diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 09eece68..8ed89839 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -18,7 +18,6 @@ jobs: fail-fast: false matrix: version: - - '1.6' - '1' os: - ubuntu-latest @@ -85,8 +84,7 @@ jobs: - run: | julia --project=HPCG -e ' using Pkg - Pkg.develop(path=".") - Pkg.develop(path="./PartitionedSolvers") + Pkg.develop([Pkg.PackageSpec(path="."),Pkg.PackageSpec(path="./PartitionedSolvers")]) Pkg.test("HPCG")' docs: name: Documentation diff --git a/HPCG/Project.toml b/HPCG/Project.toml index 14b7e9c7..ad8bbac5 100644 --- a/HPCG/Project.toml +++ b/HPCG/Project.toml @@ -23,7 +23,7 @@ DelimitedFiles = "1.9" JSON = "0.21" MPI = "0.20" PartitionedArrays = "0.5" -PartitionedSolvers = "0.2" +PartitionedSolvers = "0.3" Primes = "0.5" SparseMatricesCSR = "0.6" julia = "1.1" diff --git a/HPCG/src/mg_preconditioner.jl b/HPCG/src/mg_preconditioner.jl index cda9a6a7..4c999299 100644 --- a/HPCG/src/mg_preconditioner.jl +++ b/HPCG/src/mg_preconditioner.jl @@ -110,7 +110,7 @@ function generate_problem(ranks, npx, npy, npz, nx, ny, nz, solver) Axf = similar(r) Axf .= 0 x .= 0 - gs_state = setup(solver, x, A, r) + gs_state = solver(PartitionedSolvers.linear_problem(x, A, r)) return A, r, x, Axf, gs_state end @@ -139,11 +139,11 @@ function pc_setup(np, ranks, l, nx, ny, nz) r = Vector{PVector}(undef, l) x = Vector{PVector}(undef, l) Axf = Vector{PVector}(undef, l) - gs_states = Vector{PartitionedSolvers.Preconditioner}(undef, l) + gs_states = Vector{PartitionedSolvers.LinearSolver}(undef, l) npx, npy, npz = compute_optimal_shape_XYZ(np) nnz_vec = Vector{Int64}(undef, l) nrows_vec = Vector{Int64}(undef, l) - solver = PartitionedSolvers.additive_schwarz_correction_partition(gauss_seidel(; iters = 1)) + solver = p -> PartitionedSolvers.gauss_seidel(p;iterations=1) # create top problem A, r, x, Axf, gs_state = generate_problem(ranks, npx, npy, npz, nx, ny, nz, solver) @@ -313,16 +313,16 @@ end """ function pc_solve!(x, s::Mg_preconditioner, b, l; zero_guess = false) if l == 1 - solve!(x, s.gs_states[l], b; zero_guess) # bottom solve + PartitionedSolvers.smooth!(x, s.gs_states[l], b; zero_guess) # bottom solve else - solve!(x, s.gs_states[l], b; zero_guess) # presmoother + PartitionedSolvers.smooth!(x, s.gs_states[l], b; zero_guess) # presmoother mul_no_lat!(s.Axf[l], s.A_vec[l], x) p_restrict!(s.r[l-1], b, s.Axf[l], s.f2c[l-1]) s.x[l-1] .= 0.0 pc_solve!(s.x[l-1], s, s.r[l-1], l - 1; zero_guess = true) p_prolongate!(x, s.x[l-1], s.f2c[l-1]) - consistent!(x) |> wait - solve!(x, s.gs_states[l], b) # post smooth + #consistent!(x) |> wait #Already inside gauss_seidel + PartitionedSolvers.smooth!(x, s.gs_states[l], b) # post smooth end x end diff --git a/PartitionedSolvers/Project.toml b/PartitionedSolvers/Project.toml index 61d3b903..7a6a21dd 100644 --- a/PartitionedSolvers/Project.toml +++ b/PartitionedSolvers/Project.toml @@ -1,18 +1,21 @@ name = "PartitionedSolvers" uuid = "11b65f7f-80ac-401b-9ef2-3db765482d62" authors = ["Francesc Verdugo <f.verdugo.rojano@vu.nl>"] -version = "0.2.2" +version = "0.3.0" [deps] IterativeSolvers = "42fd0dbc-a981-5370-80f2-aaf504508153" LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e" +NLsolve = "2774e3e8-f4cf-5e23-947b-6d7e65073b56" PartitionedArrays = "5a9dfac6-5c52-46f7-8278-5e2210713be9" +Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7" Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c" SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf" SparseMatricesCSR = "a0a7dd2c-ebf4-11e9-1f05-cf50bc540ca1" [compat] IterativeSolvers = "0.9" +NLsolve = "4" PartitionedArrays = "0.4.4, 0.5" SparseArrays = "1" julia = "1.6" diff --git a/PartitionedSolvers/src/PartitionedSolvers.jl b/PartitionedSolvers/src/PartitionedSolvers.jl index ee5b8f68..5ea3a80e 100644 --- a/PartitionedSolvers/src/PartitionedSolvers.jl +++ b/PartitionedSolvers/src/PartitionedSolvers.jl @@ -5,39 +5,13 @@ using PartitionedArrays: val_parameter using SparseArrays using LinearAlgebra using IterativeSolvers +using Printf +import NLsolve using SparseMatricesCSR -export setup -export solve! -export update! -export finalize! -export AbstractLinearSolver -export linear_solver -export default_nullspace -export nullspace -export uses_nullspace -export uses_initial_guess -export iterations! include("interfaces.jl") - -export lu_solver -export jacobi_correction -export richardson -export jacobi -export gauss_seidel -export additive_schwarz_correction -export additive_schwarz +include("wrappers.jl") include("smoothers.jl") - -export amg -export smoothed_aggregation -export v_cycle -export w_cycle -export amg_level_params -export amg_level_params_linear_elasticity -export amg_fine_params -export amg_coarse_params -export amg_statistics include("amg.jl") end # module diff --git a/PartitionedSolvers/src/amg.jl b/PartitionedSolvers/src/amg.jl index 5e6a85bb..a5aea212 100644 --- a/PartitionedSolvers/src/amg.jl +++ b/PartitionedSolvers/src/amg.jl @@ -1,4 +1,15 @@ +function default_nullspace(A) + T = eltype(A) + [ones(T,size(A,2))] +end + +function default_nullspace(A::PSparseMatrix) + col_partition = partition(axes(A,2)) + T = eltype(A) + [ pones(T,col_partition) ] +end + function aggregate(A,diagA=dense_diag(A);epsilon) # TODO It assumes CSC format for the moment @@ -744,7 +755,7 @@ function dofs_to_node(dofs, block_size) end function amg_level_params_linear_elasticity(block_size; - pre_smoother = additive_schwarz(gauss_seidel(;iters=1);iters=1), + pre_smoother = p-> additive_schwarz(p;local_solver=q->gauss_seidel(q;iterations=1),iterations=1), coarsening = smoothed_aggregation_with_block_size(;approximate_omega = lambda_generic, tentative_prolongator = tentative_prolongator_with_block_size, block_size = block_size), cycle = v_cycle, @@ -756,7 +767,7 @@ function amg_level_params_linear_elasticity(block_size; end function amg_level_params(; - pre_smoother = additive_schwarz(gauss_seidel(;iters=1);iters=1), + pre_smoother = p-> additive_schwarz(p;local_solver=q->gauss_seidel(q;iterations=1),iterations=1), coarsening = smoothed_aggregation(;), cycle = v_cycle, pos_smoother = pre_smoother, @@ -774,23 +785,24 @@ end function amg_coarse_params(; #TODO more resonable defaults? - coarse_solver = lu_solver(), + coarse_solver = LinearAlgebra_lu, coarse_size = 10, ) coarse_params = (;coarse_solver,coarse_size) coarse_params end -function amg(; +function amg(p; fine_params=amg_fine_params(), coarse_params=amg_coarse_params(),) amg_params = (;fine_params,coarse_params) - setup(x,O,b,options) = amg_setup(x,O,b,nullspace(options),amg_params) - update! = amg_update! - solve! = amg_solve! - finalize! = amg_finalize! - uses_nullspace = Val(true) - linear_solver(;setup,update!,solve!,finalize!,uses_nullspace) + + x = solution(p) + b = rhs(p) + A = matrix(p) + B = nullspace(p) + setup = amg_setup(x,A,b,B,amg_params) + linear_solver(amg_update!,amg_step!,p,setup) end function amg_setup(x,A,b,::Nothing,amg_params) @@ -807,8 +819,8 @@ function amg_setup(x,A,b,B,amg_params) return nothing end (;pre_smoother,pos_smoother,coarsening,cycle) = fine_level - pre_setup = setup(pre_smoother,x,A,b) - pos_setup = setup(pos_smoother,x,A,b) + pre_setup = pre_smoother(linear_problem(x,A,b)) + pos_setup = pos_smoother(linear_problem(x,A,b)) coarsen, _ = coarsening Ac,Bc,R,P,Ac_setup = coarsen(A,B) nc = size(Ac,1) @@ -830,28 +842,29 @@ function amg_setup(x,A,b,B,amg_params) end n_fine_levels = count(i->i!==nothing,fine_levels) nlevels = n_fine_levels+1 - coarse_solver_setup = setup(coarse_solver,x,A,b) + coarse_solver_setup = coarse_solver(linear_problem(x,A,b)) coarse_level = (;coarse_solver_setup) (;nlevels,fine_levels,coarse_level,amg_params) end -function amg_solve!(x,setup,b,options) +function amg_step!(x,setup,b,phase=:start;kwargs...) level=1 amg_cycle!(x,setup,b,level) - x + phase=:stop + x,setup,phase end function amg_cycle!(x,setup,b,level) amg_params = setup.amg_params if level == setup.nlevels coarse_solver_setup = setup.coarse_level.coarse_solver_setup - return solve!(x,coarse_solver_setup,b) + return smooth!(x,coarse_solver_setup,b) end level_params = amg_params.fine_params[level] level_setup = setup.fine_levels[level] (;cycle) = level_params (;R,P,r,rc,rc2,e,ec,ec2,A,Ac,pre_setup,pos_setup) = level_setup - solve!(x,pre_setup,b) + smooth!(x,pre_setup,b) mul!(r,A,x) r .= b .- r mul!(rc2,R,r) @@ -861,16 +874,16 @@ function amg_cycle!(x,setup,b,level) ec2 .= ec mul!(e,P,ec2) x .+= e - solve!(x,pos_setup,b) + smooth!(x,pos_setup,b) x end -function amg_statistics(P::Preconditioner) +function amg_statistics(P) # Taken from: An Introduction to Algebraic Multigrid, R. D. Falgout, April 25, 2006 # Grid complexity is the total number of grid points on all grids divided by the number # of grid points on the fine grid. Operator complexity is the total number of nonzeroes in the linear operators # on all grids divided by the number of nonzeroes in the fine grid operator - setup = P.solver_setup + setup = P.workspace nlevels = setup.nlevels level_rows = zeros(Int,nlevels) level_nnz = zeros(Int,nlevels) @@ -909,7 +922,7 @@ end amg_cycle!(args...) end -function amg_update!(setup,A,options) +function amg_update!