-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdaptiveMedianBGS.h
88 lines (71 loc) · 2.6 KB
/
AdaptiveMedianBGS.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
/*
This file is part of BGSLibrary.
BGSLibrary is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BGSLibrary is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BGSLibrary. If not, see <http://www.gnu.org/licenses/>.
*/
/****************************************************************************
*
* AdaptiveMedianBGS.hpp
*
* Purpose: Implementation of the simple adaptive median background
* subtraction algorithm described in:
* "Segmentation and tracking of piglets in images"
* by McFarlane and Schofield
*
* Author: Donovan Parks, September 2007
Example:
Algorithms::BackgroundSubtraction::AdaptiveMedianParams params;
params.SetFrameSize(width, height);
params.LowThreshold() = 40;
params.HighThreshold() = 2*params.LowThreshold();
params.SamplingRate() = 7;
params.LearningFrames() = 30;
Algorithms::BackgroundSubtraction::AdaptiveMedianBGS bgs;
bgs.Initalize(params);
******************************************************************************/
#include "Bgs.h"
namespace Algorithms
{
namespace BackgroundSubtraction
{
// --- Parameters used by the Adaptive Median BGS algorithm ---
class AdaptiveMedianParams : public BgsParams
{
public:
unsigned char &LowThreshold() { return m_low_threshold; }
unsigned char &HighThreshold() { return m_high_threshold; }
int &SamplingRate() { return m_samplingRate; }
int &LearningFrames() { return m_learning_frames; }
private:
unsigned char m_low_threshold;
unsigned char m_high_threshold;
int m_samplingRate;
int m_learning_frames;
};
// --- Adaptive Median BGS algorithm ---
class AdaptiveMedianBGS : public Bgs
{
public:
virtual ~AdaptiveMedianBGS() {}
void Initalize(const BgsParams& param);
void InitModel(const RgbImage& data);
void Subtract(int frame_num, const RgbImage& data,
BwImage& low_threshold_mask, BwImage& high_threshold_mask);
void Update(int frame_num, const RgbImage& data, const BwImage& update_mask);
RgbImage* Background();
private:
void SubtractPixel(int r, int c, const RgbPixel& pixel,
unsigned char& low_threshold, unsigned char& high_threshold);
AdaptiveMedianParams m_params;
RgbImage m_median;
};
}
}