forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exit_transforms.cpp
844 lines (749 loc) · 27.5 KB
/
exit_transforms.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
#include <torch/csrc/jit/frontend/exit_transforms.h>
#include <ATen/core/jit_type.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/ir_views.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
namespace torch::jit {
// WILL states that a node/block must hit the exit, MIGHT that it may happen,
// WONT that it will not happen. THROWS states that a node/block always throws,
// and allows us to create better graphs by not conditionalizing execution
// when it is not necessary. It is an optimization; replacing it with WONT
// would preserve graph semantics.
enum class ExitStatus { WILL, MIGHT, WONT, THROWS };
enum class Transform { Returns, LoopContinuations };
// hasExited() indicates whether or not an exit has been hit.
// The ExitTransform pass maintains a false boolean false_val_ && a true boolean
// true_val_, and an uninitialized boolean throws_val_.
// if hasExited() == true_val_ then we have exited, if hasExited() == false_val_
// we have not, hasExited() == throws_val_ we have hit a block that throws.
// Otherwise, we might have exited.
// exitValues() are the values that we are propagating to a destination block.
// this is used for block outputs of loops and outputs of functions & closures
struct ExitPair : public std::pair<Value*, std::vector<Value*>> {
using pair::pair;
ExitPair(Value* exit_v, at::ArrayRef<Value*> exit_val_ref) {
std::vector<Value*> exit_vals;
for (Value* v : exit_val_ref) {
exit_vals.push_back(v);
}
AT_ASSERT(exit_v->type() == BoolType::get());
this->first = exit_v;
this->second = std::move(exit_vals);
}
Value* hasExited() const {
return this->first;
}
std::vector<Value*> exitValues() const {
return this->second;
}
};
/**
* This pass currently transforms the Graph so that all exit nodes targeting
* a block location are removed from the graph and unified.
* The exit node for breaks/continues is LoopContinuation, and the exit for
* Graphs & Closures is ReturnStmt.
*
* Once we hit an Exit Node, we do not execute any further instructions
* until the exit target has been reached.
*
* For blocks and control flow nodes that have an exit statement that may
* have been hit, we conditionalize all execution on a boolean value that
* indicates whether we have hit the exit, hasExited().
*
* The pass keeps tracks of blocks that always throw, so that we can construct
* simpler graphs. For example, if in one block of an if statement we return
* and in the other we throw, we can treat the node as always returning instead
* of conditionalizing execution in the remainder of the block.
*/
struct ExitTransformer {
ExitTransformer(std::shared_ptr<Graph> graph) : graph_(std::move(graph)) {
WithInsertPoint guard(graph_->block()->nodes().front());
true_val_ = graph_->insertConstant(true);
false_val_ = graph_->insertConstant(false);
// this value will never be used, since we will always throw before it is
// accessed
throws_val_ = getUnitValue(BoolType::get());
}
void transformReturnStmts() {
current_exit_kind_ = prim::ReturnStmt;
transformExits(graph_->block());
}
void transformLoopContinuations() {
current_exit_kind_ = prim::LoopContinuation;
transformExits(graph_->block());
}
private:
ExitPair constructThrowsExitPair() {
return ExitPair(throws_val_, std::vector<Value*>({}));
}
ExitPair constructWontExitPair() {
return ExitPair(false_val_, std::vector<Value*>({}));
}
ExitPair constructWillExitPair(at::ArrayRef<Value*> exit_val_ref) {
return ExitPair(true_val_, exit_val_ref);
}
ExitStatus getExitStatus(ExitPair& exit_pair) {
