-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_jnf.c
205 lines (195 loc) · 4.8 KB
/
e_jnf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
/* e_jnf.c -- float version of e_jn.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
float __ieee754_jnf(int n, float x)
{
int32_t i, hx, ix;
int sgn;
float a, b, temp, di;
float z, w;
static const float two = 2.0000000000e+00; /* 0x40000000 */
static const float one = 1.0000000000e+00; /* 0x3F800000 */
static const float zero = 0.0000000000e+00;
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
* Thus, J(-n,x) = J(n,-x)
*/
GET_FLOAT_WORD(hx, x);
ix = IC(0x7fffffff) & hx;
/* if J(n,NaN) is NaN */
if (FLT_UWORD_IS_NAN(ix))
return x + x;
if (n < 0)
{
n = -n;
x = -x;
hx ^= IC(0x80000000);
}
if (n == 0)
return (__ieee754_j0f(x));
if (n == 1)
return (__ieee754_j1f(x));
sgn = (int)((n & 1) & (hx >> 31)); /* even n -- 0, odd n -- sign(x) */
x = __ieee754_fabsf(x);
if (FLT_UWORD_IS_ZERO(ix) || FLT_UWORD_IS_INFINITE(ix))
b = zero;
else if ((float) n <= x)
{
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = __ieee754_j0f(x);
b = __ieee754_j1f(x);
for (i = 1; i < n; i++)
{
temp = b;
b = b * ((float) (i + i) / x) - a; /* avoid underflow */
a = temp;
}
} else
{
if (ix < IC(0x30800000))
{ /* x < 2**-29 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if (n > 33) /* underflow */
b = zero;
else
{
temp = x * 0.5f;
b = temp;
for (a = one, i = 2; i <= n; i++)
{
a *= (float) i; /* a = n! */
b *= temp; /* b = (x/2)^n */
}
b = b / a;
}
} else
{
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
float t, v;
float q0, q1, h, tmp;
int32_t k, m;
w = (n + n) / (float) x;
h = 2.0f / x;
q0 = w;
z = w + h;
q1 = w * z - 1.0f;
k = 1;
while (q1 < 1.0e9f)
{
k += 1;
z += h;
tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
m = n + n;
for (t = zero, i = 2 * (n + k); i >= m; i -= 2)
t = one / (i / x - t);
a = t;
b = one;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = n;
v = two / x;
tmp = tmp * __ieee754_logf(__ieee754_fabsf(v * tmp));
if (tmp < 8.8721679688e+01f)
{
for (i = n - 1, di = (float) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
}
} else
{
for (i = n - 1, di = (float) (i + i); i > 0; i--)
{
temp = b;
b *= di;
b = b / x - a;
a = temp;
di -= two;
/* scale b to avoid spurious overflow */
if (b > 1e10f)
{
a /= b;
t /= b;
b = one;
}
}
}
/* j0() and j1() suffer enormous loss of precision at and
* near zero; however, we know that their zero points never
* coincide, so just choose the one further away from zero.
*/
z = __ieee754_j0f(x);
w = __ieee754_j1f(x);
if (__ieee754_fabsf(z) >= __ieee754_fabsf(w))
b = (t * z / b);
else
b = (t * w / a);
}
}
if (sgn)
return -b;
return b;
}
/* wrapper jn */
float __jnf(int n, float x)
{
if (isgreater(__ieee754_fabsf(x), X_TLOSS) && _LIB_VERSION != _IEEE_ && _LIB_VERSION != _POSIX_)
/* jn(n,|x|>X_TLOSS) */
return __kernel_standard_f(n, x, 0.0f, KMATHERRF_JN_TLOSS);
return __ieee754_jnf(n, x);
}
__typeof(__jnf) jnf __attribute__((weak, alias("__jnf")));