Skip to content

Latest commit

 

History

History
4340 lines (3961 loc) · 306 KB

papersSortedByTopics.md

File metadata and controls

4340 lines (3961 loc) · 306 KB

A Leap among Quantum Computing and Quantum Neural Networks: A Survey

--Work in Progress--

Table of Contents

Adiabatic Quantum Computing

2018

[Albash & Lidar] Adiabatic Quantum Computing. Reviews of Modern Physics. [Quantum Information and Computing] [Adiabatic Quantum Computing] (Adiabatic Model)
@Article{albash2018adiabatic,
  Title                    = {Adiabatic quantum computation},
  Author                   = {Albash, Tameem and Lidar, Daniel A},
  Journal                  = {Reviews of Modern Physics},
  Year                     = {2018},
  Number                   = {1},
  Pages                    = {015002},
  Volume                   = {90},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002}
}

2017

[Andriyash et al] Can quantum Monte Carlo simulate quantum annealing?. arXiv. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Monte Carlo] (Adiabatic Model)
@Article{andriyash2017can,
  Title                    = {Can quantum Monte Carlo simulate quantum annealing?},
  Author                   = {Andriyash, Evgeny and Amin, Mohammad H},
  Journal                  = {arXiv preprint arXiv:1703.09277},
  Year                     = {2017},
  URL                      = {https://arxiv.org/abs/1703.09277}
}

2016

[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@Article{batle2016multipartite,
  Title                    = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
  Author                   = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
  Journal                  = {Quantum Information Processing},
  Year                     = {2016},
  Number                   = {8},
  Pages                    = {3081--3099},
  Volume                   = {15},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}

2012

[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing] [Quantum Annealing] [Classical Implementation] (Adiabatic Model)
@Article{gaitan2012ramsey,
  Title                    = {Ramsey numbers and adiabatic quantum computing},
  Author                   = {Gaitan, Frank and Clark, Lane},
  Journal                  = {Physical review letters},
  Year                     = {2012},
  Number                   = {1},
  Pages                    = {010501},
  Volume                   = {108},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}

2010

[Altshuler et al] Anderson localization makes adiabatic quantum optimization fail. PNAS. [Adiabatic Quantum Computing] [Quantum Optimization] (Adiabatic Model)
@Article{altshuler2010anderson,
  Title                    = {Anderson localization makes adiabatic quantum optimization fail},
  Author                   = {Altshuler, Boris and Krovi, Hari and Roland, J{\'e}r{\'e}mie},
  Journal                  = {Proceedings of the National Academy of Sciences},
  Year                     = {2010},
  Number                   = {28},
  Pages                    = {12446--12450},
  Volume                   = {107},
  Publisher                = {National Acad Sciences},
  URL                      = {https://www.pnas.org/content/107/28/12446}
}
[Bravyi & Terhal] Complexity of stoquastic frustration-free Hamiltonians. Siam journal on computing. [Adiabatic Quantum Computing] [Quantum Annealing] (Adiabatic Model)
@Article{bravyi2010complexity,
  Title                    = {Complexity of stoquastic frustration-free Hamiltonians},
  Author                   = {Bravyi, Sergey and Terhal, Barbara},
  Journal                  = {Siam journal on computing},
  Year                     = {2010},
  Number                   = {4},
  Pages                    = {1462--1485},
  Volume                   = {39},
  Publisher                = {SIAM},
  URL                      = {https://arxiv.org/abs/0806.1746}
}

2009

[Lidar et al] Adiabatic approximation with exponential accuracy for many-body systems and quantum computation. Journal of Mathematical Physics. [Approximation to Adiabatic Theorem] [Adiabatic Quantum Computing] (Adiabatic Model)
@article{lidar2009adiabatic,
  title={Adiabatic approximation with exponential accuracy for many-body systems and quantum computation},
  author={Lidar, Daniel A and Rezakhani, Ali T and Hamma, Alioscia},
  journal={Journal of Mathematical Physics},
  volume={50},
  number={10},
  pages={102106},
  year={2009},
  publisher={American Institute of Physics}
}

2008

[Aharonov et al] Adiabatic quantum computation is equivalent to standard quantum computation. SIAM review. [Adiabatic Quantum Computing] [Adiabatic Simulation] (Adiabatic Model)
@Article{aharonov2008adiabatic,
  Title                    = {Adiabatic quantum computation is equivalent to standard quantum computation},
  Author                   = {Aharonov, Dorit and Van Dam, Wim and Kempe, Julia and Landau, Zeph and Lloyd, Seth and Regev, Oded},
  Journal                  = {SIAM review},
  Year                     = {2008},
  Number                   = {4},
  Pages                    = {755--787},
  Volume                   = {50},
  Publisher                = {SIAM},
  URL                      = {https://epubs.siam.org/doi/10.1137/080734479}
}

2005

[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] (Adiabatic Model)
@InCollection{battaglia2005deterministic,
  Title                    = {Deterministic and stochastic quantum annealing approaches},
  Author                   = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
  Booktitle                = {Quantum Annealing and Other Optimization Methods},
  Publisher                = {Springer},
  Year                     = {2005},
  Pages                    = {171--206},
  URL                      = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] [Quantum Monte Carlo] (Adiabatic Model)
@Article{battaglia2005optimization,
  Title                    = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
  Author                   = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
  Journal                  = {Physical Review E},
  Year                     = {2005},
  Number                   = {6},
  Pages                    = {066707},
  Volume                   = {71},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}
[Olivera et al] The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Information & Computing. [Complexity Theory] [Adiabatic Quantum Computing]
@article{oliveira2005complexity,
  title={The complexity of quantum spin systems on a two-dimensional square lattice},
  author={Oliveira, Roberto and Terhal, Barbara M},
  journal={arXiv preprint quant-ph/0504050},
  year={2005}
}

2004

[Aharonov et al] Adiabatic computation is equivalent to standard quantum computation. arXiv. [Adiabatic Quantum Computing] [Adiabatic Simulation] (Adiabatic Model)
@Article{aharonov2004adiabatic,
  Title                    = {Adiabatic computation is equivalent to standard quantum computation},
  Author                   = {Aharonov, D and van Dam, W and Kempe, J and Landau, Z and Lloyd, S and Regev, O},
  Journal                  = {arXiv preprint quant-ph/0405098},
  Year                     = {2004},
  URL                      = {https://arxiv.org/pdf/quant-ph/0405098.pdf}
}

2001

[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing] [Classical Implementation] [Quantum Annealing] (Adiabatic Model)
@Article{farhi2001quantum,
  Title                    = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
  Journal                  = {Science},
  Year                     = {2001},
  Number                   = {5516},
  Pages                    = {472--475},
  Volume                   = {292},
  Publisher                = {American Association for the Advancement of Science},
  URL                      = {https://science.sciencemag.org/content/292/5516/472}
}

2000

[Farhi et al] Quantum computation by adiabatic evolution. arXiv. [Adiabatic Quantum Computing] (Adiabatic Model)
@Article{farhi2000quantum,
  Title                    = {Quantum computation by adiabatic evolution},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Sipser, Michael},
  Journal                  = {arXiv preprint quant-ph/0001106},
  Year                     = {2000},
  URL                      = {https://arxiv.org/pdf/quant-ph/0001106.pdf}
}

1989

[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Optimization] (Adiabatic Model)
@Article{apolloni1989quantum,
  Title                    = {Quantum stochastic optimization},
  Author                   = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
  Journal                  = {Stochastic Processes and their Applications},
  Year                     = {1989},
  Number                   = {2},
  Pages                    = {233--244},
  Volume                   = {33},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}

Barren Plateaus

2021

[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{cerezo2021cost,
  title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
  author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
  journal={Nature communications},
  volume={12},
  number={1},
  pages={1--12},
  year={2021},
  publisher={Nature Publishing Group}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Barren Plateaus] [Quantum Machine Learning]
@article{holmes2021connecting,
  title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
  author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
  journal={arXiv preprint arXiv:2101.02138},
  year={2021}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{patti2020entanglement,
  title={Entanglement devised barren plateau mitigation},
  author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
  journal={arXiv preprint arXiv:2012.12658},
  year={2020}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{skolik2021layerwise,
  title={Layerwise learning for quantum neural networks},
  author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
  journal={Quantum Machine Intelligence},
  volume={3},
  number={1},
  pages={1--11},
  year={2021},
  publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{volkoff2021large,
  title={Large gradients via correlation in random parameterized quantum circuits},
  author={Volkoff, Tyler and Coles, Patrick J},
  journal={Quantum Science and Technology},
  volume={6},
  number={2},
  pages={025008},
  year={2021},
  publisher={IOP Publishing}
}

2020

[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{marrero2020entanglement,
  title={Entanglement induced barren plateaus},
  author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
  journal={arXiv preprint arXiv:2010.15968},
  year={2020}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus] [Quantum Convolutional Neural Networks] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{pesah2020absence,
  title={Absence of barren plateaus in quantum convolutional neural networks},
  author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
  journal={arXiv preprint arXiv:2011.02966},
  year={2020}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Barren Plateaus]
@article{sharma2020trainability,
  title={Trainability of dissipative perceptron-based quantum neural networks},
  author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2005.12458},
  year={2020}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{wang2020noise,
  title={Noise-induced barren plateaus in variational quantum algorithms},
  author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2007.14384},
  year={2020}
}

2019

[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{grant2019initialization,
  title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
  author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
  journal={Quantum},
  volume={3},
  pages={214},
  year={2019},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}

2018

[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mcclean2018barren,
  title={Barren plateaus in quantum neural network training landscapes},
  author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
  journal={Nature communications},
  volume={9},
  number={1},
  pages={1--6},
  year={2018},
  publisher={Nature Publishing Group}
}

Classical Implementation

2012

[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing] [Quantum Annealing] [Classical Implementation] (Adiabatic Model)
@Article{gaitan2012ramsey,
  Title                    = {Ramsey numbers and adiabatic quantum computing},
  Author                   = {Gaitan, Frank and Clark, Lane},
  Journal                  = {Physical review letters},
  Year                     = {2012},
  Number                   = {1},
  Pages                    = {010501},
  Volume                   = {108},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}

2009

[Matsuda et al] Ground-state statistics from annealing algorithms: quantum versus classical approaches. New Journal of Physics. [Classical Implementation] [Quantum Annealing]
@article{matsuda2009ground,
  title={Ground-state statistics from annealing algorithms: quantum versus classical approaches},
  author={Matsuda, Yoshiki and Nishimori, Hidetoshi and Katzgraber, Helmut G},
  journal={New Journal of Physics},
  volume={11},
  number={7},
  pages={073021},
  year={2009},
  publisher={IOP Publishing}
}

2004

[Martonak et al] Quantum annealing of the traveling-salesman problem. Physical Review E. [Classical Implementation] [Quantum Annealing]
@article{martovnak2004quantum,
  title={Quantum annealing of the traveling-salesman problem},
  author={Marto{\v{n}}{\'a}k, Roman and Santoro, Giuseppe E and Tosatti, Erio},
  journal={Physical Review E},
  volume={70},
  number={5},
  pages={057701},
  year={2004},
  publisher={APS}
}

2001

[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing] [Classical Implementation] [Quantum Annealing] (Adiabatic Model)
@Article{farhi2001quantum,
  Title                    = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
  Journal                  = {Science},
  Year                     = {2001},
  Number                   = {5516},
  Pages                    = {472--475},
  Volume                   = {292},
  Publisher                = {American Association for the Advancement of Science},
  URL                      = {https://science.sciencemag.org/content/292/5516/472}
}

Complexity Theory

2017

[Arunachalam & de Wolf] Guest column: A survey of quantum learning theory. ACM SIGACT News. [Quantum Machine Learning] [Probably Approximately Correct Learning] [Complexity Theory] (Gate Model)
@Article{arunachalam2017guest,
  Title                    = {Guest column: A survey of quantum learning theory},
  Author                   = {Arunachalam, Srinivasan and de Wolf, Ronald},
  Journal                  = {ACM SIGACT News},
  Year                     = {2017},
  Number                   = {2},
  Pages                    = {41--67},
  Volume                   = {48},
  Publisher                = {ACM New York, NY, USA},
  URL                      = {https://dl.acm.org/doi/abs/10.1145/3106700.3106710}
}

2011

[Aaronson and Arkhipov] The computational complexity of linear optics. Annual ACM symposium on Theory of computing. [Quantum Speedup-Advantage-Supremacy] [Complexity Theory]
@InProceedings{aaronson2011computational,
  Title                    = {The computational complexity of linear optics},
  Author                   = {Aaronson, Scott and Arkhipov, Alex},
  Booktitle                = {Proceedings of the forty-third annual ACM symposium on Theory of computing},
  Year                     = {2011},
  Pages                    = {333--342},
  Publisher                = {Association for Computing Machinery},
  URL                      = {https://dl.acm.org/doi/pdf/10.1145/1993636.1993682}
}

2005

[Olivera et al] The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Information & Computing. [Complexity Theory] [Adiabatic Quantum Computing]
@article{oliveira2005complexity,
  title={The complexity of quantum spin systems on a two-dimensional square lattice},
  author={Oliveira, Roberto and Terhal, Barbara M},
  journal={arXiv preprint quant-ph/0504050},
  year={2005}
}

Parameterized Quantum Circuits

2021

[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms] [Quantum Optimization] [Parameterized Quantum Circuits]
@article{amaro2021filtering,
  title={Filtering variational quantum algorithms for combinatorial optimization},
  author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
  journal={Quantum Science and Technology},
  year={2021},
  publisher={IOP Publishing}
}
[Benedetti et al] Hardware-efficient variational quantum algorithms for time evolution. Physical Review Research. [Time Evolution (Hamiltonian Simulation)] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{benedetti2021hardware,
  title={Hardware-efficient variational quantum algorithms for time evolution},
  author={Benedetti, Marcello and Fiorentini, Mattia and Lubasch, Michael},
  journal={Physical Review Research},
  volume={3},
  number={3},
  pages={033083},
  year={2021},
  publisher={APS}
}
[Benedetti et al] Variational Inference with a Quantum Computer. Physical Review Applied. [Variational Inference] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{benedetti2021variational,
  title={Variational inference with a quantum computer},
  author={Benedetti, Marcello and Coyle, Brian and Fiorentini, Mattia and Lubasch, Michael and Rosenkranz, Matthias},
  journal={Physical Review Applied},
  volume={16},
  number={4},
  pages={044057},
  year={2021},
  publisher={APS}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@article{bharti2021noisy,
  title={Noisy intermediate-scale quantum (NISQ) algorithms},
  author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
  journal={arXiv preprint arXiv:2101.08448},
  year={2021}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{cerezo2021cost,
  title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
  author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
  journal={Nature communications},
  volume={12},
  number={1},
  pages={1--12},
  year={2021},
  publisher={Nature Publishing Group}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{egger2021warm,
  title={Warm-starting quantum optimization},
  author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
  journal={Quantum},
  volume={5},
  pages={479},
  year={2021},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Barren Plateaus] [Quantum Machine Learning]
@article{holmes2021connecting,
  title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
  author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
  journal={arXiv preprint arXiv:2101.02138},
  year={2021}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{mangini2021quantum,
  title={Quantum computing models for artificial neural networks},
  author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
  journal={EPL (Europhysics Letters)},
  volume={134},
  number={1},
  pages={10002},
  year={2021},
  publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{patti2020entanglement,
  title={Entanglement devised barren plateau mitigation},
  author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
  journal={arXiv preprint arXiv:2012.12658},
  year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{perez2021one,
  title={One qubit as a Universal Approximant},
  author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
  journal={arXiv preprint arXiv:2102.04032},
  year={2021}
}
[Plekhanov et al] Variational quantum amplitude estimation. arXiv. [Variational Quantum Algorithms] [Amplitude estimation] [Parameterized Quantum Circuits]
@article{plekhanov2021variational,
  title={Variational quantum amplitude estimation},
  author={Plekhanov, Kirill and Rosenkranz, Matthias and Fiorentini, Mattia and Lubasch, Michael},
  journal={arXiv preprint arXiv:2109.03687},
  year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{schuld2021effect,
  title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
  author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
  journal={Physical Review A},
  volume={103},
  number={3},
  pages={032430},
  year={2021},
  publisher={APS}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{skolik2021layerwise,
  title={Layerwise learning for quantum neural networks},
  author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
  journal={Quantum Machine Intelligence},
  volume={3},
  number={1},
  pages={1--11},
  year={2021},
  publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{volkoff2021large,
  title={Large gradients via correlation in random parameterized quantum circuits},
  author={Volkoff, Tyler and Coles, Patrick J},
  journal={Quantum Science and Technology},
  volume={6},
  number={2},
  pages={025008},
  year={2021},
  publisher={IOP Publishing}
}

2020

[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{gil2020input,
  title={Input redundancy for parameterized quantum circuits},
  author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
  journal={Frontiers in Physics},
  volume={8},
  pages={297},
  year={2020},
  publisher={Frontiers}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{marrero2020entanglement,
  title={Entanglement induced barren plateaus},
  author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
  journal={arXiv preprint arXiv:2010.15968},
  year={2020}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus] [Quantum Convolutional Neural Networks] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{pesah2020absence,
  title={Absence of barren plateaus in quantum convolutional neural networks},
  author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
  journal={arXiv preprint arXiv:2011.02966},
  year={2020}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Barren Plateaus]
@article{sharma2020trainability,
  title={Trainability of dissipative perceptron-based quantum neural networks},
  author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2005.12458},
  year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@inproceedings{tacchino2020variational,
  title={Variational learning for quantum artificial neural networks},
  author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
  booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
  pages={130--136},
  year={2020},
  organization={IEEE}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{wang2020noise,
  title={Noise-induced barren plateaus in variational quantum algorithms},
  author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2007.14384},
  year={2020}
}

2019

[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{grant2019initialization,
  title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
  author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
  journal={Quantum},
  volume={3},
  pages={214},
  year={2019},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Sim et al] Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] (Gate Model)
@article{sim2019expressibility,
  title={Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms},
  author={Sim, Sukin and Johnson, Peter D and Aspuru-Guzik, Al{\'a}n},
  journal={Advanced Quantum Technologies},
  volume={2},
  number={12},
  pages={1900070},
  year={2019},
  publisher={Wiley Online Library}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Variational Quantum Algorithms]
@article{verdon2019learning,
  title={Learning to learn with quantum neural networks via classical neural networks},
  author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
  journal={arXiv preprint arXiv:1907.05415},
  year={2019}
}

2018

[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mcclean2018barren,
  title={Barren plateaus in quantum neural network training landscapes},
  author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
  journal={Nature communications},
  volume={9},
  number={1},
  pages={1--6},
  year={2018},
  publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mitarai2018quantum,
  title={Quantum circuit learning},
  author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
  journal={Physical Review A},
  volume={98},
  number={3},
  pages={032309},
  year={2018},
  publisher={APS}
}

2014

[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] [] (Gate Model)
@Article{farhi2014quantum,
  Title                    = {A quantum approximate optimization algorithm},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
  Journal                  = {arXiv preprint arXiv:1411.4028},
  Year                     = {2014},
  URL                      = {https://arxiv.org/abs/1411.4028}
}

Physical Realization of Qubits

2020

[Kjaergaard et al] Superconducting Qubits: Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing] [Physical Realization of Qubits] [Superconducting Qubits]
@article{kjaergaard2020superconducting,
  title={Superconducting qubits: Current state of play},
  author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
  journal={Annual Review of Condensed Matter Physics},
  volume={11},
  pages={369--395},
  year={2020},
  publisher={Annual Reviews}
}