Value* exit_v = exit_pair.hasExited();
if (exit_v == true_val_) {
return ExitStatus::WILL;
} else if (exit_v == false_val_) {
return ExitStatus::WONT;
} else if (exit_v == throws_val_) {
return ExitStatus::THROWS;
} else {
return ExitStatus::MIGHT;
}
}
static Symbol owningNodeKind(Block* block) {
if (block->owningNode()) {
return block->owningNode()->kind();
}
return Symbol();
}
static bool isGraphOrClosureBlock(Block* block) {
return block->owningNode() == nullptr ||
owningNodeKind(block) == prim::Closure;
}
static void removeOutputs(Block* b) {
while (!b->outputs().empty()) {
b->eraseOutput(0);
}
}
static void registerBlockOutputs(Block* b, at::ArrayRef<Value*> outs) {
for (Value* out : outs) {
b->registerOutput(out);
}
}
static void replaceBlockOutputs(Block* b, at::ArrayRef<Value*> outs) {
removeOutputs(b);
registerBlockOutputs(b, outs);
}
static void addIfOutputs(
Node* n,
at::ArrayRef<Value*> true_outs,
at::ArrayRef<Value*> false_outs) {
IfView if_view(n);
registerBlockOutputs(if_view.thenBlock(), true_outs);
registerBlockOutputs(if_view.elseBlock(), false_outs);
for (const auto i : c10::irange(true_outs.size())) {
auto out_type = unifyTypes(
true_outs.at(i)->type(),
false_outs.at(i)->type(),
/*default_to_union=*/true);
n->addOutput()->setType(*out_type);
}
}
// creates a vector of uninitialized values of the same type as the
// values_to_match
std::vector<Value*> matchValuesWithUnitialized(
at::ArrayRef<Value*> values_to_match) {
std::vector<Value*> match_values;
for (Value* val : values_to_match) {
match_values.push_back(getUnitValue(val->type()));
}
return match_values;
}
ExitPair transformLoop(Node* node) {
LoopView loop(node);
Block* body = loop.bodyBlock();
auto exit_pair = transformExits(body);
// if we're not exiting to outside the loop we don't need to do any work.
// since we may not enter the loop return WONT for the THROWS case.
if (getExitStatus(exit_pair) == ExitStatus::WONT ||
getExitStatus(exit_pair) == ExitStatus::THROWS) {
return constructWontExitPair();
}
// if we are, we need to update the loop continue condition so that
// we exit the loop if we've hit an exit
// and we need to propagate hasExited() and exitValues() outside the loop
// example:
// while i < 5:
// i += 1
// if j == 4:
// return 5
// -> becomes
//
// loop_continue = i < 5
// has_exited = false
// ret_val = uninitialized(int)
// while loop_continue:
// i += 1
// if j == 4:
// ret_val = 5
// has_exited = True
// else:
// ret_val = uninitialized(int)
// has_exited = False
// if has_exited:
// loop_continue = False
// else:
// loop_continue = i < 5
// update loop continuation condition so that we exit if we hit an exit
WithInsertPoint insert(body);
auto new_if = graph_->insertNode(graph_->create(prim::If, 0));
new_if->addInput(exit_pair.hasExited());
new_if->addBlock()->registerOutput(false_val_);
new_if->addBlock()->registerOutput(loop.nextCond());
auto new_condition = new_if->addOutput()->setType(BoolType::get());
loop.bodyBlock()->eraseOutput(0);
loop.bodyBlock()->insertOutput(0, new_condition);
// add hasExited() to loop outputs, we didn't exit if we didn't enter the
// loop
node->addInput(false_val_);
body->addInput()->setType(BoolType::get());
body->registerOutput(exit_pair.hasExited());
Value* new_has_exited = node->addOutput()->setType(BoolType::get());
// add exit values
for (Value* exit_value : exit_pair.exitValues()) {
auto typ = exit_value->type();
node->addInput(getUnitValue(typ));
node->addOutput()->setType(typ);
body->addInput()->setType(typ);
body->registerOutput(exit_value);
}
auto exit_vals = node->outputs().slice(
node->outputs().size() - exit_pair.exitValues().size());
return ExitPair(new_has_exited, exit_vals);
}