(setup,A) amg_params = setup.amg_params nlevels = setup.nlevels for level in 1:(nlevels-1) @@ -918,13 +931,13 @@ function amg_update!(setup,A,options) (;coarsening) = level_params _, coarsen! = coarsening (;R,P,A,Ac,Ac_setup,pre_setup,pos_setup) = level_setup - update!(pre_setup,A) - update!(pos_setup,A) + update(pre_setup,matrix=A) + update(pos_setup,matrix=A) coarsen!(A,Ac,R,P,Ac_setup) A = Ac end coarse_solver_setup = setup.coarse_level.coarse_solver_setup - update!(coarse_solver_setup,A) + update(coarse_solver_setup,matrix=A) setup end diff --git a/PartitionedSolvers/src/interfaces.jl b/PartitionedSolvers/src/interfaces.jl index edc40335..fca4998e 100644 --- a/PartitionedSolvers/src/interfaces.jl +++ b/PartitionedSolvers/src/interfaces.jl @@ -4,155 +4,1029 @@ function Base.show(io::IO,data::AbstractType) print(io,"PartitionedSolvers.$(nameof(typeof(data)))(…)") end -function default_nullspace(A) - T = eltype(A) - [ones(T,size(A,2))] +abstract type AbstractProblem <: AbstractType end +abstract type AbstractSolver <: AbstractType end +#abstract type AbstractAge <: AbstractType end + +#function update(;kwargs...) +# function update_it(p) +# update(p;kwargs...) +# end +#end +# +#function update(s::AbstractSolver) +# function update_solver(p) +# update(s,p) +# end +#end +# +#function update(p::AbstractProblem;kwargs...) +# function update_problem(args...) +# update(p,args...;kwargs...) +# end +#end + +function solve(solver;kwargs...) + solver, state = step(solver;kwargs...) + while state !== :stop + solver, state = step(solver,state) + end + solver +end + +function history(solver;kwargs...) + History(identity,solver,kwargs) +end + +function history(f,solver;kwargs...) + History(f,solver,kwargs) +end + +struct History{A,B,C} + f::A + solver::B + kwargs::C +end + +function Base.iterate(a::History) + solver, state = step(a.solver;a.kwargs...) + a.f(solver), (solver,state) +end + +function Base.iterate(a::History,(solver,state)) + if state === :stop + return nothing + end + solver, state = step(solver,state) + a.f(solver), (solver,state) +end + +solution(a) = a.solution +jacobian(a) = a.jacobian +residual(a) = a.residual +attributes(a) = a.attributes +problem(a) = a.problem +matrix(a) = a.matrix +rhs(a) = a.rhs +statement(a) = a.statement +workspace(a) = a.workspace +interval(a) = a.interval +coefficients(a) = a.coefficients +uses_initial_guess(a) = val_parameter(a.uses_initial_guess) +constant_jacobian(a) = val_parameter(a.constant_jacobian) +uses_mutable_types(a) = val_parameter(a.uses_mutable_types) + +uses_initial_guess(a::AbstractSolver) = uses_initial_guess(attributes(a)) +constant_jacobian(a::AbstractProblem) = constant_jacobian(attributes(a)) +uses_mutable_types(a::AbstractProblem) = uses_mutable_types(attributes(a)) + +#solution(a::AbstractProblem) = solution(workspace(a)) +#jacobian(a::AbstractProblem) = jacobian(workspace(a)) +#residual(a::AbstractProblem) = residual(workspace(a)) +#age(a::AbstractProblem) = age(workspace(a)) +#matrix(a::AbstractProblem) = matrix(workspace(a)) +#rhs(a::AbstractProblem) = rhs(workspace(a)) + +solution(a::AbstractSolver) = solution(problem(a)) +matrix(a::AbstractSolver) = matrix(problem(a)) +rhs(a::AbstractSolver) = rhs(problem(a)) +residual(a::AbstractSolver) = residual(problem(a)) +jacobian(a::AbstractSolver) = jacobian(problem(a)) + +abstract type AbstractLinearProblem <: AbstractProblem end + +#struct LinearProblemAge <: AbstractAge +# solution::Int +# matrix::Int +# rhs::Int +#end +# +#function linear_problem_age() +# LinearProblemAge(1,1,1) +#end +# +#function increment(a::LinearProblemAge;solution=0,matrix=0,rhs=0) +# LinearProblemAge( +# a.solution + solution, +# a.matrix + matrix, +# a.rhs + rhs, +# ) +#end + +function linear_problem(solution,matrix,rhs;uses_mutable_types=Val(true),nullspace=nothing) + attributes = (;uses_mutable_types,nullspace) + LinearProblem(solution,matrix,rhs,attributes) end -function default_nullspace(A::PSparseMatrix) - col_partition = partition(axes(A,2)) - T = eltype(A) - [ pones(T,col_partition) ] +struct LinearProblem{A,B,C,D} <: AbstractLinearProblem + solution::A + matrix::B + rhs::C + attributes::D end -abstract type AbstractLinearSolver <: AbstractType end +nullspace(a::LinearProblem) = a.attributes.nullspace + +function update(p::LinearProblem;kwargs...) + data = (;kwargs...) + if hasproperty(data,:matrix) + A = data.matrix + else + A = matrix(p) + end + if hasproperty(data,:rhs) + b = data.rhs + else + b = rhs(p) + end + if hasproperty(data,:solution) + x = data.solution + else + x = solution(p) + end + if hasproperty(data,:attributes) + attrs = data.attributes + else + attrs = attributes(p) + end + LinearProblem(x,A,b,attrs) +end -function linear_solver(; - setup, - solve!, - update!, - finalize! = ls_setup->nothing, - step! = nothing, - uses_nullspace = Val(false), +abstract type AbstractLinearSolver <: AbstractSolver end + +function LinearAlgebra.ldiv!(x,solver::AbstractLinearSolver,b) + if uses_initial_guess(attributes(solver)) + fill!(x,zero(eltype(x))) + end + smooth!(x,solver,b;zero_guess=true) + x +end + +function smooth!(x,s::AbstractLinearSolver,b;kwargs...) + s = update(s,solution=x,rhs=b) + s = solve(s;kwargs...) + x +end + +function linear_solver(args...; uses_initial_guess = Val(true), - returns_history = Val(false), ) - if step! === nothing - step! = (x,ls_setup,b,options,step=0) -> begin - if step !=0 - return nothing - end - x = solve!(x,ls_setup,b,options) - x,step+1 - end + attributes = (;uses_initial_guess) + LinearSolver(args...,attributes) +end + +struct LinearSolver{A,B,C,D,E} <: AbstractLinearSolver + update::A + step::B + problem::C + workspace::D + attributes::E +end + +function update(s::LinearSolver;problem=s.problem,kwargs...) + p = update(problem;kwargs...) + workspace = s.workspace + if haskey(kwargs,:matrix) || problem !== s.problem + workspace = s.update(workspace,matrix(p)) end - traits = LinearSolverTraits(uses_nullspace,uses_initial_guess,returns_history) - LinearSolver(setup,solve!,update!,finalize!,step!,traits) + LinearSolver(s.update,s.step,p,workspace,s.attributes) end -struct LinearSolverTraits{A,B,C} <: AbstractType - uses_nullspace::A - uses_initial_guess::B - returns_history::C +function step(s::LinearSolver;kwargs...) + p = s.problem + x = solution(p) + b = rhs(p) + next = s.step(x,s.workspace,b;kwargs...) + #if next === nothing + # return nothing + #end + x,workspace,state = next + p = update(p,solution=x) + s = LinearSolver(s.update,s.step,p,workspace,s.attributes) + s,state end -struct LinearSolver{A,B,C,D,E,F} <: AbstractLinearSolver - setup::A - solve!::B - update!::C - finalize!::D - step!::E - traits::F +function step(s::LinearSolver,state) + p = s.problem + x = solution(p) + b = rhs(p) + next = s.step(x,s.workspace,b,state) + #if next === nothing + # return nothing + #end + x,workspace,state = next + p = update(p,solution=x) + s = LinearSolver(s.update,s.step,p,workspace,s.attributes) + s,state end -function linear_solver(s::LinearSolver) - s +function preconditioner(solver,p) + dx = similar(solution(p),axes(matrix(p),2)) + r = similar(rhs(p),axes(matrix(p),1)) + dp = update(p,solution=dx,rhs=r) + solver(dp) end -struct Preconditioner{A,B} <: AbstractType - solver::A - solver_setup::B +abstract type AbstractNonlinearProblem <: AbstractProblem end + +#function update(p::AbstractNonlinearProblem;kwargs...) +# function update_nonlinear_problem(x) +# update(p,x;kwargs...) +# end +#end + +#struct NonlinearProblemAge <: AbstractAge +# solution::Int +# residual::Int +# jacobian::Int +#end +# +#function nonlinear_problem_age() +# NonlinearProblemAge(0,0,0) +#end +# +#function increment(a::NonlinearProblemAge;solution=0,residual=0,jacobian=0) +# NonlinearProblemAge( +# a.solution + solution, +# a.residual + residual, +# a.jacobian + jacobian, +# ) +#end + +function nonlinear_problem(args...;uses_mutable_types=Val(true)) + attributes = (;uses_mutable_types) + NonlinearProblem(args...,attributes) end -function setup_options(;nullspace=nothing) - options = (;nullspace) +struct NonlinearProblem{A,B,C,D,E,F} <: AbstractNonlinearProblem + statement::A + solution::B + residual::C + jacobian::D + workspace::E + attributes::F end -function nullspace(options) - options.nullspace +#function linear_problem(p::NonlinearProblem) +# x = p.solution +# r = p.residual +# j = p.jacobian +# attrs = p.attributes +# dx = similar(x,axes(j,2)) +# linear_problem(dx,j,r;attrs...) +#end +# +#function update(lp::LinearProblem,p::NonlinearProblem) +# r = p.residual +# j = p.jacobian +# update(lp,matrix=j,rhs=j) +#end + +function set(p::NonlinearProblem;kwargs...) + data = (;kwargs...) + if hasproperty(data,:statement) + st = data.statement + else + st = statement(p) + end + if hasproperty(data,:residual) + b = data.residual + else + b = residual(p) + end + if hasproperty(data,:jacobian) + A = data.jacobian + else + A = jacobian(p) + end + if hasproperty(data,:solution) + x = data.solution + else + x = solution(p) + end + if hasproperty(data,:attributes) + attrs = data.attributes + else + attrs = attributes(p) + end + NonlinearProblem(st,x,b,A,p.workspace,attrs) end -function uses_nullspace(a::LinearSolver) - val_parameter(a.traits.uses_nullspace) +function update(p::NonlinearProblem;kwargs...) + p = set(p;kwargs...) + q = set(p,statement=Base.identity) + q = p.statement(q) + p = set(q,statement=p.statement) + p end -function uses_initial_guess(a::LinearSolver) - val_parameter(a.traits.uses_initial_guess) +abstract type AbstractNonlinearSolver <: AbstractSolver end + +function nonlinear_solver(args...;attributes...) + NonlinearSolver(args...,attributes) end -function returns_history(a::LinearSolver) - val_parameter(a.traits.returns_history) +struct NonlinearSolver{A,B,C,D,E} <: AbstractNonlinearSolver + update::A + step::B + problem::C + workspace::D + attributes::E end -function setup(solver::LinearSolver,x,A,b;kwargs...) - options = setup_options(;kwargs...) - solver_setup = solver.setup(x,A,b,options) - Preconditioner(solver,solver_setup) +function update(s::NonlinearSolver;problem=s.problem,kwargs...) + p = update(problem;kwargs...) + workspace = s.update(s.workspace,p) + NonlinearSolver(s.update,s.step,p,workspace,s.attributes) end -function update!