC}
}
[Soloviev et al] Adiabatic superconducting artificial neural network: Basic cells. Journal of Applied Physics. [Physical Realization of Qubits]
(Adiabatic Model)
@article{soloviev2018adiabatic,
title={Adiabatic superconducting artificial neural network: Basic cells},
author={Soloviev, Igor I and Schegolev, Andrey E and Klenov, Nikolay V and Bakurskiy, Sergey V and Kupriyanov, Mikhail Yu and Tereshonok, Maxim V and Shadrin, Anton V and Stolyarov, Vasily S and Golubov, Alexander A},
journal={Journal of Applied Physics},
volume={124},
number={15},
pages={152113},
year={2018},
publisher={AIP Publishing LLC}
}
[Gambetta et al] Building logical qubits in a superconducting quantum computing system. Physical Review Letters. [Physical Realization of Qubits]
[Superconducting Qubits]
@Article{gambetta2017building,
Title = {Building logical qubits in a superconducting quantum computing system},
Author = {Gambetta, Jay M and Chow, Jerry M and Steffen, Matthias},
Journal = {npj Quantum Information},
Year = {2017},
Number = {1},
Pages = {1--7},
Volume = {3},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-016-0004-0}
}
[Wendin et al] Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics. [Physical Realization of Qubits]
@article{wendin2017quantum,
title={Quantum information processing with superconducting circuits: a review},
author={Wendin, G{\"o}ran},
journal={Reports on Progress in Physics},
volume={80},
number={10},
pages={106001},
year={2017},
publisher={IOP Publishing}
}
[Pjilipp et al] Perspectives of quantum annealing: Methods andimplementations. Reports on Progress in Physics. [Quantum Information and Computing]
[Quantum Annealing]
(Adiabatic Model)
@article{hauke2020perspectives,
title={Perspectives of quantum annealing: Methods and implementations},
author={Hauke, Philipp and Katzgraber, Helmut G and Lechner, Wolfgang and Nishimori, Hidetoshi and Oliver, William D},
journal={Reports on Progress in Physics},
volume={83},
number={5},
pages={054401},
year={2020},
publisher={IOP Publishing}
}
[Katzgraber et al] Viewing vanilla quantum annealing through spin glasses. Quantum Science and Technology. [Quantum Annealing]
(Adiabatic Model)
@article{katzgraber2018viewing,
title={Viewing vanilla quantum annealing through spin glasses},
author={Katzgraber, Helmut G},
journal={Quantum Science and Technology},
volume={3},
number={3},
pages={030505},
year={2018},
publisher={IOP Publishing}
}
[Andriyash et al] Can quantum Monte Carlo simulate quantum annealing?. arXiv. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Monte Carlo]
(Adiabatic Model)
@Article{andriyash2017can,
Title = {Can quantum Monte Carlo simulate quantum annealing?},
Author = {Andriyash, Evgeny and Amin, Mohammad H},
Journal = {arXiv preprint arXiv:1703.09277},
Year = {2017},
URL = {https://arxiv.org/abs/1703.09277}
}
[Mandra' et al] The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{mandra2017pitfalls,
title={The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again)},
author={Mandra, Salvatore and Katzgraber, Helmut G and Thomas, Creighton},
journal={Quantum Science and Technology},
volume={2},
number={3},
pages={038501},
year={2017},
publisher={IOP Publishing}
}
[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@Article{batle2016multipartite,
Title = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
Author = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
Journal = {Quantum Information Processing},
Year = {2016},
Number = {8},
Pages = {3081--3099},
Volume = {15},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}
[Isakov et al] Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. Physical Review Letters. [Quantum Annealing]
(Adiabatic Model)
@article{isakov2016understanding,
title={Understanding quantum tunneling through quantum Monte Carlo simulations},
author={Isakov, Sergei V and Mazzola, Guglielmo and Smelyanskiy, Vadim N and Jiang, Zhang and Boixo, Sergio and Neven, Hartmut and Troyer, Matthias},
journal={Physical review letters},
volume={117},
number={18},
pages={180402},
year={2016},
publisher={APS}
}
[Sergey et al] Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nature. [Quantum Annealing]
(Adiabatic Model)
@article{knysh2016zero,
title={Zero-temperature quantum annealing bottlenecks in the spin-glass phase},
author={Knysh, Sergey},
journal={Nature communications},
volume={7},
number={1},
pages={1--9},
year={2016},
publisher={Nature Publishing Group}
}
[Mandra' et al] Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{mandra2016strengths,
title={Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches},
author={Mandra, Salvatore and Zhu, Zheng and Wang, Wenlong and Perdomo-Ortiz, Alejandro and Katzgraber, Helmut G},
journal={Physical Review A},
volume={94},
number={2},
pages={022337},
year={2016},
publisher={APS}
}
[Itay ert al] Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{hen2015probing,
title={Probing for quantum speedup in spin-glass problems with planted solutions},
author={Hen, Itay and Job, Joshua and Albash, Tameem and R{\o}nnow, Troels F and Troyer, Matthias and Lidar, Daniel A},
journal={Physical Review A},
volume={92},
number={4},
pages={042325},
year={2015},
publisher={APS}
}
[Katzgraber et al] Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly. Physical Review X. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{katzgraber2015seeking,
title={Seeking quantum speedup through spin glasses: The good, the bad, and the ugly},
author={Katzgraber, Helmut G and Hamze, Firas and Zhu, Zheng and Ochoa, Andrew J and Munoz-Bauza, Humberto},
journal={Physical Review X},
volume={5},
number={3},
pages={031026},
year={2015},
publisher={APS}
}
[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing]
[Quantum Information and Computing]
[QPU]
[Superconducting Qubits]
(Adiabatic Model)
@Article{bunyk2014architectural,
Title = {Architectural considerations in the design of a superconducting quantum annealing processor},
Author = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
Journal = {IEEE Transactions on Applied Superconductivity},
Year = {2014},
Number = {4},
Pages = {1--10},
Volume = {24},
Publisher = {IEEE},
URL = {https://ieeexplore.ieee.org/document/6802426}
}
[Boixo et al] Evidence for quantum annealing with more than one hundred qubits. Nature. [Quantum Annealing]
(Adiabatic Model)
@Article{evidenceboixo2014,
Title = {Evidence for quantum annealing with more than one hundred qubits},
Author = {Boixo, Sergio and R{\o}nnow, Troels F and Isakov, Sergei V and Wang, Zhihui and Wecker, David and Lidar, Daniel A and Martinis, John M and Troyer, Matthias},
Journal = {Nature physics},
Year = {2014},
Number = {3},
Pages = {218--224},
Volume = {10},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/nphys2900}
}
[Lanting et al] Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X. [Quantum Annealing]
(Adiabatic Model)
@article{lanting2014entanglement,
title={Entanglement in a quantum annealing processor},
author={Lanting, Trevor and Przybysz, Anthony J and Smirnov, A Yu and Spedalieri, Federico M and Amin, Mohammad H and Berkley, Andrew J and Harris, Richard and Altomare, Fabio and Boixo, Sergio and Bunyk, Paul and others},
journal={Physical Review X},
volume={4},
number={2},
pages={021041},
year={2014},
publisher={APS}
}
[McGeoch] Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures on Quantum Computing. [Quantum Annealing]
(Adiabatic Model)
@article{mcgeoch2014adiabatic,
title={Adiabatic quantum computation and quantum annealing: Theory and practice},
author={McGeoch, Catherine C},
journal={Synthesis Lectures on Quantum Computing},
volume={5},
number={2},
pages={1--93},
year={2014},
publisher={Morgan \& Claypool Publishers}
}
[Rønnow et al] Quantum computing Defining and detecting quantum speedup. Science. [Quantum Annealing]
(Adiabatic Model)
@article{ronnow2014defining,
title={Defining and detecting quantum speedup},
author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
journal={science},
volume={345},
number={6195},
pages={420--424},
year={2014},
publisher={American Association for the Advancement of Science}
}
[Boixo et al] Experimental signature of programmable quantum annealing. Nature communications. [Quantum Annealing]
(Adiabatic Model)
@Article{boixo2013experimental,
Title = {Experimental signature of programmable quantum annealing},
Author = {Boixo, Sergio and Albash, Tameem and Spedalieri, Federico M and Chancellor, Nicholas and Lidar, Daniel A},
Journal = {Nature communications},
Year = {2013},
Number = {1},
Pages = {1--8},
Volume = {4},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/ncomms3067}
}
[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Classical Implementation]
(Adiabatic Model)
@Article{gaitan2012ramsey,
Title = {Ramsey numbers and adiabatic quantum computing},
Author = {Gaitan, Frank and Clark, Lane},
Journal = {Physical review letters},
Year = {2012},
Number = {1},
Pages = {010501},
Volume = {108},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}
[Johnson et al] Quantum annealing with manufactured spins. Nature. [Quantum Annealing]
(Adiabatic Model)
@article{johnson2011quantum,
title={Quantum annealing with manufactured spins},
author={Johnson, Mark W and Amin, Mohammad HS and Gildert, Suzanne and Lanting, Trevor and Hamze, Firas and Dickson, Neil and Harris, Richard and Berkley, Andrew J and Johansson, Jan and Bunyk, Paul and others},
journal={Nature},
volume={473},
number={7346},
pages={194--198},
year={2011},
publisher={Nature Publishing Group}
}
[Johnson et al] Quantum annealing with manufactured spins. Nature. [Quantum Annealing]
(Adiabatic Model)
@article{johnson2011quantum,
title={Quantum annealing with manufactured spins},
author={Johnson, Mark W and Amin, Mohammad HS and Gildert, Suzanne and Lanting, Trevor and Hamze, Firas and Dickson, Neil and Harris, Richard and Berkley, Andrew J and Johansson, Jan and Bunyk, Paul and others},
journal={Nature},
volume={473},
number={7346},
pages={194--198},
year={2011},
publisher={Nature Publishing Group}
}
[Bravyi & Terhal] Complexity of stoquastic frustration-free Hamiltonians. Siam journal on computing. [Adiabatic Quantum Computing]
[Quantum Annealing]
(Adiabatic Model)
@Article{bravyi2010complexity,
Title = {Complexity of stoquastic frustration-free Hamiltonians},
Author = {Bravyi, Sergey and Terhal, Barbara},
Journal = {Siam journal on computing},
Year = {2010},
Number = {4},
Pages = {1462--1485},
Volume = {39},
Publisher = {SIAM},
URL = {https://arxiv.org/abs/0806.1746}
}
[Harris et al] Experimental demonstration of a robust and scalable flux qubit. Physical Review B. [Quantum Annealing]
(Adiabatic Model)
@Article{harris2010demonstration,
Title = {Experimental demonstration of a robust and scalable flux qubit},
Author = {Harris, R and Johansson, J and Berkley, AJ and Johnson, MW and Lanting, T and Han, Siyuan and Bunyk, P and Ladizinsky, E and Oh, T and Perminov, I and others},
Journal = {Physical Review B},
Year = {2010},
Number = {13},
Pages = {134510},
Volume = {81},
Publisher = {APS},
URL = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.134510}
}
[Harris et al] Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B. [Quantum Annealing]
[Superconducting Qubits]
(Adiabatic Model)
@article{harris2010experimental,
title={Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor},
author={Harris, Richard and Johnson, Mark W and Lanting, T and Berkley, AJ and Johansson, J and Bunyk, P and Tolkacheva, E and Ladizinsky, E and Ladizinsky, N and Oh, T and others},
journal={Physical Review B},
volume={82},
number={2},
pages={024511},
year={2010},
publisher={APS}
}
[Matsuda et al] Ground-state statistics from annealing algorithms: quantum versus classical approaches. New Journal of Physics. [Classical Implementation]
[Quantum Annealing]
@article{matsuda2009ground,
title={Ground-state statistics from annealing algorithms: quantum versus classical approaches},
author={Matsuda, Yoshiki and Nishimori, Hidetoshi and Katzgraber, Helmut G},
journal={New Journal of Physics},
volume={11},
number={7},
pages={073021},
year={2009},
publisher={IOP Publishing}
}
[Choi ] Minor-Embedding in Adiabatic Quantum Computation: I The Parameter Setting Problem. Quantum Information Processing. [Quantum Annealing]
(Adiabatic Model)
@Article{minorchoi2011,
Title = {Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design},
Author = {Choi, Vicky},
Journal = {Quantum Information Processing},
Year = {2011},
Number = {3},
Pages = {343--353},
Volume = {10},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s11128-008-0082-9}
}
[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
(Adiabatic Model)
@InCollection{battaglia2005deterministic,
Title = {Deterministic and stochastic quantum annealing approaches},
Author = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
Booktitle = {Quantum Annealing and Other Optimization Methods},
Publisher = {Springer},
Year = {2005},
Pages = {171--206},
URL = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
[Quantum Monte Carlo]
(Adiabatic Model)
@Article{battaglia2005optimization,
Title = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
Author = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
Journal = {Physical Review E},
Year = {2005},
Number = {6},
Pages = {066707},
Volume = {71},
Publisher = {APS},
URL = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}
[Martonak et al] Quantum annealing of the traveling-salesman problem. Physical Review E. [Classical Implementation]
[Quantum Annealing]
@article{martovnak2004quantum,
title={Quantum annealing of the traveling-salesman problem},
author={Marto{\v{n}}{\'a}k, Roman and Santoro, Giuseppe E and Tosatti, Erio},
journal={Physical Review E},
volume={70},
number={5},
pages={057701},
year={2004},
publisher={APS}
}
[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing]
[Classical Implementation]
[Quantum Annealing]
(Adiabatic Model)
@Article{farhi2001quantum,
Title = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
Journal = {Science},
Year = {2001},
Number = {5516},
Pages = {472--475},
Volume = {292},
Publisher = {American Association for the Advancement of Science},
URL = {https://science.sciencemag.org/content/292/5516/472}
}
[Kadowaki &Nishimori] Quantum annealing in the transverse Ising model. Physical Review E. [Quantum Annealing]
(Adiabatic Model)
@article{kadowaki1998quantum,
title={Quantum annealing in the transverse Ising model},
author={Kadowaki, Tadashi and Nishimori, Hidetoshi},
journal={Physical Review E},
volume={58},
number={5},
pages={5355},
year={1998},
publisher={APS}
}
[Finnila et al] Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters. [Quantum Annealing]
(Adiabatic Model)
@Article{finnila1994quantum,
Title = {Quantum annealing: A new method for minimizing multidimensional functions},
Author = {Finnila, Aleta Berk and Gomez, MA and Sebenik, C and Stenson, Catherine and Doll, Jimmie D},
Journal = {Chemical physics letters},
Year = {1994},
Number = {5-6},
Pages = {343--348},
Volume = {219},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/abs/pii/0009261494001170?via%3Dihub}
}
[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Optimization]
(Adiabatic Model)
@Article{apolloni1989quantum,
Title = {Quantum stochastic optimization},
Author = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
Journal = {Stochastic Processes and their Applications},
Year = {1989},
Number = {2},
Pages = {233--244},
Volume = {33},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}
[Wiebe & Wossnig] Generative training of quantum Boltzmann machines with hidden units. arXiv. [Quantum Boltzmann machines]
[Quantum Machine Learning]
@article{wiebe2019generative,
title={Generative training of quantum Boltzmann machines with hidden units},
author={Wiebe, Nathan and Wossnig, Leonard},
journal={arXiv preprint arXiv:1905.09902},
year={2019}
}
[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning]
[Quantum Boltzmann machines]
[Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
Title = {Quantum machine learning},
Author = {Allcock, Jonathan and Zhang, Shengyu},
Journal = {National Science Review},
Year = {2019},