2019

[Krantz et al] A quantum engineer's guide to superconducting qubits. Applied Physics Reviews . [Physical Realization of Qubits] [Superconducting Qubits]
@article{krantz2019quantum,
  title={A quantum engineer's guide to superconducting qubits},
  author={Krantz, Philip and Kjaergaard, Morten and Yan, Fei and Orlando, Terry P and Gustavsson, Simon and Oliver, William D},
  journal={Applied Physics Reviews},
  volume={6},
  number={2},
  pages={021318},
  year={2019},
  publisher={AIP Publishing LLC}
}

2018

[Soloviev et al] Adiabatic superconducting artificial neural network: Basic cells. Journal of Applied Physics. [Physical Realization of Qubits] (Adiabatic Model)
@article{soloviev2018adiabatic,
  title={Adiabatic superconducting artificial neural network: Basic cells},
  author={Soloviev, Igor I and Schegolev, Andrey E and Klenov, Nikolay V and Bakurskiy, Sergey V and Kupriyanov, Mikhail Yu and Tereshonok, Maxim V and Shadrin, Anton V and Stolyarov, Vasily S and Golubov, Alexander A},
  journal={Journal of Applied Physics},
  volume={124},
  number={15},
  pages={152113},
  year={2018},
  publisher={AIP Publishing LLC}
}

2017

[Gambetta et al] Building logical qubits in a superconducting quantum computing system. Physical Review Letters. [Physical Realization of Qubits] [Superconducting Qubits]
@Article{gambetta2017building,
  Title                    = {Building logical qubits in a superconducting quantum computing system},
  Author                   = {Gambetta, Jay M and Chow, Jerry M and Steffen, Matthias},
  Journal                  = {npj Quantum Information},
  Year                     = {2017},
  Number                   = {1},
  Pages                    = {1--7},
  Volume                   = {3},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-016-0004-0}
}
[Wendin et al] Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics. [Physical Realization of Qubits]
@article{wendin2017quantum,
  title={Quantum information processing with superconducting circuits: a review},
  author={Wendin, G{\"o}ran},
  journal={Reports on Progress in Physics},
  volume={80},
  number={10},
  pages={106001},
  year={2017},
  publisher={IOP Publishing}
}

Quantum Annealing

2020

[Pjilipp et al] Perspectives of quantum annealing: Methods andimplementations. Reports on Progress in Physics. [Quantum Information and Computing] [Quantum Annealing] (Adiabatic Model)
@article{hauke2020perspectives,
  title={Perspectives of quantum annealing: Methods and implementations},
  author={Hauke, Philipp and Katzgraber, Helmut G and Lechner, Wolfgang and Nishimori, Hidetoshi and Oliver, William D},
  journal={Reports on Progress in Physics},
  volume={83},
  number={5},
  pages={054401},
  year={2020},
  publisher={IOP Publishing}
}

2018

[Katzgraber et al] Viewing vanilla quantum annealing through spin glasses. Quantum Science and Technology. [Quantum Annealing] (Adiabatic Model)
@article{katzgraber2018viewing,
  title={Viewing vanilla quantum annealing through spin glasses},
  author={Katzgraber, Helmut G},
  journal={Quantum Science and Technology},
  volume={3},
  number={3},
  pages={030505},
  year={2018},
  publisher={IOP Publishing}
}

2017

[Andriyash et al] Can quantum Monte Carlo simulate quantum annealing?. arXiv. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Monte Carlo] (Adiabatic Model)
@Article{andriyash2017can,
  Title                    = {Can quantum Monte Carlo simulate quantum annealing?},
  Author                   = {Andriyash, Evgeny and Amin, Mohammad H},
  Journal                  = {arXiv preprint arXiv:1703.09277},
  Year                     = {2017},
  URL                      = {https://arxiv.org/abs/1703.09277}
}
[Mandra' et al] The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{mandra2017pitfalls,
  title={The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again)},
  author={Mandra, Salvatore and Katzgraber, Helmut G and Thomas, Creighton},
  journal={Quantum Science and Technology},
  volume={2},
  number={3},
  pages={038501},
  year={2017},
  publisher={IOP Publishing}
}

2016

[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@Article{batle2016multipartite,
  Title                    = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
  Author                   = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
  Journal                  = {Quantum Information Processing},
  Year                     = {2016},
  Number                   = {8},
  Pages                    = {3081--3099},
  Volume                   = {15},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}
[Isakov et al] Understanding Quantum Tunneling through Quantum Monte Carlo Simulations. Physical Review Letters. [Quantum Annealing] (Adiabatic Model)
@article{isakov2016understanding,
  title={Understanding quantum tunneling through quantum Monte Carlo simulations},
  author={Isakov, Sergei V and Mazzola, Guglielmo and Smelyanskiy, Vadim N and Jiang, Zhang and Boixo, Sergio and Neven, Hartmut and Troyer, Matthias},
  journal={Physical review letters},
  volume={117},
  number={18},
  pages={180402},
  year={2016},
  publisher={APS}
}
[Sergey et al] Zero-temperature quantum annealing bottlenecks in the spin-glass phase. Nature. [Quantum Annealing] (Adiabatic Model)
@article{knysh2016zero,
  title={Zero-temperature quantum annealing bottlenecks in the spin-glass phase},
  author={Knysh, Sergey},
  journal={Nature communications},
  volume={7},
  number={1},
  pages={1--9},
  year={2016},
  publisher={Nature Publishing Group}
}
[Mandra' et al] Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{mandra2016strengths,
  title={Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches},
  author={Mandra, Salvatore and Zhu, Zheng and Wang, Wenlong and Perdomo-Ortiz, Alejandro and Katzgraber, Helmut G},
  journal={Physical Review A},
  volume={94},
  number={2},
  pages={022337},
  year={2016},
  publisher={APS}
}

2015

[Itay ert al] Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{hen2015probing,
  title={Probing for quantum speedup in spin-glass problems with planted solutions},
  author={Hen, Itay and Job, Joshua and Albash, Tameem and R{\o}nnow, Troels F and Troyer, Matthias and Lidar, Daniel A},
  journal={Physical Review A},
  volume={92},
  number={4},
  pages={042325},
  year={2015},
  publisher={APS}
}
[Katzgraber et al] Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly. Physical Review X. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{katzgraber2015seeking,
  title={Seeking quantum speedup through spin glasses: The good, the bad, and the ugly},
  author={Katzgraber, Helmut G and Hamze, Firas and Zhu, Zheng and Ochoa, Andrew J and Munoz-Bauza, Humberto},
  journal={Physical Review X},
  volume={5},
  number={3},
  pages={031026},
  year={2015},
  publisher={APS}
}

2014

[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing] [Quantum Information and Computing] [QPU] [Superconducting Qubits] (Adiabatic Model)
@Article{bunyk2014architectural,
  Title                    = {Architectural considerations in the design of a superconducting quantum annealing processor},
  Author                   = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
  Journal                  = {IEEE Transactions on Applied Superconductivity},
  Year                     = {2014},
  Number                   = {4},
  Pages                    = {1--10},
  Volume                   = {24},
  Publisher                = {IEEE},
  URL                      = {https://ieeexplore.ieee.org/document/6802426}
}
[Boixo et al] Evidence for quantum annealing with more than one hundred qubits. Nature. [Quantum Annealing] (Adiabatic Model)
@Article{evidenceboixo2014,
  Title                    = {Evidence for quantum annealing with more than one hundred qubits},
  Author                   = {Boixo, Sergio and R{\o}nnow, Troels F and Isakov, Sergei V and Wang, Zhihui and Wecker, David and Lidar, Daniel A and Martinis, John M and Troyer, Matthias},
  Journal                  = {Nature physics},
  Year                     = {2014},
  Number                   = {3},
  Pages                    = {218--224},
  Volume                   = {10},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/nphys2900}
}
[Lanting et al] Entanglement in a Quantum Annealing Processor. PHYSICAL REVIEW X. [Quantum Annealing] (Adiabatic Model)
@article{lanting2014entanglement,
  title={Entanglement in a quantum annealing processor},
  author={Lanting, Trevor and Przybysz, Anthony J and Smirnov, A Yu and Spedalieri, Federico M and Amin, Mohammad H and Berkley, Andrew J and Harris, Richard and Altomare, Fabio and Boixo, Sergio and Bunyk, Paul and others},
  journal={Physical Review X},
  volume={4},
  number={2},
  pages={021041},
  year={2014},
  publisher={APS}
}
[McGeoch] Adiabatic Quantum Computation and Quantum Annealing: Theory and Practice. Synthesis Lectures on Quantum Computing. [Quantum Annealing] (Adiabatic Model)
@article{mcgeoch2014adiabatic,
  title={Adiabatic quantum computation and quantum annealing: Theory and practice},
  author={McGeoch, Catherine C},
  journal={Synthesis Lectures on Quantum Computing},
  volume={5},
  number={2},
  pages={1--93},
  year={2014},
  publisher={Morgan \& Claypool Publishers}
}
[Rønnow et al] Quantum computing Defining and detecting quantum speedup. Science. [Quantum Annealing] (Adiabatic Model)
@article{ronnow2014defining,
  title={Defining and detecting quantum speedup},
  author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
  journal={science},
  volume={345},
  number={6195},
  pages={420--424},
  year={2014},
  publisher={American Association for the Advancement of Science}
}

2013

[Boixo et al] Experimental signature of programmable quantum annealing. Nature communications. [Quantum Annealing] (Adiabatic Model)
@Article{boixo2013experimental,
  Title                    = {Experimental signature of programmable quantum annealing},
  Author                   = {Boixo, Sergio and Albash, Tameem and Spedalieri, Federico M and Chancellor, Nicholas and Lidar, Daniel A},
  Journal                  = {Nature communications},
  Year                     = {2013},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {4},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/ncomms3067}
}

2012

[Gaitan & Clark] Ramsey Numbers and Adiabatic Quantum Computing. Physical Review Letters. [Adiabatic Quantum Computing] [Quantum Annealing] [Classical Implementation] (Adiabatic Model)
@Article{gaitan2012ramsey,
  Title                    = {Ramsey numbers and adiabatic quantum computing},
  Author                   = {Gaitan, Frank and Clark, Lane},
  Journal                  = {Physical review letters},
  Year                     = {2012},
  Number                   = {1},
  Pages                    = {010501},
  Volume                   = {108},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.010501}
}

2011

[Johnson et al] Quantum annealing with manufactured spins. Nature. [Quantum Annealing] (Adiabatic Model)
@article{johnson2011quantum,
  title={Quantum annealing with manufactured spins},
  author={Johnson, Mark W and Amin, Mohammad HS and Gildert, Suzanne and Lanting, Trevor and Hamze, Firas and Dickson, Neil and Harris, Richard and Berkley, Andrew J and Johansson, Jan and Bunyk, Paul and others},
  journal={Nature},
  volume={473},
  number={7346},
  pages={194--198},
  year={2011},
  publisher={Nature Publishing Group}
}
[Johnson et al] Quantum annealing with manufactured spins. Nature. [Quantum Annealing] (Adiabatic Model)
@article{johnson2011quantum,
  title={Quantum annealing with manufactured spins},
  author={Johnson, Mark W and Amin, Mohammad HS and Gildert, Suzanne and Lanting, Trevor and Hamze, Firas and Dickson, Neil and Harris, Richard and Berkley, Andrew J and Johansson, Jan and Bunyk, Paul and others},
  journal={Nature},
  volume={473},
  number={7346},
  pages={194--198},
  year={2011},
  publisher={Nature Publishing Group}
}

2010

[Bravyi & Terhal] Complexity of stoquastic frustration-free Hamiltonians. Siam journal on computing. [Adiabatic Quantum Computing] [Quantum Annealing] (Adiabatic Model)
@Article{bravyi2010complexity,
  Title                    = {Complexity of stoquastic frustration-free Hamiltonians},
  Author                   = {Bravyi, Sergey and Terhal, Barbara},
  Journal                  = {Siam journal on computing},
  Year                     = {2010},
  Number                   = {4},
  Pages                    = {1462--1485},
  Volume                   = {39},
  Publisher                = {SIAM},
  URL                      = {https://arxiv.org/abs/0806.1746}
}
[Harris et al] Experimental demonstration of a robust and scalable flux qubit. Physical Review B. [Quantum Annealing] (Adiabatic Model)
@Article{harris2010demonstration,
  Title                    = {Experimental demonstration of a robust and scalable flux qubit},
  Author                   = {Harris, R and Johansson, J and Berkley, AJ and Johnson, MW and Lanting, T and Han, Siyuan and Bunyk, P and Ladizinsky, E and Oh, T and Perminov, I and others},
  Journal                  = {Physical Review B},
  Year                     = {2010},
  Number                   = {13},
  Pages                    = {134510},
  Volume                   = {81},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prb/abstract/10.1103/PhysRevB.81.134510}
}
[Harris et al] Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B. [Quantum Annealing] [Superconducting Qubits] (Adiabatic Model)
@article{harris2010experimental,
  title={Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor},
  author={Harris, Richard and Johnson, Mark W and Lanting, T and Berkley, AJ and Johansson, J and Bunyk, P and Tolkacheva, E and Ladizinsky, E and Ladizinsky, N and Oh, T and others},
  journal={Physical Review B},
  volume={82},
  number={2},
  pages={024511},
  year={2010},
  publisher={APS}
}

2009

[Matsuda et al] Ground-state statistics from annealing algorithms: quantum versus classical approaches. New Journal of Physics. [Classical Implementation] [Quantum Annealing]
@article{matsuda2009ground,
  title={Ground-state statistics from annealing algorithms: quantum versus classical approaches},
  author={Matsuda, Yoshiki and Nishimori, Hidetoshi and Katzgraber, Helmut G},
  journal={New Journal of Physics},
  volume={11},
  number={7},
  pages={073021},
  year={2009},
  publisher={IOP Publishing}
}

2008

[Choi ] Minor-Embedding in Adiabatic Quantum Computation: I The Parameter Setting Problem. Quantum Information Processing. [Quantum Annealing] (Adiabatic Model)
@Article{minorchoi2011,
  Title                    = {Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design},
  Author                   = {Choi, Vicky},
  Journal                  = {Quantum Information Processing},
  Year                     = {2011},
  Number                   = {3},
  Pages                    = {343--353},
  Volume                   = {10},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s11128-008-0082-9}
}

2005

[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] (Adiabatic Model)
@InCollection{battaglia2005deterministic,
  Title                    = {Deterministic and stochastic quantum annealing approaches},
  Author                   = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
  Booktitle                = {Quantum Annealing and Other Optimization Methods},
  Publisher                = {Springer},
  Year                     = {2005},
  Pages                    = {171--206},
  URL                      = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] [Quantum Monte Carlo] (Adiabatic Model)
@Article{battaglia2005optimization,
  Title                    = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
  Author                   = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
  Journal                  = {Physical Review E},
  Year                     = {2005},
  Number                   = {6},
  Pages                    = {066707},
  Volume                   = {71},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}

2004

[Martonak et al] Quantum annealing of the traveling-salesman problem. Physical Review E. [Classical Implementation] [Quantum Annealing]
@article{martovnak2004quantum,
  title={Quantum annealing of the traveling-salesman problem},
  author={Marto{\v{n}}{\'a}k, Roman and Santoro, Giuseppe E and Tosatti, Erio},
  journal={Physical Review E},
  volume={70},
  number={5},
  pages={057701},
  year={2004},
  publisher={APS}
}

2001

[Farhi et al] A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem. Science. [Adiabatic Quantum Computing] [Classical Implementation] [Quantum Annealing] (Adiabatic Model)
@Article{farhi2001quantum,
  Title                    = {{A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem}},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam and Lapan, Joshua and Lundgren, Andrew and Preda, Daniel},
  Journal                  = {Science},
  Year                     = {2001},
  Number                   = {5516},
  Pages                    = {472--475},
  Volume                   = {292},
  Publisher                = {American Association for the Advancement of Science},
  URL                      = {https://science.sciencemag.org/content/292/5516/472}
}

1998

[Kadowaki &Nishimori] Quantum annealing in the transverse Ising model. Physical Review E. [Quantum Annealing] (Adiabatic Model)
@article{kadowaki1998quantum,
  title={Quantum annealing in the transverse Ising model},
  author={Kadowaki, Tadashi and Nishimori, Hidetoshi},
  journal={Physical Review E},
  volume={58},
  number={5},
  pages={5355},
  year={1998},
  publisher={APS}
}

1994

[Finnila et al] Quantum annealing: A new method for minimizing multidimensional functions. Chemical Physics Letters. [Quantum Annealing] (Adiabatic Model)
@Article{finnila1994quantum,
  Title                    = {Quantum annealing: A new method for minimizing multidimensional functions},
  Author                   = {Finnila, Aleta Berk and Gomez, MA and Sebenik, C and Stenson, Catherine and Doll, Jimmie D},
  Journal                  = {Chemical physics letters},
  Year                     = {1994},
  Number                   = {5-6},
  Pages                    = {343--348},
  Volume                   = {219},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/abs/pii/0009261494001170?via%3Dihub}
}

1989

[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Optimization] (Adiabatic Model)
@Article{apolloni1989quantum,
  Title                    = {Quantum stochastic optimization},
  Author                   = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
  Journal                  = {Stochastic Processes and their Applications},
  Year                     = {1989},
  Number                   = {2},
  Pages                    = {233--244},
  Volume                   = {33},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}

Quantum Boltzmann machines

2019

[Wiebe & Wossnig] Generative training of quantum Boltzmann machines with hidden units. arXiv. [Quantum Boltzmann machines] [Quantum Machine Learning]
@article{wiebe2019generative,
  title={Generative training of quantum Boltzmann machines with hidden units},
  author={Wiebe, Nathan and Wossnig, Leonard},
  journal={arXiv preprint arXiv:1905.09902},
  year={2019}
}

2018

[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning] [Quantum Boltzmann machines] [Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
  Title                    = {Quantum machine learning},
  Author                   = {Allcock, Jonathan and Zhang, Shengyu},
  Journal                  = {National Science Review},
  Year                     = {2019},
  Number                   = {1},
  Pages                    = {26--28},
  Volume                   = {6},
  Publisher                = {Oxford University Press},
  URL                      = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Amin et al] Quantum boltzmann machine. Physical Review X. [Quantum Boltzmann machines] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@Article{amin2018quantum,
  Title                    = {Quantum boltzmann machine},
  Author                   = {Amin, Mohammad H and Andriyash, Evgeny and Rolfe, Jason and Kulchytskyy, Bohdan and Melko, Roger},
  Journal                  = {Physical Review X},
  Year                     = {2018},
  Number                   = {2},
  Pages                    = {021050},
  Volume                   = {8},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050}
}

Quantum Classification

2021

[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning] [Quantum Classification] [Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
  title={A rigorous and robust quantum speed-up in supervised machine learning},
  author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
  journal={Nature Physics},
  pages={1--5},
  year={2021},
  publisher={Nature Publishing Group}
}

2020

[Ablayev et al] On quantum methods for machine learning problems part I: Quantum tools. Big Data Mining and Analytics. [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{ablayev2020quantum1,
  Title                    = {{On quantum methods for machine learning problems part I: Quantum tools}},
  Author                   = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
  Journal                  = {Big Data Mining and Analytics},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {41--55},
  Volume                   = {3},
  URL                      = {https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8935094}
}
[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning] [Quantum Classification] [Quantum Nearest Neighbors Algorithm] (Gate Model)
@Article{ablayev2020quantum2,
  Title                    = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
  Author                   = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
  Journal                  = {Big Data Mining and Analytics},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {56--67},
  Volume                   = {3},
  URL                      = {https://ieeexplore.ieee.org/abstract/document/8935095}
}
[Abohashima et al] Classification with Quantum Machine Learning: A Survey. arXiv. [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@article{abohashima2020classification,
  title={Classification with quantum machine learning: A survey},
  author={Abohashima, Zainab and Elhosen, Mohamed and Houssein, Essam H and Mohamed, Waleed M},
  journal={arXiv preprint arXiv:2006.12270},
  year={2020}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{perez2020data,
  title={Data re-uploading for a universal quantum classifier},
  author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
  journal={Quantum},
  volume={4},
  pages={226},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{schuld2020circuit,
  title={Circuit-centric quantum classifiers},
  author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
  journal={Physical Review A},
  volume={101},
  number={3},
  pages={032308},
  year={2020},
  publisher={APS}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{sergioli2020quantum,
  title={Quantum and quantum-like machine learning: a note on differences and similarities},
  author={Sergioli, Giuseppe},
  journal={Soft Computing},
  volume={24},
  number={14},
  pages={10247--10255},
  year={2020},
  publisher={Springer}
}