(P::Preconditioner,A;kwargs...) - options = setup_options(;kwargs...) - P.solver.update!(P.solver_setup,A,options) - P +function step(s::NonlinearSolver;kwargs...) + next = s.step(s.workspace,s.problem;kwargs...) + #if next === nothing + # return nothing + #end + workspace,p,state = next + s = NonlinearSolver(s.update,s.step,p,workspace,s.attributes) + s,state end -function solve_options(;zero_guess=false,history=Val(false)) - options = (;zero_guess,history) +function step(s::NonlinearSolver,state) + next = s.step(s.workspace,s.problem,state) + #if next === nothing + # return nothing + #end + workspace,p,state = next + s = NonlinearSolver(s.update,s.step,p,workspace,s.attributes) + s,state end -function solve!(x,P::Preconditioner,b;kwargs...) - options = solve_options(;kwargs...) - next = P.solver.solve!(x,P.solver_setup,b,options) - if returns_history(P.solver) - x,log = next +abstract type AbstractODEProblem <: AbstractProblem end + +#function update(p::AbstractODEProblem;kwargs...) +# function update_ode_problem(x) +# update(p,x;kwargs...) +# end +#end + +#struct ODEProblemAge <: AbstractAge +# solution::Int +# residual::Int +# jacobian::Int +#end +# +#function ode_problem_age() +# ODEProblemAge(0,0,0) +#end +# +#function increment(a::ODEProblemAge;solution=0,residual=0,jacobian=0) +# ODEProblemAge( +# a.solution + solution, +# a.residual + residual, +# a.jacobian + jacobian, +# ) +#end + + +function ode_problem(args...;constant_jacobian=Val(false),uses_mutable_types=Val(true)) + attributes = (;constant_jacobian,uses_mutable_types) + ODEProblem(args...,attributes) +end + +struct ODEProblem{A,B,C,D,E,F,G,H} <: AbstractODEProblem + statement::A + solution::B + residual::C + jacobian::D + interval::E + coefficients::F + workspace::G + attributes::H +end + +function set(p::ODEProblem;kwargs...) + data = (;kwargs...) + if hasproperty(data,:statement) + st = data.statement + else + st = statement(p) + end + if hasproperty(data,:residual) + b = data.residual + else + b = residual(p) + end + if hasproperty(data,:jacobian) + A = data.jacobian + else + A = jacobian(p) + end + if hasproperty(data,:solution) + x = data.solution + else + x = solution(p) + end + if hasproperty(data,:attributes) + attrs = data.attributes + else + attrs = attributes(p) + end + if hasproperty(data,:interval) + i = data.interval else - x = next - log = nothing + i = interval(p) end - if val_parameter(options.history) == true - return x, log + if hasproperty(data,:coefficients) + c = data.coefficients else - return x + c = coefficients(p) end + p = ODEProblem(st,x,b,A,i,c,p.workspace,attrs) end -function LinearAlgebra.ldiv!(x,P::Preconditioner,b) - if uses_initial_guess(P.solver) - fill!(x,zero(eltype(x))) - end - solve!(x,P,b;zero_guess=true) - x +function update(p::ODEProblem;kwargs...) + p = set(p;kwargs...) + q = set(p,statement=Base.identity) + q = p.statement(q) + p = set(q,statement=p.statement) + p end -function finalize!(P::Preconditioner) - P.solver.finalize!(P.solver_setup) +abstract type AbstractODESolver <: AbstractSolver end + +function ode_solver(args...;attributes...) + ODESolver(args...,attributes) end -function iterations!(x,P::Preconditioner,b;kwargs...) - options = solve_options(;kwargs...) - params = (;options,x,P,b) - LinearSolverIterator(params) +struct ODESolver{A,B,C,D,E} <: AbstractODESolver + update::A + step::B + problem::C + workspace::D + attributes::E end -struct LinearSolverIterator{A} <: AbstractType - params::A +function update(s::ODESolver;problem=s.problem,kwargs...) + p = update(problem;kwargs...) + workspace = s.update(s.workspace,p) + ODESolver(s.update,s.step,p,workspace,s.attributes) end -function Base.iterate(a::LinearSolverIterator) - P = a.params.P - options = a.params.options - b = a.params.b - x = a.params.x - next = P.solver.step!(x,P.solver_setup,b,options) - next +function step(s::ODESolver;kwargs...) + next = s.step(s.workspace,s.problem;kwargs...) + #if next === nothing + # return nothing + #end + workspace,p,state = next + s = ODESolver(s.update,s.step,p,workspace,s.attributes) + s,state end -function Base.iterate(a::LinearSolverIterator,state) - P = a.params.P - options = a.params.options - b = a.params.b - x = a.params.x - next = P.solver.step!(x,P.solver_setup,b,options,state) - next +function step(s::ODESolver,state) + next = s.step(s.workspace,s.problem,state) + #if next === nothing + # return nothing + #end + workspace,p,state = next + s = ODESolver(s.update,s.step,p,workspace,s.attributes) + s,state end +#function linear_problem(args...;nullspace=nothing,block_size=1) +# attributes = (;nullspace,block_size) +# LinearProblem(args...,attributes) +#end +# +#mutable struct LinearProblem{A,B,C,D} +# solution::A +# matrix::B +# rhs::C +# attributes::D +#end +# +#solution(a) = a.solution +#matrix(a) = a.matrix +#rhs(a) = a.rhs +#attributes(a) = a.attributes +# +#function update!(p::LinearProblem;kwargs...) +# @assert issubset(propertynames(kwargs),propertynames(p)) +# if hasproperty(kwargs,:matrix) +# p.matrix = kwargs.matrix +# end +# if hasproperty(kwargs,:rhs) +# p.rhs = kwargs.rhs +# end +# if hasproperty(kwargs,:solution) +# p.solution = kwargs.solution +# end +# if hasproperty(kwargs,:attributes) +# p.attributes = kwargs.attributes +# end +# p +#end +# +#function nonlinear_problem(args...;nullspace=nothing,block_size=1) +# attributes = (;nullspace,block_size) +# NonlinearProblem(args...,attributes) +#end +# +#struct NonlinearProblem{A,B,C,D,E} +# statement::A +# solution::B +# residual::C +# jacobian::D +# attributes::E +#end +# +#statement(a) = a.statement +#residual(a) = a.residual +#jacobian(a) = a.jacobian +# +##function update!(p::NonlinearProblem;kwargs...) +## @assert issubset(propertynames(kwargs),propertynames(p)) +## if hasproperty(kwargs,:statement) +## p.statement = kwargs.statement +## end +## if hasproperty(kwargs,:residual) +## p.residual = kwargs.residual +## end +## if hasproperty(kwargs,:jacobian) +## p.jacobian = kwargs.jacobian +## end +## if hasproperty(kwargs,:solution) +## p.solution = kwargs.solution +## end +## if hasproperty(kwargs,:attributes) +## p.attributes = kwargs.attributes +## end +## p +##end +# +#function ode_problem(args...;nullspace=nothing,block_size=1,constant_jacobian=false) +# attributes = (;nullspace,block_size,constant_jacobian) +# ODEProblem(args...,attributes) +#end +# +#struct ODEProblem{A,B,C,D,E,F} +# statement::A +# interval::B +# solution::C +# residual::D +# jacobian::E +# attributes::F +#end +# +#interval(a) = a.interval +# +##function update!(p::ODEProblem;kwargs...) +## @assert issubset(propertynames(kwargs),propertynames(p)) +## if hasproperty(kwargs,:statement) +## p.statement = kwargs.statement +## end +## if hasproperty(kwargs,:residual) +## p.residual = kwargs.residual +## end +## if hasproperty(kwargs,:jacobian) +## p.jacobian = kwargs.jacobian +## end +## if hasproperty(kwargs,:solution) +## p.solution = kwargs.solution +## end +## if hasproperty(kwargs,:attributes) +## p.attributes = kwargs.attributes +## end +## if hasproperty(kwargs,:interval) +## p.interval = kwargs.interval +## end +## p +##end +# +#function solve!(solver;kwargs...) +# next = step!(solver;kwargs...) +# while next !== nothing +# solver,phase = next +# next = step!(solver,next) +# end +# solution(solver) +#end +# +#function history(solver) +# History(solver) +#end +# +#struct History{A} +# solver::A +#end +# +#function Base.iterate(a::History) +# next = step!(a.solver) +# if next === nothing +# return nothing +# end +# solution(problem(a.solver)), next +#end +# +#function Base.iterate(a::History,next) +# next = step!(a.solver,next) +# if next === nothing +# return nothing +# end +# solution(problem(a.solver)), next +#end +# +#struct Solver{A,B,C,D,E} +# problem::A +# step!::B +# update!::C +# finalize!::D +# attributes::E +#end +# +#uses_initial_guess(a) = a.uses_initial_guess +# +#function solver(args...;uses_initial_guess=Val(true)) +# attributes = (;uses_initial_guess) +# Solver(args...,attributes) +#end +# +#function step!(solver::Solver) +# solver.step!() +#end +# +#function step!(solver::Solver,state) +# solver.step!(state) +#end +# +#function update!