Number = {1},
Pages = {26--28},
Volume = {6},
Publisher = {Oxford University Press},
URL = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Amin et al] Quantum boltzmann machine. Physical Review X. [Quantum Boltzmann machines]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@Article{amin2018quantum,
Title = {Quantum boltzmann machine},
Author = {Amin, Mohammad H and Andriyash, Evgeny and Rolfe, Jason and Kulchytskyy, Bohdan and Melko, Roger},
Journal = {Physical Review X},
Year = {2018},
Number = {2},
Pages = {021050},
Volume = {8},
Publisher = {APS},
URL = {https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050}
}
[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
title={A rigorous and robust quantum speed-up in supervised machine learning},
author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
journal={Nature Physics},
pages={1--5},
year={2021},
publisher={Nature Publishing Group}
}
[Ablayev et al] On quantum methods for machine learning problems part I: Quantum tools. Big Data Mining and Analytics. [Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{ablayev2020quantum1,
Title = {{On quantum methods for machine learning problems part I: Quantum tools}},
Author = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
Journal = {Big Data Mining and Analytics},
Year = {2020},
Number = {1},
Pages = {41--55},
Volume = {3},
URL = {https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8935094}
}
[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Nearest Neighbors Algorithm]
(Gate Model)
@Article{ablayev2020quantum2,
Title = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
Author = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
Journal = {Big Data Mining and Analytics},
Year = {2020},
Number = {1},
Pages = {56--67},
Volume = {3},
URL = {https://ieeexplore.ieee.org/abstract/document/8935095}
}
[Abohashima et al] Classification with Quantum Machine Learning: A Survey. arXiv. [Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@article{abohashima2020classification,
title={Classification with quantum machine learning: A survey},
author={Abohashima, Zainab and Elhosen, Mohamed and Houssein, Essam H and Mohamed, Waleed M},
journal={arXiv preprint arXiv:2006.12270},
year={2020}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{perez2020data,
title={Data re-uploading for a universal quantum classifier},
author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
journal={Quantum},
volume={4},
pages={226},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{schuld2020circuit,
title={Circuit-centric quantum classifiers},
author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
journal={Physical Review A},
volume={101},
number={3},
pages={032308},
year={2020},
publisher={APS}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{sergioli2020quantum,
title={Quantum and quantum-like machine learning: a note on differences and similarities},
author={Sergioli, Giuseppe},
journal={Soft Computing},
volume={24},
number={14},
pages={10247--10255},
year={2020},
publisher={Springer}
}
[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms]
[Quantum Support Vector Machine]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{havlivcek2019supervised,
Title = {Supervised learning with quantum-enhanced feature spaces},
Author = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
Journal = {Nature},
Year = {2019},
Number = {7747},
Pages = {209--212},
Volume = {567},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41586-019-0980-2}
}
[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{du2018implementable,
Title = {Implementable quantum classifier for nonlinear data},
Author = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
Journal = {arXiv preprint arXiv:1809.06056},
Year = {2018},
URL = {https://arxiv.org/abs/1809.06056}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{farhi2018classification,
Title = {Classification with quantum neural networks on near term processors},
Author = {Farhi, Edward and Neven, Hartmut},
Journal = {arXiv preprint arXiv:1802.06002},
Year = {2018},
URL = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{grant2018hierarchical,
Title = {Hierarchical quantum classifiers},
Author = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
Journal = {npj Quantum Information},
Year = {2018},
Number = {1},
Pages = {1--8},
Volume = {4},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-018-0116-9}
}
[Ruan et al] Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics. [Quantum Machine Learning]
[Quantum Classification]
@article{ruan2017quantum,
title={Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance},
author={Ruan, Yue and Xue, Xiling and Liu, Heng and Tan, Jianing and Li, Xi},
journal={International Journal of Theoretical Physics},
volume={56},
number={11},
pages={3496--3507},
year={2017},
publisher={Springer}
}
[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Clustering]
[Quantum Nearest Neighbors Algorithm]
[Quantum Neural Networks]
(Gate Model)
(Adiabatic Model)
@Article{adcock2015advances,
Title = {Advances in quantum machine learning},
Author = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
Journal = {arXiv preprint arXiv:1512.02900},
Year = {2015},
URL = {https://arxiv.org/abs/1512.02900}
}
[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{wiebe2015quantum,
title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={Quantum Information \& Computation},
volume={15},
number={3-4},
pages={316--356},
year={2015},
publisher={Rinton Press, Incorporated Paramus, NJ}
}
[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{ventura2000quantum,
title={Quantum associative memory},
author={Ventura, Dan and Martinez, Tony},
journal={Information Sciences},
volume={124},
number={1-4},
pages={273--296},
year={2000},
publisher={Elsevier}
}
[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Clustering]
[Quantum Nearest Neighbors Algorithm]
[Quantum Neural Networks]
(Gate Model)
(Adiabatic Model)
@Article{adcock2015advances,
Title = {Advances in quantum machine learning},
Author = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
Journal = {arXiv preprint arXiv:1512.02900},
Year = {2015},
URL = {https://arxiv.org/abs/1512.02900}
}
[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@Article{aimeur2013quantum,
Title = {Quantum speed-up for unsupervised learning},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Journal = {Machine Learning},
Year = {2013},
Number = {2},
Pages = {261--287},
Volume = {90},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}
[Lloyd et al] Quantum algorithms for supervised and unsupervised machine learning. arXiv. [Quantum Machine Learning]
[Quantum Clustering]
(Adiabatic Model)
@article{lloyd2013quantum,
title={Quantum algorithms for supervised and unsupervised machine learning},
author={Lloyd, Seth and Mohseni, Masoud and Rebentrost, Patrick},
journal={arXiv preprint arXiv:1307.0411},
year={2013}
}
[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@inproceedings{aimeur2007quantum,
title={Quantum clustering algorithms},
author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
booktitle={Proceedings of the 24th international conference on machine learning},
pages={1--8},
year={2007}
}
[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@InProceedings{aimeur2006machine,
Title = {Machine learning in a quantum world},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Booktitle = {Conference of the Canadian Society for Computational Studies of Intelligence},
Year = {2006},
Organization = {Springer},
Pages = {431--442},
URL = {https://link.springer.com/chapter/10.1007/11766247_37}
}
[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{henderson2020quanvolutional,
title={Quanvolutional neural networks: powering image recognition with quantum circuits},
author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
journal={Quantum Machine Intelligence},
volume={2},
number={1},
pages={1--9},
year={2020},
publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{kerenidis2019quantum,
title={Quantum Algorithms for Deep Convolutional Neural Networks},
author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
booktitle={International Conference on Learning Representations},
year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{li2020quantum,
title={A quantum deep convolutional neural network for image recognition},
author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
journal={Quantum Science and Technology},
volume={5},
number={4},
pages={044003},
year={2020},
publisher={IOP Publishing}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus]
[Quantum Convolutional Neural Networks]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{pesah2020absence,
title={Absence of barren plateaus in quantum convolutional neural networks},
author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
journal={arXiv preprint arXiv:2011.02966},
year={2020}
}
[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cong2019quantum,
Title = {Quantum convolutional neural networks},
Author = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
Journal = {Nature Physics},
Year = {2019},
Number = {12},
Pages = {1273--1278},
Volume = {15},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}
[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random
Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{zoufal2019quantum,
title={Quantum generative adversarial networks for learning and loading random distributions},
author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--9},
year={2019},
publisher={Nature Publishing Group}
}
[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning]
[Quantum Boltzmann machines]
[Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
Title = {Quantum machine learning},
Author = {Allcock, Jonathan and Zhang, Shengyu},
Journal = {National Science Review},
Year = {2019},
Number = {1},
Pages = {26--28},
Volume = {6},
Publisher = {Oxford University Press},
URL = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{dallaire2018quantum,
title={Quantum generative adversarial networks},
author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
journal={Physical Review A},
volume={98},
number={1},
pages={012324},
year={2018},
publisher={APS}
}
[Pjilipp et al] Perspectives of quantum annealing: Methods andimplementations. Reports on Progress in Physics. [Quantum Information and Computing]
[Quantum Annealing]
(Adiabatic Model)
@article{hauke2020perspectives,
title={Perspectives of quantum annealing: Methods and implementations},
author={Hauke, Philipp and Katzgraber, Helmut G and Lechner, Wolfgang and Nishimori, Hidetoshi and Oliver, William D},
journal={Reports on Progress in Physics},
volume={83},
number={5},
pages={054401},
year={2020},
publisher={IOP Publishing}
}
[Kjaergaard et al] Superconducting Qubits:
Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing]
[Physical Realization of Qubits]
[Superconducting Qubits]
@article{kjaergaard2020superconducting,
title={Superconducting qubits: Current state of play},
author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
journal={Annual Review of Condensed Matter Physics},
volume={11},
pages={369--395},
year={2020},
publisher={Annual Reviews}
}
[McGeoch] Theory versus practice in annealing-based quantum computing. Theoretical Computer Science. [Quantum Information and Computing]
(Adiabatic Model)
@article{mcgeoch2020theory,
title={Theory versus practice in annealing-based quantum computing},
author={McGeoch, Catherine C},
journal={Theoretical Computer Science},
volume={816},
pages={169--183},
year={2020},
publisher={Elsevier}
}
[Ramezani et al] Machine Learning Algorithms in Quantum Computing: A Survey. International Joint Conference on Neural Networks. [Quantum Information and Computing]
[Quantum Machine Learning]
@inproceedings{ramezani2020machine,
title={Machine learning algorithms in quantum computing: A survey},
author={Ramezani, Somayeh Bakhtiari and Sommers, Alexander and Manchukonda, Harish Kumar and Rahimi, Shahram and Amirlatifi, Amin},
booktitle={2020 International Joint Conference on Neural Networks (IJCNN)},
pages={1--8},
year={2020},
organization={IEEE}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{sergioli2020quantum,
title={Quantum and quantum-like machine learning: a note on differences and similarities},
author={Sergioli, Giuseppe},
journal={Soft Computing},
volume={24},
number={14},
pages={10247--10255},
year={2020},
publisher={Springer}
}
[Gyongyosi & Imre] A Survey on quantum computing technology. Computer Science Review. [Quantum Information and Computing]
@Article{gyongyosi2019survey,
Title = {A survey on quantum computing technology},
Author = {Gyongyosi, Laszlo and Imre, Sandor},
Journal = {Computer Science Review},
Year = {2019},
Pages = {51--71},
Volume = {31},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/abs/pii/S1574013718301709}
}
[Savchuk & Fesenko] Quantum Computing: Survey and Analysis. Cybernetics and Systems Analysis. [Quantum Information and Computing]
@article{savchuk2019quantum,
title={Quantum Computing: Survey and Analysis},
author={Savchuk, MM and Fesenko, AV},
journal={Cybernetics and Systems Analysis},
volume={55},
number={1},
pages={10--21},
year={2019},
publisher={Springer}
}
[Schuld & Killoran] Quantum machine learning in feature Hilbert spaces. Physical Review Letters. [Quantum Machine Learning]
[Quantum Information and Computing]
@article{schuld2019quantum,
title={Quantum machine learning in feature Hilbert spaces},
author={Schuld, Maria and Killoran, Nathan},
journal={Physical review letters},
volume={122},
number={4},
pages={040504},
year={2019},
publisher={APS}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{tacchino2019artificial,
title={An artificial neuron implemented on an actual quantum processor},
author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--8},
year={2019},
publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
@article{torrontegui2019unitary,
title={Unitary quantum perceptron as efficient universal approximator},
author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
journal={EPL (Europhysics Letters)},
volume={125},
number={3},
pages={30004},
year={2019},
publisher={IOP Publishing}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiersema2019implementing,
title={Implementing perceptron models with qubits},
author={Wiersema, RC and Kappen, HJ},
journal={Physical Review A},
volume={100},
number={2},
pages={020301},
year={2019},
publisher={APS}
}
[Albash & Lidar] Adiabatic Quantum Computing. Reviews of Modern Physics. [Quantum Information and Computing]
[Adiabatic Quantum Computing]
(Adiabatic Model)
@Article{albash2018adiabatic,
Title = {Adiabatic quantum computation},
Author = {Albash, Tameem and Lidar, Daniel A},
Journal = {Reviews of Modern Physics},
Year = {2018},
Number = {1},
Pages = {015002},
Volume = {90},
Publisher = {APS},
URL = {https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002}
}
[Dunjko & Briegel] Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics. [Quantum Machine Learning]
[Probably Approximately Correct Learning]
[Quantum Information and Computing]
(Gate Model)
(Adiabatic Model)
@Article{dunjko2018machine,
Title = {Machine learning \& artificial intelligence in the quantum domain: a review of recent progress},
Author = {Dunjko, Vedran and Briegel, Hans J},
Journal = {Reports on Progress in Physics},
Year = {2018},
Number = {7},
Pages = {074001},
Volume = {81},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/1361-6633/aab406/meta}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@Article{moll2018quantum,
Title = {Quantum optimization using variational algorithms on near-term quantum devices},
Author = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
Journal = {Quantum Science and Technology},
Year = {2018},
Number = {3},
Pages = {030503},
Volume = {3},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Preskill] Quantum Computing in the NISQ era and beyond. Quantum Journal. [Quantum Information and Computing]
@article{preskill2018quantum,
title={Quantum computing in the NISQ era and beyond},