2019

[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms] [Quantum Support Vector Machine] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{havlivcek2019supervised,
  Title                    = {Supervised learning with quantum-enhanced feature spaces},
  Author                   = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
  Journal                  = {Nature},
  Year                     = {2019},
  Number                   = {7747},
  Pages                    = {209--212},
  Volume                   = {567},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41586-019-0980-2}
}

2018

[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{du2018implementable,
  Title                    = {Implementable quantum classifier for nonlinear data},
  Author                   = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
  Journal                  = {arXiv preprint arXiv:1809.06056},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1809.06056}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{farhi2018classification,
  Title                    = {Classification with quantum neural networks on near term processors},
  Author                   = {Farhi, Edward and Neven, Hartmut},
  Journal                  = {arXiv preprint arXiv:1802.06002},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{grant2018hierarchical,
  Title                    = {Hierarchical quantum classifiers},
  Author                   = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
  Journal                  = {npj Quantum Information},
  Year                     = {2018},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {4},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-018-0116-9}
}

2017

[Ruan et al] Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics. [Quantum Machine Learning] [Quantum Classification]
@article{ruan2017quantum,
  title={Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance},
  author={Ruan, Yue and Xue, Xiling and Liu, Heng and Tan, Jianing and Li, Xi},
  journal={International Journal of Theoretical Physics},
  volume={56},
  number={11},
  pages={3496--3507},
  year={2017},
  publisher={Springer}
}

2015

[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning] [Quantum Classification] [Quantum Clustering] [Quantum Nearest Neighbors Algorithm] [Quantum Neural Networks] (Gate Model) (Adiabatic Model)
@Article{adcock2015advances,
  Title                    = {Advances in quantum machine learning},
  Author                   = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
  Journal                  = {arXiv preprint arXiv:1512.02900},
  Year                     = {2015},
  URL                      = {https://arxiv.org/abs/1512.02900}
}

2014

[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{wiebe2015quantum,
  title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={Quantum Information \& Computation},
  volume={15},
  number={3-4},
  pages={316--356},
  year={2015},
  publisher={Rinton Press, Incorporated Paramus, NJ}
}

2000

[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{ventura2000quantum,
  title={Quantum associative memory},
  author={Ventura, Dan and Martinez, Tony},
  journal={Information Sciences},
  volume={124},
  number={1-4},
  pages={273--296},
  year={2000},
  publisher={Elsevier}
}

Quantum Clustering

2015

[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning] [Quantum Classification] [Quantum Clustering] [Quantum Nearest Neighbors Algorithm] [Quantum Neural Networks] (Gate Model) (Adiabatic Model)
@Article{adcock2015advances,
  Title                    = {Advances in quantum machine learning},
  Author                   = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
  Journal                  = {arXiv preprint arXiv:1512.02900},
  Year                     = {2015},
  URL                      = {https://arxiv.org/abs/1512.02900}
}

2013

[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@Article{aimeur2013quantum,
  Title                    = {Quantum speed-up for unsupervised learning},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Journal                  = {Machine Learning},
  Year                     = {2013},
  Number                   = {2},
  Pages                    = {261--287},
  Volume                   = {90},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}
[Lloyd et al] Quantum algorithms for supervised and unsupervised machine learning. arXiv. [Quantum Machine Learning] [Quantum Clustering] (Adiabatic Model)
@article{lloyd2013quantum,
  title={Quantum algorithms for supervised and unsupervised machine learning},
  author={Lloyd, Seth and Mohseni, Masoud and Rebentrost, Patrick},
  journal={arXiv preprint arXiv:1307.0411},
  year={2013}
}

2007

[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@inproceedings{aimeur2007quantum,
  title={Quantum clustering algorithms},
  author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  booktitle={Proceedings of the 24th international conference on machine learning},
  pages={1--8},
  year={2007}
}

2006

[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@InProceedings{aimeur2006machine,
  Title                    = {Machine learning in a quantum world},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Booktitle                = {Conference of the Canadian Society for Computational Studies of Intelligence},
  Year                     = {2006},
  Organization             = {Springer},
  Pages                    = {431--442},
  URL                      = {https://link.springer.com/chapter/10.1007/11766247_37}
}

Quantum Convolutional Neural Networks

2020

[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{henderson2020quanvolutional,
  title={Quanvolutional neural networks: powering image recognition with quantum circuits},
  author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
  journal={Quantum Machine Intelligence},
  volume={2},
  number={1},
  pages={1--9},
  year={2020},
  publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@inproceedings{kerenidis2019quantum,
  title={Quantum Algorithms for Deep Convolutional Neural Networks},
  author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
  booktitle={International Conference on Learning Representations},
  year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning]
@article{li2020quantum,
  title={A quantum deep convolutional neural network for image recognition},
  author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
  journal={Quantum Science and Technology},
  volume={5},
  number={4},
  pages={044003},
  year={2020},
  publisher={IOP Publishing}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus] [Quantum Convolutional Neural Networks] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{pesah2020absence,
  title={Absence of barren plateaus in quantum convolutional neural networks},
  author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
  journal={arXiv preprint arXiv:2011.02966},
  year={2020}
}

2019

[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cong2019quantum,
  Title                    = {Quantum convolutional neural networks},
  Author                   = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
  Journal                  = {Nature Physics},
  Year                     = {2019},
  Number                   = {12},
  Pages                    = {1273--1278},
  Volume                   = {15},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}

Quantum Generative Adversarial Networks

2019

[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{zoufal2019quantum,
  title={Quantum generative adversarial networks for learning and loading random distributions},
  author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--9},
  year={2019},
  publisher={Nature Publishing Group}
}

2018

[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning] [Quantum Boltzmann machines] [Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
  Title                    = {Quantum machine learning},
  Author                   = {Allcock, Jonathan and Zhang, Shengyu},
  Journal                  = {National Science Review},
  Year                     = {2019},
  Number                   = {1},
  Pages                    = {26--28},
  Volume                   = {6},
  Publisher                = {Oxford University Press},
  URL                      = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{dallaire2018quantum,
  title={Quantum generative adversarial networks},
  author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
  journal={Physical Review A},
  volume={98},
  number={1},
  pages={012324},
  year={2018},
  publisher={APS}
}

Quantum Information and Computing

2020

[Pjilipp et al] Perspectives of quantum annealing: Methods andimplementations. Reports on Progress in Physics. [Quantum Information and Computing] [Quantum Annealing] (Adiabatic Model)
@article{hauke2020perspectives,
  title={Perspectives of quantum annealing: Methods and implementations},
  author={Hauke, Philipp and Katzgraber, Helmut G and Lechner, Wolfgang and Nishimori, Hidetoshi and Oliver, William D},
  journal={Reports on Progress in Physics},
  volume={83},
  number={5},
  pages={054401},
  year={2020},
  publisher={IOP Publishing}
}
[Kjaergaard et al] Superconducting Qubits: Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing] [Physical Realization of Qubits] [Superconducting Qubits]
@article{kjaergaard2020superconducting,
  title={Superconducting qubits: Current state of play},
  author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
  journal={Annual Review of Condensed Matter Physics},
  volume={11},
  pages={369--395},
  year={2020},
  publisher={Annual Reviews}
}
[McGeoch] Theory versus practice in annealing-based quantum computing. Theoretical Computer Science. [Quantum Information and Computing] (Adiabatic Model)
@article{mcgeoch2020theory,
  title={Theory versus practice in annealing-based quantum computing},
  author={McGeoch, Catherine C},
  journal={Theoretical Computer Science},
  volume={816},
  pages={169--183},
  year={2020},
  publisher={Elsevier}
}
[Ramezani et al] Machine Learning Algorithms in Quantum Computing: A Survey. International Joint Conference on Neural Networks. [Quantum Information and Computing] [Quantum Machine Learning]
@inproceedings{ramezani2020machine,
  title={Machine learning algorithms in quantum computing: A survey},
  author={Ramezani, Somayeh Bakhtiari and Sommers, Alexander and Manchukonda, Harish Kumar and Rahimi, Shahram and Amirlatifi, Amin},
  booktitle={2020 International Joint Conference on Neural Networks (IJCNN)},
  pages={1--8},
  year={2020},
  organization={IEEE}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{sergioli2020quantum,
  title={Quantum and quantum-like machine learning: a note on differences and similarities},
  author={Sergioli, Giuseppe},
  journal={Soft Computing},
  volume={24},
  number={14},
  pages={10247--10255},
  year={2020},
  publisher={Springer}
}

2019

[Gyongyosi & Imre] A Survey on quantum computing technology. Computer Science Review. [Quantum Information and Computing]
@Article{gyongyosi2019survey,
  Title                    = {A survey on quantum computing technology},
  Author                   = {Gyongyosi, Laszlo and Imre, Sandor},
  Journal                  = {Computer Science Review},
  Year                     = {2019},
  Pages                    = {51--71},
  Volume                   = {31},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/abs/pii/S1574013718301709}
}
[Savchuk & Fesenko] Quantum Computing: Survey and Analysis. Cybernetics and Systems Analysis. [Quantum Information and Computing]
@article{savchuk2019quantum,
  title={Quantum Computing: Survey and Analysis},
  author={Savchuk, MM and Fesenko, AV},
  journal={Cybernetics and Systems Analysis},
  volume={55},
  number={1},
  pages={10--21},
  year={2019},
  publisher={Springer}
}
[Schuld & Killoran] Quantum machine learning in feature Hilbert spaces. Physical Review Letters. [Quantum Machine Learning] [Quantum Information and Computing]
@article{schuld2019quantum,
  title={Quantum machine learning in feature Hilbert spaces},
  author={Schuld, Maria and Killoran, Nathan},
  journal={Physical review letters},
  volume={122},
  number={4},
  pages={040504},
  year={2019},
  publisher={APS}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{tacchino2019artificial,
  title={An artificial neuron implemented on an actual quantum processor},
  author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--8},
  year={2019},
  publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing]
@article{torrontegui2019unitary,
  title={Unitary quantum perceptron as efficient universal approximator},
  author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
  journal={EPL (Europhysics Letters)},
  volume={125},
  number={3},
  pages={30004},
  year={2019},
  publisher={IOP Publishing}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiersema2019implementing,
  title={Implementing perceptron models with qubits},
  author={Wiersema, RC and Kappen, HJ},
  journal={Physical Review A},
  volume={100},
  number={2},
  pages={020301},
  year={2019},
  publisher={APS}
}

2018

[Albash & Lidar] Adiabatic Quantum Computing. Reviews of Modern Physics. [Quantum Information and Computing] [Adiabatic Quantum Computing] (Adiabatic Model)
@Article{albash2018adiabatic,
  Title                    = {Adiabatic quantum computation},
  Author                   = {Albash, Tameem and Lidar, Daniel A},
  Journal                  = {Reviews of Modern Physics},
  Year                     = {2018},
  Number                   = {1},
  Pages                    = {015002},
  Volume                   = {90},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.90.015002}
}
[Dunjko & Briegel] Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics. [Quantum Machine Learning] [Probably Approximately Correct Learning] [Quantum Information and Computing] (Gate Model) (Adiabatic Model)
@Article{dunjko2018machine,
  Title                    = {Machine learning \& artificial intelligence in the quantum domain: a review of recent progress},
  Author                   = {Dunjko, Vedran and Briegel, Hans J},
  Journal                  = {Reports on Progress in Physics},
  Year                     = {2018},
  Number                   = {7},
  Pages                    = {074001},
  Volume                   = {81},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/1361-6633/aab406/meta}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@Article{moll2018quantum,
  Title                    = {Quantum optimization using variational algorithms on near-term quantum devices},
  Author                   = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2018},
  Number                   = {3},
  Pages                    = {030503},
  Volume                   = {3},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Preskill] Quantum Computing in the NISQ era and beyond. Quantum Journal. [Quantum Information and Computing]
@article{preskill2018quantum,
  title={Quantum computing in the NISQ era and beyond},
  author={Preskill, John},
  journal={Quantum},
  volume={2},
  pages={79},
  year={2018},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiebe2016quantum,
  title={Quantum perceptron models},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={arXiv preprint arXiv:1602.04799},
  year={2016}
}

2017

[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron] [Quantum Information and Computing] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cao2017quantum,
  Title                    = {Quantum neuron: an elementary building block for machine learning on quantum computers},
  Author                   = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
  Journal                  = {arXiv preprint arXiv:1711.11240},
  Year                     = {2017},
  URL                      = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Harrow & Montanaro] Quantum computational supremacy. Nature. [Quantum Information and Computing]
@article{harrow2017quantum,
  title={Quantum computational supremacy},
  author={Harrow, Aram W and Montanaro, Ashley},
  journal={Nature},
  volume={549},
  number={7671},
  pages={203--209},
  year={2017},
  publisher={Nature Publishing Group}
}

2014

[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing] [Quantum Information and Computing] [QPU] [Superconducting Qubits] (Adiabatic Model)
@Article{bunyk2014architectural,
  Title                    = {Architectural considerations in the design of a superconducting quantum annealing processor},
  Author                   = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
  Journal                  = {IEEE Transactions on Applied Superconductivity},
  Year                     = {2014},
  Number                   = {4},
  Pages                    = {1--10},
  Volume                   = {24},
  Publisher                = {IEEE},
  URL                      = {https://ieeexplore.ieee.org/document/6802426}
}
[Rønnow et al] Defining and detecting quantum speedup. Science. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{ronnow2014defining,
  title={Defining and detecting quantum speedup},
  author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
  journal={science},
  volume={345},
  number={6195},
  pages={420--424},
  year={2014},
  publisher={American Association for the Advancement of Science}
}

2013

[Devoret & Schoelkopf] Superconducting Circuits for Quantum Information: An Outlook. Science. [Quantum Information and Computing] [Superconducting Qubits] (Gate Model)
@Article{devoret2013superconducting,
  Title                    = {Superconducting circuits for quantum information: an outlook},
  Author                   = {Devoret, Michel H and Schoelkopf, Robert J},
  Journal                  = {Science},
  Year                     = {2013},
  Number                   = {6124},
  Pages                    = {1169--1174},
  Volume                   = {339},
  Publisher                = {American Association for the Advancement of Science},
  URL                      = {https://science.sciencemag.org/content/339/6124/1169.abstract}
}

2012

[Preskill] Quantum computing and the entanglement frontier. arXiv. [Quantum Information and Computing]
@article{preskill2012quantum,
  title={Quantum computing and the entanglement frontier},
  author={Preskill, John},
  journal={arXiv preprint arXiv:1203.5813},
  year={2012}
}

2011

[Bremner et al] Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Speedup-Advantage-Supremacy] [Quantum Information and Computing] (Gate Model)
@Article{bremner2011classical,
  Title                    = {Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy},
  Author                   = {Bremner, Michael J and Jozsa, Richard and Shepherd, Dan J},
  Journal                  = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  Year                     = {2011},
  Number                   = {2126},
  Pages                    = {459--472},
  Volume                   = {467},
  Publisher                = {The Royal Society Publishing},
  URL                      = {https://doi.org/10.1098/rspa.2010.0301}
}

2008

[Clarke et al] Superconducting quantum bits. Nature. [Quantum Information and Computing]
@Article{clarke2008superconducting,
  Title                    = {Superconducting quantum bits},
  Author                   = {Clarke, John and Wilhelm, Frank K},
  Journal                  = {Nature},
  Year                     = {2008},
  Number                   = {7198},
  Pages                    = {1031--1042},
  Volume                   = {453},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/Nature07128}
}

2002

[Brassard et al ] Quantum amplitude amplification and estimation. Contemporary Mathematics. [Quantum Information and Computing] (Gate Model)
@Article{brassard2002quantum,
  Title                    = {Quantum amplitude amplification and estimation},
  Author                   = {Brassard, Gilles and Hoyer, Peter and Mosca, Michele and Tapp, Alain},
  Journal                  = {Contemporary Mathematics},
  Year                     = {2002},
  Pages                    = {53--74},
  Volume                   = {305},
  Publisher                = {Providence, RI; American Mathematical Society; 1999},
  URL                      = {http://dx.doi.org/10.1090/conm/305/05215}
}

2000

[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{ventura2000quantum,
  title={Quantum associative memory},
  author={Ventura, Dan and Martinez, Tony},
  journal={Information Sciences},
  volume={124},
  number={1-4},
  pages={273--296},
  year={2000},
  publisher={Elsevier}
}

1997

[Bernstein & Vazirani] Quantum complexity theory. SIAM Journal on computing. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@article{bernstein1997quantum,
  title={Quantum complexity theory},
  author={Bernstein, Ethan and Vazirani, Umesh},
  journal={SIAM Journal on computing},
  volume={26},
  number={5},
  pages={1411--1473},
  year={1997},
  publisher={SIAM}
}
[Simon] On the Power of Quantum Computation. SIAM Journal on Computing. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@article{simon1997power,
  title={On the power of quantum computation},
  author={Simon, Daniel R},
  journal={SIAM journal on computing},
  volume={26},
  number={5},
  pages={1474--1483},
  year={1997},
  publisher={SIAM}
}

1995

[Barenco et al] Elementary gates for quantum computation. Physical Review A. [Quantum Information and Computing] [Quantum Gates] (Gate Model)
@Article{barenco1995elementary,
  Title                    = {Elementary gates for quantum computation},
  Author                   = {Barenco, Adriano and Bennett, Charles H and Cleve, Richard and DiVincenzo, David P and Margolus, Norman and Shor, Peter and Sleator, Tycho and Smolin, John A and Weinfurter, Harald},
  Journal                  = {Physical review A},
  Year                     = {1995},
  Number                   = {5},
  Pages                    = {3457},
  Volume                   = {52},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.3457}
}

1992

[Deutsch & Josza] Rapid solution of problems by quantum computation. Proceedings of the Royal Society A. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@Article{deutsch1992rapid,
  Title                    = {Rapid solution of problems by quantum computation},
  Author                   = {Deutsch, David and Jozsa, Richard},
  Journal                  = {Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences},
  Year                     = {1992},
  Number                   = {1907},
  Pages                    = {553--558},
  Volume                   = {439},
  Publisher                = {The Royal Society London},
  URL                      = {https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167}
}

1985

[Deutsch] Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A. [Quantum Information and Computing]
@Article{deutsch1985quantum,
  Title                    = {{Quantum theory, the Church--Turing principle and the universal quantum computer}},
  Author                   = {Deutsch, David},
  Journal                  = {Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences},
  Year                     = {1985},
  Number                   = {1818},
  Pages                    = {97--117},
  Volume                   = {400},
  Publisher                = {The Royal Society London},
  URL                      = {https://royalsocietypublishing.org/doi/10.1098/rspa.1985.0070}
}

