-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_log10.c
114 lines (102 loc) · 3.21 KB
/
e_log10.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
/* @(#)e_log10.c 1.3 95/01/18 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* __ieee754_log10(x)
* Return the base 10 logarithm of x
*
* Method :
* Let log10_2hi = leading 40 bits of log10(2) and
* log10_2lo = log10(2) - log10_2hi,
* ivln10 = 1/log(10) rounded.
* Then
* n = ilogb(x),
* if(n<0) n = n+1;
* x = scalbn(x,-n);
* log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
*
* Note 1:
* To guarantee log10(10**n)=n, where 10**n is normal, the rounding
* mode must set to Round-to-Nearest.
* Note 2:
* [1/log(10)] rounded to 53 bits has error .198 ulps;
* log10 is monotonic at all binary break points.
*
* Special cases:
* log10(x) is NaN with signal if x < 0;
* log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
* log10(NaN) is that NaN with no signal;
* log10(10**N) = N for N=0,1,...,22.
*
* Constants:
* The hexadecimal values are the intended ones for the following constants.
* The decimal values may be used, provided that the compiler will convert
* from decimal to binary accurately enough to produce the hexadecimal values
* shown.
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_log10
double __ieee754_log10(double x)
{
double y, z;
int32_t i, k, hx;
uint32_t lx;
static const double two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
static const double ivln10 = 4.34294481903251816668e-01; /* 0x3FDBCB7B, 0x1526E50E */
static const double log10_2hi = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */
static const double log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
static const double zero = 0.0;
GET_DOUBLE_WORDS(hx, lx, x);
k = 0;
if (hx < IC(0x00100000))
{ /* x < 2**-1022 */
if (((hx & IC(0x7fffffff)) | lx) == 0)
return -two54 / zero; /* log(+-0)=-inf */
if (hx < 0)
return (x - x) / zero; /* log(-#) = NaN */
k -= 54;
x *= two54; /* subnormal number, scale up x */
GET_HIGH_WORD(hx, x);
}
if (hx >= IC(0x7ff00000))
return x + x;
k += (hx >> 20) - 1023;
i = ((uint32_t) k & UC(0x80000000)) >> 31;
hx = (hx & IC(0x000fffff)) | ((0x3ff - i) << 20);
y = (double) (k + i);
SET_HIGH_WORD(x, hx);
z = y * log10_2lo + ivln10 * __ieee754_log(x);
return z + y * log10_2hi;
}
#endif
/* wrapper log10(x) */
double __log10(double x)
{
if (_LIB_VERSION != _IEEE_ && islessequal(x, 0.0))
{
if (x == 0.0)
{
feraiseexcept(FE_DIVBYZERO);
return __kernel_standard(x, x, -HUGE_VAL, KMATHERR_LOG10_ZERO); /* log10(0) */
} else
{
feraiseexcept(FE_INVALID);
return __kernel_standard(x, x, __builtin_nan(""), KMATHERR_LOG10_MINUS); /* log10(x<0) */
}
}
return __ieee754_log10(x);
}
__typeof(__log10) log10 __attribute__((weak, alias("__log10")));
#ifdef __NO_LONG_DOUBLE_MATH
long double __log10l(long double x) __attribute__((alias("__log10")));
__typeof(__log10l) log10l __attribute__((weak, alias("__log10")));
#endif