author={Preskill, John},
journal={Quantum},
volume={2},
pages={79},
year={2018},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiebe2016quantum,
title={Quantum perceptron models},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={arXiv preprint arXiv:1602.04799},
year={2016}
}
[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron]
[Quantum Information and Computing]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cao2017quantum,
Title = {Quantum neuron: an elementary building block for machine learning on quantum computers},
Author = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
Journal = {arXiv preprint arXiv:1711.11240},
Year = {2017},
URL = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Harrow & Montanaro] Quantum computational supremacy. Nature. [Quantum Information and Computing]
@article{harrow2017quantum,
title={Quantum computational supremacy},
author={Harrow, Aram W and Montanaro, Ashley},
journal={Nature},
volume={549},
number={7671},
pages={203--209},
year={2017},
publisher={Nature Publishing Group}
}
[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing]
[Quantum Information and Computing]
[QPU]
[Superconducting Qubits]
(Adiabatic Model)
@Article{bunyk2014architectural,
Title = {Architectural considerations in the design of a superconducting quantum annealing processor},
Author = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
Journal = {IEEE Transactions on Applied Superconductivity},
Year = {2014},
Number = {4},
Pages = {1--10},
Volume = {24},
Publisher = {IEEE},
URL = {https://ieeexplore.ieee.org/document/6802426}
}
[Rønnow et al] Defining and detecting quantum speedup. Science. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{ronnow2014defining,
title={Defining and detecting quantum speedup},
author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
journal={science},
volume={345},
number={6195},
pages={420--424},
year={2014},
publisher={American Association for the Advancement of Science}
}
[Devoret & Schoelkopf] Superconducting Circuits for Quantum Information: An Outlook. Science. [Quantum Information and Computing]
[Superconducting Qubits]
(Gate Model)
@Article{devoret2013superconducting,
Title = {Superconducting circuits for quantum information: an outlook},
Author = {Devoret, Michel H and Schoelkopf, Robert J},
Journal = {Science},
Year = {2013},
Number = {6124},
Pages = {1169--1174},
Volume = {339},
Publisher = {American Association for the Advancement of Science},
URL = {https://science.sciencemag.org/content/339/6124/1169.abstract}
}
[Preskill] Quantum computing and the entanglement frontier. arXiv. [Quantum Information and Computing]
@article{preskill2012quantum,
title={Quantum computing and the entanglement frontier},
author={Preskill, John},
journal={arXiv preprint arXiv:1203.5813},
year={2012}
}
[Bremner et al] Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Speedup-Advantage-Supremacy]
[Quantum Information and Computing]
(Gate Model)
@Article{bremner2011classical,
Title = {Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy},
Author = {Bremner, Michael J and Jozsa, Richard and Shepherd, Dan J},
Journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
Year = {2011},
Number = {2126},
Pages = {459--472},
Volume = {467},
Publisher = {The Royal Society Publishing},
URL = {https://doi.org/10.1098/rspa.2010.0301}
}
[Clarke et al] Superconducting quantum bits. Nature. [Quantum Information and Computing]
@Article{clarke2008superconducting,
Title = {Superconducting quantum bits},
Author = {Clarke, John and Wilhelm, Frank K},
Journal = {Nature},
Year = {2008},
Number = {7198},
Pages = {1031--1042},
Volume = {453},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/Nature07128}
}
[Brassard et al ] Quantum amplitude amplification and estimation. Contemporary Mathematics. [Quantum Information and Computing]
(Gate Model)
@Article{brassard2002quantum,
Title = {Quantum amplitude amplification and estimation},
Author = {Brassard, Gilles and Hoyer, Peter and Mosca, Michele and Tapp, Alain},
Journal = {Contemporary Mathematics},
Year = {2002},
Pages = {53--74},
Volume = {305},
Publisher = {Providence, RI; American Mathematical Society; 1999},
URL = {http://dx.doi.org/10.1090/conm/305/05215}
}
[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{ventura2000quantum,
title={Quantum associative memory},
author={Ventura, Dan and Martinez, Tony},
journal={Information Sciences},
volume={124},
number={1-4},
pages={273--296},
year={2000},
publisher={Elsevier}
}
[Bernstein & Vazirani] Quantum complexity theory. SIAM Journal on computing. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@article{bernstein1997quantum,
title={Quantum complexity theory},
author={Bernstein, Ethan and Vazirani, Umesh},
journal={SIAM Journal on computing},
volume={26},
number={5},
pages={1411--1473},
year={1997},
publisher={SIAM}
}
[Simon] On the Power of Quantum Computation. SIAM Journal on Computing. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@article{simon1997power,
title={On the power of quantum computation},
author={Simon, Daniel R},
journal={SIAM journal on computing},
volume={26},
number={5},
pages={1474--1483},
year={1997},
publisher={SIAM}
}
[Barenco et al] Elementary gates for quantum computation. Physical Review A. [Quantum Information and Computing]
[Quantum Gates]
(Gate Model)
@Article{barenco1995elementary,
Title = {Elementary gates for quantum computation},
Author = {Barenco, Adriano and Bennett, Charles H and Cleve, Richard and DiVincenzo, David P and Margolus, Norman and Shor, Peter and Sleator, Tycho and Smolin, John A and Weinfurter, Harald},
Journal = {Physical review A},
Year = {1995},
Number = {5},
Pages = {3457},
Volume = {52},
Publisher = {APS},
URL = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.3457}
}
[Deutsch & Josza] Rapid solution of problems by quantum computation. Proceedings of the Royal Society A. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@Article{deutsch1992rapid,
Title = {Rapid solution of problems by quantum computation},
Author = {Deutsch, David and Jozsa, Richard},
Journal = {Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences},
Year = {1992},
Number = {1907},
Pages = {553--558},
Volume = {439},
Publisher = {The Royal Society London},
URL = {https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167}
}
[Deutsch] Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A. [Quantum Information and Computing]
@Article{deutsch1985quantum,
Title = {{Quantum theory, the Church--Turing principle and the universal quantum computer}},
Author = {Deutsch, David},
Journal = {Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences},
Year = {1985},
Number = {1818},
Pages = {97--117},
Volume = {400},
Publisher = {The Royal Society London},
URL = {https://royalsocietypublishing.org/doi/10.1098/rspa.1985.0070}
}
[Ban et al] Speeding up quantum perceptron via shortcuts to adiabaticity. Scientific reports. [Quantum Perceptron]
[Quantum Machine Learning]
(Adiabatic Model)
@Article{ban2021speeding,
Title = {Speeding up quantum perceptron via shortcuts to adiabaticity},
Author = {Ban, Yue and Chen, Xi and Torrontegui, E and Solano, Enrique and Casanova, Jorge},
Journal = {Scientific reports},
Year = {2021},
Number = {1},
Pages = {1--8},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/s41598-021-85208-3}
}
[Benedetti et al] Hardware-efficient variational quantum algorithms for time evolution. Physical Review Research. [Time Evolution (Hamiltonian Simulation)]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{benedetti2021hardware,
title={Hardware-efficient variational quantum algorithms for time evolution},
author={Benedetti, Marcello and Fiorentini, Mattia and Lubasch, Michael},
journal={Physical Review Research},
volume={3},
number={3},
pages={033083},
year={2021},
publisher={APS}
}
[Benedetti et al] Variational Inference with a Quantum Computer. Physical Review Applied. [Variational Inference]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{benedetti2021variational,
title={Variational inference with a quantum computer},
author={Benedetti, Marcello and Coyle, Brian and Fiorentini, Mattia and Lubasch, Michael and Rosenkranz, Matthias},
journal={Physical Review Applied},
volume={16},
number={4},
pages={044057},
year={2021},
publisher={APS}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@article{bharti2021noisy,
title={Noisy intermediate-scale quantum (NISQ) algorithms},
author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
journal={arXiv preprint arXiv:2101.08448},
year={2021}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{cerezo2021cost,
title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
journal={Nature communications},
volume={12},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
[Chen et al] Universal discriminative quantum neural networks. Quantum Machine Intelligence. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{chen2021universal,
Title = {Universal discriminative quantum neural networks},
Author = {Chen, Hongxiang and Wossnig, Leonard and Severini, Simone and Neven, Hartmut and Mohseni, Masoud},
Journal = {Quantum Machine Intelligence},
Year = {2021},
Number = {1},
Pages = {1--11},
Volume = {3},
Publisher = {Springer},
URL = {https://arxiv.org/abs/1805.08654}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{egger2021warm,
title={Warm-starting quantum optimization},
author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
journal={Quantum},
volume={5},
pages={479},
year={2021},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Barren Plateaus]
[Quantum Machine Learning]
@article{holmes2021connecting,
title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
journal={arXiv preprint arXiv:2101.02138},
year={2021}
}
[Jaderberg et al] Quantum Self-Supervised Learning. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{jaderberg2021quantum,
title={Quantum Self-Supervised Learning},
author={Jaderberg, Ben and Anderson, Lewis W and Xie, Weidi and Albanie, Samuel and Kiffner, Martin and Jaksch, Dieter},
journal={arXiv preprint arXiv:2103.14653},
year={2021}
}
[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
title={A rigorous and robust quantum speed-up in supervised machine learning},
author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
journal={Nature Physics},
pages={1--5},
year={2021},
publisher={Nature Publishing Group}
}
[Lubsch et al] Variational quantum algorithms for nonlinear problems. Physical Review A. [Nonlinear Problems]
[Partial Differential Equations]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{lubasch2020variational,
title={Variational quantum algorithms for nonlinear problems},
author={Lubasch, Michael and Joo, Jaewoo and Moinier, Pierre and Kiffner, Martin and Jaksch, Dieter},
journal={Physical Review A},
volume={101},
number={1},
pages={010301},
year={2020},
publisher={APS}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{mangini2021quantum,
title={Quantum computing models for artificial neural networks},
author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
journal={EPL (Europhysics Letters)},
volume={134},
number={1},
pages={10002},
year={2021},
publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{patti2020entanglement,
title={Entanglement devised barren plateau mitigation},
author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
journal={arXiv preprint arXiv:2012.12658},
year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{perez2021one,
title={One qubit as a Universal Approximant},
author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
journal={arXiv preprint arXiv:2102.04032},
year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{schuld2021effect,
title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
journal={Physical Review A},
volume={103},
number={3},
pages={032430},
year={2021},
publisher={APS}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{skolik2021layerwise,
title={Layerwise learning for quantum neural networks},
author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
journal={Quantum Machine Intelligence},
volume={3},
number={1},
pages={1--11},
year={2021},
publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{volkoff2021large,
title={Large gradients via correlation in random parameterized quantum circuits},
author={Volkoff, Tyler and Coles, Patrick J},
journal={Quantum Science and Technology},
volume={6},
number={2},
pages={025008},
year={2021},
publisher={IOP Publishing}
}
[Ablayev et al] On quantum methods for machine learning problems part I: Quantum tools. Big Data Mining and Analytics. [Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{ablayev2020quantum1,
Title = {{On quantum methods for machine learning problems part I: Quantum tools}},
Author = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
Journal = {Big Data Mining and Analytics},
Year = {2020},
Number = {1},
Pages = {41--55},
Volume = {3},
URL = {https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8935094}
}
[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Nearest Neighbors Algorithm]
(Gate Model)
@Article{ablayev2020quantum2,
Title = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
Author = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
Journal = {Big Data Mining and Analytics},
Year = {2020},
Number = {1},
Pages = {56--67},
Volume = {3},
URL = {https://ieeexplore.ieee.org/abstract/document/8935095}
}
[Abohashima et al] Classification with Quantum Machine Learning: A Survey. arXiv. [Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@article{abohashima2020classification,
title={Classification with quantum machine learning: A survey},
author={Abohashima, Zainab and Elhosen, Mohamed and Houssein, Essam H and Mohamed, Waleed M},
journal={arXiv preprint arXiv:2006.12270},
year={2020}
}
[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
@article{barkoutsos2020improving,
title={Improving variational quantum optimization using cvar},
author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
journal={Quantum},
volume={4},
pages={256},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@Article{beer2020training,
Title = {Training deep quantum neural networks},
Author = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
Journal = {Nature communications},
Year = {2020},
Number = {1},
Pages = {1--6},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Bharti et al] Machine learning meets quantum foundations: A brief survey. AVS Quantum Science. [Quantum Machine Learning]
(Gate Model)
@Article{bharti2020machine,
Title = {Machine learning meets quantum foundations: A brief survey},
Author = {Bharti, Kishor and Haug, Tobias and Vedral, Vlatko and Kwek, Leong-Chuan},
Journal = {AVS Quantum Science},
Year = {2020},
Number = {3},
Pages = {034101},
Volume = {2},
Publisher = {American Vacuum Society},
URL = {https://avs.scitation.org/doi/10.1116/5.0007529}
}
[Cerezo et al] Variational Quantum Algorithms. arXiv. [Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@Article{cerezo2020variational,
Title = {Variational quantum algorithms},
Author = {Cerezo, Marco and Arrasmith, Andrew and Babbush, Ryan and Benjamin, Simon C and Endo, Suguru and Fujii, Keisuke and McClean, Jarrod R and Mitarai, Kosuke and Yuan, Xiao and Cincio, Lukasz and others},
Journal = {arXiv preprint arXiv:2012.09265},
Year = {2020},
URL = {https://arxiv.org/pdf/2012.09265.pdf}
}
[Chakraborty et al] An Analytical Review of Quantum Neural Network Models and Relevant Research. International Conference on Communication and Electronics Systems. [Quantum Neural Networks]
[Quantum Machine Learning]
@inproceedings{chakraborty2020analytical,
title={An Analytical Review of Quantum Neural Network Models and Relevant Research},
author={Chakraborty, Simantini and Das, Tamal and Sutradhar, Saurav and Das, Mrinmoy and Deb, Suman},
booktitle={2020 5th International Conference on Communication and Electronics Systems (ICCES)},
pages={1395--1400},
year={2020},
organization={IEEE}
}
[Duan & Guo] A survey on HHL algorithm: From theory to application in quantum machine learning. Physics Letters A. [Quantum Machine Learning]