ExitStatus calcIfExitStatus(ExitStatus then_status, ExitStatus else_status) {
// if one branch throws, we can take the status of the other
if (then_status == ExitStatus::THROWS) {
return else_status;
} else if (else_status == ExitStatus::THROWS) {
return then_status;
}
if (then_status == ExitStatus::WONT && else_status == ExitStatus::WONT) {
return ExitStatus::WONT;
}
if (then_status == ExitStatus::WILL && else_status == ExitStatus::WILL) {
return ExitStatus::WILL;
}
return ExitStatus::MIGHT;
}
// Recursively transforms the if node
ExitPair transformIf(Node* node) {
auto then_block = node->blocks().at(0);
auto else_block = node->blocks().at(1);
auto then_pair = transformExits(then_block);
auto else_pair = transformExits(else_block);
auto then_status = getExitStatus(then_pair);
auto else_status = getExitStatus(else_pair);
auto if_status = calcIfExitStatus(then_status, else_status);
if (if_status == ExitStatus::THROWS) {
return constructThrowsExitPair();
}
if (if_status == ExitStatus::WONT) {
return constructWontExitPair();
}
// The exit values of the block that is not exiting will not get
// used, so we create uninitialized values of the same type as the other
// block.
if (then_status == ExitStatus::WONT || then_status == ExitStatus::THROWS) {
std::vector<Value*> exit_vals =
matchValuesWithUnitialized(else_pair.exitValues());
then_pair = ExitPair(then_pair.hasExited(), exit_vals);
} else if (
else_status == ExitStatus::WONT || else_status == ExitStatus::THROWS) {
std::vector<Value*> exit_vals =
matchValuesWithUnitialized(then_pair.exitValues());
else_pair = ExitPair(else_pair.hasExited(), exit_vals);
}
Value* has_exited = nullptr;
if (if_status == ExitStatus::WILL) {
// Need to maintain the invariant that if hasExited() == true_val_
// then we have exited.
has_exited = true_val_;
} else {
addIfOutputs(node, {then_pair.hasExited()}, {else_pair.hasExited()});
has_exited = node->outputs().at(node->outputs().size() - 1);
}
addIfOutputs(node, then_pair.exitValues(), else_pair.exitValues());
size_t num_exit_vals = then_pair.exitValues().size();
auto exit_vals =
node->outputs().slice(node->outputs().size() - num_exit_vals);
return ExitPair(has_exited, exit_vals);
}
// Recursively transforms the With node.
ExitPair transformWith(Node* node) {
auto body_block = node->blocks().at(0);
auto body_pair = transformExits(body_block);
return body_pair;
}
// Guards the remaining nodes in the block with an if node that takes
// the has exited value as its conditional
ExitPair guardBlockNodes(
Block* block,
const ExitPair& exit_pair,
graph_node_list_iterator& iter) {
auto new_if = graph_->create(prim::If, 0)->insertBefore(*iter);
new_if->addInput(exit_pair.hasExited());
auto exit_block = new_if->addBlock();
auto guard_block = new_if->addBlock();
// Move all remaining nodes into the guard block
while (iter != block->nodes().end()) {
auto node = *iter++;
node->moveBefore(guard_block->return_node());
}
std::vector<Value*> exit_block_vals;
// after an exit, the only values that will get used
// are the hasExited() and exitValues(), so we match the existing
// block outputs with unitialized
exit_block_vals = matchValuesWithUnitialized(block->outputs());
// Set the new if to have the same outputs of the original block,
// then replace the original block outputs with new if's outputs
for (size_t i = 0; i < block->outputs().size(); ++i) {
exit_block->registerOutput(exit_block_vals.at(i));
guard_block->registerOutput(block->outputs().at(i));
new_if->addOutput()->setType(block->outputs().at(i)->type());
}
while (!block->outputs().empty()) {
block->eraseOutput(0);
}
for (auto out : new_if->outputs()) {
block->registerOutput(out);
}