(solver::Solver;kwargs...) +# kwargs2 = solver.update!(;kwargs...) +# update!(solver.problem,kwargs2...) +# solver +#end +# +#function finalize!(solver::Solver) +# solver.step!() +#end +# +#function LinearAlgebra.ldiv!(x,solver::Solver,b) +# if uses_initial_guess(solver.attributes) +# fill!(x,zero(eltype(x))) +# end +# smooth!(x,solver,b;zero_guess=true) +# x +#end +# +#function smooth!(x,solver,b;kwargs...) +# update!(solver,solution=x,rhs=b) +# solve!(solver;kwargs...) +# x +#end +# +#function LinearAlgebra_lu(problem) +# F = lu(matrix(problem)) +# function lu_step!(phase=:start) +# if phase === :stop +# return nothing +# end +# x = solution(problem) +# b = rhs(problem) +# ldiv!(x,F,b) +# phase = :stop +# phase +# end +# function lu_update!(;kwargs...) +# if hasproperty(kwargs,:matrix) +# lu!(F,kwargs.matrix) +# end +# kwargs +# end +# function lu_finalize!() +# nothing +# end +# uses_initial_guess = false +# solver(problem,lu_step!,lu_update!,lu_finalize!;uses_initial_guess) +#end +# +#function identity_solver(problem) +# function id_step!(phase=:start) +# if phase === :stop +# return nothing +# end +# x = solution(problem) +# b = rhs(problem) +# copyto!(x,b) +# phase = :stop +# phase +# end +# function id_update!(;kwargs...) +# kwargs +# end +# function id_finalize!() +# nothing +# end +# uses_initial_guess = false +# solver(problem,id_step!,id_update!,id_finalize!;uses_initial_guess) +#end +# +#function jacobi_correction(problem) +# Adiag = dense_diag(matrix(problem)) +# function jc_step!(phase=:start) +# if phase === :stop +# return nothing +# end +# x = solution(problem) +# b = rhs(problem) +# x .= Adiag .\ b +# phase = :stop +# phase +# end +# function jc_update!(;kwargs...) +# if hasproperty(kwargs,:matrix) +# dense_diag!(Adiag,kwargs.matrix) +# end +# kwargs +# end +# function jc_finalize!() +# nothing +# end +# uses_initial_guess = false +# solver(problem,id_step!,id_update!,id_finalize!;uses_initial_guess) +#end +# +#function richardson(problem; +# P = identity_solver(problem), +# iterations = 10, +# omega = 1, +# ) +# iteration = 0 +# b = rhs(problem) +# A = matrix(problem) +# x = solution(problem) +# dx = similar(x,axes(A,2)) +# r = similar(b,axes(A,1)) +# function rc_step!(phase=:start;zero_guess=false) +# @assert phase in (:start,:stop,:advance) +# if phase === :stop +# return nothing +# end +# if phase === :start +# iteration = 0 +# phase = :advance +# end +# b = rhs(problem) +# A = matrix(problem) +# x = solution(problem) +# dx .= x +# if zero_guess +# r .= .- b +# else +# mul!(r,A,dx) +# r .-= b +# end +# ldiv!(dx,P,r) +# x .-= omega .* dx +# iteration += 1 +# if iteration == iterations +# phase = :stop +# end +# phase +# end +# function rc_update!(;kwargs...) +# kwargs +# end +# function rc_finalize!() +# nothing +# end +# solver(problem,id_step!,id_update!,id_finalize!) +#end +# +#function jacobi(problem;iterations=10,omega=1) +# P = jacobi_correction(problem) +# R = richardson(problem;P,iterations,omega) +# function ja_step!(args...) +# step!(R,args...) +# end +# function update!(;kwargs...) +# update!(P;kwargs...) +# update!(R;kwargs...) +# kwargs +# end +# function rc_finalize!() +# finalize!(P) +# finalize!(R) +# end +# solver(problem,ja_step!,ja_update!,ja_finalize!) +#end +# +#function convergence(;kwargs...) +# convergence(Float64;kwargs...) +#end +# +#function convergence(::Type{T}; +# iterations = 1000, +# abs_res_tol = typemax(T), +# rel_res_tol = T(1e-12), +# abs_sol_tol = zero(T), +# res_norm = norm, +# sol_norm = dx -> maximum(abs,dx) +# ) where T +# (;iterations,abs_res_tol,rel_res_tol,abs_sol_tol,res_norm,sol_norm) +#end +# +#function verbosity(; +# level=0, +# prefix="") +# (;level,prefix) +#end +# +#function status(params) +# (;abs_res_tol,abs_sol_tol,rel_res_tol,iterations) = params +# res_target = zero(abs_res_tol) +# sol_target = zero(abs_sol_tol) +# iteration = 0 +# status = Status(iterations,iteration,res_target,sol_target,res_error,sol_error) +# start!(status,res_error,sol_error) +# status +#end +# +#mutable struct Status{T} +# iterations::Int +# iteration::Int +# res_target::T +# sol_target::T +# res_error::T +# sol_error::T +#end +# +#function start!(status::Status,res_error,sol_error) +# res_target = min(abs_res_tol,res_error*rel_res_tol) +# sol_target = abs_sol_tol +# iteration = 0 +#end +# +#function step!(status::Status,res_error,sol_error) +# status.iteration += 1 +# status.res_error = res_error +# status.sol_error = sol_error +# status +#end +# +#function tired(status) +# status.iteration >= status.iterations +#end +# +#function converged(status) +# status.res_error <= status.res_target || status.sol_error <= status.sol_target +#end +# +#function print_progress(verbosity,status) +# if verbosity.level > 0 +# s = verbosity.prefix +# @printf "%s%6i %6i %12.3e %12.3e\n" s status.iteration status.iterations status.res_error a.res_target +# end +#end +# +##struct Usage +## num_updates::Dict{Symbol,Int} +##end +## +##function usage() +## num_updates = Dict{Symbol,Int}() +## Usage(num_updates) +##end +## +##function start!(usage::Usage) +## for k in keys(usage.num_updates) +## usage.num_updates[k] = 0 +## end +## usage +##end +## +##function update!(usage::Usage;kwargs...) +## for k in propertynames(kwargs) +## if ! haskey(usage.num_updates,k) +## usage.num_updates[k] = 0 +## end +## usage.num_updates[k] += 1 +## end +## usage +##end +# +#function newton_raphson(problem; +# solver=lp->LinearAlgebra_lu(lp), +# convergence = PartitionedSolvers.convergence(eltype(solution(problem))), +# verbosity = PartitionedSolvers.verbosity(), +# ) +# x = solution(problem) +# J = jacobian(problem) +# r = residual(problem) +# dx = similar(x,axes(J,2)) +# lp = linear_problem(dx,J,r) +# S = solver(lp) +# status = PartitionedSolvers.status(convergence) +# function nr_step!(phase=:start;kwargs...) +# @assert phase in (:start,:stop,:advance) +# if phase === :stop +# return nothing +# end +# x = solution(problem) +# J = jacobian(problem) +# r = residual(problem) +# rj! = statement(problem) +# if phase === :start +# rj!(r,J,x) +# res_error = convergence.res_norm(r) +# sol_error = typemax(res_error) +# start!(status,res_error,sol_error) +# print_progress(verbosity,status) +# phase = :advance +# end +# update!(S,matrix=J) +# dx = solution(S) +# ldiv!(dx,S,b) +# x .-= dx +# rj!(r,J,x) +# res_error = convergence.res_norm(r) +# sol_error = convergence.sol_norm(dx) +# step!(status,res_error,sol_error) +# print_progress(verbosity,status) +# if converged(status) || tired(status) +# phase = :stop +# end +# phase +# end +# function nr_update!(;kwargs...) +# kwargs +# end +# function nr_finalize!() +# nothing +# end +# PartitionedSolvers.solver(problem,nr_step!,nr_update!,nr_finalize!) +#end +# +#function print_time_step(verbosity,t,tend) +# if verbosity.level > 0 +# s = verbosity.prefix +# @printf "%s%12.3e %12.3e\n" s t tend +# end +#end +# +#function backward_euler(ode; +# dt = (interval(ode)[2]-interval(ode)[1])/100, +# solver = constant_jacobian(ode) ? LinearAlgebra_lu : newton_raphson, +# verbosity = PartitionedSolvers.verbosity(), +# ) +# +# (t,u,v) = solution(ode) +# x = copy(u) +# J = jacobian(ode) +# r = residual(ode) +# attrs = attributes(problem) +# rj! = statement(problem) +# if constant_jacobian(ode) +# rj!(r,j,(t,u,v),(1,1/dt)) +# lp = linear_problem(x,J,r;attrs...) +# S = solver(lp) +# else +# nlp = nonlinear_problem(x,J,r;attrs...) do r,j,x +# v .= (x .- u) ./ dt +# rj!(r,j,(t,x,v),(1,1/dt)) +# end +# S = solver(nlp) +# end +# function be_step!(phase=:start;kwargs...) +# @assert phase in (:start,:stop,:advance) +# if phase === :stop +# return nothing +# end +# J = jacobian(ode) +# r = residual(ode) +# tend = last(interval(ode)) +# if phase === :start +# t = first(interval(ode)) +# phase = :advance +# if constant_jacobian +# rj!(r,J,(t,u,v),(1,1/dt)) +# end +# print_time_step(verbosity,t,tend) +# end +# x = solve!(S) +# v .= (x .- u) ./ dt +# u .= x +# t += dt +# if constant_jacobian(ode) +# rj!(r,nothing,(t,u,v),(1,1/dt)) +# end +# print_time_step(verbosity,t,tend) +# if t >= tend +# phase = :stop +# end +# end +# function be_update!(;kwargs...) +# kwargs +# end +# function be_finalize!() +# nothing +# end +# PartitionedSolvers.solver(problem,be_step!,be_update!,be_finalize!) +#end + diff --git a/PartitionedSolvers/src/smoothers.jl b/PartitionedSolvers/src/smoothers.jl index a015cc7d..da809330 100644 --- a/PartitionedSolvers/src/smoothers.jl +++ b/PartitionedSolvers/src/smoothers.jl @@ -1,343 +1,356 @@ -function lu_solver() - setup(x,op,b,options) = lu(op) - update!(state,op,options) = lu!(state,op) - solve!(x,P,b,options) = ldiv!(x,P,b) +function identity_solver(p) + @assert uses_mutable_types(p) + workspace = nothing + function update(workspace,A) + workspace + end + function step(x,workspace,b,phase=:start;kwargs...) + copyto!(x,b) + phase = :stop + x,workspace,phase + end uses_initial_guess = Val(false) - linear_solver(;setup,solve!,update!,uses_initial_guess) + linear_solver(update,step,p,uses_initial_guess) end -function jacobi_correction() - setup(x,op,b,options) = dense_diag!(similar(b),op) - update!(state,op,options) = dense_diag!(state,op) - function solve!(x,state,b,options) - x .