[Quantum Speedup-Advantage-Supremacy]
@Article{duan1998probabilistic,
Title = {Probabilistic cloning and identification of linearly independent quantum states},
Author = {Duan, Lu-Ming and Guo, Guang-Can},
Journal = {Physical review letters},
Year = {1998},
Number = {22},
Pages = {4999},
Volume = {80},
Publisher = {APS},
URL = {https://www.sciencedirect.com/science/article/pii/S037596012030462X}
}
[Dunjko & Wittek] A non-review of Quantum Machine Learning: trends and explorations. Quantum Views. [Quantum Machine Learning]
@Article{dunjko2020non,
Title = {A non-review of Quantum Machine Learning: trends and explorations},
Author = {Dunjko, Vedran and Wittek, Peter},
Journal = {Quantum Views},
Year = {2020},
Pages = {32},
Volume = {4},
Publisher = {Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften},
URL = {https://quantum-journal.org/views/qv-2020-03-17-32/}
}
[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{gil2020input,
title={Input redundancy for parameterized quantum circuits},
author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
journal={Frontiers in Physics},
volume={8},
pages={297},
year={2020},
publisher={Frontiers}
}
[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{henderson2020quanvolutional,
title={Quanvolutional neural networks: powering image recognition with quantum circuits},
author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
journal={Quantum Machine Intelligence},
volume={2},
number={1},
pages={1--9},
year={2020},
publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{kerenidis2019quantum,
title={Quantum Algorithms for Deep Convolutional Neural Networks},
author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
booktitle={International Conference on Learning Representations},
year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{li2020quantum,
title={A quantum deep convolutional neural network for image recognition},
author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
journal={Quantum Science and Technology},
volume={5},
number={4},
pages={044003},
year={2020},
publisher={IOP Publishing}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{macaluso2020variational,
title={A Variational Algorithm for Quantum Neural Networks},
author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
booktitle={International Conference on Computational Science},
pages={591--604},
year={2020},
organization={Springer}
}
[Mari et al] Transfer learning in hybrid classical-quantum neural networks. Quantum. [Quantum Neural Networks]
[Quantum Transfer Learning]
[Quantum Machine Learning]
(Gate Model)
@article{mari2020transfer,
title={Transfer learning in hybrid classical-quantum neural networks},
author={Mari, Andrea and Bromley, Thomas R and Izaac, Josh and Schuld, Maria and Killoran, Nathan},
journal={Quantum},
volume={4},
pages={340},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{marrero2020entanglement,
title={Entanglement induced barren plateaus},
author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
journal={arXiv preprint arXiv:2010.15968},
year={2020}
}
[Mezquita et al] A Review of k-NN Algorithm Based on Classical and Quantum Machine Learning. DCAI 2020. [Quantum Machine Learning]
@inproceedings{mezquita2020review,
title={A Review of k-NN Algorithm Based on Classical and Quantum Machine Learning},
author={Mezquita, Yeray and Alonso, Ricardo S and Casado-Vara, Roberto and Prieto, Javier and Corchado, Juan Manuel},
booktitle={International Symposium on Distributed Computing and Artificial Intelligence},
pages={189--198},
year={2020},
organization={Springer}
}
[Pande et Mulay] Bibliometric Survey of Quantum Machine Learning. Science & Technology Libraries. [Quantum Machine Learning]
@article{pande2020bibliometric,
title={Bibliometric survey of quantum machine learning},
author={Pande, Mandaar and Mulay, Preeti},
journal={Science \& Technology Libraries},
volume={39},
number={4},
pages={369--382},
year={2020},
publisher={Taylor \& Francis}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{perez2020data,
title={Data re-uploading for a universal quantum classifier},
author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
journal={Quantum},
volume={4},
pages={226},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus]
[Quantum Convolutional Neural Networks]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{pesah2020absence,
title={Absence of barren plateaus in quantum convolutional neural networks},
author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
journal={arXiv preprint arXiv:2011.02966},
year={2020}
}
[Ramezani et al] Machine Learning Algorithms in Quantum Computing: A Survey. International Joint Conference on Neural Networks. [Quantum Information and Computing]
[Quantum Machine Learning]
@inproceedings{ramezani2020machine,
title={Machine learning algorithms in quantum computing: A survey},
author={Ramezani, Somayeh Bakhtiari and Sommers, Alexander and Manchukonda, Harish Kumar and Rahimi, Shahram and Amirlatifi, Amin},
booktitle={2020 International Joint Conference on Neural Networks (IJCNN)},
pages={1--8},
year={2020},
organization={IEEE}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{schuld2020circuit,
title={Circuit-centric quantum classifiers},
author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
journal={Physical Review A},
volume={101},
number={3},
pages={032308},
year={2020},
publisher={APS}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{sergioli2020quantum,
title={Quantum and quantum-like machine learning: a note on differences and similarities},
author={Sergioli, Giuseppe},
journal={Soft Computing},
volume={24},
number={14},
pages={10247--10255},
year={2020},
publisher={Springer}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Barren Plateaus]
@article{sharma2020trainability,
title={Trainability of dissipative perceptron-based quantum neural networks},
author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2005.12458},
year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@inproceedings{tacchino2020variational,
title={Variational learning for quantum artificial neural networks},
author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
pages={130--136},
year={2020},
organization={IEEE}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{wang2020noise,
title={Noise-induced barren plateaus in variational quantum algorithms},
author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2007.14384},
year={2020}
}
[Willsch et al] Support vector machines on the D-Wave quantum annealer. Computer Physics Communications. [Quantum Support Vector Machine]
[Quantum Machine Learning]
(Adiabatic Model)
@article{willsch2020support,
title={Support vector machines on the D-Wave quantum annealer},
author={Willsch, Dennis and Willsch, Madita and De Raedt, Hans and Michielsen, Kristel},
journal={Computer physics communications},
volume={248},
pages={107006},
year={2020},
publisher={Elsevier}
}
[Zhang & Ni] Recent advances in quantum machine learning. Quantum Engineering. [Quantum Machine Learning]
[Quantum Theory]
@article{zhang2020recent,
title={Recent advances in quantum machine learning},
author={Zhang, Yao and Ni, Qiang},
journal={Quantum Engineering},
volume={2},
number={1},
pages={e34},
year={2020},
publisher={Wiley Online Library}
}
[Benedetti et al] Parameterized quantum circuits as machine learning models. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Machine Learning]
@Article{benedetti2019parameterized,
Title = {Parameterized quantum circuits as machine learning models},
Author = {Benedetti, Marcello and Lloyd, Erika and Sack, Stefan and Fiorentini, Mattia},
Journal = {Quantum Science and Technology},
Year = {2019},
Number = {4},
Pages = {043001},
Volume = {4},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5/meta}
}
[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cong2019quantum,
Title = {Quantum convolutional neural networks},
Author = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
Journal = {Nature Physics},
Year = {2019},
Number = {12},
Pages = {1273--1278},
Volume = {15},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{grant2019initialization,
title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
journal={Quantum},
volume={3},
pages={214},
year={2019},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms]
[Quantum Support Vector Machine]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{havlivcek2019supervised,
Title = {Supervised learning with quantum-enhanced feature spaces},
Author = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
Journal = {Nature},
Year = {2019},
Number = {7747},
Pages = {209--212},
Volume = {567},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41586-019-0980-2}
}
[Killoran et al] Continuous-variable quantum neural networks. Physical Review Research. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{killoran2019continuous,
title={Continuous-variable quantum neural networks},
author={Killoran, Nathan and Bromley, Thomas R and Arrazola, Juan Miguel and Schuld, Maria and Quesada, Nicol{\'a}s and Lloyd, Seth},
journal={Physical Review Research},
volume={1},
number={3},
pages={033063},
year={2019},
publisher={APS}
}
[Liu et al] A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for Non-Ideal Training Sets. IEEE Access. [Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@article{liu2019unitary,
title={A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets},
author={Liu, Wenjie and Gao, Peipei and Wang, Yuxiang and Yu, Wenbin and Zhang, Maojun},
journal={IEEE Access},
volume={7},
pages={36854--36865},
year={2019},
publisher={IEEE}
}
[Schuld & Killoran] Quantum machine learning in feature Hilbert spaces. Physical Review Letters. [Quantum Machine Learning]
[Quantum Information and Computing]
@article{schuld2019quantum,
title={Quantum machine learning in feature Hilbert spaces},
author={Schuld, Maria and Killoran, Nathan},
journal={Physical review letters},
volume={122},
number={4},
pages={040504},
year={2019},
publisher={APS}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{tacchino2019artificial,
title={An artificial neuron implemented on an actual quantum processor},
author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--8},
year={2019},
publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
@article{torrontegui2019unitary,
title={Unitary quantum perceptron as efficient universal approximator},
author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
journal={EPL (Europhysics Letters)},
volume={125},
number={3},
pages={30004},
year={2019},
publisher={IOP Publishing}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Variational Quantum Algorithms]
@article{verdon2019learning,
title={Learning to learn with quantum neural networks via classical neural networks},
author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
journal={arXiv preprint arXiv:1907.05415},
year={2019}
}
[Verdon et al] Quantum graph neural networks. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{verdon2019quantum,
title={Quantum graph neural networks},
author={Verdon, Guillaume and McCourt, Trevor and Luzhnica, Enxhell and Singh, Vikash and Leichenauer, Stefan and Hidary, Jack},
journal={arXiv preprint arXiv:1909.12264},
year={2019}
[Wiebe & Wossnig] Generative training of quantum Boltzmann machines with hidden units. arXiv. [Quantum Boltzmann machines]
[Quantum Machine Learning]
@article{wiebe2019generative,
title={Generative training of quantum Boltzmann machines with hidden units},
author={Wiebe, Nathan and Wossnig, Leonard},
journal={arXiv preprint arXiv:1905.09902},
year={2019}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiersema2019implementing,
title={Implementing perceptron models with qubits},
author={Wiersema, RC and Kappen, HJ},
journal={Physical Review A},
volume={100},
number={2},
pages={020301},
year={2019},
publisher={APS}
}
[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random
Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{zoufal2019quantum,
title={Quantum generative adversarial networks for learning and loading random distributions},
author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--9},
year={2019},
publisher={Nature Publishing Group}
}
[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning]
[Quantum Boltzmann machines]
[Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
Title = {Quantum machine learning},
Author = {Allcock, Jonathan and Zhang, Shengyu},
Journal = {National Science Review},
Year = {2019},
Number = {1},
Pages = {26--28},
Volume = {6},
Publisher = {Oxford University Press},
URL = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Amin et al] Quantum boltzmann machine. Physical Review X. [Quantum Boltzmann machines]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@Article{amin2018quantum,
Title = {Quantum boltzmann machine},
Author = {Amin, Mohammad H and Andriyash, Evgeny and Rolfe, Jason and Kulchytskyy, Bohdan and Melko, Roger},
Journal = {Physical Review X},
Year = {2018},
Number = {2},
Pages = {021050},
Volume = {8},
Publisher = {APS},
URL = {https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050}
}
[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning]
[Quantum Optimization]
[Quantum Neural Networks]
@Article{ciliberto2018quantum,
Title = {Quantum machine learning: a classical perspective},
Author = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
Journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
Year = {2018},
Number = {2209},
Pages = {20170551},
Volume = {474},
Publisher = {The Royal Society Publishing},
URL = {https://doi.org/10.1098/rspa.2017.0551}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{dallaire2018quantum,
title={Quantum generative adversarial networks},
author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
journal={Physical Review A},
volume={98},
number={1},
pages={012324},
year={2018},
publisher={APS}
}
[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{du2018implementable,
Title = {Implementable quantum classifier for nonlinear data},
Author = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
Journal = {arXiv preprint arXiv:1809.06056},
Year = {2018},
URL = {https://arxiv.org/abs/1809.06056}
}
[Dunjko & Briegel] Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics. [Quantum Machine Learning]
[Probably Approximately Correct Learning]
[Quantum Information and Computing]
(Gate Model)
(Adiabatic Model)
@Article{dunjko2018machine,
Title = {Machine learning \& artificial intelligence in the quantum domain: a review of recent progress},
Author = {Dunjko, Vedran and Briegel, Hans J},
Journal = {Reports on Progress in Physics},
Year = {2018},
Number = {7},
Pages = {074001},
Volume = {81},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/1361-6633/aab406/meta}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{farhi2018classification,
Title = {Classification with quantum neural networks on near term processors},
Author = {Farhi, Edward and Neven, Hartmut},
Journal = {arXiv preprint arXiv:1802.06002},
Year = {2018},
URL = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{grant2018hierarchical,
Title = {Hierarchical quantum classifiers},
Author = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
Journal = {npj Quantum Information},
Year = {2018},
Number = {1},
Pages = {1--8},
Volume = {4},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-018-0116-9}
}
[Hu Wei] Towards a real quantum neuron. Natural Science. [Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@article{hu2018towards,
title={Towards a real quantum neuron},
author={Hu, Wei},
journal={Natural Science},
volume={10},
number={3},
pages={99--109},
year={2018},
publisher={Scientific Research Publishing}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mcclean2018barren,
title={Barren plateaus in quantum neural network training landscapes},
author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
journal={Nature communications},
volume={9},
number={1},
pages={1--6},
year={2018},
publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mitarai2018quantum,
title={Quantum circuit learning},
author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