graph_->create(current_exit_kind_, {exit_pair.exitValues()}, 0)
->insertBefore(exit_block->return_node());
return transformIf(new_if);
}
// these nodes my have uses,
// such as in the case:
// if i == 1:
// break
// j = j + 1
// where the j + 1 value will be a block output, but since they will
// never be used, it is safe to replace them with unitialized value
void destroyNodeAfterExit(Node* n) {
for (auto output : n->outputs()) {
if (!output->uses().empty()) {
output->replaceAllUsesWith(getUnitValue(output->type()));
}
}
n->destroy();
}
void deleteAfterExitNodes(Block* block, graph_node_list_iterator& iter) {
if (iter == block->nodes().end()) {
return;
}
WithInsertPoint insert(*block->nodes().begin());
// need to destroy in reverse order so nodes have no uses when destroyed
for (auto it = block->nodes().reverse().begin(); it != iter;) {
Node* n = *it++;
if (*it != block->return_node()) {
destroyNodeAfterExit(n);
}
}
destroyNodeAfterExit(*iter);
}
// if we're entering a Loop block & transforming LoopContinuations, or if
// we're entering a Closure/Graph block and we're transforming ReturnStmts,
// then we update target_block_ to be the new block.
// otherwise, target_block_ remains the same.
void updateTargetBlock(Block* block) {
if (owningNodeKind(block) == prim::Loop &&
// NOLINTNEXTLINE(bugprone-branch-clone)
current_exit_kind_ == prim::LoopContinuation) {
target_block_ = block;
} else if (
isGraphOrClosureBlock(block) &&
current_exit_kind_ == prim::ReturnStmt) {
target_block_ = block;
}
}
ExitPair transformExits(Block* block) {
Block* prev_target_block = target_block_;
updateTargetBlock(block);
ExitPair exit_pair = constructWontExitPair();
for (auto it = block->nodes().begin(); it != block->nodes().end();) {
Node* node = *it;
it++;
switch (node->kind()) {
case prim::RaiseException: {
exit_pair = constructThrowsExitPair();
} break;
case prim::ReturnStmt:
case prim::LoopContinuation: {
if (node->kind() == current_exit_kind_) {
exit_pair = constructWillExitPair(node->inputs());
node->destroy();
}
} break;
case prim::If: {
exit_pair = transformIf(node);
} break;
case prim::With: {
exit_pair = transformWith(node);
} break;
case prim::Closure: {
// exits of closure declaration stay local to the closure
transformExits(node->blocks().at(0));
} break;
case prim::Loop: {
exit_pair = transformLoop(node);
} break;
}
// if we have hit a node that might exit, we need to conditionally execute
// all subsequent nodes in the block. if we've hit a node that will exit
// we can remove all subsequent nodes.
ExitStatus status = getExitStatus(exit_pair);
if (status == ExitStatus::WILL || status == ExitStatus::THROWS) {
deleteAfterExitNodes(block, it);
break;
}
if (status == ExitStatus::MIGHT) {
if (it != block->nodes().end()) {
exit_pair = guardBlockNodes(block, exit_pair, it);
}
break;
}
}
// if we are targeting this block, update the output values to the
// exit values. since the exit does not extend outside this block,
// update returned exit to false. then, reset the target_block to whatever
// it was previously
if (target_block_ == block) {
// if we might have exited, use the new exit values if we did exit,
// otherwise use the existing block outputs.
if (getExitStatus(exit_pair) == ExitStatus::MIGHT) {
auto new_if =
graph_->create(prim::If, 0)->insertBefore(block->return_node());
new_if->addBlock();
new_if->addBlock();
new_if->addInput(exit_pair.hasExited());
addIfOutputs(new_if, exit_pair.exitValues(), block->outputs());
replaceBlockOutputs(block, new_if->outputs());
} else if (getExitStatus(exit_pair) == ExitStatus::WILL) {
replaceBlockOutputs(block, exit_pair.exitValues());
}
// reset the exiting status. an exit should only reach its target block.