= state .\ b - x +function jacobi_correction(p) + @assert uses_mutable_types(p) + Adiag = dense_diag!(similar(rhs(p)),matrix(p)) + function update(Adiag,A) + dense_diag!(Adiag,A) + Adiag + end + function step(x,Adiag,b,phase=:start;kwargs...) + x .= Adiag .\ b + phase = :stop + x,Adiag,phase end uses_initial_guess = Val(false) - linear_solver(;setup,update!,solve!,uses_initial_guess) + linear_solver(update,step,p,Adiag;uses_initial_guess) end -function richardson(solver;iters,omega=1) - function setup(x,A,b,options) - A_ref = Ref(A) - r = similar(b) - dx = similar(x,axes(A,2)) - P = PartitionedSolvers.setup(solver,dx,A,r) - state = (r,dx,P,A_ref) - end - function update!(state,A,options) - (r,dx,P,A_ref) = state - A_ref[] = A - PartitionedSolvers.update!(P,A) - state +function richardson(p; + P=preconditioner(identity_solver,p) , + iterations=10, + omega=1, + update_P = true, + ) + @assert uses_mutable_types(p) + iteration = 0 + A = matrix(p) + ws = (;iterations,P,iteration,omega,update_P,A) + linear_solver(richardson_update,richardson_step,p,ws) +end + +function richardson_update(ws,A) + (;iterations,P,iteration,omega,update_P) = ws + if update_P + P = update(P,matrix=A) end - function solve!(x,state,b,options) - (r,dx,P,A_ref) = state - A = A_ref[] - for iter in 1:iters - dx .= x - mul!(r,A,dx) - r .-= b - ldiv!(dx,P,r) - x .-= omega .* dx + iteration = 0 + ws = (;iterations,P,iteration,omega,update_P,A) +end + +function richardson_step(x,ws,b,phase=:start;kwargs...) + (;iterations,P,iteration,omega,update_P,A) = ws + if phase === :start + iteration = 0 + phase = :advance + end + dx = solution(P) + r = rhs(P) + dx .= x + mul!(r,A,dx) + r .-= b + ldiv!(dx,P,r) + x .-= omega .* dx + iteration += 1 + if iteration == iterations + phase = :stop + end + ws = (;iterations,P,iteration,omega,update_P,A) + x,ws,phase +end + +function jacobi(p;iterations=10,omega=1) + P = preconditioner(jacobi_correction,p) + update_P = true + richardson(p;P,update_P,iterations,omega) +end + +function gauss_seidel(p;iterations=1,sweep=:symmetric) + @assert uses_mutable_types(p) + iteration = 0 + A = matrix(p) + Adiag = dense_diag!(similar(rhs(p)),A) + ws = (;iterations,sweep,iteration,A,Adiag) + linear_solver(gauss_seidel_update,gauss_seidel_step,p,ws) +end + +function gauss_seidel_update(ws,A) + (;iterations,sweep,iteration,A,Adiag) = ws + dense_diag!(Adiag,A) + iteration = 0 + ws = (;iterations,sweep,iteration,A,Adiag) +end + +function gauss_seidel_step(x,ws,b,phase=:start;zero_guess=false,kwargs...) + (;iterations,sweep,iteration,A,Adiag) = ws + if phase === :start + iteration = 0 + phase = :advance + end + if (! zero_guess) && isa(x,PVector) + consistent!(x) |> wait + end + # TODO the meaning of :forward and :backward + # depends on the sparse matrix format + if sweep === :symmetric || sweep === :forward + if zero_guess + gauss_seidel_forward_sweep_zero!(x,A,Adiag,b) + else + gauss_seidel_forward_sweep!(x,A,Adiag,b) end - x, (;iters) end - function step!(x,state,b,options,step=0) - if step == iters - return nothing - end - (r,dx,P,A_ref) = state - A = A_ref[] - dx .= x - mul!(r,A,dx) - r .-= b - ldiv!(dx,P,r) - x .-= omega .* dx - x,step+1 + if sweep === :symmetric || sweep === :backward + gauss_seidel_backward_sweep!(x,A,Adiag,b) end - function finalize!(state) - (r,dx,P,A_ref) = state - PartitionedSolvers.finalize!(P) + iteration += 1 + if iteration == iterations + phase = :stop end - returns_history = Val(true) - linear_solver(;setup,update!,solve!,finalize!,step!,returns_history) + ws = (;iterations,sweep,iteration,A,Adiag) + x,ws,phase +end + +function gauss_seidel_forward_sweep!(x,A,diagA,b) + n = length(b) + gauss_seidel_sweep!(x,A,diagA,b,1:n) +end + +function gauss_seidel_backward_sweep!(x,A,diagA,b) + n = length(b) + gauss_seidel_sweep!(x,A,diagA,b,n:-1:1) end -function jacobi(;kwargs...) - solver = jacobi_correction() - richardson(solver;kwargs...) +function gauss_seidel_forward_sweep!(x,A::PSparseMatrix,diagA,b) + foreach(gauss_seidel_forward_sweep!,partition(x),partition(A),partition(diagA),own_values(b)) end -function gauss_seidel(;iters=1,sweep=:symmetric) - @assert sweep in (:forward,:backward,:symmetric) - function setup(x,A,b,options) - diagA = dense_diag!(similar(b),A) - A_ref = Ref(A) - (diagA,A_ref) +function gauss_seidel_backward_sweep!(x,A::PSparseMatrix,diagA,b) + foreach(gauss_seidel_backward_sweep!,partition(x),partition(A),partition(diagA),own_values(b)) +end + +function gauss_seidel_sweep!(x,A::SparseArrays.AbstractSparseMatrixCSC,diagA,b,cols) + # assumes symmetric matrix + for col in cols + s = b[col] + for p in nzrange(A,col) + row = A.rowval[p] + a = A.nzval[p] + s -= a*x[row] + end + d = diagA[col] + s += d*x[col] + s = s/d + x[col] = s end - function update!(state,A,options) - (diagA,A_ref) = state - dense_diag!(diagA,A) - A_ref[] = A - state + x +end + +function gauss_seidel_sweep!(x,A::SparseMatricesCSR.SparseMatrixCSR,diagA,b,rows) + for row in rows + s = b[row] + for p in nzrange(A,row) + col = A.colval[p] + a = A.nzval[p] + s -= a * x[col] + end + d = diagA[row] + s += d * x[row] + s = s / d + x[row] = s end - function gauss_seidel_sweep!(x,A::SparseArrays.AbstractSparseMatrixCSC,diagA,b,cols) - #assumes symmetric matrix - for col in cols - s = b[col] - for p in nzrange(A,col) - row = A.rowval[p] - a = A.nzval[p] - s -= a*x[row] - end - d = diagA[col] - s += d*x[col] - s = s/d - x[col] = s + x +end + +function gauss_seidel_sweep!(x,A::PartitionedArrays.AbstractSplitMatrix,diagA,b,cols) + @assert isa(A.row_permutation,UnitRange) + @assert isa(A.col_permutation,UnitRange) + Aoo = A.blocks.own_own + Aoh = A.blocks.own_ghost + gauss_seidel_sweep_split!(x,Aoo,Aoh,diagA,b,cols) +end + +function gauss_seidel_sweep_split!(x,Aoo::SparseMatricesCSR.SparseMatrixCSR,Aoh,diagA,b,rows) + for row in rows + s = b[row] + for p in nzrange(Aoo,row) + col = Aoo.colval[p] + a = Aoo.nzval[p] + s -= a * x[col] + end + for p in nzrange(Aoh,row) + col = Aoh.colval[p] + a = Aoh.nzval[p] + s -= a * x[col] end - x + d = diagA[row] + s += d * x[row] + s = s / d + x[row] = s end - function gauss_seidel_sweep!(x,A::SparseMatricesCSR.SparseMatrixCSR,diagA,b,rows) - #assumes symmetric matrix - for row in rows - s = b[row] - for p in nzrange(A,row) - col = A.colval[p] + x +end + +function gauss_seidel_forward_sweep_zero!(x,A,diagA,b) + n = length(b) + gauss_seidel_sweep_zero!(x,A,diagA,b,1:n) +end + +# TODO not sure if correct +function gauss_seidel_backward_sweep_zero!(x,A,diagA,b) + n = length(b) + gauss_seidel_sweep_zero!(x,A,diagA,b,n:-1:1) +end + +function gauss_seidel_forward_sweep_zero!(x,A::PSparseMatrix,diagA,b) + foreach(gauss_seidel_forward_sweep_zero!,partition(x),partition(A),partition(diagA),own_values(b)) +end + +function gauss_seidel_backward_sweep_zero!(x,A::PSparseMatrix,diagA,b) + foreach(gauss_seidel_backward_sweep_zero!,partition(x),partition(A),partition(diagA),own_values(b)) +end + +# Zero guess: only calculate points below diagonal of sparse matrix in forward sweep. +function gauss_seidel_sweep_zero!(x,A::SparseArrays.AbstractSparseMatrixCSC,diagA,b,cols) + gauss_seidel_sweep!(x,A,diagA,b,cols) + ## There is a bug, falling back to nonzero x + ##assumes symmetric matrix + #for col in cols + # s = b[col] + # for p in nzrange(A,col) + # row = A.rowval[p] + # if col < row + # a = A.nzval[p] + # s -= a*x[row] + # end + # end + # d = diagA[col] + # #s += d*x[col] + # s = s/d + # x[col] = s + #end + #x +end +# Zero guess: only calculate points below diagonal of sparse matrix in forward sweep. +function gauss_seidel_sweep_zero!(x,A::SparseMatricesCSR.SparseMatrixCSR,diagA,b,rows) + rows + length(x) + size(A) + length(b) + #assumes symmetric matrix + for row in rows + s = b[row] + for p in nzrange(A,row) + col = A.colval[p] + if col < row a = A.nzval[p] s -= a * x[col] end - d = diagA[row] - s += d * x[row] - s = s / d - x[row] = s end - x + d = diagA[row] + #s += d * x[col] + s = s / d + x[row] = s end + x +end - # Zero guess: only calculate points below diagonal of sparse matrix in forward sweep. - function gauss_seidel_sweep_zero!(x,A::SparseArrays.AbstractSparseMatrixCSC,diagA,b,cols) - #assumes symmetric matrix - for col in cols - s = b[col] - for p in nzrange(A,col) - row = A.rowval[p] - if col < row - a = A.nzval[p] - s -= a*x[row] - end - end - d = diagA[col] - #s += d*x[col] - s = s/d - x[col] = s - end - x - end - # Zero guess: only calculate points below diagonal of sparse matrix in forward sweep. - function gauss_seidel_sweep_zero!(x,A::SparseMatricesCSR.SparseMatrixCSR,diagA,b,rows) - #assumes symmetric matrix - for row in rows - s = b[row] - for p in nzrange(A,row) - col = A.colval[p] - if col < row - a = A.nzval[p] - s -= a * x[col] - end +function gauss_seidel_sweep_zero!(x,A::PartitionedArrays.AbstractSplitMatrix,diagA,b,cols) + @assert isa(A.row_permutation,UnitRange) + @assert isa(A.col_permutation,UnitRange) + Aoo = A.blocks.own_own + Aoh = A.blocks.own_ghost + gauss_seidel_sweep_zero_split!(x,Aoo,Aoh,diagA,b,cols) +end + +function gauss_seidel_sweep_zero_split!