-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_sqrtl.c
72 lines (52 loc) · 1.67 KB
/
e_sqrtl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* Emulation for sqrtl.
Contributed by Paolo Bonzini
Copyright 2002-2003, 2007, 2009-2013 Free Software Foundation, Inc.
This file was taken from gnulib.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __NO_LONG_DOUBLE_MATH
#ifndef __have_fpu_sqrt
/* A simple Newton-Raphson method. */
long double __ieee754_sqrtl(long double x)
{
long double delta, y;
int exponent;
/* Check for NaN */
if (isnanl(x))
return x;
/* Check for negative numbers */
if (x < 0.0L)
return (long double) sqrt(-1);
/* Check for zero and infinites */
if (x + x == x)
return x;
__ieee754_frexpl(x, &exponent);
y = __ieee754_ldexpl(x, -exponent / 2);
do
{
delta = y;
y = (y + x / y) * 0.5L;
delta -= y;
} while (delta != 0.0L);
return y;
}
#endif
long double __sqrtl(long double x)
{
if (isless(x, 0.0) && _LIB_VERSION != _IEEE_)
return __kernel_standard_l(x, x, __builtin_nanl(""), KMATHERRL_SQRT); /* sqrt(negative) */
return __ieee754_sqrtl(x);
}
__typeof(__sqrtl) sqrtl __attribute__((weak, alias("__sqrtl")));
#endif