journal={Physical Review A},
volume={98},
number={3},
pages={032309},
year={2018},
publisher={APS}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@Article{moll2018quantum,
Title = {Quantum optimization using variational algorithms on near-term quantum devices},
Author = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
Journal = {Quantum Science and Technology},
Year = {2018},
Number = {3},
Pages = {030503},
Volume = {3},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Neukart et al] Quantum-enhanced reinforcement learning for finite-episode games with discrete state
spaces. Frontiers in physics. [Quantum Reinforcement Learning]
[Quantum Machine Learning]
(Adiabatic Model)
@article{neukart2018quantum,
title={Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces},
author={Neukart, Florian and Von Dollen, David and Seidel, Christian and Compostella, Gabriele},
journal={Frontiers in physics},
volume={5},
pages={71},
year={2018},
publisher={Frontiers}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiebe2016quantum,
title={Quantum perceptron models},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={arXiv preprint arXiv:1602.04799},
year={2016}
}
[Arunachalam & de Wolf] Guest column: A survey of quantum learning theory. ACM SIGACT News. [Quantum Machine Learning]
[Probably Approximately Correct Learning]
[Complexity Theory]
(Gate Model)
@Article{arunachalam2017guest,
Title = {Guest column: A survey of quantum learning theory},
Author = {Arunachalam, Srinivasan and de Wolf, Ronald},
Journal = {ACM SIGACT News},
Year = {2017},
Number = {2},
Pages = {41--67},
Volume = {48},
Publisher = {ACM New York, NY, USA},
URL = {https://dl.acm.org/doi/abs/10.1145/3106700.3106710}
}
[Biamonte et al] Quantum machine learning. Nature. [Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@Article{biamonte2017quantum,
Title = {Quantum machine learning},
Author = {Biamonte, Jacob and Wittek, Peter and Pancotti, Nicola and Rebentrost, Patrick and Wiebe, Nathan and Lloyd, Seth},
Journal = {Nature},
Year = {2017},
Number = {7671},
Pages = {195--202},
Volume = {549},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/Nature23474}
}
[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron]
[Quantum Information and Computing]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cao2017quantum,
Title = {Quantum neuron: an elementary building block for machine learning on quantum computers},
Author = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
Journal = {arXiv preprint arXiv:1711.11240},
Year = {2017},
URL = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Romero et al] Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology. [Quantum Neural Networks]
[Quantum Autoencoders]
[Quantum Machine Learning]
(Gate Model)
@article{romero2017quantum,
title={Quantum autoencoders for efficient compression of quantum data},
author={Romero, Jonathan and Olson, Jonathan P and Aspuru-Guzik, Alan},
journal={Quantum Science and Technology},
volume={2},
number={4},
pages={045001},
year={2017},
publisher={IOP Publishing}
}
[Ruan et al] Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics. [Quantum Machine Learning]
[Quantum Classification]
@article{ruan2017quantum,
title={Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance},
author={Ruan, Yue and Xue, Xiling and Liu, Heng and Tan, Jianing and Li, Xi},
journal={International Journal of Theoretical Physics},
volume={56},
number={11},
pages={3496--3507},
year={2017},
publisher={Springer}
}
[Wan et al] Quantum generalisation of feedforward neural networks. npj Quantum information. [Quantum Neural Networks]
[Quantum Autoencoders]
[Quantum Machine Learning]
(Gate Model)
@Article{wan2017quantum,
Title = {Quantum generalisation of feedforward neural networks},
Author = {Wan, Kwok Ho and Dahlsten, Oscar and Kristj{\'a}nsson, Hl{\'e}r and Gardner, Robert and Kim, MS},
Journal = {npj Quantum information},
Year = {2017},
Number = {1},
Pages = {1--8},
Volume = {3},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-017-0032-4}
}
[Oshurko] Quantum machine learning. Quantum Computing. [Quantum Machine Learning]
@article{oshurko2016quantum,
title={Quantum machine learning},
author={Oshurko, Ievgeniia},
journal={Quantum Information and Computation Course},
year={2016}
}
[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Clustering]
[Quantum Nearest Neighbors Algorithm]
[Quantum Neural Networks]
(Gate Model)
(Adiabatic Model)
@Article{adcock2015advances,
Title = {Advances in quantum machine learning},
Author = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
Journal = {arXiv preprint arXiv:1512.02900},
Year = {2015},
URL = {https://arxiv.org/abs/1512.02900}
}
[Schuld et al] An introduction to quantum machine learning. Contemporary Physics. [Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@article{schuld2015introduction,
title={An introduction to quantum machine learning},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
journal={Contemporary Physics},
volume={56},
number={2},
pages={172--185},
year={2015},
publisher={Taylor \& Francis}
}
[Schuld et al] Simulating a perceptron on a quantum computer. Physics Letters A. [Quantum Perceptron]
[Quantum Machine Learning]
@article{schuld2015simulating,
title={Simulating a perceptron on a quantum computer},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
journal={Physics Letters A},
volume={379},
number={7},
pages={660--663},
year={2015},
publisher={Elsevier}
}
[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
[]
(Gate Model)
@Article{farhi2014quantum,
Title = {A quantum approximate optimization algorithm},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
Journal = {arXiv preprint arXiv:1411.4028},
Year = {2014},
URL = {https://arxiv.org/abs/1411.4028}
}
[Schuld et al] Quantum computing for pattern classification. Pacific Rim International Conference on Artificial Intelligence. [Quantum Machine Learning]
@inproceedings{schuld2014quantum,
title={Quantum computing for pattern classification},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
booktitle={Pacific Rim International Conference on Artificial Intelligence},
pages={208--220},
year={2014},
organization={Springer}
}
[Schuld et al] The quest for a Quantum Neural Networt. Quantum Information Processing. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{schuld2014quest,
title={The quest for a quantum neural network},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
journal={Quantum Information Processing},
volume={13},
number={11},
pages={2567--2586},
year={2014},
publisher={Springer}
}
[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{wiebe2015quantum,
title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={Quantum Information \& Computation},
volume={15},
number={3-4},
pages={316--356},
year={2015},
publisher={Rinton Press, Incorporated Paramus, NJ}
}
[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@Article{aimeur2013quantum,
Title = {Quantum speed-up for unsupervised learning},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Journal = {Machine Learning},
Year = {2013},
Number = {2},
Pages = {261--287},
Volume = {90},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}
[Lloyd et al] Quantum algorithms for supervised and unsupervised machine learning. arXiv. [Quantum Machine Learning]
[Quantum Clustering]
(Adiabatic Model)
@article{lloyd2013quantum,
title={Quantum algorithms for supervised and unsupervised machine learning},
author={Lloyd, Seth and Mohseni, Masoud and Rebentrost, Patrick},
journal={arXiv preprint arXiv:1307.0411},
year={2013}
}
[Da Silva et al] Classical and superposed learning for quantum weightless neural networks. Neurocomputing. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{da2012classical,
Title = {Classical and superposed learning for quantum weightless neural networks},
Author = {Da Silva, Adenilton J and De Oliveira, Wilson R and Ludermir, Teresa B},
Journal = {Neurocomputing},
Year = {2012},
Number = {1},
Pages = {52--60},
Volume = {75},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/abs/pii/S0925231211004127?via%3Dihub}
}
[Panella & Martinelli] Neural networks with quantum. International Journal of Circuit Theory and Applications. [Quantum Neurofuzzy Network]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{panella2011neural,
title={Neural networks with quantum architecture and quantum learning},
author={Panella, Massimo and Martinelli, Giuseppe},
journal={International Journal of Circuit Theory and Applications},
volume={39},
number={1},
pages={61--77},
year={2011},
publisher={Wiley Online Library}
}
[Da Silva et al] Superposition Based Learning Algorithm. Brazilian Symposium on Neural Networks. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{silva2010superposition,
title={Superposition based learning algorithm},
author={Silva, Adenilton J and Ludermir, Teresa B and de Oliveira Jr, Wilson R},
booktitle={2010 Eleventh Brazilian Symposium on Neural Networks},
pages={1--6},
year={2010},
organization={IEEE}
}
[de Oliveira] Quantum RAM based neural networks. European Symposium on Artificial Neural Network. [QRAM]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@InProceedings{de2009quantum,
Title = {Quantum RAM Based Neural Netoworks.},
Author = {de Oliveira, Wilson Rosa},
Booktitle = {ESANN},
Year = {2009},
Organization = {Citeseer},
Pages = {331--336},
Volume = {9},
URL = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.4363&rep=rep1&type=pdf}
}
[Harrow et al] Quantum Algorithm for Linear Systems of Equations. Physical Review Letters. [Quantum Machine Learning]
[Quantum Speedup-Advantage-Supremacy]
@Article{harrow2009quantum,
Title = {Quantum algorithm for linear systems of equations},
Author = {Harrow, Aram W and Hassidim, Avinatan and Lloyd, Seth},
Journal = {Physical review letters},
Year = {2009},
Number = {15},
Pages = {150502},
Volume = {103},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502}
}
[Dong et al] Quantum Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). [Quantum Reinforcement Learning]
[Quantum Machine Learning]
(Gate Model)
@article{dong2008quantum,
title={Quantum reinforcement learning},
author={Dong, Daoyi and Chen, Chunlin and Li, Hanxiong and Tarn, Tzyh-Jong},
journal={IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)},
volume={38},
number={5},
pages={1207--1220},
year={2008},
publisher={IEEE}
}
[Panella & Martinelli] Neurofuzzy networks with nonlinear quantum learning. IEEE Transactions on Fuzzy Systems. [Quantum Neurofuzzy Network]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{panella2008neurofuzzy,
title={Neurofuzzy networks with nonlinear quantum learning},
author={Panella, Massimo and Martinelli, Giuseppe},
journal={IEEE Transactions on Fuzzy Systems},
volume={17},
number={3},
pages={698--710},
year={2008},
publisher={IEEE}
}
[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@inproceedings{aimeur2007quantum,
title={Quantum clustering algorithms},
author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
booktitle={Proceedings of the 24th international conference on machine learning},
pages={1--8},
year={2007}
}
[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@InProceedings{aimeur2006machine,
Title = {Machine learning in a quantum world},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Booktitle = {Conference of the Canadian Society for Computational Studies of Intelligence},
Year = {2006},
Organization = {Springer},
Pages = {431--442},
URL = {https://link.springer.com/chapter/10.1007/11766247_37}
}
[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
@Article{altaisky2001quantum,
Title = {Quantum neural network},
Author = {Altaisky, MV},
Journal = {arXiv preprint quant-ph/0107012},
Year = {2001},
URL = {https://arxiv.org/abs/quant-ph/0107012}
}
[Narayanan & Menneer] Quantum artificial neural network architectures and components. Information Sciences. [Quantum Neural Networks]
[Quantum Machine Learning]
@article{narayanan2000quantum,
title={Quantum artificial neural network architectures and components},
author={Narayanan, Ajit and Menneer, Tammy},
journal={Information Sciences},
volume={128},
number={3-4},
pages={231--255},
year={2000},
publisher={Elsevier}
}
[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning]
[Quantum Information and Computing]
[Quantum Classification]
@article{ventura2000quantum,
title={Quantum associative memory},
author={Ventura, Dan and Martinez, Tony},
journal={Information Sciences},
volume={124},
number={1-4},
pages={273--296},
year={2000},
publisher={Elsevier}
}
[Behrman et al ] A quantum dot neural network. Workshop on Physics of Computation. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@InProceedings{behrman1996quantum,
Title = {A quantum dot neural network},
Author = {Behrman, Elizabeth C and Niemel, John and Steck, James E and Skinner, Steve R},
Booktitle = {Proceedings of the 4th Workshop on Physics of Computation},
Year = {1996},
Pages = {22--24},
URL = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1507&rep=rep1&type=pdf}
}
[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Nearest Neighbors Algorithm]
(Gate Model)
@Article{ablayev2020quantum2,
Title = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
Author = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
Journal = {Big Data Mining and Analytics},
Year = {2020},
Number = {1},
Pages = {56--67},
Volume = {3},
URL = {https://ieeexplore.ieee.org/abstract/document/8935095}
}
[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Clustering]
[Quantum Nearest Neighbors Algorithm]
[Quantum Neural Networks]
(Gate Model)
(Adiabatic Model)
@Article{adcock2015advances,
Title = {Advances in quantum machine learning},
Author = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
Journal = {arXiv preprint arXiv:1512.02900},
Year = {2015},
URL = {https://arxiv.org/abs/1512.02900}
}
[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{wiebe2015quantum,
title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={Quantum Information \& Computation},
volume={15},
number={3-4},
pages={316--356},
year={2015},
publisher={Rinton Press, Incorporated Paramus, NJ}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{cerezo2021cost,
title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
journal={Nature communications},
volume={12},
number={1},
pages={1--12},
year={2021},
publisher={Nature Publishing Group}
}
[Chen et al] Universal discriminative quantum neural networks. Quantum Machine Intelligence. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{chen2021universal,
Title = {Universal discriminative quantum neural networks},
Author = {Chen, Hongxiang and Wossnig, Leonard and Severini, Simone and Neven, Hartmut and Mohseni, Masoud},
Journal = {Quantum Machine Intelligence},
Year = {2021},
Number = {1},
Pages = {1--11},
Volume = {3},
Publisher = {Springer},
URL = {https://arxiv.org/abs/1805.08654}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Barren Plateaus]
[Quantum Machine Learning]
@article{holmes2021connecting,
title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
journal={arXiv preprint arXiv:2101.02138},
year={2021}
}
[Jaderberg et al] Quantum Self-Supervised Learning. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{jaderberg2021quantum,
title={Quantum Self-Supervised Learning},
author={Jaderberg, Ben and Anderson, Lewis W and Xie, Weidi and Albanie, Samuel and Kiffner, Martin and Jaksch, Dieter},
journal={arXiv preprint arXiv:2103.14653},
year={2021}
}
[Lubsch et al] Variational quantum algorithms for nonlinear problems. Physical Review A. [Nonlinear Problems]
[Partial Differential Equations]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{lubasch2020variational,
title={Variational quantum algorithms for nonlinear problems},
author={Lubasch, Michael and Joo, Jaewoo and Moinier, Pierre and Kiffner, Martin and Jaksch, Dieter},
journal={Physical Review A},
volume={101},
number={1},
pages={010301},
year={2020},
publisher={APS}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{mangini2021quantum,
title={Quantum computing models for artificial neural networks},