(x,Aoo::SparseMatricesCSR.SparseMatrixCSR,Aoh,diagA,b,rows) + for row in rows + s = b[row] + for p in nzrange(Aoo,row) + col = Aoo.colval[p] + if col < row + a = Aoo.nzval[p] + s -= a * x[col] end - d = diagA[row] - #s += d * x[col] - s = s / d - x[row] = s end - x - end - function solve!(x,state,b,options) - (diagA,A_ref) = state - A = A_ref[] - n = length(b) - - for iter in 1:iters - if sweep === :symmetric || sweep === :forward - if options.zero_guess - gauss_seidel_sweep_zero!(x,A,diagA,b,1:n) - else - gauss_seidel_sweep!(x,A,diagA,b,1:n) - end - end - if sweep === :symmetric || sweep === :backward - gauss_seidel_sweep!(x,A,diagA,b,n:-1:1) + for p in nzrange(Aoh,row) + col = Aoh.colval[p] + if col < row + a = Aoh.nzval[p] + s -= a * x[col] end end - x + d = diagA[row] + #s += d * x[col] + s = s / d + x[row] = s end - linear_solver(;setup,update!,solve!) + x end -function additive_schwarz(local_solver;iters=1) - richardson(additive_schwarz_correction(local_solver);iters) +function additive_schwarz_correction(p;local_solver=LinearAlgebra_lu) + x = solution(p) + A = matrix(p) + b = rhs(p) + local_s = additive_schwarz_correction_setup(local_solver,x,A,b) + uses_initial_guess = Val(false) + linear_solver( + additive_schwarz_correction_update, + additive_schwarz_correction_step, + p, + local_s; + uses_initial_guess + ) end -function local_setup_options(A,options) - if nullspace(options) !== nothing - ns = map(i->own_values(i),nullspace(options)) - map(ns) do ns - setup_options(;nullspace=ns) - end - else - map(partition(A)) do A - options - end - end +function additive_schwarz_correction_setup(local_solver,x,A::PSparseMatrix,b) + local_p = map(linear_problem,own_values(x),own_own_values(A),own_values(b)) + local_s = map(local_solver,local_p) end -function local_solver_options(A,options) - map(partition(A)) do A - options - end +function additive_schwarz_correction_update(local_s,A::PSparseMatrix) + local_s = map(additive_schwarz_correction_update,local_s,own_own_values(A)) end -struct AdditiveSchwarzSetup{A} <: AbstractType - local_setups::A +function additive_schwarz_correction_step(x::PVector,local_s,b,phase=:start;kwargs...) + foreach(ldiv!,own_values(x),local_s,own_values(b)) + phase = :stop + x,local_s,phase end -function additive_schwarz_correction(local_solver) - # For parallel matrices - function setup(x,A::PSparseMatrix,b,options) - map( - local_solver.setup, - own_values(x), - own_own_values(A), - own_values(b), - local_setup_options(A,options), - ) |> AdditiveSchwarzSetup - end - function update!(state::AdditiveSchwarzSetup,A,options) - map( - local_solver.update!, - state.local_setups, - own_own_values(A), - local_setup_options(A,options), - ) - end - function solve!(x,state::AdditiveSchwarzSetup,b,options) - map( - local_solver.solve!, - own_values(x), - state.local_setups, - own_values(b), - local_solver_options(b,options) - ) - x - end - function finalize!(state::AdditiveSchwarzSetup) - map( - local_solver.finalize!, - state.local_setups) - nothing - end - # Fall back for sequential matrices - function setup(x,A,b,options) - local_solver.setup(x,A,b,options) - end - function update!(state,A,options) - local_solver.update!(state,A,options) - end - function solve!(x,state,b,options) - local_solver.solve!(x,state,b,options) - x - end - function finalize!(state) - local_solver.finalize!(state) - nothing - end - linear_solver(;setup,update!,solve!,finalize!) -end - -function additive_schwarz_correction_partition(local_solver) - # For parallel matrices - function setup(x,A::PSparseMatrix,b,options) - map( - local_solver.setup, - partition(x), - partition(A), - own_values(b), - local_setup_options(A,options), - ) |> AdditiveSchwarzSetup - end - function update!(state::AdditiveSchwarzSetup,A,options) - map( - local_solver.update!, - state.local_setups, - partition(A), - local_setup_options(A,options), - ) - end - function solve!(x,state::AdditiveSchwarzSetup,b,options) - map( - local_solver.solve!, - partition(x), - state.local_setups, - own_values(b), - local_solver_options(b,options), - ) - x - end - function finalize!(state::AdditiveSchwarzSetup) - map( - local_solver.finalize!, - state.local_setups) - nothing - end - # Fall back for sequential matrices - function setup(x,A,b,options) - local_solver.setup(x,A,b,options) - end - function update!(state,A,options) - local_solver.update!(state,A,options) - end - function solve!(x,state,b,options) - local_solver.solve!(x,state,b,options) - x - end - function finalize!(state) - local_solver.finalize!(state) - nothing - end - linear_solver(;setup,update!,solve!,finalize!) +function additive_schwarz_correction_setup(local_solver,x,A,b) + local_p = linear_problem(x,A,b) + local_s = local_solver(local_p) end -# Wrappers +function additive_schwarz_correction_update(local_s,A) + local_s = update(local_s,matrix=A) +end -function linear_solver(::typeof(LinearAlgebra.lu)) - lu_solver() +function additive_schwarz_correction_step(x,local_s,b,phase=:start;kwargs...) + ldiv!(x,local_s,b) + phase = :stop + x,local_s,phase end -function linear_solver(::typeof(IterativeSolvers.cg);Pl,kwargs...) - function setup(x,A,b,options) - Pl_solver = linear_solver(Pl) - P = PartitionedSolvers.setup(Pl_solver,x,A,b;options...) - A_ref = Ref(A) - (;P,A_ref) - end - function update!(state,A,options) - (;P,A_ref) = state - A_ref[] = A - P = PartitionedSolvers.update!(P,A;options...) - state - end - function solve!(x,state,b,options) - (;P,A_ref) = state - A = A_ref[] - IterativeSolvers.cg!(x,A,b;Pl=P,kwargs...) - end - function finalize!(state,A,options) - (;P) = state - PartitionedSolvers.finalize!(P) - nothing +function additive_schwarz(p;local_solver=LinearAlgebra_lu,iterations=1) + P = preconditioner(p) do dp + additive_schwarz_correction(dp;local_solver) end - linear_solver(;setup,update!,solve!,finalize!) + update_P = true + richardson(p;P,update_P,iterations) end diff --git a/PartitionedSolvers/src/wrappers.jl b/PartitionedSolvers/src/wrappers.jl new file mode 100644 index 00000000..3789fe6f --- /dev/null +++ b/PartitionedSolvers/src/wrappers.jl @@ -0,0 +1,80 @@ + +function LinearAlgebra_lu(p) + @assert uses_mutable_types(p) + F = lu(matrix(p)) + function update(F,A) + lu!(F,A) + F + end + function step(x,F,b,phase=:start;kwargs...) + ldiv!(x,F,b) + phase = :stop + x,F,phase + end + uses_initial_guess = Val(false) + linear_solver(update,step,p,F;uses_initial_guess) +end + +function IterativeSolvers_cg(p;kwargs...) + A = matrix(p) + function update(state,A) + A + end + function step(x,A,b,phase=:start;kwargs...) + IterativeSolvers.cg!(x,A,b;kwargs...) + phase = :stop + x,A,phase + end + linear_solver(update,step,p,A) +end + +function NLSolvers_nlsolve_setup(p) + function f!(r,x) + update(p,residual=r,jacobian=nothing,solution=x) + r + end + function j!(j,x) + update(p,residual=nothing,jacobian=j,solution=x) + j + end + function fj!(r,j,x) + update(p,residual=r,jacobian=j,solution=x) + r,j + end + df = NLsolve.OnceDifferentiable(f!,j!,fj!,solution(p),residual(p),jacobian(p)) +end + +function NLSolvers_nlsolve(p;kwargs...) + @assert uses_mutable_types(p) + workspace = NLSolvers_nlsolve_setup(p) + function update(workspace,p) + workspace = NLSolvers_nlsolve_setup(p) + end + function step(workspace,p,phase=:start;kwargs...) + if phase === :stop + return nothing + end + df = workspace + x = solution(p) + result = NLsolve.nlsolve(df,x;kwargs...) + copyto!(x,result.zero) + phase = :stop + workspace,p,phase + end + nonlinear_solver(update,step,p,workspace) +end + +function NLSolvers_nlsolve_linsolve(solver,p) + x = solution(p) + A = jacobian(p) + r = residual(p) + dx = similar(x,axes(A,2)) + lp = linear_problem(dx,A,r) + ls = solver(lp) + function linsolve(dx,A,b) + ls = update(ls,matrix=A) + ldiv!(dx,ls,b) + dx + end +end + diff --git a/PartitionedSolvers/test/amg_tests.jl b/PartitionedSolvers/test/amg_tests.jl index a7328c8c..82a849f9 100644 --- a/PartitionedSolvers/test/amg_tests.jl +++ b/PartitionedSolvers/test/amg_tests.jl @@ -1,7 +1,8 @@ module AMGTests using PartitionedArrays -using PartitionedSolvers +import PartitionedSolvers as PS +import PartitionedSolvers using LinearAlgebra using IterativeSolvers using IterativeSolvers: cg! @@ -222,61 +223,56 @@ b = A*x y = similar(x) y .= 0 -solver = amg() -S = setup(solver,y,A,b) -solve!(y,S,b) -update!(S,2*A) -solve!(y,S,b) -finalize!(S) +p = PS.linear_problem(y,A,b) -amg_statistics(S) |> display +S = PS.amg(p) +S = PS.solve(S) +S = PS.update(S,matrix=2*A) +S = PS.solve(S) + +PS.amg_statistics(S) |> display # Non-default options -level_params = amg_level_params(; - pre_smoother = PartitionedSolvers.jacobi(;iters=10,omega=2/3), - cycle = v_cycle, +level_params = PS.amg_level_params(; + pre_smoother = p->PartitionedSolvers.jacobi(p;iterations=10,omega=2/3), + cycle = PS.v_cycle, ) -fine_params = amg_fine_params(; +fine_params = PS.amg_fine_params(; level_params, n_fine_levels=5) coarse_params = (; - coarse_solver = lu_solver(), + coarse_solver = PS.LinearAlgebra_lu, coarse_size = 15, ) -solver = amg(;fine_params,coarse_params) # Now with a nullspace -B = default_nullspace(A) -S = setup(solver,y,A,b;nullspace=B) -solve!(y,S,b) -update!(S,2*A;nullspace=B) -solve!(y,S,b) -finalize!