// e.g. a continue only affects most recent loop, return in closure
// does not affect enclosing graph.
// Exceptions do not propagate from Loops bc we might not enter the loop,
// and not from closures bc the Function node is a declaration and not
// an invocation.
exit_pair = constructWontExitPair();
}
target_block_ = prev_target_block;
return exit_pair;
}
Value* getUnitValue(const TypePtr& type) {
auto maybe_val = unit_values_.find(type);
if (maybe_val != unit_values_.end()) {
return maybe_val->second;
}
auto unit = graph_->createUninitialized(type)
->insertAfter(graph_->param_node())
->output();
unit_values_[type] = unit;
return unit;
}
// we create one uninitialized value per type, cache it here and reuse it
std::unordered_map<TypePtr, Value*> unit_values_;
// can either be LoopContinuation/ReturnStmt
Symbol current_exit_kind_;
Value* true_val_;
Value* false_val_;
Value* throws_val_;
// when we see current_exit_kind_, this is the block that the values are
// exiting to. For example when we are transforming LoopContinuations
// for i in range(5):
// while i < 3:
// continue
// break
// when we transform the for loop block, target_block_ will be set the for
// block. then, when we enter the while loop, target_block_ will be the while
// loop block. when we are done transforming the while it will be set back to
// the for block.
Block* target_block_ = nullptr;
std::shared_ptr<Graph> graph_;
};
static bool inlineConsecutiveIfs(Node* node) {
if (node->kind() != prim::If || node->next()->kind() != prim::If) {
return false;
}
IfView first_if(node);
IfView second_if(node->next());
// the second if must depend on a value outputted in the first if for us to
// inline the second if
if (second_if.cond()->node() != node) {
return false;
}
// both blocks must output a constant value for us to inline, and those values
// must be different. if the values are the same, then the subsequent if node
// will get constant prop'd away, and inlining it into the first node would
// double code size
auto input_offset = second_if.cond()->offset();
auto maybe_then_value = toIValue(first_if.thenOutputs().at(input_offset));
auto maybe_else_value = toIValue(first_if.elseOutputs().at(input_offset));
if (!maybe_then_value || !maybe_else_value ||
maybe_then_value->toBool() == maybe_else_value->toBool()) {
return false;
}
bool then_value = maybe_then_value->toBool();
bool else_value = maybe_else_value->toBool();
for (const auto i : c10::irange(2)) {
Block* first_if_block = nullptr;
Block* second_if_block = nullptr;
if (i == 0) {
first_if_block = first_if.thenBlock();
second_if_block =
then_value ? second_if.thenBlock() : second_if.elseBlock();
} else {
first_if_block = first_if.elseBlock();
second_if_block =
else_value ? second_if.thenBlock() : second_if.elseBlock();
;
}
// we need to replace values that were used in the second if that were
// outputs of the first if with the equivalent value in the scope of the
// block we're copying into
auto value_map = [&](Value* v) {
if (v->node() != first_if.node()) {
return v;
}
auto offset = v->offset();
return first_if_block->outputs().at(offset);
};
// clone from also copies block outputs from second_if_block onto
// first_if_block
first_if_block->cloneFrom(second_if_block, value_map);
}
for (Value* output : second_if.outputs()) {
auto new_out = first_if.node()->addOutput()->copyMetadata(output);
output->replaceAllUsesWith(new_out);
}
second_if.node()->destroy();
return true;
}
// After an early return, we conditionalize all further execution
// This means code like the following:
// if x:
// return 1
// return 2
// Gets generated as one if statement checking `if x`, and then a second if
// statement that conditionalizes execution. We can rewrite cases like these
// into one if statement, so that the above examples gets rewritten to look