author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
journal={EPL (Europhysics Letters)},
volume={134},
number={1},
pages={10002},
year={2021},
publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{patti2020entanglement,
title={Entanglement devised barren plateau mitigation},
author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
journal={arXiv preprint arXiv:2012.12658},
year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{perez2021one,
title={One qubit as a Universal Approximant},
author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
journal={arXiv preprint arXiv:2102.04032},
year={2021}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{skolik2021layerwise,
title={Layerwise learning for quantum neural networks},
author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
journal={Quantum Machine Intelligence},
volume={3},
number={1},
pages={1--11},
year={2021},
publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{volkoff2021large,
title={Large gradients via correlation in random parameterized quantum circuits},
author={Volkoff, Tyler and Coles, Patrick J},
journal={Quantum Science and Technology},
volume={6},
number={2},
pages={025008},
year={2021},
publisher={IOP Publishing}
}
[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@Article{beer2020training,
Title = {Training deep quantum neural networks},
Author = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
Journal = {Nature communications},
Year = {2020},
Number = {1},
Pages = {1--6},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Carolan et al ] Variational quantum unsampling on a quantum photonic processor. Nature Physics. [Variational Quantum Algorithms]
[Quantum Neural Networks]
@article{carolan2020variational,
title={Variational quantum unsampling on a quantum photonic processor},
author={Carolan, Jacques and Mohseni, Masoud and Olson, Jonathan P and Prabhu, Mihika and Chen, Changchen and Bunandar, Darius and Niu, Murphy Yuezhen and Harris, Nicholas C and Wong, Franco NC and Hochberg, Michael and others},
journal={Nature Physics},
volume={16},
number={3},
pages={322--327},
year={2020},
publisher={Nature Publishing Group}
}
[Chakraborty et al] An Analytical Review of Quantum Neural Network Models and Relevant Research. International Conference on Communication and Electronics Systems. [Quantum Neural Networks]
[Quantum Machine Learning]
@inproceedings{chakraborty2020analytical,
title={An Analytical Review of Quantum Neural Network Models and Relevant Research},
author={Chakraborty, Simantini and Das, Tamal and Sutradhar, Saurav and Das, Mrinmoy and Deb, Suman},
booktitle={2020 5th International Conference on Communication and Electronics Systems (ICCES)},
pages={1395--1400},
year={2020},
organization={IEEE}
}
[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{gil2020input,
title={Input redundancy for parameterized quantum circuits},
author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
journal={Frontiers in Physics},
volume={8},
pages={297},
year={2020},
publisher={Frontiers}
}
[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{henderson2020quanvolutional,
title={Quanvolutional neural networks: powering image recognition with quantum circuits},
author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
journal={Quantum Machine Intelligence},
volume={2},
number={1},
pages={1--9},
year={2020},
publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{kerenidis2019quantum,
title={Quantum Algorithms for Deep Convolutional Neural Networks},
author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
booktitle={International Conference on Learning Representations},
year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{li2020quantum,
title={A quantum deep convolutional neural network for image recognition},
author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
journal={Quantum Science and Technology},
volume={5},
number={4},
pages={044003},
year={2020},
publisher={IOP Publishing}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{macaluso2020variational,
title={A Variational Algorithm for Quantum Neural Networks},
author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
booktitle={International Conference on Computational Science},
pages={591--604},
year={2020},
organization={Springer}
}
[Mari et al] Transfer learning in hybrid classical-quantum neural networks. Quantum. [Quantum Neural Networks]
[Quantum Transfer Learning]
[Quantum Machine Learning]
(Gate Model)
@article{mari2020transfer,
title={Transfer learning in hybrid classical-quantum neural networks},
author={Mari, Andrea and Bromley, Thomas R and Izaac, Josh and Schuld, Maria and Killoran, Nathan},
journal={Quantum},
volume={4},
pages={340},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{marrero2020entanglement,
title={Entanglement induced barren plateaus},
author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
journal={arXiv preprint arXiv:2010.15968},
year={2020}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{perez2020data,
title={Data re-uploading for a universal quantum classifier},
author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
journal={Quantum},
volume={4},
pages={226},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus]
[Quantum Convolutional Neural Networks]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{pesah2020absence,
title={Absence of barren plateaus in quantum convolutional neural networks},
author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
journal={arXiv preprint arXiv:2011.02966},
year={2020}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@article{schuld2020circuit,
title={Circuit-centric quantum classifiers},
author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
journal={Physical Review A},
volume={101},
number={3},
pages={032308},
year={2020},
publisher={APS}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Barren Plateaus]
@article{sharma2020trainability,
title={Trainability of dissipative perceptron-based quantum neural networks},
author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2005.12458},
year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@inproceedings{tacchino2020variational,
title={Variational learning for quantum artificial neural networks},
author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
pages={130--136},
year={2020},
organization={IEEE}
}
[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks]
[Quantum Convolutional Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cong2019quantum,
Title = {Quantum convolutional neural networks},
Author = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
Journal = {Nature Physics},
Year = {2019},
Number = {12},
Pages = {1273--1278},
Volume = {15},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{grant2019initialization,
title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
journal={Quantum},
volume={3},
pages={214},
year={2019},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Kamruzzaman et al] Quantum Deep Learning Neural Networks. FICC 2019. [Quantum Neural Networks]
@inproceedings{kamruzzaman2019quantum,
title={Quantum deep learning neural networks},
author={Kamruzzaman, Abu and Alhwaiti, Yousef and Leider, Avery and Tappert, Charles C},
booktitle={Future of Information and Communication Conference},
pages={299--311},
year={2019},
organization={Springer}
}
[Killoran et al] Continuous-variable quantum neural networks. Physical Review Research. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{killoran2019continuous,
title={Continuous-variable quantum neural networks},
author={Killoran, Nathan and Bromley, Thomas R and Arrazola, Juan Miguel and Schuld, Maria and Quesada, Nicol{\'a}s and Lloyd, Seth},
journal={Physical Review Research},
volume={1},
number={3},
pages={033063},
year={2019},
publisher={APS}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Variational Quantum Algorithms]
@article{verdon2019learning,
title={Learning to learn with quantum neural networks via classical neural networks},
author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
journal={arXiv preprint arXiv:1907.05415},
year={2019}
}
[Verdon et al] Quantum graph neural networks. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{verdon2019quantum,
title={Quantum graph neural networks},
author={Verdon, Guillaume and McCourt, Trevor and Luzhnica, Enxhell and Singh, Vikash and Leichenauer, Stefan and Hidary, Jack},
journal={arXiv preprint arXiv:1909.12264},
year={2019}
[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning]
[Quantum Optimization]
[Quantum Neural Networks]
@Article{ciliberto2018quantum,
Title = {Quantum machine learning: a classical perspective},
Author = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
Journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
Year = {2018},
Number = {2209},
Pages = {20170551},
Volume = {474},
Publisher = {The Royal Society Publishing},
URL = {https://doi.org/10.1098/rspa.2017.0551}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{dallaire2018quantum,
title={Quantum generative adversarial networks},
author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
journal={Physical Review A},
volume={98},
number={1},
pages={012324},
year={2018},
publisher={APS}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{farhi2018classification,
Title = {Classification with quantum neural networks on near term processors},
Author = {Farhi, Edward and Neven, Hartmut},
Journal = {arXiv preprint arXiv:1802.06002},
Year = {2018},
URL = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks]
[Quantum Machine Learning]
[Quantum Classification]
(Gate Model)
@Article{grant2018hierarchical,
Title = {Hierarchical quantum classifiers},
Author = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
Journal = {npj Quantum Information},
Year = {2018},
Number = {1},
Pages = {1--8},
Volume = {4},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-018-0116-9}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mcclean2018barren,
title={Barren plateaus in quantum neural network training landscapes},
author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
journal={Nature communications},
volume={9},
number={1},
pages={1--6},
year={2018},
publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{mitarai2018quantum,
title={Quantum circuit learning},
author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
journal={Physical Review A},
volume={98},
number={3},
pages={032309},
year={2018},
publisher={APS}
}
[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron]
[Quantum Information and Computing]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cao2017quantum,
Title = {Quantum neuron: an elementary building block for machine learning on quantum computers},
Author = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
Journal = {arXiv preprint arXiv:1711.11240},
Year = {2017},
URL = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Romero et al] Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology. [Quantum Neural Networks]
[Quantum Autoencoders]
[Quantum Machine Learning]
(Gate Model)
@article{romero2017quantum,
title={Quantum autoencoders for efficient compression of quantum data},
author={Romero, Jonathan and Olson, Jonathan P and Aspuru-Guzik, Alan},
journal={Quantum Science and Technology},
volume={2},
number={4},
pages={045001},
year={2017},
publisher={IOP Publishing}
}
[Wan et al] Quantum generalisation of feedforward neural networks. npj Quantum information. [Quantum Neural Networks]
[Quantum Autoencoders]
[Quantum Machine Learning]
(Gate Model)
@Article{wan2017quantum,
Title = {Quantum generalisation of feedforward neural networks},
Author = {Wan, Kwok Ho and Dahlsten, Oscar and Kristj{\'a}nsson, Hl{\'e}r and Gardner, Robert and Kim, MS},
Journal = {npj Quantum information},
Year = {2017},
Number = {1},
Pages = {1--8},
Volume = {3},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-017-0032-4}
}
[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Clustering]
[Quantum Nearest Neighbors Algorithm]
[Quantum Neural Networks]
(Gate Model)
(Adiabatic Model)
@Article{adcock2015advances,
Title = {Advances in quantum machine learning},
Author = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
Journal = {arXiv preprint arXiv:1512.02900},
Year = {2015},
URL = {https://arxiv.org/abs/1512.02900}
}
[Schuld et al] The quest for a Quantum Neural Networt. Quantum Information Processing. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@article{schuld2014quest,
title={The quest for a quantum neural network},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
journal={Quantum Information Processing},
volume={13},
number={11},
pages={2567--2586},
year={2014},
publisher={Springer}
}
[Da Silva et al] Classical and superposed learning for quantum weightless neural networks. Neurocomputing. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{da2012classical,
Title = {Classical and superposed learning for quantum weightless neural networks},
Author = {Da Silva, Adenilton J and De Oliveira, Wilson R and Ludermir, Teresa B},
Journal = {Neurocomputing},
Year = {2012},
Number = {1},
Pages = {52--60},
Volume = {75},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/abs/pii/S0925231211004127?via%3Dihub}
}
[Panella & Martinelli] Neural networks with quantum. International Journal of Circuit Theory and Applications. [Quantum Neurofuzzy Network]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{panella2011neural,
title={Neural networks with quantum architecture and quantum learning},
author={Panella, Massimo and Martinelli, Giuseppe},
journal={International Journal of Circuit Theory and Applications},
volume={39},
number={1},
pages={61--77},
year={2011},
publisher={Wiley Online Library}
}
[Da Silva et al] Superposition Based Learning Algorithm. Brazilian Symposium on Neural Networks. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{silva2010superposition,
title={Superposition based learning algorithm},
author={Silva, Adenilton J and Ludermir, Teresa B and de Oliveira Jr, Wilson R},
booktitle={2010 Eleventh Brazilian Symposium on Neural Networks},
pages={1--6},
year={2010},
organization={IEEE}
}
[de Oliveira] Quantum RAM based neural networks. European Symposium on Artificial Neural Network. [QRAM]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@InProceedings{de2009quantum,
Title = {Quantum RAM Based Neural Netoworks.},
Author = {de Oliveira, Wilson Rosa},
Booktitle = {ESANN},
Year = {2009},
Organization = {Citeseer},
Pages = {331--336},
Volume = {9},
URL = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.4363&rep=rep1&type=pdf}
}
[Panella & Martinelli] Neurofuzzy networks with nonlinear quantum learning. IEEE Transactions on Fuzzy Systems. [Quantum Neurofuzzy Network]
[Quantum Neural Networks]
[Quantum Machine Learning]
@article{panella2008neurofuzzy,
title={Neurofuzzy networks with nonlinear quantum learning},
author={Panella, Massimo and Martinelli, Giuseppe},
journal={IEEE Transactions on Fuzzy Systems},
volume={17},
number={3},
pages={698--710},
year={2008},
publisher={IEEE}
}
[Ricks & Ventura] Training a Quantum Neural Network. NIPS. [Quantum Neural Networks]
@article{ricks2003training,
title={Training a quantum neural network},
author={Ricks, Bob and Ventura, Dan},
journal={Advances in neural information processing systems},
volume={16},
pages={1019--1026},
year={2003}
}
[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
@Article{altaisky2001quantum,
Title = {Quantum neural network},
Author = {Altaisky, MV},
Journal = {arXiv preprint quant-ph/0107012},
Year = {2001},
URL = {https://arxiv.org/abs/quant-ph/0107012}
}
[Narayanan & Menneer] Quantum artificial neural network architectures and components. Information Sciences. [Quantum Neural Networks]
[Quantum Machine Learning]
@article{narayanan2000quantum,
title={Quantum artificial neural network architectures and components},
author={Narayanan, Ajit and Menneer, Tammy},
journal={Information Sciences},
volume={128},
number={3-4},
pages={231--255},
year={2000},
publisher={Elsevier}
}