Quantum Machine Learning

2021

[Ban et al] Speeding up quantum perceptron via shortcuts to adiabaticity. Scientific reports. [Quantum Perceptron] [Quantum Machine Learning] (Adiabatic Model)
@Article{ban2021speeding,
  Title                    = {Speeding up quantum perceptron via shortcuts to adiabaticity},
  Author                   = {Ban, Yue and Chen, Xi and Torrontegui, E and Solano, Enrique and Casanova, Jorge},
  Journal                  = {Scientific reports},
  Year                     = {2021},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/s41598-021-85208-3}
}
[Benedetti et al] Hardware-efficient variational quantum algorithms for time evolution. Physical Review Research. [Time Evolution (Hamiltonian Simulation)] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{benedetti2021hardware,
  title={Hardware-efficient variational quantum algorithms for time evolution},
  author={Benedetti, Marcello and Fiorentini, Mattia and Lubasch, Michael},
  journal={Physical Review Research},
  volume={3},
  number={3},
  pages={033083},
  year={2021},
  publisher={APS}
}
[Benedetti et al] Variational Inference with a Quantum Computer. Physical Review Applied. [Variational Inference] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{benedetti2021variational,
  title={Variational inference with a quantum computer},
  author={Benedetti, Marcello and Coyle, Brian and Fiorentini, Mattia and Lubasch, Michael and Rosenkranz, Matthias},
  journal={Physical Review Applied},
  volume={16},
  number={4},
  pages={044057},
  year={2021},
  publisher={APS}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@article{bharti2021noisy,
  title={Noisy intermediate-scale quantum (NISQ) algorithms},
  author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
  journal={arXiv preprint arXiv:2101.08448},
  year={2021}
}
[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{cerezo2021cost,
  title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
  author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
  journal={Nature communications},
  volume={12},
  number={1},
  pages={1--12},
  year={2021},
  publisher={Nature Publishing Group}
}
[Chen et al] Universal discriminative quantum neural networks. Quantum Machine Intelligence. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{chen2021universal,
  Title                    = {Universal discriminative quantum neural networks},
  Author                   = {Chen, Hongxiang and Wossnig, Leonard and Severini, Simone and Neven, Hartmut and Mohseni, Masoud},
  Journal                  = {Quantum Machine Intelligence},
  Year                     = {2021},
  Number                   = {1},
  Pages                    = {1--11},
  Volume                   = {3},
  Publisher                = {Springer},
  URL                      = {https://arxiv.org/abs/1805.08654}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{egger2021warm,
  title={Warm-starting quantum optimization},
  author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
  journal={Quantum},
  volume={5},
  pages={479},
  year={2021},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Barren Plateaus] [Quantum Machine Learning]
@article{holmes2021connecting,
  title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
  author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
  journal={arXiv preprint arXiv:2101.02138},
  year={2021}
}
[Jaderberg et al] Quantum Self-Supervised Learning. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{jaderberg2021quantum,
  title={Quantum Self-Supervised Learning},
  author={Jaderberg, Ben and Anderson, Lewis W and Xie, Weidi and Albanie, Samuel and Kiffner, Martin and Jaksch, Dieter},
  journal={arXiv preprint arXiv:2103.14653},
  year={2021}
}
[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning] [Quantum Classification] [Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
  title={A rigorous and robust quantum speed-up in supervised machine learning},
  author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
  journal={Nature Physics},
  pages={1--5},
  year={2021},
  publisher={Nature Publishing Group}
}
[Lubsch et al] Variational quantum algorithms for nonlinear problems. Physical Review A. [Nonlinear Problems] [Partial Differential Equations] [Quantum Neural Networks] [Quantum Machine Learning]
@article{lubasch2020variational,
  title={Variational quantum algorithms for nonlinear problems},
  author={Lubasch, Michael and Joo, Jaewoo and Moinier, Pierre and Kiffner, Martin and Jaksch, Dieter},
  journal={Physical Review A},
  volume={101},
  number={1},
  pages={010301},
  year={2020},
  publisher={APS}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{mangini2021quantum,
  title={Quantum computing models for artificial neural networks},
  author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
  journal={EPL (Europhysics Letters)},
  volume={134},
  number={1},
  pages={10002},
  year={2021},
  publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{patti2020entanglement,
  title={Entanglement devised barren plateau mitigation},
  author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
  journal={arXiv preprint arXiv:2012.12658},
  year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{perez2021one,
  title={One qubit as a Universal Approximant},
  author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
  journal={arXiv preprint arXiv:2102.04032},
  year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{schuld2021effect,
  title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
  author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
  journal={Physical Review A},
  volume={103},
  number={3},
  pages={032430},
  year={2021},
  publisher={APS}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{skolik2021layerwise,
  title={Layerwise learning for quantum neural networks},
  author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
  journal={Quantum Machine Intelligence},
  volume={3},
  number={1},
  pages={1--11},
  year={2021},
  publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{volkoff2021large,
  title={Large gradients via correlation in random parameterized quantum circuits},
  author={Volkoff, Tyler and Coles, Patrick J},
  journal={Quantum Science and Technology},
  volume={6},
  number={2},
  pages={025008},
  year={2021},
  publisher={IOP Publishing}
}

2020

[Ablayev et al] On quantum methods for machine learning problems part I: Quantum tools. Big Data Mining and Analytics. [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{ablayev2020quantum1,
  Title                    = {{On quantum methods for machine learning problems part I: Quantum tools}},
  Author                   = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
  Journal                  = {Big Data Mining and Analytics},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {41--55},
  Volume                   = {3},
  URL                      = {https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8935094}
}
[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning] [Quantum Classification] [Quantum Nearest Neighbors Algorithm] (Gate Model)
@Article{ablayev2020quantum2,
  Title                    = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
  Author                   = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
  Journal                  = {Big Data Mining and Analytics},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {56--67},
  Volume                   = {3},
  URL                      = {https://ieeexplore.ieee.org/abstract/document/8935095}
}
[Abohashima et al] Classification with Quantum Machine Learning: A Survey. arXiv. [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@article{abohashima2020classification,
  title={Classification with quantum machine learning: A survey},
  author={Abohashima, Zainab and Elhosen, Mohamed and Houssein, Essam H and Mohamed, Waleed M},
  journal={arXiv preprint arXiv:2006.12270},
  year={2020}
}
[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning]
@article{barkoutsos2020improving,
  title={Improving variational quantum optimization using cvar},
  author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
  journal={Quantum},
  volume={4},
  pages={256},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@Article{beer2020training,
  Title                    = {Training deep quantum neural networks},
  Author                   = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
  Journal                  = {Nature communications},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {1--6},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Bharti et al] Machine learning meets quantum foundations: A brief survey. AVS Quantum Science. [Quantum Machine Learning] (Gate Model)
@Article{bharti2020machine,
  Title                    = {Machine learning meets quantum foundations: A brief survey},
  Author                   = {Bharti, Kishor and Haug, Tobias and Vedral, Vlatko and Kwek, Leong-Chuan},
  Journal                  = {AVS Quantum Science},
  Year                     = {2020},
  Number                   = {3},
  Pages                    = {034101},
  Volume                   = {2},
  Publisher                = {American Vacuum Society},
  URL                      = {https://avs.scitation.org/doi/10.1116/5.0007529}
}
[Cerezo et al] Variational Quantum Algorithms. arXiv. [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@Article{cerezo2020variational,
  Title                    = {Variational quantum algorithms},
  Author                   = {Cerezo, Marco and Arrasmith, Andrew and Babbush, Ryan and Benjamin, Simon C and Endo, Suguru and Fujii, Keisuke and McClean, Jarrod R and Mitarai, Kosuke and Yuan, Xiao and Cincio, Lukasz and others},
  Journal                  = {arXiv preprint arXiv:2012.09265},
  Year                     = {2020},
  URL                      = {https://arxiv.org/pdf/2012.09265.pdf}
}
[Chakraborty et al] An Analytical Review of Quantum Neural Network Models and Relevant Research. International Conference on Communication and Electronics Systems. [Quantum Neural Networks] [Quantum Machine Learning]
@inproceedings{chakraborty2020analytical,
  title={An Analytical Review of Quantum Neural Network Models and Relevant Research},
  author={Chakraborty, Simantini and Das, Tamal and Sutradhar, Saurav and Das, Mrinmoy and Deb, Suman},
  booktitle={2020 5th International Conference on Communication and Electronics Systems (ICCES)},
  pages={1395--1400},
  year={2020},
  organization={IEEE}
}
[Duan & Guo] A survey on HHL algorithm: From theory to application in quantum machine learning. Physics Letters A. [Quantum Machine Learning] [Quantum Speedup-Advantage-Supremacy]
@Article{duan1998probabilistic,
  Title                    = {Probabilistic cloning and identification of linearly independent quantum states},
  Author                   = {Duan, Lu-Ming and Guo, Guang-Can},
  Journal                  = {Physical review letters},
  Year                     = {1998},
  Number                   = {22},
  Pages                    = {4999},
  Volume                   = {80},
  Publisher                = {APS},
  URL                      = {https://www.sciencedirect.com/science/article/pii/S037596012030462X}
}
[Dunjko & Wittek] A non-review of Quantum Machine Learning: trends and explorations. Quantum Views. [Quantum Machine Learning]
@Article{dunjko2020non,
  Title                    = {A non-review of Quantum Machine Learning: trends and explorations},
  Author                   = {Dunjko, Vedran and Wittek, Peter},
  Journal                  = {Quantum Views},
  Year                     = {2020},
  Pages                    = {32},
  Volume                   = {4},
  Publisher                = {Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften},
  URL                      = {https://quantum-journal.org/views/qv-2020-03-17-32/}
}
[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{gil2020input,
  title={Input redundancy for parameterized quantum circuits},
  author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
  journal={Frontiers in Physics},
  volume={8},
  pages={297},
  year={2020},
  publisher={Frontiers}
}
[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{henderson2020quanvolutional,
  title={Quanvolutional neural networks: powering image recognition with quantum circuits},
  author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
  journal={Quantum Machine Intelligence},
  volume={2},
  number={1},
  pages={1--9},
  year={2020},
  publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@inproceedings{kerenidis2019quantum,
  title={Quantum Algorithms for Deep Convolutional Neural Networks},
  author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
  booktitle={International Conference on Learning Representations},
  year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning]
@article{li2020quantum,
  title={A quantum deep convolutional neural network for image recognition},
  author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
  journal={Quantum Science and Technology},
  volume={5},
  number={4},
  pages={044003},
  year={2020},
  publisher={IOP Publishing}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@inproceedings{macaluso2020variational,
  title={A Variational Algorithm for Quantum Neural Networks},
  author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
  booktitle={International Conference on Computational Science},
  pages={591--604},
  year={2020},
  organization={Springer}
}
[Mari et al] Transfer learning in hybrid classical-quantum neural networks. Quantum. [Quantum Neural Networks] [Quantum Transfer Learning] [Quantum Machine Learning] (Gate Model)
@article{mari2020transfer,
  title={Transfer learning in hybrid classical-quantum neural networks},
  author={Mari, Andrea and Bromley, Thomas R and Izaac, Josh and Schuld, Maria and Killoran, Nathan},
  journal={Quantum},
  volume={4},
  pages={340},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{marrero2020entanglement,
  title={Entanglement induced barren plateaus},
  author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
  journal={arXiv preprint arXiv:2010.15968},
  year={2020}
}
[Mezquita et al] A Review of k-NN Algorithm Based on Classical and Quantum Machine Learning. DCAI 2020. [Quantum Machine Learning]
@inproceedings{mezquita2020review,
  title={A Review of k-NN Algorithm Based on Classical and Quantum Machine Learning},
  author={Mezquita, Yeray and Alonso, Ricardo S and Casado-Vara, Roberto and Prieto, Javier and Corchado, Juan Manuel},
  booktitle={International Symposium on Distributed Computing and Artificial Intelligence},
  pages={189--198},
  year={2020},
  organization={Springer}
}
[Pande et Mulay] Bibliometric Survey of Quantum Machine Learning. Science & Technology Libraries. [Quantum Machine Learning]
@article{pande2020bibliometric,
  title={Bibliometric survey of quantum machine learning},
  author={Pande, Mandaar and Mulay, Preeti},
  journal={Science \& Technology Libraries},
  volume={39},
  number={4},
  pages={369--382},
  year={2020},
  publisher={Taylor \& Francis}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{perez2020data,
  title={Data re-uploading for a universal quantum classifier},
  author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
  journal={Quantum},
  volume={4},
  pages={226},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus] [Quantum Convolutional Neural Networks] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{pesah2020absence,
  title={Absence of barren plateaus in quantum convolutional neural networks},
  author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
  journal={arXiv preprint arXiv:2011.02966},
  year={2020}
}
[Ramezani et al] Machine Learning Algorithms in Quantum Computing: A Survey. International Joint Conference on Neural Networks. [Quantum Information and Computing] [Quantum Machine Learning]
@inproceedings{ramezani2020machine,
  title={Machine learning algorithms in quantum computing: A survey},
  author={Ramezani, Somayeh Bakhtiari and Sommers, Alexander and Manchukonda, Harish Kumar and Rahimi, Shahram and Amirlatifi, Amin},
  booktitle={2020 International Joint Conference on Neural Networks (IJCNN)},
  pages={1--8},
  year={2020},
  organization={IEEE}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{schuld2020circuit,
  title={Circuit-centric quantum classifiers},
  author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
  journal={Physical Review A},
  volume={101},
  number={3},
  pages={032308},
  year={2020},
  publisher={APS}
}
[Sergioli] Quantum and quantum-like machine learning: a note on differences and similarities. Soft Computing. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{sergioli2020quantum,
  title={Quantum and quantum-like machine learning: a note on differences and similarities},
  author={Sergioli, Giuseppe},
  journal={Soft Computing},
  volume={24},
  number={14},
  pages={10247--10255},
  year={2020},
  publisher={Springer}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Barren Plateaus]
@article{sharma2020trainability,
  title={Trainability of dissipative perceptron-based quantum neural networks},
  author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2005.12458},
  year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@inproceedings{tacchino2020variational,
  title={Variational learning for quantum artificial neural networks},
  author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
  booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
  pages={130--136},
  year={2020},
  organization={IEEE}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{wang2020noise,
  title={Noise-induced barren plateaus in variational quantum algorithms},
  author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2007.14384},
  year={2020}
}
[Willsch et al] Support vector machines on the D-Wave quantum annealer. Computer Physics Communications. [Quantum Support Vector Machine] [Quantum Machine Learning] (Adiabatic Model)
@article{willsch2020support,
  title={Support vector machines on the D-Wave quantum annealer},
  author={Willsch, Dennis and Willsch, Madita and De Raedt, Hans and Michielsen, Kristel},
  journal={Computer physics communications},
  volume={248},
  pages={107006},
  year={2020},
  publisher={Elsevier}
}
[Zhang & Ni] Recent advances in quantum machine learning. Quantum Engineering. [Quantum Machine Learning] [Quantum Theory]
@article{zhang2020recent,
  title={Recent advances in quantum machine learning},
  author={Zhang, Yao and Ni, Qiang},
  journal={Quantum Engineering},
  volume={2},
  number={1},
  pages={e34},
  year={2020},
  publisher={Wiley Online Library}
}

2019

[Benedetti et al] Parameterized quantum circuits as machine learning models. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Machine Learning]
@Article{benedetti2019parameterized,
  Title                    = {Parameterized quantum circuits as machine learning models},
  Author                   = {Benedetti, Marcello and Lloyd, Erika and Sack, Stefan and Fiorentini, Mattia},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2019},
  Number                   = {4},
  Pages                    = {043001},
  Volume                   = {4},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5/meta}
}
[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cong2019quantum,
  Title                    = {Quantum convolutional neural networks},
  Author                   = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
  Journal                  = {Nature Physics},
  Year                     = {2019},
  Number                   = {12},
  Pages                    = {1273--1278},
  Volume                   = {15},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{grant2019initialization,
  title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
  author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
  journal={Quantum},
  volume={3},
  pages={214},
  year={2019},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms] [Quantum Support Vector Machine] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{havlivcek2019supervised,
  Title                    = {Supervised learning with quantum-enhanced feature spaces},
  Author                   = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
  Journal                  = {Nature},
  Year                     = {2019},
  Number                   = {7747},
  Pages                    = {209--212},
  Volume                   = {567},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41586-019-0980-2}
}
[Killoran et al] Continuous-variable quantum neural networks. Physical Review Research. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{killoran2019continuous,
  title={Continuous-variable quantum neural networks},
  author={Killoran, Nathan and Bromley, Thomas R and Arrazola, Juan Miguel and Schuld, Maria and Quesada, Nicol{\'a}s and Lloyd, Seth},
  journal={Physical Review Research},
  volume={1},
  number={3},
  pages={033063},
  year={2019},
  publisher={APS}
}
[Liu et al] A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for Non-Ideal Training Sets. IEEE Access. [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@article{liu2019unitary,
  title={A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets},
  author={Liu, Wenjie and Gao, Peipei and Wang, Yuxiang and Yu, Wenbin and Zhang, Maojun},
  journal={IEEE Access},
  volume={7},
  pages={36854--36865},
  year={2019},
  publisher={IEEE}
}
[Schuld & Killoran] Quantum machine learning in feature Hilbert spaces. Physical Review Letters. [Quantum Machine Learning] [Quantum Information and Computing]
@article{schuld2019quantum,
  title={Quantum machine learning in feature Hilbert spaces},
  author={Schuld, Maria and Killoran, Nathan},
  journal={Physical review letters},
  volume={122},
  number={4},
  pages={040504},
  year={2019},
  publisher={APS}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{tacchino2019artificial,
  title={An artificial neuron implemented on an actual quantum processor},
  author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--8},
  year={2019},
  publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing]
@article{torrontegui2019unitary,
  title={Unitary quantum perceptron as efficient universal approximator},
  author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
  journal={EPL (Europhysics Letters)},
  volume={125},
  number={3},
  pages={30004},
  year={2019},
  publisher={IOP Publishing}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Variational Quantum Algorithms]
@article{verdon2019learning,
  title={Learning to learn with quantum neural networks via classical neural networks},
  author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
  journal={arXiv preprint arXiv:1907.05415},
  year={2019}
}
[Verdon et al] Quantum graph neural networks. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{verdon2019quantum,
  title={Quantum graph neural networks},
  author={Verdon, Guillaume and McCourt, Trevor and Luzhnica, Enxhell and Singh, Vikash and Leichenauer, Stefan and Hidary, Jack},
  journal={arXiv preprint arXiv:1909.12264},
  year={2019}
[Wiebe & Wossnig] Generative training of quantum Boltzmann machines with hidden units. arXiv. [Quantum Boltzmann machines] [Quantum Machine Learning]
@article{wiebe2019generative,
  title={Generative training of quantum Boltzmann machines with hidden units},
  author={Wiebe, Nathan and Wossnig, Leonard},
  journal={arXiv preprint arXiv:1905.09902},
  year={2019}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiersema2019implementing,
  title={Implementing perceptron models with qubits},
  author={Wiersema, RC and Kappen, HJ},
  journal={Physical Review A},
  volume={100},
  number={2},
  pages={020301},
  year={2019},
  publisher={APS}
}
[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{zoufal2019quantum,
  title={Quantum generative adversarial networks for learning and loading random distributions},
  author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--9},
  year={2019},
  publisher={Nature Publishing Group}
}

