-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_fmodf.c
135 lines (119 loc) · 3.07 KB
/
e_fmodf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* e_fmodf.c -- float version of e_fmod.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodf(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __have_fpu_fmod
float __ieee754_fmodf(float x, float y)
{
int32_t n, hx, hy, hz, ix, iy, sx, i;
static const float one = 1.0;
static const float Zero[] = { 0.0, -0.0 };
GET_FLOAT_WORD(hx, x);
GET_FLOAT_WORD(hy, y);
sx = hx & IC(0x80000000); /* sign of x */
hx ^= sx; /* |x| */
hy &= IC(0x7fffffff); /* |y| */
/* purge off exception values */
if (hy == 0 || (hx >= IC(0x7f800000)) || /* y=0,or x not finite */
(hy > IC(0x7f800000))) /* or y is NaN */
return (x * y) / (x * y);
if (hx < hy)
return x; /* |x|<|y| return x */
if (hx == hy)
return Zero[(uint32_t) sx >> 31]; /* |x|=|y| return x*0 */
/* determine ix = ilogb(x) */
if (hx < IC(0x00800000))
{ /* subnormal x */
for (ix = -126, i = (hx << 8); i > 0; i <<= 1)
ix -= 1;
} else
ix = (hx >> 23) - 127;
/* determine iy = ilogb(y) */
if (hy < IC(0x00800000))
{ /* subnormal y */
for (iy = -126, i = (hy << 8); i >= 0; i <<= 1)
iy -= 1;
} else
iy = (hy >> 23) - 127;
/* set up {hx,lx}, {hy,ly} and align y to x */
if (ix >= -126)
hx = IC(0x00800000) | (IC(0x007fffff) & hx);
else
{ /* subnormal x, shift x to normal */
n = -126 - ix;
hx = hx << n;
}
if (iy >= -126)
hy = IC(0x00800000) | (IC(0x007fffff) & hy);
else
{ /* subnormal y, shift y to normal */
n = -126 - iy;
hy = hy << n;
}
/* fix point fmod */
n = ix - iy;
while (n--)
{
hz = hx - hy;
if (hz < 0)
{
hx = hx + hx;
} else
{
if (hz == 0) /* return sign(x)*0 */
return Zero[(uint32_t) sx >> 31];
hx = hz + hz;
}
}
hz = hx - hy;
if (hz >= 0)
{
hx = hz;
}
/* convert back to floating value and restore the sign */
if (hx == 0) /* return sign(x)*0 */
return Zero[(uint32_t) sx >> 31];
while (hx < IC(0x00800000))
{ /* normalize x */
hx = hx + hx;
iy -= 1;
}
if (iy >= -126)
{ /* normalize output */
hx = ((hx - IC(0x00800000)) | ((iy + 127) << 23));
SET_FLOAT_WORD(x, hx | sx);
} else
{ /* subnormal output */
n = -126 - iy;
hx >>= n;
SET_FLOAT_WORD(x, hx | sx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
#endif
float __fmodf(float x, float y)
{
if ((isinf(x) || y == 0.0F) && _LIB_VERSION != _IEEE_ && !isunordered(x, y))
/* fmod(+-Inf,y) or fmod(x,0) */
return __kernel_standard_f(x, y, y, KMATHERRF_FMOD);
return __ieee754_fmodf(x, y);
}
__typeof(__fmodf) fmodf __attribute__((weak, alias("__fmodf")));