Necessary libraries:
- Numpy
- PIL
- matplotlib
- torch
- skimage
- pandas
Input image → Normalization → sliding window crop (512,512) → segmentation model → segmentation extraction (120,120)→ classification model → final results
Adam, 1e-4 lr, no lr decay, 20k epochs, normalized loss + global maximum loss
Adam, 3e-4 lr, no lr decay, 5k epochs
Images are normlizaed using the following method
. Macenko M, Niethammer M, Marron JS, Borland D, Woosley JT,
Guan X, Schmitt C, Thomas NE (2009) A method for normalizing
histology slides for quantitative analysis. In: IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, 2009.
ISBI’09, pp 1107–1110. IEEE
In the evaluation folder, original images end with this formate'A00_00.bmp', Normlized images end with this formate 'A00_00_n.png'
- HorizontalFlip(p=0.5)
- VerticalFlip(p=0.5)
- RandomRotate90(p=0.5)
- Downscale_Upscale(interpolation=cv2.INTER_CUBIC, p=0.5)
Segmentation : loss = BCE pixelwise(X,y) + BCE AVG(Sigmoid(X),labels) classification : loss = BCE(outs,labels)
TP: 188 | FP: 29 | FN: 36 | F: 0.8526 | R: 0.8392857142857143 | P: 0.8663594470046083