-
Notifications
You must be signed in to change notification settings - Fork 3
/
07encode_plot_bak.py
197 lines (165 loc) · 8.43 KB
/
07encode_plot_bak.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import numpy as np
import re
from datetime import datetime
from tqdm import tqdm
import os
import time
from tools import general
def statistics_sensors(data_dir, data_name, debuge=True):
sensor_set = set()
print('dataset: %s' % os.path.join(data_dir, data_name))
list_activitydata = os.listdir(os.path.join(data_dir, data_name))
for str_activitydata in list_activitydata:
print('activity: %s : %s' % (data_name, str_activitydata))
with open(os.path.join(data_dir, data_name, str_activitydata), 'r') as fr:
lines = fr.readlines()
for i, line in enumerate(lines):
f_info = line.split()
if len(f_info) >= 5:
sensor = f_info[3]
sensor_set.add(sensor)
print('The returned is the sensor list, which can be coded after numbering and adding the status code')
return sensor_set
# Input: sensor list
# Return: sensor code dictionary
def conver_sensor2dict(set_sensors, data_name, distant_int, opts):
serial_number = 1
dict_sensor2serial_number = {}
for sensor in sorted(set_sensors):
if sensor[0] == 'A' or sensor[0] == 'P' or sensor[0] == 'T':
dict_sensor2serial_number.update({sensor: str(serial_number)})
serial_number += 1
elif sensor[0] == 'M': # ON/OFF
dict_sensor2serial_number.update({sensor + 'ON': str(serial_number)})
serial_number += 1
dict_sensor2serial_number.update({sensor + 'OFF': str(serial_number)})
serial_number += 1
elif sensor[0] == 'L': # ON/OFF
dict_sensor2serial_number.update({sensor + 'ON': str(serial_number)})
serial_number += 1
dict_sensor2serial_number.update({sensor + 'OFF': str(serial_number)})
serial_number += 1
elif sensor[0] == 'D': # OPEN/CLOSE
dict_sensor2serial_number.update({sensor + 'OPEN': str(serial_number)})
serial_number += 1
dict_sensor2serial_number.update({sensor + 'CLOSE': str(serial_number)})
serial_number += 1
elif sensor[0] == 'I': # PRESENT/ABSENT
dict_sensor2serial_number.update({sensor + 'PRESENT': str(serial_number)})
serial_number += 1
dict_sensor2serial_number.update({sensor + 'ABSENT': str(serial_number)})
serial_number += 1
opdir = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int))
general.create_folder(opdir)
opdoc = os.path.join(opdir, 'sensor2dict.npy')
np.save(opdoc, dict_sensor2serial_number)
print('Save in: %s \n' % (opdoc))
return dict_sensor2serial_number
# Input: dictionary, data directory, dataset name
# Return: save the encoded file to
def encoder_sensors(read_sensor2dict, data_dir, data_name, distant_int, opts, debuge=True):
print('\n' + '*' * 40)
print("data_name location: %s" % (os.path.join(data_dir, data_name)))
dict_ids = {}
list_activitydata = os.listdir(os.path.join(data_dir, data_name))
for str_activitydata in list_activitydata:
list_ids = []
with open(os.path.join(data_dir, data_name, str_activitydata), 'r') as fr:
lines = fr.readlines()
list_id = []
for i, line in enumerate(lines):
f_info = line.split()
if len(f_info) >= 5:
sensor = f_info[3]
if sensor[0] == 'M' or sensor[0] == 'D' or sensor[0] == 'I' or sensor[
0] == 'L':
if f_info[4] in ['ON', 'OFF', 'ABSENT', 'PRESENT', 'OPEN', 'CLOSE']:
list_id.append(read_sensor2dict[f_info[3] + f_info[4]])
else:
print('This data is abnormal status data, which may be marked incorrectly. The data is: %s' % line)
elif sensor[0] == 'A' or sensor[0] == 'P' or sensor[0] == 'T':
list_id.append(read_sensor2dict[f_info[3]])
elif sensor[0] == 'E':
pass
else:
print('dataset:%s\tactivity:%s\trow:%d data:%s\n' % (data_name, str_activitydata, i, line))
else:
list_ids.append(list_id)
list_id = []
dict_ids.update({str_activitydata: list_ids})
opdir = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int))
opdoc = os.path.join(opdir, data_name + '-dict_ids.npy')
np.save(opdoc, dict_ids)
print('save in: %s ' % opdir)
# Input: dictionary, data directory, dataset name
# Return: the decoded file is saved to
def decoder_sensors(read_sensor2dict, data_dir, data_name, opts, debuge=True):
data_dir = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int))
print('location: %s' % data_dir)
dict_sensors = {}
dict_ids = np.load(os.path.join(data_dir, data_name + '-dict_ids.npy'), allow_pickle=True).item()
for str_activities in dict_ids:
list_sensors = []
for list_activities in dict_ids[str_activities]:
list_sensor = []
for str_id in list_activities:
try:
str_sensor = list(read_sensor2dict.keys())[
list(read_sensor2dict.values()).index(str_id)]
except IndexError:
print('%s:Illegal code value exists, please check the data...' % (str_id))
list_sensor.append(str_sensor)
list_sensors.append(list_sensor)
dict_sensors.update({str_activities: list_sensors})
opdir = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int))
opname = os.path.join(opdir, data_name + '-dict_sensors.npy')
np.save(opname, dict_sensors)
print('save in: %s ' % opdir)
# Input: code dictionary, list_ id
# Return: List sensors
def list_id2sensor(read_sensor2dict, list_ids):
list_sensor = []
for str_id in list_ids:
str_sensor = list(read_sensor2dict.keys())[list(read_sensor2dict.values()).index(str_id)]
# print(str_sensor)
list_sensor.append(str_sensor)
return list_sensor
if __name__ == '__main__':
opts = general.load_config()
for i in range(6):
distant_int = i
if distant_int == 0:
data_dir = os.path.join(opts["datasets"]["base_dir"], 'cutdata')
elif str(distant_int) in os.listdir(os.path.join(opts["datasets"]["base_dir"], 'constraintdata')):
data_dir = os.path.join(opts["datasets"]["base_dir"], 'constraintdata', str(distant_int))
else:
print('The current distance limit is incorrect, please re-enter')
exit(-1000)
data_names = ['cairo', 'milan', 'kyoto7', 'kyoto8', 'kyoto11']
for data_name in data_names:
# Setp 1: Count the sensor data and save the sensor dictionary
set_sensors = statistics_sensors(data_dir, data_name)
sensor2dict = conver_sensor2dict(set_sensors, data_name, distant_int, opts)
encoder_dict_path = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int), 'sensor2dict.npy')
read_sensor2dict = np.load(encoder_dict_path, allow_pickle=True).item()
# Setp 2: Encode data
encoder_sensors(read_sensor2dict, data_dir, data_name, distant_int, opts, debuge=True)
# Setp 3: Decode data(Optional)
decoder_sensors(read_sensor2dict, data_dir, data_name, opts, debuge=True)
# Decoded data test view
# ids_dir = r'D:\Anaconda3\workspace\py36TF\dpcnnfdal\processdata\09-encodersensors'
# ids_name = r'kyoto7-dict_sensors.npy'
# dict_ids = np.load(ids_dir + '\\' + ids_name, allow_pickle=True).item()
# for activity_name in dict_ids:
# for list_sensors in dict_ids[activity_name]:
# print(list_sensors)
# Test and decode a single piece of data
ids_dir = os.path.join(opts["datasets"]["base_dir"], 'ende', data_name, str(distant_int))
ids_name = data_name + r'-dict_ids.npy'
dict_ids = np.load(os.path.join(ids_dir, ids_name), allow_pickle=True).item()
for str_activity in dict_ids:
for list_ids in dict_ids[str_activity]:
# list_sensor = list_id2sensor(read_sensor2dict, list_ids)
# print(list_sensor)
pass
print('success, all finished!')