// like: if x:
// return 1
// else:
// return 2
static void inlineConsecutiveIfs(Block* block) {
for (auto it = block->nodes().begin(), end = block->nodes().end();
it != end;) {
for (Block* b : it->blocks()) {
inlineConsecutiveIfs(b);
}
// if we fused two ifs, we need to check current node and new next node
if (!inlineConsecutiveIfs(*it)) {
it++;
}
}
}
// Adds prim::With nodes to a graph to help handle early exits between
// prim::Enter and prim::Exit nodes. More specifically, it transforms
// IR that looks like this:
//
// %a = prim::Enter(%b)
// <code>
// %c = prim::Exit(%b)
//
// to this:
//
// %a = prim::Enter(%b)
// = prim::With()
// block0():
// <code>
// -> ()
// block1():
// %c = prim::Exit(%b)
// -> ()
//
static void convertEnterExitNodesToWithBlocks(std::shared_ptr<Graph>& graph) {
// First, find all Enter-Exit pairs up front to avoid iterator invalidation
// issues later when moving nodes around. Do this by iterating through the
// nodes of the graph while keeping a stack of encountered Enter nodes. Each
// time an Exit node is seen, its corresponding Enter node must be at the
// top of the stack. Pop it and record the pair.
std::vector<std::pair<Node*, Node*>> enter_exit_pairs;
std::vector<Node*> enter_node_stack;
DepthFirstGraphNodeIterator it(graph);
Node* node = it.next();
while (node) {
if (node->kind() == prim::Enter) {
enter_node_stack.emplace_back(node);
} else if (node->kind() == prim::Exit) {
// enter_node_stack should not be empty.
TORCH_INTERNAL_ASSERT(!enter_node_stack.empty());
// The input to this Exit node should be the same as that of the Enter
// node on the top of the enter_node_stack.
TORCH_INTERNAL_ASSERT(
enter_node_stack.back()->input(0) == node->input(0));
// Record the pair.
enter_exit_pairs.emplace_back(enter_node_stack.back(), node);
enter_node_stack.pop_back();
}
node = it.next();
}
// The stack should be empty; an Exit should have been found for every Enter.
TORCH_INTERNAL_ASSERT(enter_node_stack.empty());
// Now, add a With block for each Enter-Exit pair. The innermost pairs were
// found first, so they will be converted first.
for (auto& pair : enter_exit_pairs) {
Node* enter = pair.first;
Node* exit = pair.second;
auto* with = graph->create(prim::With, /*num_outputs=*/0);
auto* body_block = with->addBlock();
auto* exit_block = with->addBlock();
// Insert the With after the Enter.
Node* cur = enter->next();
Node* insert_point = body_block->param_node();
// Move all of the nodes between the Enter and Exit into the body block.
while (cur != exit) {
auto* next = cur->next();
cur->moveAfter(insert_point);
insert_point = insert_point->next();
cur = next;
}
// Move the Exit node into the exit block.
exit->moveAfter(exit_block->param_node());
with->insertAfter(enter);
}
}
// Removes prim::With nodes from a graph. More specifically, it transforms
// IR that looks like this:
//
// %a = prim::Enter(%b)
// = prim::With()
// block0():
// <code>
// -> ()
// block1():
// %c = prim::Exit(%b)
// ->()
//
// to this:
// %a = prim::Enter(%b)
// <code>
// %c = prim::Exit(%b)
//
static void convertWithBlocksToEnterExitNodes(std::shared_ptr<Graph>& graph) {
// First, find all With blocks to avoid iterator invalidation issues when
// moving nodes around later.
std::vector<Node*> with_nodes;
DepthFirstGraphNodeIterator it(graph);
Node* node = it.next();
while (node) {
if (node->kind() == prim::With) {
with_nodes.emplace_back(node);
}
node = it.next();
}
// For each With node:
for (auto& node : with_nodes) {
auto* body_block = node->blocks().at(0);
auto* exit_block = node->blocks().at(1);
std::vector<Node*> to_append;
// Record all nodes that need to be appended after the Enter that precedes
// the With block to avoid iterator invalidation issues later when moving
// nodes around.