2018

[Allcock & Zhang] Quantum machine learning. National Science Review. [Quantum Machine Learning] [Quantum Boltzmann machines] [Quantum Generative Adversarial Networks]
@Article{allcock2019quantum,
  Title                    = {Quantum machine learning},
  Author                   = {Allcock, Jonathan and Zhang, Shengyu},
  Journal                  = {National Science Review},
  Year                     = {2019},
  Number                   = {1},
  Pages                    = {26--28},
  Volume                   = {6},
  Publisher                = {Oxford University Press},
  URL                      = {https://academic.oup.com/nsr/article/6/1/26/5222655?login=true}
}
[Amin et al] Quantum boltzmann machine. Physical Review X. [Quantum Boltzmann machines] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@Article{amin2018quantum,
  Title                    = {Quantum boltzmann machine},
  Author                   = {Amin, Mohammad H and Andriyash, Evgeny and Rolfe, Jason and Kulchytskyy, Bohdan and Melko, Roger},
  Journal                  = {Physical Review X},
  Year                     = {2018},
  Number                   = {2},
  Pages                    = {021050},
  Volume                   = {8},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prx/abstract/10.1103/PhysRevX.8.021050}
}
[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning] [Quantum Optimization] [Quantum Neural Networks]
@Article{ciliberto2018quantum,
  Title                    = {Quantum machine learning: a classical perspective},
  Author                   = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
  Journal                  = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  Year                     = {2018},
  Number                   = {2209},
  Pages                    = {20170551},
  Volume                   = {474},
  Publisher                = {The Royal Society Publishing},
  URL                      = {https://doi.org/10.1098/rspa.2017.0551}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{dallaire2018quantum,
  title={Quantum generative adversarial networks},
  author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
  journal={Physical Review A},
  volume={98},
  number={1},
  pages={012324},
  year={2018},
  publisher={APS}
}
[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{du2018implementable,
  Title                    = {Implementable quantum classifier for nonlinear data},
  Author                   = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
  Journal                  = {arXiv preprint arXiv:1809.06056},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1809.06056}
}
[Dunjko & Briegel] Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Reports on Progress in Physics. [Quantum Machine Learning] [Probably Approximately Correct Learning] [Quantum Information and Computing] (Gate Model) (Adiabatic Model)
@Article{dunjko2018machine,
  Title                    = {Machine learning \& artificial intelligence in the quantum domain: a review of recent progress},
  Author                   = {Dunjko, Vedran and Briegel, Hans J},
  Journal                  = {Reports on Progress in Physics},
  Year                     = {2018},
  Number                   = {7},
  Pages                    = {074001},
  Volume                   = {81},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/1361-6633/aab406/meta}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{farhi2018classification,
  Title                    = {Classification with quantum neural networks on near term processors},
  Author                   = {Farhi, Edward and Neven, Hartmut},
  Journal                  = {arXiv preprint arXiv:1802.06002},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{grant2018hierarchical,
  Title                    = {Hierarchical quantum classifiers},
  Author                   = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
  Journal                  = {npj Quantum Information},
  Year                     = {2018},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {4},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-018-0116-9}
}
[Hu Wei] Towards a real quantum neuron. Natural Science. [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@article{hu2018towards,
  title={Towards a real quantum neuron},
  author={Hu, Wei},
  journal={Natural Science},
  volume={10},
  number={3},
  pages={99--109},
  year={2018},
  publisher={Scientific Research Publishing}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mcclean2018barren,
  title={Barren plateaus in quantum neural network training landscapes},
  author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
  journal={Nature communications},
  volume={9},
  number={1},
  pages={1--6},
  year={2018},
  publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mitarai2018quantum,
  title={Quantum circuit learning},
  author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
  journal={Physical Review A},
  volume={98},
  number={3},
  pages={032309},
  year={2018},
  publisher={APS}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@Article{moll2018quantum,
  Title                    = {Quantum optimization using variational algorithms on near-term quantum devices},
  Author                   = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2018},
  Number                   = {3},
  Pages                    = {030503},
  Volume                   = {3},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}
[Neukart et al] Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces. Frontiers in physics. [Quantum Reinforcement Learning] [Quantum Machine Learning] (Adiabatic Model)
@article{neukart2018quantum,
  title={Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces},
  author={Neukart, Florian and Von Dollen, David and Seidel, Christian and Compostella, Gabriele},
  journal={Frontiers in physics},
  volume={5},
  pages={71},
  year={2018},
  publisher={Frontiers}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiebe2016quantum,
  title={Quantum perceptron models},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={arXiv preprint arXiv:1602.04799},
  year={2016}
}

2017

[Arunachalam & de Wolf] Guest column: A survey of quantum learning theory. ACM SIGACT News. [Quantum Machine Learning] [Probably Approximately Correct Learning] [Complexity Theory] (Gate Model)
@Article{arunachalam2017guest,
  Title                    = {Guest column: A survey of quantum learning theory},
  Author                   = {Arunachalam, Srinivasan and de Wolf, Ronald},
  Journal                  = {ACM SIGACT News},
  Year                     = {2017},
  Number                   = {2},
  Pages                    = {41--67},
  Volume                   = {48},
  Publisher                = {ACM New York, NY, USA},
  URL                      = {https://dl.acm.org/doi/abs/10.1145/3106700.3106710}
}
[Biamonte et al] Quantum machine learning. Nature. [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@Article{biamonte2017quantum,
  Title                    = {Quantum machine learning},
  Author                   = {Biamonte, Jacob and Wittek, Peter and Pancotti, Nicola and Rebentrost, Patrick and Wiebe, Nathan and Lloyd, Seth},
  Journal                  = {Nature},
  Year                     = {2017},
  Number                   = {7671},
  Pages                    = {195--202},
  Volume                   = {549},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/Nature23474}
}
[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron] [Quantum Information and Computing] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cao2017quantum,
  Title                    = {Quantum neuron: an elementary building block for machine learning on quantum computers},
  Author                   = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
  Journal                  = {arXiv preprint arXiv:1711.11240},
  Year                     = {2017},
  URL                      = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Romero et al] Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology. [Quantum Neural Networks] [Quantum Autoencoders] [Quantum Machine Learning] (Gate Model)
@article{romero2017quantum,
  title={Quantum autoencoders for efficient compression of quantum data},
  author={Romero, Jonathan and Olson, Jonathan P and Aspuru-Guzik, Alan},
  journal={Quantum Science and Technology},
  volume={2},
  number={4},
  pages={045001},
  year={2017},
  publisher={IOP Publishing}
}
[Ruan et al] Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics. [Quantum Machine Learning] [Quantum Classification]
@article{ruan2017quantum,
  title={Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance},
  author={Ruan, Yue and Xue, Xiling and Liu, Heng and Tan, Jianing and Li, Xi},
  journal={International Journal of Theoretical Physics},
  volume={56},
  number={11},
  pages={3496--3507},
  year={2017},
  publisher={Springer}
}
[Wan et al] Quantum generalisation of feedforward neural networks. npj Quantum information. [Quantum Neural Networks] [Quantum Autoencoders] [Quantum Machine Learning] (Gate Model)
@Article{wan2017quantum,
  Title                    = {Quantum generalisation of feedforward neural networks},
  Author                   = {Wan, Kwok Ho and Dahlsten, Oscar and Kristj{\'a}nsson, Hl{\'e}r and Gardner, Robert and Kim, MS},
  Journal                  = {npj Quantum information},
  Year                     = {2017},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {3},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-017-0032-4}
}

2016

[Oshurko] Quantum machine learning. Quantum Computing. [Quantum Machine Learning]
@article{oshurko2016quantum,
  title={Quantum machine learning},
  author={Oshurko, Ievgeniia},
  journal={Quantum Information and Computation Course},
  year={2016}
}

2015

[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning] [Quantum Classification] [Quantum Clustering] [Quantum Nearest Neighbors Algorithm] [Quantum Neural Networks] (Gate Model) (Adiabatic Model)
@Article{adcock2015advances,
  Title                    = {Advances in quantum machine learning},
  Author                   = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
  Journal                  = {arXiv preprint arXiv:1512.02900},
  Year                     = {2015},
  URL                      = {https://arxiv.org/abs/1512.02900}
}
[Schuld et al] An introduction to quantum machine learning. Contemporary Physics. [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@article{schuld2015introduction,
  title={An introduction to quantum machine learning},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  journal={Contemporary Physics},
  volume={56},
  number={2},
  pages={172--185},
  year={2015},
  publisher={Taylor \& Francis}
}
[Schuld et al] Simulating a perceptron on a quantum computer. Physics Letters A. [Quantum Perceptron] [Quantum Machine Learning]
@article{schuld2015simulating,
  title={Simulating a perceptron on a quantum computer},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  journal={Physics Letters A},
  volume={379},
  number={7},
  pages={660--663},
  year={2015},
  publisher={Elsevier}
}

2014

[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] [] (Gate Model)
@Article{farhi2014quantum,
  Title                    = {A quantum approximate optimization algorithm},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
  Journal                  = {arXiv preprint arXiv:1411.4028},
  Year                     = {2014},
  URL                      = {https://arxiv.org/abs/1411.4028}
}
[Schuld et al] Quantum computing for pattern classification. Pacific Rim International Conference on Artificial Intelligence. [Quantum Machine Learning]
@inproceedings{schuld2014quantum,
  title={Quantum computing for pattern classification},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  booktitle={Pacific Rim International Conference on Artificial Intelligence},
  pages={208--220},
  year={2014},
  organization={Springer}
}
[Schuld et al] The quest for a Quantum Neural Networt. Quantum Information Processing. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{schuld2014quest,
  title={The quest for a quantum neural network},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  journal={Quantum Information Processing},
  volume={13},
  number={11},
  pages={2567--2586},
  year={2014},
  publisher={Springer}
}
[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{wiebe2015quantum,
  title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={Quantum Information \& Computation},
  volume={15},
  number={3-4},
  pages={316--356},
  year={2015},
  publisher={Rinton Press, Incorporated Paramus, NJ}
}

2013

[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@Article{aimeur2013quantum,
  Title                    = {Quantum speed-up for unsupervised learning},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Journal                  = {Machine Learning},
  Year                     = {2013},
  Number                   = {2},
  Pages                    = {261--287},
  Volume                   = {90},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}
[Lloyd et al] Quantum algorithms for supervised and unsupervised machine learning. arXiv. [Quantum Machine Learning] [Quantum Clustering] (Adiabatic Model)
@article{lloyd2013quantum,
  title={Quantum algorithms for supervised and unsupervised machine learning},
  author={Lloyd, Seth and Mohseni, Masoud and Rebentrost, Patrick},
  journal={arXiv preprint arXiv:1307.0411},
  year={2013}
}

2012

[Da Silva et al] Classical and superposed learning for quantum weightless neural networks. Neurocomputing. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{da2012classical,
  Title                    = {Classical and superposed learning for quantum weightless neural networks},
  Author                   = {Da Silva, Adenilton J and De Oliveira, Wilson R and Ludermir, Teresa B},
  Journal                  = {Neurocomputing},
  Year                     = {2012},
  Number                   = {1},
  Pages                    = {52--60},
  Volume                   = {75},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/abs/pii/S0925231211004127?via%3Dihub}
}

2011

[Panella & Martinelli] Neural networks with quantum. International Journal of Circuit Theory and Applications. [Quantum Neurofuzzy Network] [Quantum Neural Networks] [Quantum Machine Learning]
@article{panella2011neural,
  title={Neural networks with quantum architecture and quantum learning},
  author={Panella, Massimo and Martinelli, Giuseppe},
  journal={International Journal of Circuit Theory and Applications},
  volume={39},
  number={1},
  pages={61--77},
  year={2011},
  publisher={Wiley Online Library}
}

2010

[Da Silva et al] Superposition Based Learning Algorithm. Brazilian Symposium on Neural Networks. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@inproceedings{silva2010superposition,
  title={Superposition based learning algorithm},
  author={Silva, Adenilton J and Ludermir, Teresa B and de Oliveira Jr, Wilson R},
  booktitle={2010 Eleventh Brazilian Symposium on Neural Networks},
  pages={1--6},
  year={2010},
  organization={IEEE}
}

2009

[de Oliveira] Quantum RAM based neural networks. European Symposium on Artificial Neural Network. [QRAM] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@InProceedings{de2009quantum,
  Title                    = {Quantum RAM Based Neural Netoworks.},
  Author                   = {de Oliveira, Wilson Rosa},
  Booktitle                = {ESANN},
  Year                     = {2009},
  Organization             = {Citeseer},
  Pages                    = {331--336},
  Volume                   = {9},
  URL                      = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.4363&rep=rep1&type=pdf}
}
[Harrow et al] Quantum Algorithm for Linear Systems of Equations. Physical Review Letters. [Quantum Machine Learning] [Quantum Speedup-Advantage-Supremacy]
@Article{harrow2009quantum,
  Title                    = {Quantum algorithm for linear systems of equations},
  Author                   = {Harrow, Aram W and Hassidim, Avinatan and Lloyd, Seth},
  Journal                  = {Physical review letters},
  Year                     = {2009},
  Number                   = {15},
  Pages                    = {150502},
  Volume                   = {103},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502}
}

2008

[Dong et al] Quantum Reinforcement Learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). [Quantum Reinforcement Learning] [Quantum Machine Learning] (Gate Model)
@article{dong2008quantum,
  title={Quantum reinforcement learning},
  author={Dong, Daoyi and Chen, Chunlin and Li, Hanxiong and Tarn, Tzyh-Jong},
  journal={IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)},
  volume={38},
  number={5},
  pages={1207--1220},
  year={2008},
  publisher={IEEE}
}
[Panella & Martinelli] Neurofuzzy networks with nonlinear quantum learning. IEEE Transactions on Fuzzy Systems. [Quantum Neurofuzzy Network] [Quantum Neural Networks] [Quantum Machine Learning]
@article{panella2008neurofuzzy,
  title={Neurofuzzy networks with nonlinear quantum learning},
  author={Panella, Massimo and Martinelli, Giuseppe},
  journal={IEEE Transactions on Fuzzy Systems},
  volume={17},
  number={3},
  pages={698--710},
  year={2008},
  publisher={IEEE}
}

2007

[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@inproceedings{aimeur2007quantum,
  title={Quantum clustering algorithms},
  author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  booktitle={Proceedings of the 24th international conference on machine learning},
  pages={1--8},
  year={2007}
}

2006

[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@InProceedings{aimeur2006machine,
  Title                    = {Machine learning in a quantum world},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Booktitle                = {Conference of the Canadian Society for Computational Studies of Intelligence},
  Year                     = {2006},
  Organization             = {Springer},
  Pages                    = {431--442},
  URL                      = {https://link.springer.com/chapter/10.1007/11766247_37}
}

2001

[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning]
@Article{altaisky2001quantum,
  Title                    = {Quantum neural network},
  Author                   = {Altaisky, MV},
  Journal                  = {arXiv preprint quant-ph/0107012},
  Year                     = {2001},
  URL                      = {https://arxiv.org/abs/quant-ph/0107012}
}

2000

[Narayanan & Menneer] Quantum artificial neural network architectures and components. Information Sciences. [Quantum Neural Networks] [Quantum Machine Learning]
@article{narayanan2000quantum,
  title={Quantum artificial neural network architectures and components},
  author={Narayanan, Ajit and Menneer, Tammy},
  journal={Information Sciences},
  volume={128},
  number={3-4},
  pages={231--255},
  year={2000},
  publisher={Elsevier}
}
[Ventura & Martinez] Quantum associative memory. Information Sciences. [Quantum Machine Learning] [Quantum Information and Computing] [Quantum Classification]
@article{ventura2000quantum,
  title={Quantum associative memory},
  author={Ventura, Dan and Martinez, Tony},
  journal={Information Sciences},
  volume={124},
  number={1-4},
  pages={273--296},
  year={2000},
  publisher={Elsevier}
}

1996

[Behrman et al ] A quantum dot neural network. Workshop on Physics of Computation. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@InProceedings{behrman1996quantum,
  Title                    = {A quantum dot neural network},
  Author                   = {Behrman, Elizabeth C and Niemel, John and Steck, James E and Skinner, Steve R},
  Booktitle                = {Proceedings of the 4th Workshop on Physics of Computation},
  Year                     = {1996},
  Pages                    = {22--24},
  URL                      = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1507&rep=rep1&type=pdf}
}

Quantum Nearest Neighbors Algorithm

2020

[Ablayev et al] On quantum methods for machine learning problems part II: Quantum classification algorithms. Big Data Mining and Analytics. [Quantum Machine Learning] [Quantum Classification] [Quantum Nearest Neighbors Algorithm] (Gate Model)
@Article{ablayev2020quantum2,
  Title                    = {{On quantum methods for machine learning problems part II: Quantum classification algorithms}},
  Author                   = {Ablayev, Farid and Ablayev, Marat and Huang, Joshua Zhexue and Khadiev, Kamil and Salikhova, Nailya and Wu, Dingming},
  Journal                  = {Big Data Mining and Analytics},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {56--67},
  Volume                   = {3},
  URL                      = {https://ieeexplore.ieee.org/abstract/document/8935095}
}

2015

[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning] [Quantum Classification] [Quantum Clustering] [Quantum Nearest Neighbors Algorithm] [Quantum Neural Networks] (Gate Model) (Adiabatic Model)
@Article{adcock2015advances,
  Title                    = {Advances in quantum machine learning},
  Author                   = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
  Journal                  = {arXiv preprint arXiv:1512.02900},
  Year                     = {2015},
  URL                      = {https://arxiv.org/abs/1512.02900}
}

2014

[Wiebe et al] Quantum Algorithms for Nearest-Neighbour Methods for Supervised and Unsupervised Learning. Quantum Information & Computation. [Quantum Nearest Neighbors Algorithm] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{wiebe2015quantum,
  title={Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={Quantum Information \& Computation},
  volume={15},
  number={3-4},
  pages={316--356},
  year={2015},
  publisher={Rinton Press, Incorporated Paramus, NJ}
}

Quantum Neural Networks

2021

[Cerezo et al] Cost Function Dependent Barren Plateaus in Shallow Parametrized Quantum Circuits. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{cerezo2021cost,
  title={Cost function dependent barren plateaus in shallow parametrized quantum circuits},
  author={Cerezo, Marco and Sone, Akira and Volkoff, Tyler and Cincio, Lukasz and Coles, Patrick J},
  journal={Nature communications},
  volume={12},
  number={1},
  pages={1--12},
  year={2021},
  publisher={Nature Publishing Group}
}
[Chen et al] Universal discriminative quantum neural networks. Quantum Machine Intelligence. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{chen2021universal,
  Title                    = {Universal discriminative quantum neural networks},
  Author                   = {Chen, Hongxiang and Wossnig, Leonard and Severini, Simone and Neven, Hartmut and Mohseni, Masoud},
  Journal                  = {Quantum Machine Intelligence},
  Year                     = {2021},
  Number                   = {1},
  Pages                    = {1--11},
  Volume                   = {3},
  Publisher                = {Springer},
  URL                      = {https://arxiv.org/abs/1805.08654}
}
[Holmes et al ] Connecting ansatz expressibility to gradient magnitudes and barren plateaus. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Barren Plateaus] [Quantum Machine Learning]
@article{holmes2021connecting,
  title={Connecting ansatz expressibility to gradient magnitudes and barren plateaus},
  author={Holmes, Zo{\"e} and Sharma, Kunal and Cerezo, M and Coles, Patrick J},
  journal={arXiv preprint arXiv:2101.02138},
  year={2021}
}
[Jaderberg et al] Quantum Self-Supervised Learning. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{jaderberg2021quantum,
  title={Quantum Self-Supervised Learning},
  author={Jaderberg, Ben and Anderson, Lewis W and Xie, Weidi and Albanie, Samuel and Kiffner, Martin and Jaksch, Dieter},
  journal={arXiv preprint arXiv:2103.14653},
  year={2021}
}
[Lubsch et al] Variational quantum algorithms for nonlinear problems. Physical Review A. [Nonlinear Problems] [Partial Differential Equations] [Quantum Neural Networks] [Quantum Machine Learning]
@article{lubasch2020variational,
  title={Variational quantum algorithms for nonlinear problems},
  author={Lubasch, Michael and Joo, Jaewoo and Moinier, Pierre and Kiffner, Martin and Jaksch, Dieter},
  journal={Physical Review A},
  volume={101},
  number={1},
  pages={010301},
  year={2020},
  publisher={APS}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{mangini2021quantum,
  title={Quantum computing models for artificial neural networks},
  author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
  journal={EPL (Europhysics Letters)},
  volume={134},
  number={1},
  pages={10002},
  year={2021},
  publisher={IOP Publishing}
}
[Patti et al] Entanglement devised barren plateau mitigation. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{patti2020entanglement,
  title={Entanglement devised barren plateau mitigation},
  author={Patti, Taylor L and Najafi, Khadijeh and Gao, Xun and Yelin, Susanne F},
  journal={arXiv preprint arXiv:2012.12658},
  year={2020}
}
[Perez-Salinas et al] One qubit as a Universal Approximant. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{perez2021one,
  title={One qubit as a Universal Approximant},
  author={P{\'e}rez-Salinas, Adri{\'a}n and L{\'o}pez-N{\'u}{\~n}ez, David and Garc{\'\i}a-S{\'a}ez, Artur and Forn-D{\'\i}az, P and Latorre, Jos{\'e} I},
  journal={arXiv preprint arXiv:2102.04032},
  year={2021}
}
[Skolik et al] Layerwise learning for quantum neural networks. Quantum Machine Intelligence. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{skolik2021layerwise,
  title={Layerwise learning for quantum neural networks},
  author={Skolik, Andrea and McClean, Jarrod R and Mohseni, Masoud and van der Smagt, Patrick and Leib, Martin},
  journal={Quantum Machine Intelligence},
  volume={3},
  number={1},
  pages={1--11},
  year={2021},
  publisher={Springer}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{volkoff2021large,
  title={Large gradients via correlation in random parameterized quantum circuits},
  author={Volkoff, Tyler and Coles, Patrick J},
  journal={Quantum Science and Technology},
  volume={6},
  number={2},
  pages={025008},
  year={2021},
  publisher={IOP Publishing}
}

