forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
builtin_functions.cpp
185 lines (167 loc) · 5.96 KB
/
builtin_functions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <torch/csrc/jit/frontend/builtin_functions.h>
#include <ATen/code_template.h>
#include <caffe2/serialize/versions.h>
#include <torch/csrc/api/include/torch/jit.h>
#include <torch/csrc/jit/frontend/resolver.h>
namespace torch::jit {
auto scalar_operators_source = at::jit::CodeTemplate(
R"SCRIPT(
def mul(a : ${Scalar}, b : Tensor) -> Tensor:
return b * a
def add(a : ${Scalar}, b : Tensor) -> Tensor:
return b + a
def ne(a : ${Scalar}, b : Tensor) -> Tensor:
return b != a
def eq(a : ${Scalar}, b : Tensor) -> Tensor:
return b == a
def sub(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.neg(b) + a
def div(a : ${Scalar}, b : Tensor) -> Tensor:
return torch.reciprocal(b) * a
)SCRIPT");
auto scalar_operators_no_complex_source = at::jit::CodeTemplate(
R"SCRIPT(
def lt(a : ${Scalar}, b : Tensor) -> Tensor:
return b > a
def le(a : ${Scalar}, b : Tensor) -> Tensor:
return b >= a
def gt(a : ${Scalar}, b : Tensor) -> Tensor:
return b < a
def ge(a : ${Scalar}, b : Tensor) -> Tensor:
return b <= a
)SCRIPT");
auto _ntuple_ops = at::jit::CodeTemplate(
R"SCRIPT(
def _${name}(x: BroadcastingList${Length}[${Scalar}]) -> List[${Scalar}]:
return x
)SCRIPT");
auto floordiv = at::jit::CodeTemplate(
R"SCRIPT(
def floordiv(self : Tensor, other : ${Rhs_Type}) -> Tensor:
return torch.floor_divide(self, other)
)SCRIPT");
auto tensor_properties =
R"SCRIPT(
def ndim(a : Tensor) -> int:
return a.dim()
def T(a : Tensor) -> Tensor:
return a.numpy_T()
def H(a : Tensor) -> Tensor:
return a.matrix_H()
def mT(a : Tensor) -> Tensor:
return a.mT
def mH(a : Tensor) -> Tensor:
return a.mH
def shape(a : Tensor) -> List[int]:
return a.size()
)SCRIPT";
// _assert_int_or_pair is only here for backwards-compatibility with the
// aten::_assert_int_or_pair op which was removed once we were able to compile
// torch.nn.functional.assert_int_or_pair
// list_with_default also needs to be here for BC
auto aten_ops =
R"SCRIPT(
def _assert_int_or_pair(vals: List[int], name: str, message: str):
pass
def list_with_default(out_size: List[int], defaults: List[int]):
assert len(defaults) > len(out_size)
return out_size
def _assert(condition : bool, message : str):
assert condition, message
# existing device operator is registered with input name `a`, which prevents
# torch.device(type="cuda") from working. add shim-layer here
def device(type: str):
return torch.device(type)
def type(self: Tensor, dtype: int, non_blocking: bool=False, copy: bool=False) -> Tensor:
return self.to(dtype, non_blocking, copy)
)SCRIPT";
// an additional overload for Tensor variant of _assert
const auto aten_ops_additional =
R"SCRIPT(
def _assert(condition : Tensor, message : str):
assert bool(condition), message
def __contains__(self: str, key: str):
return self.find(key, 0, len(self)) != -1
)SCRIPT";
struct BuiltinFunctionRegistry {
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
const static std::vector<Function*> empty;
// when initializing the builtin function library, we will re-enter
// getAllBuiltinFunctionsFor since it is called in the compiler to
// lookup builtins and initializing the builtin functions calls the
// compiler. To avoid deadlocking, we use a recursive mutex (same thread can
// re-lock, the mutex without waiting), and report no loaded builtins during
// init.
std::lock_guard<std::recursive_mutex> guard(mutex);
if (state == INTIIALIZING) {
return empty;
} else if (state == UNINITIALIZED) {
state = INTIIALIZING;
loadBuiltinFunctions();
state = INITIALIZED;
}
AT_ASSERT(state == INITIALIZED);
auto it = builtins_by_name_.find(name);
if (it == builtins_by_name_.end())
return empty;
return it->second;
}
private:
void loadSource(const std::string& source, const std::string& the_namespace) {
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
modules.emplace_back(cu);
cu->define(std::nullopt, source, nativeResolver(), /*self=*/nullptr);
for (auto& method : cu->get_functions()) {
builtins_by_name_[Symbol::fromQualString(
the_namespace + "::" + method->name())]
.push_back(method);
}
}
void loadBuiltinFunctions() {
for (auto scalar : {"float", "int", "complex"}) {
at::jit::TemplateEnv env;
env.s("Scalar", scalar);
loadSource(scalar_operators_source.format(env), "aten");
}
for (auto scalar : {"float", "int"}) {
at::jit::TemplateEnv env;
env.s("Scalar", scalar);
loadSource(scalar_operators_no_complex_source.format(env), "aten");
}
using str_pair = std::pair<std::string, std::string>;
const std::vector<str_pair> name_len = {
str_pair("single", "1"),
str_pair("pair", "2"),
str_pair("triple", "3"),
str_pair("quadruple", "4"),
};
for (const auto scalar : {"float", "int"}) {
for (const auto& pair : name_len) {
at::jit::TemplateEnv env;
env.s("Scalar", scalar);
env.s("name", pair.first);
env.s("Length", pair.second);
loadSource(_ntuple_ops.format(env), "aten");
}
}
for (auto rhs : {"number", "Tensor"}) {
at::jit::TemplateEnv env;
env.s("Rhs_Type", rhs);
loadSource(floordiv.format(env), "aten");
}
loadSource(aten_ops, "aten");
loadSource(aten_ops_additional, "aten");
// These are under `prim` instead of `aten` since they exist to bind certain
// tensor property getters to correpsonding methods
loadSource(tensor_properties, "prim");
}
enum { UNINITIALIZED, INTIIALIZING, INITIALIZED } state = UNINITIALIZED;
std::recursive_mutex mutex;
std::vector<std::shared_ptr<CompilationUnit>> modules;
std::unordered_map<Symbol, std::vector<Function*>> builtins_by_name_;
};
const std::vector<Function*>& getAllBuiltinFunctionsFor(Symbol name) {
static BuiltinFunctionRegistry registry;
return registry.getAllBuiltinFunctionsFor(name);
}
} // namespace torch::jit