[Behrman et al ] A quantum dot neural network. Workshop on Physics of Computation. [Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@InProceedings{behrman1996quantum,
Title = {A quantum dot neural network},
Author = {Behrman, Elizabeth C and Niemel, John and Steck, James E and Skinner, Steve R},
Booktitle = {Proceedings of the 4th Workshop on Physics of Computation},
Year = {1996},
Pages = {22--24},
URL = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1507&rep=rep1&type=pdf}
}
[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms]
[Quantum Optimization]
[Parameterized Quantum Circuits]
@article{amaro2021filtering,
title={Filtering variational quantum algorithms for combinatorial optimization},
author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
journal={Quantum Science and Technology},
year={2021},
publisher={IOP Publishing}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@article{bharti2021noisy,
title={Noisy intermediate-scale quantum (NISQ) algorithms},
author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
journal={arXiv preprint arXiv:2101.08448},
year={2021}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization]
[Parameterized Quantum Circuits]
[Quantum Machine Learning]
@article{egger2021warm,
title={Warm-starting quantum optimization},
author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
journal={Quantum},
volume={5},
pages={479},
year={2021},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
@article{barkoutsos2020improving,
title={Improving variational quantum optimization using cvar},
author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
journal={Quantum},
volume={4},
pages={256},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning]
[Quantum Optimization]
[Quantum Neural Networks]
@Article{ciliberto2018quantum,
Title = {Quantum machine learning: a classical perspective},
Author = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
Journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
Year = {2018},
Number = {2209},
Pages = {20170551},
Volume = {474},
Publisher = {The Royal Society Publishing},
URL = {https://doi.org/10.1098/rspa.2017.0551}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@Article{moll2018quantum,
Title = {Quantum optimization using variational algorithms on near-term quantum devices},
Author = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
Journal = {Quantum Science and Technology},
Year = {2018},
Number = {3},
Pages = {030503},
Volume = {3},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
[]
(Gate Model)
@Article{farhi2014quantum,
Title = {A quantum approximate optimization algorithm},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
Journal = {arXiv preprint arXiv:1411.4028},
Year = {2014},
URL = {https://arxiv.org/abs/1411.4028}
}
[Altshuler et al] Anderson localization makes adiabatic quantum optimization fail. PNAS. [Adiabatic Quantum Computing]
[Quantum Optimization]
(Adiabatic Model)
@Article{altshuler2010anderson,
Title = {Anderson localization makes adiabatic quantum optimization fail},
Author = {Altshuler, Boris and Krovi, Hari and Roland, J{\'e}r{\'e}mie},
Journal = {Proceedings of the National Academy of Sciences},
Year = {2010},
Number = {28},
Pages = {12446--12450},
Volume = {107},
Publisher = {National Acad Sciences},
URL = {https://www.pnas.org/content/107/28/12446}
}
[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Optimization]
(Adiabatic Model)
@Article{apolloni1989quantum,
Title = {Quantum stochastic optimization},
Author = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
Journal = {Stochastic Processes and their Applications},
Year = {1989},
Number = {2},
Pages = {233--244},
Volume = {33},
Publisher = {Elsevier},
URL = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}
[Ban et al] Speeding up quantum perceptron via shortcuts to adiabaticity. Scientific reports. [Quantum Perceptron]
[Quantum Machine Learning]
(Adiabatic Model)
@Article{ban2021speeding,
Title = {Speeding up quantum perceptron via shortcuts to adiabaticity},
Author = {Ban, Yue and Chen, Xi and Torrontegui, E and Solano, Enrique and Casanova, Jorge},
Journal = {Scientific reports},
Year = {2021},
Number = {1},
Pages = {1--8},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/s41598-021-85208-3}
}
[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@Article{beer2020training,
Title = {Training deep quantum neural networks},
Author = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
Journal = {Nature communications},
Year = {2020},
Number = {1},
Pages = {1--6},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@inproceedings{macaluso2020variational,
title={A Variational Algorithm for Quantum Neural Networks},
author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
booktitle={International Conference on Computational Science},
pages={591--604},
year={2020},
organization={Springer}
}
[Liu et al] A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for Non-Ideal Training Sets. IEEE Access. [Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@article{liu2019unitary,
title={A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets},
author={Liu, Wenjie and Gao, Peipei and Wang, Yuxiang and Yu, Wenbin and Zhang, Maojun},
journal={IEEE Access},
volume={7},
pages={36854--36865},
year={2019},
publisher={IEEE}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{tacchino2019artificial,
title={An artificial neuron implemented on an actual quantum processor},
author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--8},
year={2019},
publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
@article{torrontegui2019unitary,
title={Unitary quantum perceptron as efficient universal approximator},
author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
journal={EPL (Europhysics Letters)},
volume={125},
number={3},
pages={30004},
year={2019},
publisher={IOP Publishing}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Variational Quantum Algorithms]
@article{verdon2019learning,
title={Learning to learn with quantum neural networks via classical neural networks},
author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
journal={arXiv preprint arXiv:1907.05415},
year={2019}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiersema2019implementing,
title={Implementing perceptron models with qubits},
author={Wiersema, RC and Kappen, HJ},
journal={Physical Review A},
volume={100},
number={2},
pages={020301},
year={2019},
publisher={APS}
}
[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{du2018implementable,
Title = {Implementable quantum classifier for nonlinear data},
Author = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
Journal = {arXiv preprint arXiv:1809.06056},
Year = {2018},
URL = {https://arxiv.org/abs/1809.06056}
}
[Hu Wei] Towards a real quantum neuron. Natural Science. [Quantum Perceptron]
[Quantum Machine Learning]
(Gate Model)
@article{hu2018towards,
title={Towards a real quantum neuron},
author={Hu, Wei},
journal={Natural Science},
volume={10},
number={3},
pages={99--109},
year={2018},
publisher={Scientific Research Publishing}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@article{wiebe2016quantum,
title={Quantum perceptron models},
author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
journal={arXiv preprint arXiv:1602.04799},
year={2016}
}
[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron]
[Quantum Information and Computing]
[Quantum Neural Networks]
[Quantum Machine Learning]
(Gate Model)
@Article{cao2017quantum,
Title = {Quantum neuron: an elementary building block for machine learning on quantum computers},
Author = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
Journal = {arXiv preprint arXiv:1711.11240},
Year = {2017},
URL = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Schuld et al] Simulating a perceptron on a quantum computer. Physics Letters A. [Quantum Perceptron]
[Quantum Machine Learning]
@article{schuld2015simulating,
title={Simulating a perceptron on a quantum computer},
author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
journal={Physics Letters A},
volume={379},
number={7},
pages={660--663},
year={2015},
publisher={Elsevier}
}
[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks]
[Quantum Perceptron]
[Quantum Machine Learning]
@Article{altaisky2001quantum,
Title = {Quantum neural network},
Author = {Altaisky, MV},
Journal = {arXiv preprint quant-ph/0107012},
Year = {2001},
URL = {https://arxiv.org/abs/quant-ph/0107012}
}
[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning]
[Quantum Classification]
[Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
title={A rigorous and robust quantum speed-up in supervised machine learning},
author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
journal={Nature Physics},
pages={1--5},
year={2021},
publisher={Nature Publishing Group}
}
[Duan & Guo] A survey on HHL algorithm: From theory to application in quantum machine learning. Physics Letters A. [Quantum Machine Learning]
[Quantum Speedup-Advantage-Supremacy]
@Article{duan1998probabilistic,
Title = {Probabilistic cloning and identification of linearly independent quantum states},
Author = {Duan, Lu-Ming and Guo, Guang-Can},
Journal = {Physical review letters},
Year = {1998},
Number = {22},
Pages = {4999},
Volume = {80},
Publisher = {APS},
URL = {https://www.sciencedirect.com/science/article/pii/S037596012030462X}
}
[Arute et al] Quantum supremacy using a programmable superconducting processor. Nature. [Quantum Speedup-Advantage-Supremacy]
[Superconducting Qubits]
(Gate Model)
@Article{arute2019quantum,
Title = {Quantum supremacy using a programmable superconducting processor},
Author = {Arute, Frank and Arya, Kunal and Babbush, Ryan and Bacon, Dave and Bardin, Joseph C and Barends, Rami and Biswas, Rupak and Boixo, Sergio and Brandao, Fernando GSL and Buell, David A and others},
Journal = {Nature},
Year = {2019},
Number = {7779},
Pages = {505--510},
Volume = {574},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/s41586-019-1666-5}
}
[Brandão et al] Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning. arXiv. [Quantum Speedup-Advantage-Supremacy]
[Semidefinite programming]
@Article{brandao2019QuantumSDP,
Title = {Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning},
Author = {Brand{\~a}o, Fernando GSL and Kalev, Amir and Li, Tongyang and Lin, Cedric Yen-Yu and Svore, Krysta M and Wu, Xiaodi},
Journal = {arXiv preprint arXiv:1710.02581},
Year = {2019},
Primaryclass = {quant-ph},
URL = {https://arxiv.org/abs/1710.02581}
}
[Boixo et al] Characterizing quantum supremacy in near-term devices. Nature Physics. [Quantum Speedup-Advantage-Supremacy]
@Article{boixo2018characterizing,
Title = {Characterizing quantum supremacy in near-term devices},
Author = {Boixo, Sergio and Isakov, Sergei V and Smelyanskiy, Vadim N and Babbush, Ryan and Ding, Nan and Jiang, Zhang and Bremner, Michael J and Martinis, John M and Neven, Hartmut},
Journal = {Nature Physics},
Year = {2018},
Number = {6},
Pages = {595--600},
Volume = {14},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41567-018-0124-x}
}
[Bremner et al] Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum. [Quantum Speedup-Advantage-Supremacy]
(Gate Model)
(Adiabatic Model)
@Article{bremner2017achieving,
Title = {Achieving quantum supremacy with sparse and noisy commuting quantum computations},
Author = {Bremner, Michael J and Montanaro, Ashley and Shepherd, Dan J},
Journal = {Quantum},
Year = {2017},
Pages = {8},
Volume = {1},
DOI = {https://doi.org/10.22331/q-2017-04-25-8},
Publisher = {Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Mandra' et al] The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{mandra2017pitfalls,
title={The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again)},
author={Mandra, Salvatore and Katzgraber, Helmut G and Thomas, Creighton},
journal={Quantum Science and Technology},
volume={2},
number={3},
pages={038501},
year={2017},
publisher={IOP Publishing}
}
[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@Article{batle2016multipartite,
Title = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
Author = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
Journal = {Quantum Information Processing},
Year = {2016},
Number = {8},
Pages = {3081--3099},
Volume = {15},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}
[Mandra' et al] Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{mandra2016strengths,
title={Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches},
author={Mandra, Salvatore and Zhu, Zheng and Wang, Wenlong and Perdomo-Ortiz, Alejandro and Katzgraber, Helmut G},
journal={Physical Review A},
volume={94},
number={2},
pages={022337},
year={2016},
publisher={APS}
}
[Aaronson ] Quantum Machine Learning Algorithms: Read the Fine Print. Nature Physics. [Quantum Speedup-Advantage-Supremacy]
@Article{aaronson2015read,
Title = {Read the fine print},
Author = {Aaronson, Scott},
Journal = {Nature Physics},
Year = {2015},
Number = {4},
Pages = {291--293},
Volume = {11},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/nphys3272}
}
[Itay ert al] Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{hen2015probing,
title={Probing for quantum speedup in spin-glass problems with planted solutions},
author={Hen, Itay and Job, Joshua and Albash, Tameem and R{\o}nnow, Troels F and Troyer, Matthias and Lidar, Daniel A},
journal={Physical Review A},
volume={92},
number={4},
pages={042325},
year={2015},
publisher={APS}
}
[Katzgraber et al] Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly. Physical Review X. [Quantum Annealing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{katzgraber2015seeking,
title={Seeking quantum speedup through spin glasses: The good, the bad, and the ugly},
author={Katzgraber, Helmut G and Hamze, Firas and Zhu, Zheng and Ochoa, Andrew J and Munoz-Bauza, Humberto},
journal={Physical Review X},
volume={5},
number={3},
pages={031026},
year={2015},
publisher={APS}
}
[Rønnow et al] Defining and detecting quantum speedup. Science. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
(Adiabatic Model)
@article{ronnow2014defining,
title={Defining and detecting quantum speedup},
author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
journal={science},
volume={345},
number={6195},
pages={420--424},
year={2014},
publisher={American Association for the Advancement of Science}
}
[Aaronson and Arkhipov] The computational complexity of linear optics. Annual ACM symposium on Theory of computing. [Quantum Speedup-Advantage-Supremacy]
[Complexity Theory]
@InProceedings{aaronson2011computational,
Title = {The computational complexity of linear optics},
Author = {Aaronson, Scott and Arkhipov, Alex},
Booktitle = {Proceedings of the forty-third annual ACM symposium on Theory of computing},
Year = {2011},
Pages = {333--342},
Publisher = {Association for Computing Machinery},
URL = {https://dl.acm.org/doi/pdf/10.1145/1993636.1993682}
}
[Bremner et al] Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Speedup-Advantage-Supremacy]
[Quantum Information and Computing]
(Gate Model)
@Article{bremner2011classical,
Title = {Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy},
Author = {Bremner, Michael J and Jozsa, Richard and Shepherd, Dan J},
Journal = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
Year = {2011},
Number = {2126},
Pages = {459--472},
Volume = {467},
Publisher = {The Royal Society Publishing},
URL = {https://doi.org/10.1098/rspa.2010.0301}
}
[Harrow et al] Quantum Algorithm for Linear Systems of Equations. Physical Review Letters. [Quantum Machine Learning]
[Quantum Speedup-Advantage-Supremacy]
@Article{harrow2009quantum,
Title = {Quantum algorithm for linear systems of equations},
Author = {Harrow, Aram W and Hassidim, Avinatan and Lloyd, Seth},
Journal = {Physical review letters},
Year = {2009},
Number = {15},
Pages = {150502},
Volume = {103},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502}
}
[Abrams &Lloyd] Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters. [Quantum Speedup-Advantage-Supremacy]
(Gate Model)
@Article{abrams1999quantum,
Title = {Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors},
Author = {Abrams, Daniel S and Lloyd, Seth},