2020

[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@Article{beer2020training,
  Title                    = {Training deep quantum neural networks},
  Author                   = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
  Journal                  = {Nature communications},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {1--6},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Carolan et al ] Variational quantum unsampling on a quantum photonic processor. Nature Physics. [Variational Quantum Algorithms] [Quantum Neural Networks]
@article{carolan2020variational,
  title={Variational quantum unsampling on a quantum photonic processor},
  author={Carolan, Jacques and Mohseni, Masoud and Olson, Jonathan P and Prabhu, Mihika and Chen, Changchen and Bunandar, Darius and Niu, Murphy Yuezhen and Harris, Nicholas C and Wong, Franco NC and Hochberg, Michael and others},
  journal={Nature Physics},
  volume={16},
  number={3},
  pages={322--327},
  year={2020},
  publisher={Nature Publishing Group}
}
[Chakraborty et al] An Analytical Review of Quantum Neural Network Models and Relevant Research. International Conference on Communication and Electronics Systems. [Quantum Neural Networks] [Quantum Machine Learning]
@inproceedings{chakraborty2020analytical,
  title={An Analytical Review of Quantum Neural Network Models and Relevant Research},
  author={Chakraborty, Simantini and Das, Tamal and Sutradhar, Saurav and Das, Mrinmoy and Deb, Suman},
  booktitle={2020 5th International Conference on Communication and Electronics Systems (ICCES)},
  pages={1395--1400},
  year={2020},
  organization={IEEE}
}
[Gil Vidal & Theis] Input redundancy for parameterized quantum circuits. Frontiers in Physics. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{gil2020input,
  title={Input redundancy for parameterized quantum circuits},
  author={Gil Vidal, Francisco Javier and Theis, Dirk Oliver},
  journal={Frontiers in Physics},
  volume={8},
  pages={297},
  year={2020},
  publisher={Frontiers}
}
[Henderson et al] Quanvolutional neural networks: powering image recognition with quantum circuits. Quantum Machine Intelligence. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{henderson2020quanvolutional,
  title={Quanvolutional neural networks: powering image recognition with quantum circuits},
  author={Henderson, Maxwell and Shakya, Samriddhi and Pradhan, Shashindra and Cook, Tristan},
  journal={Quantum Machine Intelligence},
  volume={2},
  number={1},
  pages={1--9},
  year={2020},
  publisher={Springer}
}
[Kerenidis et al] Quantum algorithms for deep convolutional neural networks. ICLR. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@inproceedings{kerenidis2019quantum,
  title={Quantum Algorithms for Deep Convolutional Neural Networks},
  author={Kerenidis, Iordanis and Landman, Jonas and Prakash, Anupam},
  booktitle={International Conference on Learning Representations},
  year={2019}
}
[Li et al] A quantum deep convolutional neural network for image recognition. Quantum Science and Technology. [Quantum Convolutional Neural Networks] [Quantum Neural Networks] [Quantum Machine Learning]
@article{li2020quantum,
  title={A quantum deep convolutional neural network for image recognition},
  author={Li, YaoChong and Zhou, Ri-Gui and Xu, RuQing and Luo, Jia and Hu, WenWen},
  journal={Quantum Science and Technology},
  volume={5},
  number={4},
  pages={044003},
  year={2020},
  publisher={IOP Publishing}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@inproceedings{macaluso2020variational,
  title={A Variational Algorithm for Quantum Neural Networks},
  author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
  booktitle={International Conference on Computational Science},
  pages={591--604},
  year={2020},
  organization={Springer}
}
[Mari et al] Transfer learning in hybrid classical-quantum neural networks. Quantum. [Quantum Neural Networks] [Quantum Transfer Learning] [Quantum Machine Learning] (Gate Model)
@article{mari2020transfer,
  title={Transfer learning in hybrid classical-quantum neural networks},
  author={Mari, Andrea and Bromley, Thomas R and Izaac, Josh and Schuld, Maria and Killoran, Nathan},
  journal={Quantum},
  volume={4},
  pages={340},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Marrero et al] Entanglement Induced Barren Plateaus. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{marrero2020entanglement,
  title={Entanglement induced barren plateaus},
  author={Marrero, Carlos Ortiz and Kieferov{\'a}, M{\'a}ria and Wiebe, Nathan},
  journal={arXiv preprint arXiv:2010.15968},
  year={2020}
}
[Perez-Salinas et al] Data re-uploading for a universal quantum classifier. Quantum. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{perez2020data,
  title={Data re-uploading for a universal quantum classifier},
  author={P{\'e}rez-Salinas, Adri{\'a}n and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jos{\'e} I},
  journal={Quantum},
  volume={4},
  pages={226},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Pesah et al] Absence of Barren Plateaus in Quantum Convolutional Neural Networks. arXiv. [Barren Plateaus] [Quantum Convolutional Neural Networks] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{pesah2020absence,
  title={Absence of barren plateaus in quantum convolutional neural networks},
  author={Pesah, Arthur and Cerezo, M and Wang, Samson and Volkoff, Tyler and Sornborger, Andrew T and Coles, Patrick J},
  journal={arXiv preprint arXiv:2011.02966},
  year={2020}
}
[Schuld et al] Circuit-centric quantum classifiers. Physical Review A. [Quantum Neural Networks] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@article{schuld2020circuit,
  title={Circuit-centric quantum classifiers},
  author={Schuld, Maria and Bocharov, Alex and Svore, Krysta M and Wiebe, Nathan},
  journal={Physical Review A},
  volume={101},
  number={3},
  pages={032308},
  year={2020},
  publisher={APS}
}
[Sharma et al] Trainability of Dissipative Perceptron-Based Quantum Neural Networks. arXiv. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Barren Plateaus]
@article{sharma2020trainability,
  title={Trainability of dissipative perceptron-based quantum neural networks},
  author={Sharma, Kunal and Cerezo, Marco and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2005.12458},
  year={2020}
}
[Tacchino et al] Variational Learning for Quantum Artificial Neural Networks. IEEE International Conference on Quantum Computing and Engineering. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@inproceedings{tacchino2020variational,
  title={Variational learning for quantum artificial neural networks},
  author={Tacchino, Francesco and Barkoutsos, Panagiotis Kl and Macchiavello, Chiara and Gerace, Dario and Tavernelli, Ivano and Bajoni, Daniele},
  booktitle={2020 IEEE International Conference on Quantum Computing and Engineering (QCE)},
  pages={130--136},
  year={2020},
  organization={IEEE}
}

2019

[Cong et al] Quantum convolutional neural networks. Nature Physics. [Quantum Neural Networks] [Quantum Convolutional Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cong2019quantum,
  Title                    = {Quantum convolutional neural networks},
  Author                   = {Cong, Iris and Choi, Soonwon and Lukin, Mikhail D},
  Journal                  = {Nature Physics},
  Year                     = {2019},
  Number                   = {12},
  Pages                    = {1273--1278},
  Volume                   = {15},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41567-019-0648-8.pdf}
}
[Grant et al] An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{grant2019initialization,
  title={An initialization strategy for addressing barren plateaus in parametrized quantum circuits},
  author={Grant, Edward and Wossnig, Leonard and Ostaszewski, Mateusz and Benedetti, Marcello},
  journal={Quantum},
  volume={3},
  pages={214},
  year={2019},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Kamruzzaman et al] Quantum Deep Learning Neural Networks. FICC 2019. [Quantum Neural Networks]
@inproceedings{kamruzzaman2019quantum,
  title={Quantum deep learning neural networks},
  author={Kamruzzaman, Abu and Alhwaiti, Yousef and Leider, Avery and Tappert, Charles C},
  booktitle={Future of Information and Communication Conference},
  pages={299--311},
  year={2019},
  organization={Springer}
}
[Killoran et al] Continuous-variable quantum neural networks. Physical Review Research. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{killoran2019continuous,
  title={Continuous-variable quantum neural networks},
  author={Killoran, Nathan and Bromley, Thomas R and Arrazola, Juan Miguel and Schuld, Maria and Quesada, Nicol{\'a}s and Lloyd, Seth},
  journal={Physical Review Research},
  volume={1},
  number={3},
  pages={033063},
  year={2019},
  publisher={APS}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Variational Quantum Algorithms]
@article{verdon2019learning,
  title={Learning to learn with quantum neural networks via classical neural networks},
  author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
  journal={arXiv preprint arXiv:1907.05415},
  year={2019}
}
[Verdon et al] Quantum graph neural networks. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{verdon2019quantum,
  title={Quantum graph neural networks},
  author={Verdon, Guillaume and McCourt, Trevor and Luzhnica, Enxhell and Singh, Vikash and Leichenauer, Stefan and Hidary, Jack},
  journal={arXiv preprint arXiv:1909.12264},
  year={2019}

2018

[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning] [Quantum Optimization] [Quantum Neural Networks]
@Article{ciliberto2018quantum,
  Title                    = {Quantum machine learning: a classical perspective},
  Author                   = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
  Journal                  = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  Year                     = {2018},
  Number                   = {2209},
  Pages                    = {20170551},
  Volume                   = {474},
  Publisher                = {The Royal Society Publishing},
  URL                      = {https://doi.org/10.1098/rspa.2017.0551}
}
[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{dallaire2018quantum,
  title={Quantum generative adversarial networks},
  author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
  journal={Physical Review A},
  volume={98},
  number={1},
  pages={012324},
  year={2018},
  publisher={APS}
}
[Fahri & Neven] Classification with Quantum Neural Networks on Near Term Processors. arXiv. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{farhi2018classification,
  Title                    = {Classification with quantum neural networks on near term processors},
  Author                   = {Farhi, Edward and Neven, Hartmut},
  Journal                  = {arXiv preprint arXiv:1802.06002},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1802.06002}
}
[Grant et al] Hierarchical quantum classifiers. npj Quantum information. [Quantum Neural Networks] [Quantum Machine Learning] [Quantum Classification] (Gate Model)
@Article{grant2018hierarchical,
  Title                    = {Hierarchical quantum classifiers},
  Author                   = {Grant, Edward and Benedetti, Marcello and Cao, Shuxiang and Hallam, Andrew and Lockhart, Joshua and Stojevic, Vid and Green, Andrew G and Severini, Simone},
  Journal                  = {npj Quantum Information},
  Year                     = {2018},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {4},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-018-0116-9}
}
[McClean et al] Barren plateaus in quantum neural network training landscapes. Nature communications. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mcclean2018barren,
  title={Barren plateaus in quantum neural network training landscapes},
  author={McClean, Jarrod R and Boixo, Sergio and Smelyanskiy, Vadim N and Babbush, Ryan and Neven, Hartmut},
  journal={Nature communications},
  volume={9},
  number={1},
  pages={1--6},
  year={2018},
  publisher={Nature Publishing Group}
}
[Mitarai et al] Quantum circuit learning. Physical Review A. [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning]
@article{mitarai2018quantum,
  title={Quantum circuit learning},
  author={Mitarai, Kosuke and Negoro, Makoto and Kitagawa, Masahiro and Fujii, Keisuke},
  journal={Physical Review A},
  volume={98},
  number={3},
  pages={032309},
  year={2018},
  publisher={APS}
}

2017

[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron] [Quantum Information and Computing] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cao2017quantum,
  Title                    = {Quantum neuron: an elementary building block for machine learning on quantum computers},
  Author                   = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
  Journal                  = {arXiv preprint arXiv:1711.11240},
  Year                     = {2017},
  URL                      = {https://arxiv.org/pdf/1711.11240.pdf}
}
[Romero et al] Quantum autoencoders for efficient compression of quantum data. Quantum Science and Technology. [Quantum Neural Networks] [Quantum Autoencoders] [Quantum Machine Learning] (Gate Model)
@article{romero2017quantum,
  title={Quantum autoencoders for efficient compression of quantum data},
  author={Romero, Jonathan and Olson, Jonathan P and Aspuru-Guzik, Alan},
  journal={Quantum Science and Technology},
  volume={2},
  number={4},
  pages={045001},
  year={2017},
  publisher={IOP Publishing}
}
[Wan et al] Quantum generalisation of feedforward neural networks. npj Quantum information. [Quantum Neural Networks] [Quantum Autoencoders] [Quantum Machine Learning] (Gate Model)
@Article{wan2017quantum,
  Title                    = {Quantum generalisation of feedforward neural networks},
  Author                   = {Wan, Kwok Ho and Dahlsten, Oscar and Kristj{\'a}nsson, Hl{\'e}r and Gardner, Robert and Kim, MS},
  Journal                  = {npj Quantum information},
  Year                     = {2017},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {3},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-017-0032-4}
}

2015

[Adcock et al] Advances in quantum machine learning. arXiv. [Quantum Machine Learning] [Quantum Classification] [Quantum Clustering] [Quantum Nearest Neighbors Algorithm] [Quantum Neural Networks] (Gate Model) (Adiabatic Model)
@Article{adcock2015advances,
  Title                    = {Advances in quantum machine learning},
  Author                   = {Adcock, Jeremy and Allen, Euan and Day, Matthew and Frick, Stefan and Hinchliff, Janna and Johnson, Mack and Morley-Short, Sam and Pallister, Sam and Price, Alasdair and Stanisic, Stasja},
  Journal                  = {arXiv preprint arXiv:1512.02900},
  Year                     = {2015},
  URL                      = {https://arxiv.org/abs/1512.02900}
}

2014

[Schuld et al] The quest for a Quantum Neural Networt. Quantum Information Processing. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@article{schuld2014quest,
  title={The quest for a quantum neural network},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  journal={Quantum Information Processing},
  volume={13},
  number={11},
  pages={2567--2586},
  year={2014},
  publisher={Springer}
}

2012

[Da Silva et al] Classical and superposed learning for quantum weightless neural networks. Neurocomputing. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{da2012classical,
  Title                    = {Classical and superposed learning for quantum weightless neural networks},
  Author                   = {Da Silva, Adenilton J and De Oliveira, Wilson R and Ludermir, Teresa B},
  Journal                  = {Neurocomputing},
  Year                     = {2012},
  Number                   = {1},
  Pages                    = {52--60},
  Volume                   = {75},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/abs/pii/S0925231211004127?via%3Dihub}
}

2011

[Panella & Martinelli] Neural networks with quantum. International Journal of Circuit Theory and Applications. [Quantum Neurofuzzy Network] [Quantum Neural Networks] [Quantum Machine Learning]
@article{panella2011neural,
  title={Neural networks with quantum architecture and quantum learning},
  author={Panella, Massimo and Martinelli, Giuseppe},
  journal={International Journal of Circuit Theory and Applications},
  volume={39},
  number={1},
  pages={61--77},
  year={2011},
  publisher={Wiley Online Library}
}

2010

[Da Silva et al] Superposition Based Learning Algorithm. Brazilian Symposium on Neural Networks. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@inproceedings{silva2010superposition,
  title={Superposition based learning algorithm},
  author={Silva, Adenilton J and Ludermir, Teresa B and de Oliveira Jr, Wilson R},
  booktitle={2010 Eleventh Brazilian Symposium on Neural Networks},
  pages={1--6},
  year={2010},
  organization={IEEE}
}

2009

[de Oliveira] Quantum RAM based neural networks. European Symposium on Artificial Neural Network. [QRAM] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@InProceedings{de2009quantum,
  Title                    = {Quantum RAM Based Neural Netoworks.},
  Author                   = {de Oliveira, Wilson Rosa},
  Booktitle                = {ESANN},
  Year                     = {2009},
  Organization             = {Citeseer},
  Pages                    = {331--336},
  Volume                   = {9},
  URL                      = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.4363&rep=rep1&type=pdf}
}

2008

[Panella & Martinelli] Neurofuzzy networks with nonlinear quantum learning. IEEE Transactions on Fuzzy Systems. [Quantum Neurofuzzy Network] [Quantum Neural Networks] [Quantum Machine Learning]
@article{panella2008neurofuzzy,
  title={Neurofuzzy networks with nonlinear quantum learning},
  author={Panella, Massimo and Martinelli, Giuseppe},
  journal={IEEE Transactions on Fuzzy Systems},
  volume={17},
  number={3},
  pages={698--710},
  year={2008},
  publisher={IEEE}
}

2003

[Ricks & Ventura] Training a Quantum Neural Network. NIPS. [Quantum Neural Networks]
@article{ricks2003training,
  title={Training a quantum neural network},
  author={Ricks, Bob and Ventura, Dan},
  journal={Advances in neural information processing systems},
  volume={16},
  pages={1019--1026},
  year={2003}
}

2001

[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning]
@Article{altaisky2001quantum,
  Title                    = {Quantum neural network},
  Author                   = {Altaisky, MV},
  Journal                  = {arXiv preprint quant-ph/0107012},
  Year                     = {2001},
  URL                      = {https://arxiv.org/abs/quant-ph/0107012}
}

2000

[Narayanan & Menneer] Quantum artificial neural network architectures and components. Information Sciences. [Quantum Neural Networks] [Quantum Machine Learning]
@article{narayanan2000quantum,
  title={Quantum artificial neural network architectures and components},
  author={Narayanan, Ajit and Menneer, Tammy},
  journal={Information Sciences},
  volume={128},
  number={3-4},
  pages={231--255},
  year={2000},
  publisher={Elsevier}
}

1996

[Behrman et al ] A quantum dot neural network. Workshop on Physics of Computation. [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@InProceedings{behrman1996quantum,
  Title                    = {A quantum dot neural network},
  Author                   = {Behrman, Elizabeth C and Niemel, John and Steck, James E and Skinner, Steve R},
  Booktitle                = {Proceedings of the 4th Workshop on Physics of Computation},
  Year                     = {1996},
  Pages                    = {22--24},
  URL                      = {http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.1507&rep=rep1&type=pdf}
}

Quantum Optimization

2021

[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms] [Quantum Optimization] [Parameterized Quantum Circuits]
@article{amaro2021filtering,
  title={Filtering variational quantum algorithms for combinatorial optimization},
  author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
  journal={Quantum Science and Technology},
  year={2021},
  publisher={IOP Publishing}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@article{bharti2021noisy,
  title={Noisy intermediate-scale quantum (NISQ) algorithms},
  author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
  journal={arXiv preprint arXiv:2101.08448},
  year={2021}
}
[Egger et al] Warm-starting quantum optimization. Quantum. [Quantum Optimization] [Parameterized Quantum Circuits] [Quantum Machine Learning]
@article{egger2021warm,
  title={Warm-starting quantum optimization},
  author={Egger, Daniel J and Mare{\v{c}}ek, Jakub and Woerner, Stefan},
  journal={Quantum},
  volume={5},
  pages={479},
  year={2021},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}