(S) +B = PS.default_nullspace(A) +p = PS.linear_problem(y,A,b;nullspace=B) + +S = PS.amg(p;fine_params,coarse_params) +PS.solve(S) +PS.update(S,matrix=2*A) +PS.solve(S) # Now as a preconditioner -level_params = amg_level_params(; - pre_smoother = PartitionedSolvers.gauss_seidel(;iters=1), +level_params = PS.amg_level_params(; + pre_smoother = p->PartitionedSolvers.gauss_seidel(p;iterations=1), ) -fine_params = amg_fine_params(;level_params) - -Pl = setup(amg(;fine_params),y,A,b;nullspace=B) -y .= 0 -cg!(y,A,b;Pl,verbose=true) +fine_params = PS.amg_fine_params(;level_params) -solver = linear_solver(IterativeSolvers.cg;Pl=amg(;fine_params),verbose=true) -S = setup(solver,y,A,b) -solve!(y,S,b) -update!(S,2*A) -solve!(y,S,b) +p = PS.linear_problem(y,A,b;nullspace=B) +Pl = PS.amg(p;fine_params) +y .= 0 +cg!(y,A,b;Pl,verbose=true) # Now for linear elasticity (sequential) @@ -297,17 +293,16 @@ b = A*x_exact y = similar(x_exact) y .= 0 -level_params = amg_level_params_linear_elasticity(block_size) -fine_params = amg_fine_params(;level_params) -solver = amg(;fine_params) +level_params = PS.amg_level_params_linear_elasticity(block_size) +fine_params = PS.amg_fine_params(;level_params) + +p = PS.linear_problem(y,A,b;nullspace=B) +Pl = PS.amg(p;fine_params) -Pl = setup(solver,y,A,b;nullspace=B) cg!(y,A,b;Pl,verbose=true) println("Linear Elasticity norm of error: $(norm(y-x_exact))") @test y ≈ x_exact - - # Now in parallel parts_per_dir = (2,2) @@ -322,36 +317,34 @@ b = A*x y = similar(x) y .= 0 -solver = amg() -S = setup(solver,y,A,b) -amg_statistics(S) |> display -solve!(y,S,b) -update!(S,2*A) -solve!(y,S,b) -finalize!(S) +p = PS.linear_problem(y,A,b) + +S = PS.amg(p) +PS.amg_statistics(S) |> display +PS.solve(S) +PS.update(S,matrix=2*A) +PS.solve(S) # Now with a nullspace -B = default_nullspace(A) -solver = amg() -S = setup(solver,y,A,b;nullspace=B) -solve!(y,S,b) -update!(S,2*A) -solve!(y,S,b) -finalize!(S) - -level_params = amg_level_params(; - pre_smoother = PartitionedSolvers.jacobi(;iters=1,omega=2/3), - coarsening = smoothed_aggregation(;repartition_threshold=10000000) +B = PS.default_nullspace(A) +p = PS.linear_problem(y,A,b;nullspace=B) +S = PS.amg(p) +PS.solve(S) +PS.update(S,matrix=2*A) +PS.solve(S) + +level_params = PS.amg_level_params(; + pre_smoother = p->PartitionedSolvers.jacobi(p;iterations=1,omega=2/3), + coarsening = PS.smoothed_aggregation(;repartition_threshold=10000000) ) -fine_params = amg_fine_params(; +fine_params = PS.amg_fine_params(; level_params, n_fine_levels=5) -solver = amg(;fine_params) - -Pl = setup(solver,y,A,b;nullspace=B) +p = PS.linear_problem(y,A,b;nullspace=B) +Pl = PS.amg(p;fine_params) y .= 0 cg!(y,A,b;Pl,verbose=true) @@ -364,7 +357,9 @@ x_exact = pones(partition(axes(A,2))) b = A*x_exact x = similar(b,axes(A,2)) x .= 0 -Pl = setup(amg(),x,A,b) + +p = PS.linear_problem(x,A,b) +Pl = PS.amg(p) _, history = cg!(x,A,b;Pl,log=true) display(history) @@ -385,12 +380,12 @@ b = A*x_exact y = similar(b,axes(A,2)) y .= 0 -level_params = amg_level_params_linear_elasticity(block_size) -fine_params = amg_fine_params(;level_params) -solver = amg(;fine_params) +level_params = PS.amg_level_params_linear_elasticity(block_size) +fine_params = PS.amg_fine_params(;level_params) -Pl = setup(solver,y,A,b;nullspace=B) +p = PS.linear_problem(y,A,b;nullspace=B) +Pl = PS.amg(p;fine_params) cg!(y,A,b;Pl,verbose=true) @test y ≈ x_exact -end \ No newline at end of file +end diff --git a/PartitionedSolvers/test/interfaces_tests.jl b/PartitionedSolvers/test/interfaces_tests.jl new file mode 100644 index 00000000..e2a057a8 --- /dev/null +++ b/PartitionedSolvers/test/interfaces_tests.jl @@ -0,0 +1,259 @@ +module InterfacesTests + +import PartitionedSolvers as PS + +using Test + +function mock_linear_solver(p) + @assert ! PS.uses_mutable_types(p) + Ainv = 1/PS.matrix(p) + function update(Ainv,A) + Ainv = 1/A + end + function step(x,Ainv,b,phase=:start) + #if phase === :stop + # return nothing + #end + x = Ainv*b + phase = :stop + x,Ainv,phase + end + uses_initial_guess = false + PS.linear_solver(update,step,p,Ainv;uses_initial_guess) +end + +#function main() +# x = 0.0 +# A = 2.0 +# b = 12.0 +# @time lp = PS.linear_problem(x,A,b) +# @time ls = mock_linear_solver(lp) +# @time ls = PS.solve(ls) +# @time x = PS.solution(ls) +# @time ls = PS.update(ls,matrix=2*A) +# @time ls = PS.solve(ls) +#end +#main() + +x = 0.0 +A = 2.0 +b = 12.0 +lp = PS.linear_problem(x,A,b;uses_mutable_types=false) +ls = mock_linear_solver(lp) +ls = PS.solve(ls) +x = PS.solution(ls) +@test x == A\b + +ls,phase = PS.step(ls) +ls,phase = PS.step(ls,phase) +@test phase === :stop + +ls = PS.update(ls,matrix=2*A) +ls = PS.solve(ls) +x = PS.solution(ls) +@test x == (2*A)\b + +ls = PS.update(ls,rhs=4*b) +ls = PS.solve(ls) +x = PS.solution(ls) +@test x == (2*A)\(4*b) + +for ls in PS.history(ls) + @show ls +end + +for x in PS.history(PS.solution,ls) + @show x +end + +function mock_nonlinear_problem(x0) + r0 = 0*x0 + j0 = 0*x0 + workspace = nothing + PS.nonlinear_problem(x0,r0,j0,workspace;uses_mutable_types=false) do p + x = PS.solution(p) + if PS.residual(p) !== nothing + p = PS.update(p,residual = 2*x^2 - 4) + end + if PS.jacobian(p) !== nothing + p = PS.update(p,jacobian = 4*x) + end + p + end |> PS.update +end + +function mock_nonlinear_solver_update(ws,p) + (;ls,iteration,iterations) = ws + ls = PS.update(ls;matrix=PS.jacobian(p),rhs=PS.residual(p)) + (;ls,iteration,iterations) +end + +function mock_nonlinear_solver_step(ws,p,phase=:start) + #if phase === :stop + # return nothing + #end + (;ls,iteration,iterations) = ws + if phase === :start + iteration = 0 + phase = :advance + end + ls = PS.solve(ls) + x = PS.solution(p) + x -= PS.solution(ls) + p = PS.update(p,solution=x) + iteration += 1 + if iteration == iterations + phase = :stop + end + ws = (;ls,iteration,iterations) + ws = mock_nonlinear_solver_update(ws,p) + ws,p,phase +end + +function mock_nonlinear_solver(p;solver=mock_linear_solver,iterations=10) + @assert ! PS.uses_mutable_types(p) + iteration = 0 + dx = PS.solution(p) + lp = PS.linear_problem(dx,PS.jacobian(p),PS.residual(p);uses_mutable_types=false) + ls = solver(lp) + workspace = (;ls,iteration,iterations) + PS.nonlinear_solver( + mock_nonlinear_solver_update, + mock_nonlinear_solver_step, + p, + workspace) +end + +#function main() +# x = 1.0 +# @time p = mock_nonlinear_problem(x) +# @time s = mock_nonlinear_solver(p) +# @time s = PS.solve(s) +#end +# +#main() + +x = 1.0 +p = mock_nonlinear_problem(x) +@show PS.residual(p) +@show PS.jacobian(p) + +s = mock_nonlinear_solver(p) +s = PS.solve(s) + +x = 1.0 +s = PS.update(s,solution=x) +for x in PS.history(PS.solution,s) + @show x +end + +function mock_ode(u) + r = 0*u + j = 0*u + v = 0*u + x = (0,u,v) + ts = (0,10) + dx = (u,u) + workspace = nothing + PS.ode_problem(x,r,j,ts,dx,workspace;uses_mutable_types=false) do ode + (t,u2,v2) = PS.solution(ode) + du,dv = PS.coefficients(ode) + if PS.residual(ode) !== nothing + ode = PS.update(ode,residual = 2*u2^2 + v2 - 4*t + 1) + end + if PS.jacobian(ode) !== nothing + ode = PS.update(ode,jacobian = 4*u2*du + dv) + end + ode + end |> PS.update +end + +function mock_ode_solver_problem(x0,dt,ode0) + t,u, = PS.solution(ode0) + workspace = nothing + PS.nonlinear_problem(PS.residual(ode0),PS.jacobian(ode0),x0,workspace;uses_mutable_types=false) do p + x = PS.solution(p) + v = (x - u) / dt + r = PS.residual(p) + j = PS.jacobian(p) + ode = PS.update(ode0,residual=r,jacobian=p,solution=(t,x,v)) + r = PS.residual(ode) + j = PS.jacobian(ode) + p = PS.update(p,residual=r,jacobian=j) + end +end + +function mock_ode_solver_update(workspace,ode0) + (;s,dt) = workspace + ode = PS.update(ode0,coefficients=(1.0,1/dt)) + x = PS.solution(s) + p = mock_ode_solver_problem(x,dt,ode) + s = PS.update(s,problem=p) + (;s,dt) +end + +function mock_ode_solver_step(workspace,ode,phase=:start) + #if phase === :stop + # return nothing + #end + (;s,dt) = workspace + t,u,v = PS.solution(ode) + if phase === :start + t = first(PS.interval(ode)) + phase = :advance + end + s = PS.solve(s) + x = PS.solution(s) + t += dt + v = (x - u) / dt + u = x + ode = PS.update(ode,solution=(t,u,v)) + tend = last(PS.interval(ode)) + if t >= tend + phase = :stop + end + workspace = (;s,dt) + workspace = mock_ode_solver_update(workspace,ode) + workspace,ode,phase +end + +function mock_ode_solver(ode0; + dt = (PS.interval(ode0)[2]-PS.interval(ode0)[1])/10, + solver = mock_nonlinear_solver) + + @assert ! PS.uses_mutable_types(ode0) + ode = PS.update(ode0,coefficients=(1.0,1/dt)) + _,u,_ = PS.solution(ode) + x = u + p = mock_ode_solver_problem(x,dt,ode) + s = solver(p) + workspace = (;s,dt) + PS.ode_solver(mock_ode_solver_update,mock_ode_solver_step,ode,workspace) +end + +#function main() +# u = 2.0 +# p = mock_ode(u) +# s = mock_ode_solver(p) +# for x in PS.history(s) +# @show x +# end +# s = PS.update(s,solution=(0.0,u,0.0)) +# @time s = PS.solve(s) +#end +# +#main() + +u = 2.0 +p = mock_ode(u) +s = mock_ode_solver(p) + +for x in PS.history(PS.solution,s) + @show x +end +#s = PS.update(s,solution=(0.0,u,0.0)) +#PS.solve(s) + +end # module + + diff --git a/PartitionedSolvers/test/runtests.jl b/PartitionedSolvers/test/runtests.jl index 2b061722..a4ffbe83 100644 --- a/PartitionedSolvers/test/runtests.jl +++ b/PartitionedSolvers/test/runtests.jl @@ -5,6 +5,8 @@ using PartitionedSolvers using Test @testset "PartitionedSolvers" begin + @testset "interfaces" begin include("interfaces_tests.jl") end + @testset "wrappers" begin include("wrappers_tests.jl") end @testset "smoothers" begin include("smoothers_tests.jl") end @testset "amg" begin include("amg_tests.jl") end end diff --git a/PartitionedSolvers/test/smoothers_tests.jl b/PartitionedSolvers/test/smoothers_tests.jl index cc978fe4..4a34c673 100644 --- a/PartitionedSolvers/test/smoothers_tests.jl +++ b/PartitionedSolvers/test/smoothers_tests.jl @@ -1,108 +1,130 @@ module SmoothersTests +import PartitionedSolvers as PS using PartitionedArrays -using PartitionedArrays: laplace_matrix -using PartitionedSolvers using LinearAlgebra using Test +using SparseMatricesCSR np = 4 parts = DebugArray(LinearIndices((np,))) - parts_per_dir = (2,2) nodes_per_dir = (8,8) -A = laplace_matrix(nodes_per_dir,parts_per_dir,parts) +args = laplacian_fem(nodes_per_dir,parts_per_dir,parts) +A = psparse(args...) |> fetch x = pones(partition(axes(A,2))) b = A*x -solver = lu_solver() -y = similar(x) -S = setup(solver,y,A,b) -solve!