Journal = {Physical review letters},
Year = {1999},
Number = {24},
Pages = {5162},
Volume = {83},
Publisher = {APS},
URL = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.5162}
}
[Bernstein & Vazirani] Quantum complexity theory. SIAM Journal on computing. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@article{bernstein1997quantum,
title={Quantum complexity theory},
author={Bernstein, Ethan and Vazirani, Umesh},
journal={SIAM Journal on computing},
volume={26},
number={5},
pages={1411--1473},
year={1997},
publisher={SIAM}
}
[Simon] On the Power of Quantum Computation. SIAM Journal on Computing. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@article{simon1997power,
title={On the power of quantum computation},
author={Simon, Daniel R},
journal={SIAM journal on computing},
volume={26},
number={5},
pages={1474--1483},
year={1997},
publisher={SIAM}
}
[Deutsch & Josza] Rapid solution of problems by quantum computation. Proceedings of the Royal Society A. [Quantum Information and Computing]
[Quantum Speedup-Advantage-Supremacy]
@Article{deutsch1992rapid,
Title = {Rapid solution of problems by quantum computation},
Author = {Deutsch, David and Jozsa, Richard},
Journal = {Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences},
Year = {1992},
Number = {1907},
Pages = {553--558},
Volume = {439},
Publisher = {The Royal Society London},
URL = {https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167}
}
[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
(Adiabatic Model)
@InCollection{battaglia2005deterministic,
Title = {Deterministic and stochastic quantum annealing approaches},
Author = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
Booktitle = {Quantum Annealing and Other Optimization Methods},
Publisher = {Springer},
Year = {2005},
Pages = {171--206},
URL = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing]
[Quantum Annealing]
[Simulated Annealing]
[Quantum Monte Carlo]
(Adiabatic Model)
@Article{battaglia2005optimization,
Title = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
Author = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
Journal = {Physical Review E},
Year = {2005},
Number = {6},
Pages = {066707},
Volume = {71},
Publisher = {APS},
URL = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}
[Kirkpatrick et al] Optimization by Simulated Annealing. Science. [Simulated Annealing]
@article{kirkpatrick1983optimization,
title={Optimization by simulated annealing},
author={Kirkpatrick, Scott and Gelatt, C Daniel and Vecchi, Mario P},
journal={science},
volume={220},
number={4598},
pages={671--680},
year={1983},
publisher={American association for the advancement of science}
}
[Kjaergaard et al] Superconducting Qubits:
Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing]
[Physical Realization of Qubits]
[Superconducting Qubits]
@article{kjaergaard2020superconducting,
title={Superconducting qubits: Current state of play},
author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
journal={Annual Review of Condensed Matter Physics},
volume={11},
pages={369--395},
year={2020},
publisher={Annual Reviews}
}
[Arute et al] Quantum supremacy using a programmable superconducting processor. Nature. [Quantum Speedup-Advantage-Supremacy]
[Superconducting Qubits]
(Gate Model)
@Article{arute2019quantum,
Title = {Quantum supremacy using a programmable superconducting processor},
Author = {Arute, Frank and Arya, Kunal and Babbush, Ryan and Bacon, Dave and Bardin, Joseph C and Barends, Rami and Biswas, Rupak and Boixo, Sergio and Brandao, Fernando GSL and Buell, David A and others},
Journal = {Nature},
Year = {2019},
Number = {7779},
Pages = {505--510},
Volume = {574},
Publisher = {Nature Publishing Group},
URL = {https://www.Nature.com/articles/s41586-019-1666-5}
}
[Krantz et al] A quantum engineer's guide to superconducting qubits. Applied Physics Reviews . [Physical Realization of Qubits]
[Superconducting Qubits]
@article{krantz2019quantum,
title={A quantum engineer's guide to superconducting qubits},
author={Krantz, Philip and Kjaergaard, Morten and Yan, Fei and Orlando, Terry P and Gustavsson, Simon and Oliver, William D},
journal={Applied Physics Reviews},
volume={6},
number={2},
pages={021318},
year={2019},
publisher={AIP Publishing LLC}
}
[Gambetta et al] Building logical qubits in a superconducting quantum computing system. Physical Review Letters. [Physical Realization of Qubits]
[Superconducting Qubits]
@Article{gambetta2017building,
Title = {Building logical qubits in a superconducting quantum computing system},
Author = {Gambetta, Jay M and Chow, Jerry M and Steffen, Matthias},
Journal = {npj Quantum Information},
Year = {2017},
Number = {1},
Pages = {1--7},
Volume = {3},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41534-016-0004-0}
}
[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing]
[Quantum Information and Computing]
[QPU]
[Superconducting Qubits]
(Adiabatic Model)
@Article{bunyk2014architectural,
Title = {Architectural considerations in the design of a superconducting quantum annealing processor},
Author = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
Journal = {IEEE Transactions on Applied Superconductivity},
Year = {2014},
Number = {4},
Pages = {1--10},
Volume = {24},
Publisher = {IEEE},
URL = {https://ieeexplore.ieee.org/document/6802426}
}
[Devoret & Schoelkopf] Superconducting Circuits for Quantum Information: An Outlook. Science. [Quantum Information and Computing]
[Superconducting Qubits]
(Gate Model)
@Article{devoret2013superconducting,
Title = {Superconducting circuits for quantum information: an outlook},
Author = {Devoret, Michel H and Schoelkopf, Robert J},
Journal = {Science},
Year = {2013},
Number = {6124},
Pages = {1169--1174},
Volume = {339},
Publisher = {American Association for the Advancement of Science},
URL = {https://science.sciencemag.org/content/339/6124/1169.abstract}
}
[Harris et al] Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B. [Quantum Annealing]
[Superconducting Qubits]
(Adiabatic Model)
@article{harris2010experimental,
title={Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor},
author={Harris, Richard and Johnson, Mark W and Lanting, T and Berkley, AJ and Johansson, J and Bunyk, P and Tolkacheva, E and Ladizinsky, E and Ladizinsky, N and Oh, T and others},
journal={Physical Review B},
volume={82},
number={2},
pages={024511},
year={2010},
publisher={APS}
}
[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@Article{aimeur2013quantum,
Title = {Quantum speed-up for unsupervised learning},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Journal = {Machine Learning},
Year = {2013},
Number = {2},
Pages = {261--287},
Volume = {90},
Publisher = {Springer},
URL = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}
[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@inproceedings{aimeur2007quantum,
title={Quantum clustering algorithms},
author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
booktitle={Proceedings of the 24th international conference on machine learning},
pages={1--8},
year={2007}
}
[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning]
[Unsupervised Learning]
[Quantum Clustering]
(Gate Model)
@InProceedings{aimeur2006machine,
Title = {Machine learning in a quantum world},
Author = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
Booktitle = {Conference of the Canadian Society for Computational Studies of Intelligence},
Year = {2006},
Organization = {Springer},
Pages = {431--442},
URL = {https://link.springer.com/chapter/10.1007/11766247_37}
}
[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms]
[Quantum Optimization]
[Parameterized Quantum Circuits]
@article{amaro2021filtering,
title={Filtering variational quantum algorithms for combinatorial optimization},
author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
journal={Quantum Science and Technology},
year={2021},
publisher={IOP Publishing}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@article{bharti2021noisy,
title={Noisy intermediate-scale quantum (NISQ) algorithms},
author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
journal={arXiv preprint arXiv:2101.08448},
year={2021}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{mangini2021quantum,
title={Quantum computing models for artificial neural networks},
author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
journal={EPL (Europhysics Letters)},
volume={134},
number={1},
pages={10002},
year={2021},
publisher={IOP Publishing}
}
[Plekhanov et al] Variational quantum amplitude estimation. arXiv. [Variational Quantum Algorithms]
[Amplitude estimation]
[Parameterized Quantum Circuits]
@article{plekhanov2021variational,
title={Variational quantum amplitude estimation},
author={Plekhanov, Kirill and Rosenkranz, Matthias and Fiorentini, Mattia and Lubasch, Michael},
journal={arXiv preprint arXiv:2109.03687},
year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{schuld2021effect,
title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
journal={Physical Review A},
volume={103},
number={3},
pages={032430},
year={2021},
publisher={APS}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{volkoff2021large,
title={Large gradients via correlation in random parameterized quantum circuits},
author={Volkoff, Tyler and Coles, Patrick J},
journal={Quantum Science and Technology},
volume={6},
number={2},
pages={025008},
year={2021},
publisher={IOP Publishing}
}
[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
@article{barkoutsos2020improving,
title={Improving variational quantum optimization using cvar},
author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
journal={Quantum},
volume={4},
pages={256},
year={2020},
publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Carolan et al ] Variational quantum unsampling on a quantum photonic processor. Nature Physics. [Variational Quantum Algorithms]
[Quantum Neural Networks]
@article{carolan2020variational,
title={Variational quantum unsampling on a quantum photonic processor},
author={Carolan, Jacques and Mohseni, Masoud and Olson, Jonathan P and Prabhu, Mihika and Chen, Changchen and Bunandar, Darius and Niu, Murphy Yuezhen and Harris, Nicholas C and Wong, Franco NC and Hochberg, Michael and others},
journal={Nature Physics},
volume={16},
number={3},
pages={322--327},
year={2020},
publisher={Nature Publishing Group}
}
[Cerezo et al] Variational Quantum Algorithms. arXiv. [Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
(Adiabatic Model)
@Article{cerezo2020variational,
Title = {Variational quantum algorithms},
Author = {Cerezo, Marco and Arrasmith, Andrew and Babbush, Ryan and Benjamin, Simon C and Endo, Suguru and Fujii, Keisuke and McClean, Jarrod R and Mitarai, Kosuke and Yuan, Xiao and Cincio, Lukasz and others},
Journal = {arXiv preprint arXiv:2012.09265},
Year = {2020},
URL = {https://arxiv.org/pdf/2012.09265.pdf}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus]
[Parameterized Quantum Circuits]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
@article{wang2020noise,
title={Noise-induced barren plateaus in variational quantum algorithms},
author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
journal={arXiv preprint arXiv:2007.14384},
year={2020}
}
[Benedetti et al] Parameterized quantum circuits as machine learning models. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Machine Learning]
@Article{benedetti2019parameterized,
Title = {Parameterized quantum circuits as machine learning models},
Author = {Benedetti, Marcello and Lloyd, Erika and Sack, Stefan and Fiorentini, Mattia},
Journal = {Quantum Science and Technology},
Year = {2019},
Number = {4},
Pages = {043001},
Volume = {4},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5/meta}
}
[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms]
[Quantum Support Vector Machine]
[Quantum Classification]
[Quantum Machine Learning]
(Gate Model)
@Article{havlivcek2019supervised,
Title = {Supervised learning with quantum-enhanced feature spaces},
Author = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
Journal = {Nature},
Year = {2019},
Number = {7747},
Pages = {209--212},
Volume = {567},
Publisher = {Nature Publishing Group},
URL = {https://www.nature.com/articles/s41586-019-0980-2}
}
[Sim et al] Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
(Gate Model)
@article{sim2019expressibility,
title={Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms},
author={Sim, Sukin and Johnson, Peter D and Aspuru-Guzik, Al{\'a}n},
journal={Advanced Quantum Technologies},
volume={2},
number={12},
pages={1900070},
year={2019},
publisher={Wiley Online Library}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron]
[Parameterized Quantum Circuits]
[Quantum Neural Networks]
[Quantum Machine Learning]
[Variational Quantum Algorithms]
@article{verdon2019learning,
title={Learning to learn with quantum neural networks via classical neural networks},
author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
journal={arXiv preprint arXiv:1907.05415},
year={2019}
}
[Wang et al ] Accelerated Variational Quantum Eigensolver. Physical review letters. [Variational Quantum Algorithms]
@article{wang2019accelerated,
title={Accelerated variational quantum eigensolver},
author={Wang, Daochen and Higgott, Oscar and Brierley, Stephen},
journal={Physical review letters},
volume={122},
number={14},
pages={140504},
year={2019},
publisher={APS}
}
[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random
Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{zoufal2019quantum,
title={Quantum generative adversarial networks for learning and loading random distributions},
author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
journal={npj Quantum Information},
volume={5},
number={1},
pages={1--9},
year={2019},
publisher={Nature Publishing Group}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks]
[Quantum Neural Networks]
[Variational Quantum Algorithms]
[Quantum Machine Learning]
(Gate Model)
@article{dallaire2018quantum,
title={Quantum generative adversarial networks},
author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
journal={Physical Review A},
volume={98},
number={1},
pages={012324},
year={2018},
publisher={APS}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms]
[Quantum Optimization]
[Quantum Machine Learning]
[Quantum Information and Computing]
(Gate Model)
@Article{moll2018quantum,
Title = {Quantum optimization using variational algorithms on near-term quantum devices},
Author = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
Journal = {Quantum Science and Technology},
Year = {2018},
Number = {3},
Pages = {030503},
Volume = {3},
Publisher = {IOP Publishing},
URL = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Kandala et al ] Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. [Variational Quantum Algorithms]
@article{kandala2017hardware,
title={Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets},
author={Kandala, Abhinav and Mezzacapo, Antonio and Temme, Kristan and Takita, Maika and Brink, Markus and Chow, Jerry M and Gambetta, Jay M},
journal={Nature},
volume={549},
number={7671},
pages={242--246},
year={2017},
publisher={Nature Publishing Group}
}
[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms]
[Parameterized Quantum Circuits]
[Quantum Optimization]
[Quantum Machine Learning]
[]
(Gate Model)
@Article{farhi2014quantum,
Title = {A quantum approximate optimization algorithm},
Author = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
Journal = {arXiv preprint arXiv:1411.4028},
Year = {2014},
URL = {https://arxiv.org/abs/1411.4028}
}
[Peruzzo et al] A variational eigenvalue solver on a photonic quantum processor. Nature communications. [Variational Quantum Algorithms]
@article{peruzzo2014variational,
title={A variational eigenvalue solver on a photonic quantum processor},
author={Peruzzo, Alberto and McClean, Jarrod and Shadbolt, Peter and Yung, Man-Hong and Zhou, Xiao-Qi and Love, Peter J and Aspuru-Guzik, Al{\'a}n and O’brien, Jeremy L},
journal={Nature communications},
volume={5},
number={1},
pages={1--7},
year={2014},
publisher={Nature Publishing Group}
}