2020

[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning]
@article{barkoutsos2020improving,
  title={Improving variational quantum optimization using cvar},
  author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
  journal={Quantum},
  volume={4},
  pages={256},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}

2018

[Ciliberto et al] Quantum machine learning: a classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Machine Learning] [Quantum Optimization] [Quantum Neural Networks]
@Article{ciliberto2018quantum,
  Title                    = {Quantum machine learning: a classical perspective},
  Author                   = {Ciliberto, Carlo and Herbster, Mark and Ialongo, Alessandro Davide and Pontil, Massimiliano and Rocchetto, Andrea and Severini, Simone and Wossnig, Leonard},
  Journal                  = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  Year                     = {2018},
  Number                   = {2209},
  Pages                    = {20170551},
  Volume                   = {474},
  Publisher                = {The Royal Society Publishing},
  URL                      = {https://doi.org/10.1098/rspa.2017.0551}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@Article{moll2018quantum,
  Title                    = {Quantum optimization using variational algorithms on near-term quantum devices},
  Author                   = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2018},
  Number                   = {3},
  Pages                    = {030503},
  Volume                   = {3},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}

2014

[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] [] (Gate Model)
@Article{farhi2014quantum,
  Title                    = {A quantum approximate optimization algorithm},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
  Journal                  = {arXiv preprint arXiv:1411.4028},
  Year                     = {2014},
  URL                      = {https://arxiv.org/abs/1411.4028}
}

2010

[Altshuler et al] Anderson localization makes adiabatic quantum optimization fail. PNAS. [Adiabatic Quantum Computing] [Quantum Optimization] (Adiabatic Model)
@Article{altshuler2010anderson,
  Title                    = {Anderson localization makes adiabatic quantum optimization fail},
  Author                   = {Altshuler, Boris and Krovi, Hari and Roland, J{\'e}r{\'e}mie},
  Journal                  = {Proceedings of the National Academy of Sciences},
  Year                     = {2010},
  Number                   = {28},
  Pages                    = {12446--12450},
  Volume                   = {107},
  Publisher                = {National Acad Sciences},
  URL                      = {https://www.pnas.org/content/107/28/12446}
}

1989

[Apolloni et al] Quantum stochastic optimization. Stochastic Processes and their Applications. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Optimization] (Adiabatic Model)
@Article{apolloni1989quantum,
  Title                    = {Quantum stochastic optimization},
  Author                   = {Apolloni, Bruno and Carvalho, C and De Falco, Diego},
  Journal                  = {Stochastic Processes and their Applications},
  Year                     = {1989},
  Number                   = {2},
  Pages                    = {233--244},
  Volume                   = {33},
  Publisher                = {Elsevier},
  URL                      = {https://www.sciencedirect.com/science/article/pii/0304414989900409?via%3Dihub}
}

Quantum Perceptron

2021

[Ban et al] Speeding up quantum perceptron via shortcuts to adiabaticity. Scientific reports. [Quantum Perceptron] [Quantum Machine Learning] (Adiabatic Model)
@Article{ban2021speeding,
  Title                    = {Speeding up quantum perceptron via shortcuts to adiabaticity},
  Author                   = {Ban, Yue and Chen, Xi and Torrontegui, E and Solano, Enrique and Casanova, Jorge},
  Journal                  = {Scientific reports},
  Year                     = {2021},
  Number                   = {1},
  Pages                    = {1--8},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/s41598-021-85208-3}
}

2020

[Beer et al] Training deep quantum neural networks. Nature communications. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@Article{beer2020training,
  Title                    = {Training deep quantum neural networks},
  Author                   = {Beer, Kerstin and Bondarenko, Dmytro and Farrelly, Terry and Osborne, Tobias J and Salzmann, Robert and Scheiermann, Daniel and Wolf, Ramona},
  Journal                  = {Nature communications},
  Year                     = {2020},
  Number                   = {1},
  Pages                    = {1--6},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41467-020-14454-2.pdf}
}
[Macaluso et al] A Variational Algorithm for QuantumNeural Networks. International Conference on Computational Science. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@inproceedings{macaluso2020variational,
  title={A Variational Algorithm for Quantum Neural Networks},
  author={Macaluso, Antonio and Clissa, Luca and Lodi, Stefano and Sartori, Claudio},
  booktitle={International Conference on Computational Science},
  pages={591--604},
  year={2020},
  organization={Springer}
}

2019

[Liu et al] A Unitary Weights Based One-Iteration Quantum Perceptron Algorithm for Non-Ideal Training Sets. IEEE Access. [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@article{liu2019unitary,
  title={A unitary weights based one-iteration quantum perceptron algorithm for non-ideal training sets},
  author={Liu, Wenjie and Gao, Peipei and Wang, Yuxiang and Yu, Wenbin and Zhang, Maojun},
  journal={IEEE Access},
  volume={7},
  pages={36854--36865},
  year={2019},
  publisher={IEEE}
}
[Tacchino et al] An artificial neuron implemented on an actual quantumprocessor. Nature. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{tacchino2019artificial,
  title={An artificial neuron implemented on an actual quantum processor},
  author={Tacchino, Francesco and Macchiavello, Chiara and Gerace, Dario and Bajoni, Daniele},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--8},
  year={2019},
  publisher={Nature Publishing Group}
}
[Torrontegui et al] Unitary quantum perceptron as efficient universal approximator. Europhysics Letters. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing]
@article{torrontegui2019unitary,
  title={Unitary quantum perceptron as efficient universal approximator},
  author={Torrontegui, Erik and Garc{\'\i}a-Ripoll, Juan Jos{\'e}},
  journal={EPL (Europhysics Letters)},
  volume={125},
  number={3},
  pages={30004},
  year={2019},
  publisher={IOP Publishing}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Variational Quantum Algorithms]
@article{verdon2019learning,
  title={Learning to learn with quantum neural networks via classical neural networks},
  author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
  journal={arXiv preprint arXiv:1907.05415},
  year={2019}
}
[Wiersema et al] Implementing perceptron models with qubits. Physical Review A. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiersema2019implementing,
  title={Implementing perceptron models with qubits},
  author={Wiersema, RC and Kappen, HJ},
  journal={Physical Review A},
  volume={100},
  number={2},
  pages={020301},
  year={2019},
  publisher={APS}
}

2018

[Du et al] Implementable quantum classifier for nonlinear data. arXiv. [Quantum Perceptron] [Quantum Machine Learning] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{du2018implementable,
  Title                    = {Implementable quantum classifier for nonlinear data},
  Author                   = {Du, Yuxuan and Hsieh, Min-Hsiu and Liu, Tongliang and Tao, Dacheng},
  Journal                  = {arXiv preprint arXiv:1809.06056},
  Year                     = {2018},
  URL                      = {https://arxiv.org/abs/1809.06056}
}
[Hu Wei] Towards a real quantum neuron. Natural Science. [Quantum Perceptron] [Quantum Machine Learning] (Gate Model)
@article{hu2018towards,
  title={Towards a real quantum neuron},
  author={Hu, Wei},
  journal={Natural Science},
  volume={10},
  number={3},
  pages={99--109},
  year={2018},
  publisher={Scientific Research Publishing}
}
[Wiebe et al] Quantum Perceptron Models. NIPS . [Quantum Perceptron] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@article{wiebe2016quantum,
  title={Quantum perceptron models},
  author={Wiebe, Nathan and Kapoor, Ashish and Svore, Krysta M},
  journal={arXiv preprint arXiv:1602.04799},
  year={2016}
}

2017

[Cao et al] Quantum Neuron: an elementary building block for machine learningon quantum computers. arXiv. [Quantum Perceptron] [Quantum Information and Computing] [Quantum Neural Networks] [Quantum Machine Learning] (Gate Model)
@Article{cao2017quantum,
  Title                    = {Quantum neuron: an elementary building block for machine learning on quantum computers},
  Author                   = {Cao, Yudong and Guerreschi, Gian Giacomo and Aspuru-Guzik, Al{\'a}n},
  Journal                  = {arXiv preprint arXiv:1711.11240},
  Year                     = {2017},
  URL                      = {https://arxiv.org/pdf/1711.11240.pdf}
}

2015

[Schuld et al] Simulating a perceptron on a quantum computer. Physics Letters A. [Quantum Perceptron] [Quantum Machine Learning]
@article{schuld2015simulating,
  title={Simulating a perceptron on a quantum computer},
  author={Schuld, Maria and Sinayskiy, Ilya and Petruccione, Francesco},
  journal={Physics Letters A},
  volume={379},
  number={7},
  pages={660--663},
  year={2015},
  publisher={Elsevier}
}

2001

[Altaisky] Quantum neural network. arXiv. [Quantum Neural Networks] [Quantum Perceptron] [Quantum Machine Learning]
@Article{altaisky2001quantum,
  Title                    = {Quantum neural network},
  Author                   = {Altaisky, MV},
  Journal                  = {arXiv preprint quant-ph/0107012},
  Year                     = {2001},
  URL                      = {https://arxiv.org/abs/quant-ph/0107012}
}

Quantum Speedup-Advantage-Supremacy

2021

[Liu et al] A rigorous and robust quantum speed-up in supervised machine learning. Nature Physics. [Quantum Machine Learning] [Quantum Classification] [Quantum Speedup-Advantage-Supremacy]
@article{liu2021rigorous,
  title={A rigorous and robust quantum speed-up in supervised machine learning},
  author={Liu, Yunchao and Arunachalam, Srinivasan and Temme, Kristan},
  journal={Nature Physics},
  pages={1--5},
  year={2021},
  publisher={Nature Publishing Group}
}

2020

[Duan & Guo] A survey on HHL algorithm: From theory to application in quantum machine learning. Physics Letters A. [Quantum Machine Learning] [Quantum Speedup-Advantage-Supremacy]
@Article{duan1998probabilistic,
  Title                    = {Probabilistic cloning and identification of linearly independent quantum states},
  Author                   = {Duan, Lu-Ming and Guo, Guang-Can},
  Journal                  = {Physical review letters},
  Year                     = {1998},
  Number                   = {22},
  Pages                    = {4999},
  Volume                   = {80},
  Publisher                = {APS},
  URL                      = {https://www.sciencedirect.com/science/article/pii/S037596012030462X}
}

2019

[Arute et al] Quantum supremacy using a programmable superconducting processor. Nature. [Quantum Speedup-Advantage-Supremacy] [Superconducting Qubits] (Gate Model)
@Article{arute2019quantum,
  Title                    = {Quantum supremacy using a programmable superconducting processor},
  Author                   = {Arute, Frank and Arya, Kunal and Babbush, Ryan and Bacon, Dave and Bardin, Joseph C and Barends, Rami and Biswas, Rupak and Boixo, Sergio and Brandao, Fernando GSL and Buell, David A and others},
  Journal                  = {Nature},
  Year                     = {2019},
  Number                   = {7779},
  Pages                    = {505--510},
  Volume                   = {574},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/s41586-019-1666-5}
}
[Brandão et al] Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning. arXiv. [Quantum Speedup-Advantage-Supremacy] [Semidefinite programming]
@Article{brandao2019QuantumSDP,
  Title                    = {Quantum SDP Solvers: Large Speed-ups, Optimality, and Applications to Quantum Learning},
  Author                   = {Brand{\~a}o, Fernando GSL and Kalev, Amir and Li, Tongyang and Lin, Cedric Yen-Yu and Svore, Krysta M and Wu, Xiaodi},
  Journal                  = {arXiv preprint arXiv:1710.02581},
  Year                     = {2019},
  Primaryclass             = {quant-ph},
  URL                      = {https://arxiv.org/abs/1710.02581}
}

2018

[Boixo et al] Characterizing quantum supremacy in near-term devices. Nature Physics. [Quantum Speedup-Advantage-Supremacy]
@Article{boixo2018characterizing,
  Title                    = {Characterizing quantum supremacy in near-term devices},
  Author                   = {Boixo, Sergio and Isakov, Sergei V and Smelyanskiy, Vadim N and Babbush, Ryan and Ding, Nan and Jiang, Zhang and Bremner, Michael J and Martinis, John M and Neven, Hartmut},
  Journal                  = {Nature Physics},
  Year                     = {2018},
  Number                   = {6},
  Pages                    = {595--600},
  Volume                   = {14},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41567-018-0124-x}
}

2017

[Bremner et al] Achieving quantum supremacy with sparse and noisy commuting quantum computations. Quantum. [Quantum Speedup-Advantage-Supremacy] (Gate Model) (Adiabatic Model)
@Article{bremner2017achieving,
  Title                    = {Achieving quantum supremacy with sparse and noisy commuting quantum computations},
  Author                   = {Bremner, Michael J and Montanaro, Ashley and Shepherd, Dan J},
  Journal                  = {Quantum},
  Year                     = {2017},
  Pages                    = {8},
  Volume                   = {1},
  DOI                      = {https://doi.org/10.22331/q-2017-04-25-8},
  Publisher                = {Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Mandra' et al] The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again). Quantum Science and Technology. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{mandra2017pitfalls,
  title={The pitfalls of planar spin-glass benchmarks: raising the bar for quantum annealers (again)},
  author={Mandra, Salvatore and Katzgraber, Helmut G and Thomas, Creighton},
  journal={Quantum Science and Technology},
  volume={2},
  number={3},
  pages={038501},
  year={2017},
  publisher={IOP Publishing}
}

2016

[Batle et al] Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?. Quantum Information Processing. [Adiabatic Quantum Computing] [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@Article{batle2016multipartite,
  Title                    = {Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?},
  Author                   = {Batle, Josep and Ooi, CH Raymond and Farouk, Ahmed and Abutalib, M and Abdalla, S},
  Journal                  = {Quantum Information Processing},
  Year                     = {2016},
  Number                   = {8},
  Pages                    = {3081--3099},
  Volume                   = {15},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s11128-016-1324-x}
}
[Mandra' et al] Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches. Physical Review A. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{mandra2016strengths,
  title={Strengths and weaknesses of weak-strong cluster problems: A detailed overview of state-of-the-art classical heuristics versus quantum approaches},
  author={Mandra, Salvatore and Zhu, Zheng and Wang, Wenlong and Perdomo-Ortiz, Alejandro and Katzgraber, Helmut G},
  journal={Physical Review A},
  volume={94},
  number={2},
  pages={022337},
  year={2016},
  publisher={APS}
}

2015

[Aaronson ] Quantum Machine Learning Algorithms: Read the Fine Print. Nature Physics. [Quantum Speedup-Advantage-Supremacy]
@Article{aaronson2015read,
  Title                    = {Read the fine print},
  Author                   = {Aaronson, Scott},
  Journal                  = {Nature Physics},
  Year                     = {2015},
  Number                   = {4},
  Pages                    = {291--293},
  Volume                   = {11},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/nphys3272}
}
[Itay ert al] Probing for quantum speedup in spin-glass problems with planted solutions. Physical Review A. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{hen2015probing,
  title={Probing for quantum speedup in spin-glass problems with planted solutions},
  author={Hen, Itay and Job, Joshua and Albash, Tameem and R{\o}nnow, Troels F and Troyer, Matthias and Lidar, Daniel A},
  journal={Physical Review A},
  volume={92},
  number={4},
  pages={042325},
  year={2015},
  publisher={APS}
}
[Katzgraber et al] Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly. Physical Review X. [Quantum Annealing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{katzgraber2015seeking,
  title={Seeking quantum speedup through spin glasses: The good, the bad, and the ugly},
  author={Katzgraber, Helmut G and Hamze, Firas and Zhu, Zheng and Ochoa, Andrew J and Munoz-Bauza, Humberto},
  journal={Physical Review X},
  volume={5},
  number={3},
  pages={031026},
  year={2015},
  publisher={APS}
}

2014

[Rønnow et al] Defining and detecting quantum speedup. Science. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy] (Adiabatic Model)
@article{ronnow2014defining,
  title={Defining and detecting quantum speedup},
  author={R{\o}nnow, Troels F and Wang, Zhihui and Job, Joshua and Boixo, Sergio and Isakov, Sergei V and Wecker, David and Martinis, John M and Lidar, Daniel A and Troyer, Matthias},
  journal={science},
  volume={345},
  number={6195},
  pages={420--424},
  year={2014},
  publisher={American Association for the Advancement of Science}
}

2011

[Aaronson and Arkhipov] The computational complexity of linear optics. Annual ACM symposium on Theory of computing. [Quantum Speedup-Advantage-Supremacy] [Complexity Theory]
@InProceedings{aaronson2011computational,
  Title                    = {The computational complexity of linear optics},
  Author                   = {Aaronson, Scott and Arkhipov, Alex},
  Booktitle                = {Proceedings of the forty-third annual ACM symposium on Theory of computing},
  Year                     = {2011},
  Pages                    = {333--342},
  Publisher                = {Association for Computing Machinery},
  URL                      = {https://dl.acm.org/doi/pdf/10.1145/1993636.1993682}
}
[Bremner et al] Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. [Quantum Speedup-Advantage-Supremacy] [Quantum Information and Computing] (Gate Model)
@Article{bremner2011classical,
  Title                    = {Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy},
  Author                   = {Bremner, Michael J and Jozsa, Richard and Shepherd, Dan J},
  Journal                  = {Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  Year                     = {2011},
  Number                   = {2126},
  Pages                    = {459--472},
  Volume                   = {467},
  Publisher                = {The Royal Society Publishing},
  URL                      = {https://doi.org/10.1098/rspa.2010.0301}
}

2009

[Harrow et al] Quantum Algorithm for Linear Systems of Equations. Physical Review Letters. [Quantum Machine Learning] [Quantum Speedup-Advantage-Supremacy]
@Article{harrow2009quantum,
  Title                    = {Quantum algorithm for linear systems of equations},
  Author                   = {Harrow, Aram W and Hassidim, Avinatan and Lloyd, Seth},
  Journal                  = {Physical review letters},
  Year                     = {2009},
  Number                   = {15},
  Pages                    = {150502},
  Volume                   = {103},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.103.150502}
}

1999

[Abrams &Lloyd] Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors. Physical Review Letters. [Quantum Speedup-Advantage-Supremacy] (Gate Model)
@Article{abrams1999quantum,
  Title                    = {Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors},
  Author                   = {Abrams, Daniel S and Lloyd, Seth},
  Journal                  = {Physical review letters},
  Year                     = {1999},
  Number                   = {24},
  Pages                    = {5162},
  Volume                   = {83},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.83.5162}
}

1997

[Bernstein & Vazirani] Quantum complexity theory. SIAM Journal on computing. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@article{bernstein1997quantum,
  title={Quantum complexity theory},
  author={Bernstein, Ethan and Vazirani, Umesh},
  journal={SIAM Journal on computing},
  volume={26},
  number={5},
  pages={1411--1473},
  year={1997},
  publisher={SIAM}
}
[Simon] On the Power of Quantum Computation. SIAM Journal on Computing. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@article{simon1997power,
  title={On the power of quantum computation},
  author={Simon, Daniel R},
  journal={SIAM journal on computing},
  volume={26},
  number={5},
  pages={1474--1483},
  year={1997},
  publisher={SIAM}
}

1992

[Deutsch & Josza] Rapid solution of problems by quantum computation. Proceedings of the Royal Society A. [Quantum Information and Computing] [Quantum Speedup-Advantage-Supremacy]
@Article{deutsch1992rapid,
  Title                    = {Rapid solution of problems by quantum computation},
  Author                   = {Deutsch, David and Jozsa, Richard},
  Journal                  = {Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences},
  Year                     = {1992},
  Number                   = {1907},
  Pages                    = {553--558},
  Volume                   = {439},
  Publisher                = {The Royal Society London},
  URL                      = {https://royalsocietypublishing.org/doi/10.1098/rspa.1992.0167}
}