(y,S,b) tol = 1.e-8 +y = similar(x) +y .= 0 +p = PS.linear_problem(y,A,b) +s = PS.jacobi(p;iterations=1000) +s = PS.solve(s) +y = PS.solution(s) @test norm(y-x)/norm(x) < tol -update!(S,2*A) -solve!(y,S,b) -@test norm(y-x/2)/norm(x/2) < tol -istep = Ref(0) -for y in iterations!(y,S,b) - isa(y,AbstractVector) - istep[] += 1 +s = PS.update(s,matrix=2*A) +for x in PS.history(PS.solution,s) end -@test istep[] == 1 +@test norm(y-x/2)/norm(x/2) < tol -y2,hist = solve!(y,S,b;history=true) -@test y2 === y -@test hist === nothing +y .= 0 +p = PS.update(p,solution=y) +s = PS.additive_schwarz(p) +s = PS.solve(s) -finalize!(S) +s = PS.additive_schwarz(p;local_solver=PS.jacobi) +s = PS.solve(s) -solver = linear_solver(LinearAlgebra.lu) -y = similar(x) -S = setup(solver,y,A,b) -solve!(y,S,b) -tol = 1.e-8 -@test norm(y-x)/norm(x) < tol -update!(S,2*A) -solve!(y,S,b) -@test norm(y-x/2)/norm(x/2) < tol -finalize!(S) +y .= 0 +p = PS.update(p,solution=y) +s = PS.additive_schwarz(p;local_solver=PS.gauss_seidel) +s = PS.solve(s) -solver = richardson(lu_solver(),iters=1) +args = laplacian_fdm(nodes_per_dir,parts_per_dir,parts) +T = SparseMatrixCSR{1,Float64,Int32} +A = psparse(T,args...;assembled=true) |> fetch +x = pones(partition(axes(A,2))) +b = A*x y = similar(x) y .= 0 -S = setup(solver,y,A,b) -solve!(y,S,b) -tol = 1.e-8 -@test norm(y-x)/norm(x) < tol -update!(S,2*A) -solve!(y,S,b) -@test norm(y-x/2)/norm(x/2) < tol -finalize!(S) +p = PS.linear_problem(y,A,b) +s = PS.gauss_seidel(p) +s = PS.solve(s;zero_guess=true) +n1 = norm(PS.solution(s)) +y .= 0 +s = PS.update(s,solution=y) +s = PS.solve(s) +n2 = norm(PS.solution(s)) +n = n1 +@test n ≈ n1 ≈ n2 -solver = jacobi(;iters=1000) +args = laplacian_fdm(nodes_per_dir,parts_per_dir,parts) +T = SparseMatrixCSR{1,Float64,Int32} +A = psparse(T,args...;assembled=true,split_format=false) |> fetch +x = pones(partition(axes(A,2))) +b = A*x y = similar(x) y .= 0 -S = setup(solver,y,A,b) -solve!(y,S,b) -tol = 1.e-8 -@test norm(y-x)/norm(x) < tol -update!(S,2*A) -solve!(y,S,b) -@test norm(y-x/2)/norm(x/2) < tol - -y,hist = solve!(y,S,b;history=true) -@test hist.iters == 1000 +p = PS.linear_problem(y,A,b) +s = PS.gauss_seidel(p) +s = PS.solve(s;zero_guess=true) +n1 = norm(PS.solution(s)) +y .= 0 +s = PS.update(s,solution=y) +s = PS.solve(s) +n2 = norm(PS.solution(s)) +@test n ≈ n1 ≈ n2 -istep = Ref(0) +args = laplacian_fdm(nodes_per_dir,parts_per_dir,parts) +A = psparse(args...;assembled=true,split_format=false) |> fetch +x = pones(partition(axes(A,2))) +b = A*x +y = similar(x) y .= 0 -for y in iterations!(y,S,b) - isa(y,AbstractVector) - istep[] += 1 -end -@test norm(y-x/2)/norm(x/2) < tol -@test istep[] == 1000 -finalize!(S) +p = PS.linear_problem(y,A,b) +s = PS.gauss_seidel(p) +s = PS.solve(s;zero_guess=true) +n1 = norm(PS.solution(s)) +y .= 0 +s = PS.update(s,solution=y) +s = PS.solve(s) +n2 = norm(PS.solution(s)) +@test n ≈ n1 ≈ n2 -solver = additive_schwarz(lu_solver()) +args = laplacian_fdm(nodes_per_dir) +A = sparse_matrix(args...) +x = ones(axes(A,2)) +b = A*x y = similar(x) y .= 0 -S = setup(solver,y,A,b) -solve!(y,S,b;zero_guess=true) -solve!(y,S,b) -ldiv!(y,S,b) -update!(S,2*A) -solve!(y,S,b) -finalize!(S) +p = PS.linear_problem(y,A,b) +s = PS.gauss_seidel(p) +s = PS.solve(s;zero_guess=true) +n1 = norm(PS.solution(s)) +n = n1 +y .= 0 +s = PS.update(s,solution=y) +s = PS.solve(s) +n2 = norm(PS.solution(s)) +@test n ≈ n1 ≈ n2 -solver = additive_schwarz(gauss_seidel(;iters=1)) +args = laplacian_fdm(nodes_per_dir) +A = sparse_matrix(T,args...) +x = ones(axes(A,2)) +b = A*x y = similar(x) y .= 0 -S = setup(solver,y,A,b) -solve!(y,S,b) -update!(S,2*A) -solve!(y,S,b) -finalize!(S) +p = PS.linear_problem(y,A,b) +s = PS.gauss_seidel(p) +s = PS.solve(s;zero_guess=true) +n1 = norm(PS.solution(s)) +y .= 0 +s = PS.update(s,solution=y) +s = PS.solve(s) +n2 = norm(PS.solution(s)) +@test n ≈ n1 ≈ n2 + -end #module +end # module diff --git a/PartitionedSolvers/test/wrappers_tests.jl b/PartitionedSolvers/test/wrappers_tests.jl new file mode 100644 index 00000000..2fd85aee --- /dev/null +++ b/PartitionedSolvers/test/wrappers_tests.jl @@ -0,0 +1,68 @@ +module WrappersTests + +import PartitionedSolvers as PS +import PartitionedArrays as PA +using Test +using LinearAlgebra + +nodes=(10,10) +args = PA.laplacian_fem(nodes) +A = PA.sparse_matrix(args...) +x_exact = ones(axes(A,2)) +b = A*x_exact + +x = similar(x_exact) +p = PS.linear_problem(x,A,b) + +s = PS.LinearAlgebra_lu(p) +s = PS.solve(s) +x = PS.solution(s) +@test x ≈ x_exact + +s = PS.update(s,matrix=2*A) +s = PS.solve(s) +x = PS.solution(s) +@test x*2 ≈ x_exact + +ldiv!(x,s,b) +PS.smooth!(x,s,b) + +x .= 0 +p = PS.update(p,solution=x) +s = PS.IterativeSolvers_cg(p;verbose=true) +s = PS.solve(s) + +Pl = PS.LinearAlgebra_lu(p) +x .= 0 +p = PS.update(p,solution=x) +s = PS.IterativeSolvers_cg(p;verbose=true,Pl) +s = PS.solve(s) + +r = similar(b) +w = nothing +p = PS.nonlinear_problem(x,r,A,w) do p2 + x2 = PS.solution(p2) + if PS.residual(p2) !== nothing + r2 = PS.residual(p2) + mul!(r2,A,x2) + r2 .-= b + p2 = PS.update(p2,residual = r2) + end + if PS.jacobian(p2) !== nothing + p2 = PS.update(p2,jacobian = A) + end + p2 +end + +x .= 0 +p = PS.update(p,solution=x) +s = PS.NLSolvers_nlsolve(p;show_trace=true,method=:newton) +s = PS.solve(s) + +linsolve = PS.NLSolvers_nlsolve_linsolve(PS.LinearAlgebra_lu,p) +x .= 0 +p = PS.update(p,solution=x) +s = PS.NLSolvers_nlsolve(p;show_trace=true,linsolve,method=:newton) +s = PS.solve(s) + +end # module diff --git a/docs/examples.jl b/docs/examples.jl index 12af2f57..af09fdbe 100644 --- a/docs/examples.jl +++ b/docs/examples.jl @@ -236,10 +236,10 @@ history # Now solve the system while using an AMG preconditioner. -using PartitionedSolvers +import PartitionedSolvers as PS x .= 0 -Pl = setup(amg(),x,A,b) +Pl = PS.amg(PS.linear_problem(x,A,b)) _, history = IterativeSolvers.cg!(x,A,b;Pl,log=true) history diff --git a/src/gallery.jl b/src/gallery.jl index f68fec9d..b48f9575 100644 --- a/src/gallery.jl +++ b/src/gallery.jl @@ -85,6 +85,18 @@ function laplacian_fdm( I,J,V,node_partition,node_partition end +function laplacian_fdm(nodes_per_dir;kwargs...) + parts_per_dir = map(n->1,nodes_per_dir) + ranks = LinearIndices((1,)) + args = laplacian_fdm(nodes_per_dir,parts_per_dir,ranks;kwargs...) + I = getany(args[1]) + J = getany(args[2]) + V = getany(args[3]) + nrows = length(PRange(args[4])) + ncols = length(PRange(args[5])) + I,J,V,nrows,ncols +end + """ laplacian_fem( nodes_per_dir, @@ -226,6 +238,18 @@ function laplacian_fem( I,J,V,node_partition,node_partition end +function laplacian_fem(nodes_per_dir;kwargs...) + parts_per_dir = map(n->1,nodes_per_dir) + ranks = LinearIndices((1,)) + args = laplacian_fem(nodes_per_dir,parts_per_dir,ranks;kwargs...) + I = getany(args[1]) + J = getany(args[2]) + V = getany(args[3]) + nrows = length(PRange(args[4])) + ncols = length(PRange(args[5])) + I,J,V,nrows,ncols +end + function linear_elasticity_fem( nodes_per_dir, # free (== interior) nodes parts_per_dir, @@ -386,6 +410,18 @@ function linear_elasticity_fem( I,J,V,dof_partition,dof_partition end +function linear_elasticity_fem(nodes_per_dir;kwargs...) + parts_per_dir = map(n->1,nodes_per_dir) + ranks = LinearIndices((1,)) + args = linear_elasticity_fem(nodes_per_dir,parts_per_dir,ranks;kwargs...) + I = getany(args[1]) + J = getany(args[2]) + V = getany(args[3]) + nrows = length(PRange(args[4])) + ncols = length(PRange(args[5])) + I,J,V,nrows,ncols +end + function node_to_dof_partition(node_partition,D) global_node_to_owner = global_to_owner(node_partition) dof_partition = map(node_partition) do mynodes diff --git a/src/p_sparse_matrix.jl b/src/p_sparse_matrix.jl index f2b65fc8..6ad7b98e 100644 --- a/src/p_sparse_matrix.jl +++ b/src/p_sparse_matrix.jl @@ -1353,7 +1353,7 @@ function assemble!(B::PSparseMatrix,A::PSparseMatrix,cache) psparse_assemble_impl!(B,A,T,cache) end -function psparse_assemble_impl(A,::Type,rows) +function psparse_assemble_impl(A,::Type,rows;kwargs...) error("Case not implemented yet") end