for (auto body_node : body_block->nodes()) {
to_append.emplace_back(body_node);
}
for (auto exit_node : exit_block->nodes()) {
to_append.emplace_back(exit_node);
}
Node* cur = node->prev();
// Move all nodes inside the with block outside of it.
for (auto& node : to_append) {
node->moveAfter(cur);
cur = node;
}
node->destroy();
}
}
// This pass takes in a graph where LoopContinuation & ReturnStmts exist in the
// graph and erases them in the graph, correctly setting block outputs.
// prim::LoopContinuation(*vals) means that the values are targeting the most
// recent loop block. prim::ReturnStmt(*vals) means that the values are
// targeting the most recent Closure or Graph Block. Once we hit an exit node,
// we do not execute any further instructions until the block exit reaches its
// destination. If we encounter a node that contains nested blocks that may
// have hit an exit node, such as an if statement that exits in one block
// and does not exit in the other, we use a boolean value to indicate if the
// exit has been hit or not. Then, we conditionalize further execution.
//
// Python example:
// while i < 5:
// if i == 3:
// i += 1
// continue
// i += 2
//
// -> transforms to:
//
// continue_loop = i < 5
// while continue_loop:
// if i == 3:
// i = i + 1
// continue_loop = i < 5
// did_exit = True
// if did_exit:
// pass
// else:
// i = i + 2
// continue_loop = i < 5
// IR as it enters pass:
// %36 : bool = aten::lt(%i.1, %3)
// %i : int = prim::Loop(%1, %36, %i.1)
// block0(%5 : int, %i.17 : int):
// %8 : bool = aten::eq(%i.17, %7)
// %i.16 : int = prim::If(%8)
// block0():
// %i.6 : int = aten::add(%i.17, %11)
// %33 : bool = aten::lt(%i.6, %3)
// = prim::LoopContinuation(%33, %i.6)
// -> (%i.6)
// block1():
// -> (%i.17)
// %i.13 : int = aten::add(%i.16, %19)
// %4 : bool = aten::lt(%i.13, %3)
// -> (%4, %i.13)
// return (%i)
//
// -> transforms to
//
// %false_val : bool = prim::Constant[value=0]()
// %true_val : bool = prim::Constant[value=1]()
// %40 : int = prim::Uninitialized()
// %39 : bool = prim::Uninitialized()
// %36 : bool = aten::lt(%i.1, %3)
// %i : int = prim::Loop(%1, %36, %i.1)
// block0(%5 : int, %i.17 : int):
// %8 : bool = aten::eq(%i.17, %7)
// %did_exit : bool, %continue_loop : bool, %43 : int, %i.16 : int =
// prim::If(%8)
// block0():
// %i.6 : int = aten::add(%i.17, %11)
// %33 : bool = aten::lt(%i.6, %3)
// -> (%true_val, %33, %i.6, %i.6)
// block1():
// -> (%false_val, %39, %40, %i.17)
// %44 : bool, %i : int = prim::If(%did_exit)
// block0():
// -> (%continue_loop, %43)
// block1():
// %i.13 : int = aten::add(%i.16, %19)
// %4 : bool = aten::lt(%i.13, %3)
// -> (%4, %i.13)
// -> (%44, %i)
void TransformExits(std::shared_ptr<Graph>& graph) {
convertEnterExitNodesToWithBlocks(graph);
ExitTransformer e_loop(graph);
e_loop.transformLoopContinuations();
ExitTransformer e_ret(graph);
e_ret.transformReturnStmts();
inlineConsecutiveIfs(graph->block());
convertWithBlocksToEnterExitNodes(graph);
}
} // namespace torch::jit