Simulated Annealing

2005

[Battaglia et al] Deterministic and stochastic quantum annealing approaches. Lecture Notes in Physics . [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] (Adiabatic Model)
@InCollection{battaglia2005deterministic,
  Title                    = {Deterministic and stochastic quantum annealing approaches},
  Author                   = {Battaglia, Demian and Stella, Lorenzo and Zagordi, Osvaldo and Santoro, Giuseppe E and Tosatti, Erio},
  Booktitle                = {Quantum Annealing and Other Optimization Methods},
  Publisher                = {Springer},
  Year                     = {2005},
  Pages                    = {171--206},
  URL                      = {https://link.springer.com/chapter/10.1007%2F11526216_7}
}
[Battaglia et al] Optimization by Quantum Annealing: Lessons from hard 3-SAT cases,. Physical Review E. [Adiabatic Quantum Computing] [Quantum Annealing] [Simulated Annealing] [Quantum Monte Carlo] (Adiabatic Model)
@Article{battaglia2005optimization,
  Title                    = {Optimization by quantum annealing: Lessons from hard satisfiability problems},
  Author                   = {Battaglia, Demian A and Santoro, Giuseppe E and Tosatti, Erio},
  Journal                  = {Physical Review E},
  Year                     = {2005},
  Number                   = {6},
  Pages                    = {066707},
  Volume                   = {71},
  Publisher                = {APS},
  URL                      = {https://journals.aps.org/pre/abstract/10.1103/PhysRevE.71.066707}
}

1983

[Kirkpatrick et al] Optimization by Simulated Annealing. Science. [Simulated Annealing]
@article{kirkpatrick1983optimization,
  title={Optimization by simulated annealing},
  author={Kirkpatrick, Scott and Gelatt, C Daniel and Vecchi, Mario P},
  journal={science},
  volume={220},
  number={4598},
  pages={671--680},
  year={1983},
  publisher={American association for the advancement of science}
}

Superconducting Qubits

2020

[Kjaergaard et al] Superconducting Qubits: Current State of Play. Annual review of condensed matter physics. [Quantum Information and Computing] [Physical Realization of Qubits] [Superconducting Qubits]
@article{kjaergaard2020superconducting,
  title={Superconducting qubits: Current state of play},
  author={Kjaergaard, Morten and Schwartz, Mollie E and Braum{\"u}ller, Jochen and Krantz, Philip and Wang, Joel I-J and Gustavsson, Simon and Oliver, William D},
  journal={Annual Review of Condensed Matter Physics},
  volume={11},
  pages={369--395},
  year={2020},
  publisher={Annual Reviews}
}

2019

[Arute et al] Quantum supremacy using a programmable superconducting processor. Nature. [Quantum Speedup-Advantage-Supremacy] [Superconducting Qubits] (Gate Model)
@Article{arute2019quantum,
  Title                    = {Quantum supremacy using a programmable superconducting processor},
  Author                   = {Arute, Frank and Arya, Kunal and Babbush, Ryan and Bacon, Dave and Bardin, Joseph C and Barends, Rami and Biswas, Rupak and Boixo, Sergio and Brandao, Fernando GSL and Buell, David A and others},
  Journal                  = {Nature},
  Year                     = {2019},
  Number                   = {7779},
  Pages                    = {505--510},
  Volume                   = {574},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.Nature.com/articles/s41586-019-1666-5}
}
[Krantz et al] A quantum engineer's guide to superconducting qubits. Applied Physics Reviews . [Physical Realization of Qubits] [Superconducting Qubits]
@article{krantz2019quantum,
  title={A quantum engineer's guide to superconducting qubits},
  author={Krantz, Philip and Kjaergaard, Morten and Yan, Fei and Orlando, Terry P and Gustavsson, Simon and Oliver, William D},
  journal={Applied Physics Reviews},
  volume={6},
  number={2},
  pages={021318},
  year={2019},
  publisher={AIP Publishing LLC}
}

2017

[Gambetta et al] Building logical qubits in a superconducting quantum computing system. Physical Review Letters. [Physical Realization of Qubits] [Superconducting Qubits]
@Article{gambetta2017building,
  Title                    = {Building logical qubits in a superconducting quantum computing system},
  Author                   = {Gambetta, Jay M and Chow, Jerry M and Steffen, Matthias},
  Journal                  = {npj Quantum Information},
  Year                     = {2017},
  Number                   = {1},
  Pages                    = {1--7},
  Volume                   = {3},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41534-016-0004-0}
}

2014

[Bunyk et al] Architectural considerations in the design of a superconducting quantum annealing processor. IEEE Transactions on Applied Superconductivity. [Quantum Annealing] [Quantum Information and Computing] [QPU] [Superconducting Qubits] (Adiabatic Model)
@Article{bunyk2014architectural,
  Title                    = {Architectural considerations in the design of a superconducting quantum annealing processor},
  Author                   = {Bunyk, Paul I and Hoskinson, Emile M and Johnson, Mark W and Tolkacheva, Elena and Altomare, Fabio and Berkley, Andrew J and Harris, Richard and Hilton, Jeremy P and Lanting, Trevor and Przybysz, Anthony J and others},
  Journal                  = {IEEE Transactions on Applied Superconductivity},
  Year                     = {2014},
  Number                   = {4},
  Pages                    = {1--10},
  Volume                   = {24},
  Publisher                = {IEEE},
  URL                      = {https://ieeexplore.ieee.org/document/6802426}
}

2013

[Devoret & Schoelkopf] Superconducting Circuits for Quantum Information: An Outlook. Science. [Quantum Information and Computing] [Superconducting Qubits] (Gate Model)
@Article{devoret2013superconducting,
  Title                    = {Superconducting circuits for quantum information: an outlook},
  Author                   = {Devoret, Michel H and Schoelkopf, Robert J},
  Journal                  = {Science},
  Year                     = {2013},
  Number                   = {6124},
  Pages                    = {1169--1174},
  Volume                   = {339},
  Publisher                = {American Association for the Advancement of Science},
  URL                      = {https://science.sciencemag.org/content/339/6124/1169.abstract}
}

2010

[Harris et al] Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Physical Review B. [Quantum Annealing] [Superconducting Qubits] (Adiabatic Model)
@article{harris2010experimental,
  title={Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor},
  author={Harris, Richard and Johnson, Mark W and Lanting, T and Berkley, AJ and Johansson, J and Bunyk, P and Tolkacheva, E and Ladizinsky, E and Ladizinsky, N and Oh, T and others},
  journal={Physical Review B},
  volume={82},
  number={2},
  pages={024511},
  year={2010},
  publisher={APS}
}

Unsupervised Learning

2013

[Aïmeur et al] Quantum speed-up for unsupervised learning. Machine Learning. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@Article{aimeur2013quantum,
  Title                    = {Quantum speed-up for unsupervised learning},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Journal                  = {Machine Learning},
  Year                     = {2013},
  Number                   = {2},
  Pages                    = {261--287},
  Volume                   = {90},
  Publisher                = {Springer},
  URL                      = {https://link.springer.com/article/10.1007/s10994-012-5316-5}
}

2007

[Aïmeur et al] Quantum Clustering Algorithms. ICML '07. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@inproceedings{aimeur2007quantum,
  title={Quantum clustering algorithms},
  author={A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  booktitle={Proceedings of the 24th international conference on machine learning},
  pages={1--8},
  year={2007}
}

2006

[Aïmeur et al] Machine Learning in a Quantum World. Canadian AI 2006. [Quantum Machine Learning] [Unsupervised Learning] [Quantum Clustering] (Gate Model)
@InProceedings{aimeur2006machine,
  Title                    = {Machine learning in a quantum world},
  Author                   = {A{\"\i}meur, Esma and Brassard, Gilles and Gambs, S{\'e}bastien},
  Booktitle                = {Conference of the Canadian Society for Computational Studies of Intelligence},
  Year                     = {2006},
  Organization             = {Springer},
  Pages                    = {431--442},
  URL                      = {https://link.springer.com/chapter/10.1007/11766247_37}
}

Variational Quantum Algorithms

2021

[Amaro et al.] Filtering variational quantum algorithms for combinatorial optimization. arXiv. [Variational Quantum Algorithms] [Quantum Optimization] [Parameterized Quantum Circuits]
@article{amaro2021filtering,
  title={Filtering variational quantum algorithms for combinatorial optimization},
  author={Amaro, David and Modica, Carlo and Rosenkranz, Matthias and Fiorentini, Mattia and Benedetti, Marcello and Lubasch, Michael},
  journal={Quantum Science and Technology},
  year={2021},
  publisher={IOP Publishing}
}
[Bharti et al] Noisy intermediate-scale quantum (NISQ) algorithms. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@article{bharti2021noisy,
  title={Noisy intermediate-scale quantum (NISQ) algorithms},
  author={Bharti, Kishor and Cervera-Lierta, Alba and Kyaw, Thi Ha and Haug, Tobias and Alperin-Lea, Sumner and Anand, Abhinav and Degroote, Matthias and Heimonen, Hermanni and Kottmann, Jakob S and Menke, Tim and others},
  journal={arXiv preprint arXiv:2101.08448},
  year={2021}
}
[Mangini et al] Quantum computing models for artificial neural networks. EPL (Europhysics Letters). [Quantum Neural Networks] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{mangini2021quantum,
  title={Quantum computing models for artificial neural networks},
  author={Mangini, Stefano and Tacchino, Francesco and Gerace, Dario and Bajoni, Daniele and Macchiavello, Chiara},
  journal={EPL (Europhysics Letters)},
  volume={134},
  number={1},
  pages={10002},
  year={2021},
  publisher={IOP Publishing}
}
[Plekhanov et al] Variational quantum amplitude estimation. arXiv. [Variational Quantum Algorithms] [Amplitude estimation] [Parameterized Quantum Circuits]
@article{plekhanov2021variational,
  title={Variational quantum amplitude estimation},
  author={Plekhanov, Kirill and Rosenkranz, Matthias and Fiorentini, Mattia and Lubasch, Michael},
  journal={arXiv preprint arXiv:2109.03687},
  year={2021}
}
[Schuld et al] Effect of data encoding on the expressive power of variational quantum-machine-learning models. Physical Review A. [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{schuld2021effect,
  title={Effect of data encoding on the expressive power of variational quantum-machine-learning models},
  author={Schuld, Maria and Sweke, Ryan and Meyer, Johannes Jakob},
  journal={Physical Review A},
  volume={103},
  number={3},
  pages={032430},
  year={2021},
  publisher={APS}
}
[Volkoff & Coles] Large gradients via correlation in random parameterized quantum circuits. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{volkoff2021large,
  title={Large gradients via correlation in random parameterized quantum circuits},
  author={Volkoff, Tyler and Coles, Patrick J},
  journal={Quantum Science and Technology},
  volume={6},
  number={2},
  pages={025008},
  year={2021},
  publisher={IOP Publishing}
}

2020

[Barkoutsos et al] Improving Variational Quantum Optimization Using CVaR. Quantum. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning]
@article{barkoutsos2020improving,
  title={Improving variational quantum optimization using cvar},
  author={Barkoutsos, Panagiotis Kl and Nannicini, Giacomo and Robert, Anton and Tavernelli, Ivano and Woerner, Stefan},
  journal={Quantum},
  volume={4},
  pages={256},
  year={2020},
  publisher={Verein zur F{\"o}rderung des Open Access Publizierens in den Quantenwissenschaften}
}
[Carolan et al ] Variational quantum unsampling on a quantum photonic processor. Nature Physics. [Variational Quantum Algorithms] [Quantum Neural Networks]
@article{carolan2020variational,
  title={Variational quantum unsampling on a quantum photonic processor},
  author={Carolan, Jacques and Mohseni, Masoud and Olson, Jonathan P and Prabhu, Mihika and Chen, Changchen and Bunandar, Darius and Niu, Murphy Yuezhen and Harris, Nicholas C and Wong, Franco NC and Hochberg, Michael and others},
  journal={Nature Physics},
  volume={16},
  number={3},
  pages={322--327},
  year={2020},
  publisher={Nature Publishing Group}
}
[Cerezo et al] Variational Quantum Algorithms. arXiv. [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model) (Adiabatic Model)
@Article{cerezo2020variational,
  Title                    = {Variational quantum algorithms},
  Author                   = {Cerezo, Marco and Arrasmith, Andrew and Babbush, Ryan and Benjamin, Simon C and Endo, Suguru and Fujii, Keisuke and McClean, Jarrod R and Mitarai, Kosuke and Yuan, Xiao and Cincio, Lukasz and others},
  Journal                  = {arXiv preprint arXiv:2012.09265},
  Year                     = {2020},
  URL                      = {https://arxiv.org/pdf/2012.09265.pdf}
}
[Wang et al] Noise-Induced Barren Plateaus in Variational Quantum Algorithms. arXiv. [Barren Plateaus] [Parameterized Quantum Circuits] [Variational Quantum Algorithms] [Quantum Machine Learning]
@article{wang2020noise,
  title={Noise-induced barren plateaus in variational quantum algorithms},
  author={Wang, Samson and Fontana, Enrico and Cerezo, Marco and Sharma, Kunal and Sone, Akira and Cincio, Lukasz and Coles, Patrick J},
  journal={arXiv preprint arXiv:2007.14384},
  year={2020}
}

2019

[Benedetti et al] Parameterized quantum circuits as machine learning models. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Machine Learning]
@Article{benedetti2019parameterized,
  Title                    = {Parameterized quantum circuits as machine learning models},
  Author                   = {Benedetti, Marcello and Lloyd, Erika and Sack, Stefan and Fiorentini, Mattia},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2019},
  Number                   = {4},
  Pages                    = {043001},
  Volume                   = {4},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/ab4eb5/meta}
}
[Havlíček et al] Supervised learning with quantum-enhanced feature spaces. Nature. [Variational Quantum Algorithms] [Quantum Support Vector Machine] [Quantum Classification] [Quantum Machine Learning] (Gate Model)
@Article{havlivcek2019supervised,
  Title                    = {Supervised learning with quantum-enhanced feature spaces},
  Author                   = {Havl{\'\i}{\v{c}}ek, Vojt{\v{e}}ch and C{\'o}rcoles, Antonio D and Temme, Kristan and Harrow, Aram W and Kandala, Abhinav and Chow, Jerry M and Gambetta, Jay M},
  Journal                  = {Nature},
  Year                     = {2019},
  Number                   = {7747},
  Pages                    = {209--212},
  Volume                   = {567},
  Publisher                = {Nature Publishing Group},
  URL                      = {https://www.nature.com/articles/s41586-019-0980-2}
}
[Sim et al] Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] (Gate Model)
@article{sim2019expressibility,
  title={Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms},
  author={Sim, Sukin and Johnson, Peter D and Aspuru-Guzik, Al{\'a}n},
  journal={Advanced Quantum Technologies},
  volume={2},
  number={12},
  pages={1900070},
  year={2019},
  publisher={Wiley Online Library}
}
[Verdon et al] Learning to learn with quantum neural networks via classical neural networks. arXiv. [Quantum Perceptron] [Parameterized Quantum Circuits] [Quantum Neural Networks] [Quantum Machine Learning] [Variational Quantum Algorithms]
@article{verdon2019learning,
  title={Learning to learn with quantum neural networks via classical neural networks},
  author={Verdon, Guillaume and Broughton, Michael and McClean, Jarrod R and Sung, Kevin J and Babbush, Ryan and Jiang, Zhang and Neven, Hartmut and Mohseni, Masoud},
  journal={arXiv preprint arXiv:1907.05415},
  year={2019}
}
[Wang et al ] Accelerated Variational Quantum Eigensolver. Physical review letters. [Variational Quantum Algorithms]
@article{wang2019accelerated,
  title={Accelerated variational quantum eigensolver},
  author={Wang, Daochen and Higgott, Oscar and Brierley, Stephen},
  journal={Physical review letters},
  volume={122},
  number={14},
  pages={140504},
  year={2019},
  publisher={APS}
}
[Zoufal et al] Quantum Generative Adversarial Networks for Learning and Loading Random Distributions. npj Quantum Information. [Quantum Generative Adversarial Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{zoufal2019quantum,
  title={Quantum generative adversarial networks for learning and loading random distributions},
  author={Zoufal, Christa and Lucchi, Aur{\'e}lien and Woerner, Stefan},
  journal={npj Quantum Information},
  volume={5},
  number={1},
  pages={1--9},
  year={2019},
  publisher={Nature Publishing Group}
}

2018

[Dallaire-Demers & Killoran] Quantum generative adversarial networks. Physical Review A. [Quantum Generative Adversarial Networks] [Quantum Neural Networks] [Variational Quantum Algorithms] [Quantum Machine Learning] (Gate Model)
@article{dallaire2018quantum,
  title={Quantum generative adversarial networks},
  author={Dallaire-Demers, Pierre-Luc and Killoran, Nathan},
  journal={Physical Review A},
  volume={98},
  number={1},
  pages={012324},
  year={2018},
  publisher={APS}
}
[Moll et al] Quantum optimization using variational algorithms on near-term quantum devices. Quantum Science and Technology. [Variational Quantum Algorithms] [Quantum Optimization] [Quantum Machine Learning] [Quantum Information and Computing] (Gate Model)
@Article{moll2018quantum,
  Title                    = {Quantum optimization using variational algorithms on near-term quantum devices},
  Author                   = {Moll, Nikolaj and Barkoutsos, Panagiotis and Bishop, Lev S and Chow, Jerry M and Cross, Andrew and Egger, Daniel J and Filipp, Stefan and Fuhrer, Andreas and Gambetta, Jay M and Ganzhorn, Marc and others},
  Journal                  = {Quantum Science and Technology},
  Year                     = {2018},
  Number                   = {3},
  Pages                    = {030503},
  Volume                   = {3},
  Publisher                = {IOP Publishing},
  URL                      = {https://iopscience.iop.org/article/10.1088/2058-9565/aab822/meta}
}

2017

[Kandala et al ] Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature. [Variational Quantum Algorithms]
@article{kandala2017hardware,
  title={Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets},
  author={Kandala, Abhinav and Mezzacapo, Antonio and Temme, Kristan and Takita, Maika and Brink, Markus and Chow, Jerry M and Gambetta, Jay M},
  journal={Nature},
  volume={549},
  number={7671},
  pages={242--246},
  year={2017},
  publisher={Nature Publishing Group}
}

2014

[Farhi et al] A Quantum Approximate Optimization Algorithm. arXiv. [Variational Quantum Algorithms] [Parameterized Quantum Circuits] [Quantum Optimization] [Quantum Machine Learning] [] (Gate Model)
@Article{farhi2014quantum,
  Title                    = {A quantum approximate optimization algorithm},
  Author                   = {Farhi, Edward and Goldstone, Jeffrey and Gutmann, Sam},
  Journal                  = {arXiv preprint arXiv:1411.4028},
  Year                     = {2014},
  URL                      = {https://arxiv.org/abs/1411.4028}
}
[Peruzzo et al] A variational eigenvalue solver on a photonic quantum processor. Nature communications. [Variational Quantum Algorithms]
@article{peruzzo2014variational,
  title={A variational eigenvalue solver on a photonic quantum processor},
  author={Peruzzo, Alberto and McClean, Jarrod and Shadbolt, Peter and Yung, Man-Hong and Zhou, Xiao-Qi and Love, Peter J and Aspuru-Guzik, Al{\'a}n and O’brien, Jeremy L},
  journal={Nature communications},
  volume={5},
  number={1},
  pages={1--7},
  year={2014},
  publisher={Nature Publishing Group}
}