forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_weights_only_unpickler.py
551 lines (512 loc) · 20.6 KB
/
_weights_only_unpickler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
# mypy: allow-untyped-defs
# Unpickler restricted to loading only state dicts
# Restrict constructing types to a list defined in _get_allowed_globals()
# Restrict BUILD operation to `Tensor`, `Parameter` and `OrderedDict` types only
# Restrict APPEND/APPENDS to `list`
# In `GLOBALS` operation do not do class lookup by name, but rather rely on dictionary
# defined by `_get_allowed_globals()` method, that contains:
# - torch types (Storage, dtypes, Tensor, `torch.Size`),
# - `torch._utils._rebuild` functions.
# - `torch.nn.Parameter`
# - `collections.Counter`
# - `collections.OrderedDict`
# Additionally, users can use an allowlist for adding classes they have deemed as safe using
# `_add_safe_globals()` (`torch.serialization.add_safe_globals`)
# `_clear_safe_globals()` (`torch.serialization.clear_safe_globals`)
# `_get_safe_globals()` (`torch.serialization.get_safe_globals`)
# Based of https://github.com/python/cpython/blob/main/Lib/pickle.py
# Expected to be useful for loading PyTorch model weights
# For example:
# data = urllib.request.urlopen('https://download.pytorch.org/models/resnet50-0676ba61.pth').read()
# buf = io.BytesIO(data)
# weights = torch.load(buf, weights_only = True)
import functools as _functools
import warnings
from _codecs import encode
from collections import Counter, OrderedDict
from pickle import (
APPEND,
APPENDS,
BINFLOAT,
BINGET,
BININT,
BININT1,
BININT2,
BINPERSID,
BINPUT,
BINUNICODE,
BUILD,
bytes_types,
decode_long,
EMPTY_DICT,
EMPTY_LIST,
EMPTY_SET,
EMPTY_TUPLE,
GLOBAL,
LONG1,
LONG_BINGET,
LONG_BINPUT,
MARK,
NEWFALSE,
NEWOBJ,
NEWTRUE,
NONE,
PROTO,
REDUCE,
SETITEM,
SETITEMS,
SHORT_BINSTRING,
STOP,
TUPLE,
TUPLE1,
TUPLE2,
TUPLE3,
UnpicklingError,
)
from struct import unpack
from sys import maxsize
from typing import Any, Callable, Dict, List, Set, Tuple, Union
import torch
from torch._utils import IMPORT_MAPPING, NAME_MAPPING
# modules in this list are never allowed, even if the user attempts to allowlist
# functions/classes from them
_blocklisted_modules = [
"sys",
"os",
"posix",
"nt",
]
_marked_safe_globals_set: Set[Union[Callable, Tuple[Callable, str]]] = set()
def _add_safe_globals(safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set.union(set(safe_globals))
def _get_safe_globals() -> List[Union[Callable, Tuple[Callable, str]]]:
global _marked_safe_globals_set
return list(_marked_safe_globals_set)
def _clear_safe_globals():
global _marked_safe_globals_set
_marked_safe_globals_set = set()
def _remove_safe_globals(
globals_to_remove: List[Union[Callable, Tuple[Callable, str]]],
):
global _marked_safe_globals_set
_marked_safe_globals_set = _marked_safe_globals_set - set(globals_to_remove)
class _safe_globals:
def __init__(self, safe_globals: List[Union[Callable, Tuple[Callable, str]]]):
self.safe_globals = safe_globals
def __enter__(self):
_add_safe_globals(self.safe_globals)
def __exit__(self, type, value, tb):
_remove_safe_globals(self.safe_globals)
# Separate from _get_allowed_globals because of the lru_cache on _get_allowed_globals
# For example if user had a script like
# torch.load(file_a)
# torch.serialization._add_safe_globals([torch.foo])
# torch.load(file_b)
# the dynamic additions to safe_globals would not be picked up by
# _get_allowed_globals due to the lru_cache
def _get_user_allowed_globals():
rc: Dict[str, Any] = {}
for f in _marked_safe_globals_set:
if isinstance(f, tuple):
if len(f) != 2:
raise ValueError(
f"Expected tuple of length 2 (global, str of callable full path), but got tuple of length: {len(f)}"
)
if type(f[1]) is not str:
raise TypeError(
f"Expected second item in tuple to be str of callable full path, but got: {type(f[1])}"
)
f, name = f
rc[name] = f
else:
module, name = f.__module__, f.__name__
rc[f"{module}.{name}"] = f
return rc
def _tensor_rebuild_functions():
return {
torch._utils._rebuild_parameter,
torch._utils._rebuild_parameter_with_state,
torch._utils._rebuild_qtensor,
torch._utils._rebuild_tensor,
torch._utils._rebuild_tensor_v2,
torch._utils._rebuild_tensor_v3,
torch._utils._rebuild_sparse_tensor,
torch._utils._rebuild_meta_tensor_no_storage,
torch._utils._rebuild_nested_tensor,
torch._utils._rebuild_wrapper_subclass,
# Allowlisting this, but not allowlisting the numpy functions by default
# Reasoning is that we don't have control over the numpy functions, but
# this utility is provided by pytorch
torch._utils._rebuild_device_tensor_from_numpy,
# In 2.6, we should no longer have a dependency on numpy and the above
# _rebuild_device_tensor_from_numpy function.
torch._utils._rebuild_device_tensor_from_cpu_tensor,
}
# Unpickling machinery
@_functools.lru_cache(maxsize=1)
def _get_allowed_globals():
rc: Dict[str, Any] = {
"collections.OrderedDict": OrderedDict,
"collections.Counter": Counter,
"torch.nn.parameter.Parameter": torch.nn.Parameter,
"torch.serialization._get_layout": torch.serialization._get_layout,
"torch.Size": torch.Size,
"torch.Tensor": torch.Tensor,
"torch.device": torch.device,
"_codecs.encode": encode, # for bytes
"builtins.bytearray": bytearray, # for bytearray
"builtins.set": set, # for set
"builtins.complex": complex, # for complex
}
# dtype
for t in torch.storage._dtype_to_storage_type_map().keys():
rc[str(t)] = t
for t in torch.storage._new_dtypes():
rc[str(t)] = t
# Tensor classes
for tt in torch._tensor_classes:
rc[f"{tt.__module__}.{tt.__name__}"] = tt
# Storage classes
for ts in torch._storage_classes:
if ts not in (torch.storage.TypedStorage, torch.storage.UntypedStorage):
# Wrap legacy storage types in a dummy class
rc[f"{ts.__module__}.{ts.__name__}"] = torch.serialization.StorageType(
ts.__name__
)
else:
rc[f"{ts.__module__}.{ts.__name__}"] = ts
# Quantization specific
for qt in [
torch.per_tensor_affine,
torch.per_tensor_symmetric,
torch.per_channel_affine,
torch.per_channel_symmetric,
torch.per_channel_affine_float_qparams,
]:
rc[str(qt)] = qt
# Rebuild functions
for f in _tensor_rebuild_functions():
rc[f"torch._utils.{f.__name__}"] = f
# Handles Tensor Subclasses, Tensor's with attributes.
# NOTE: It calls into above rebuild functions for regular Tensor types.
rc["torch._tensor._rebuild_from_type_v2"] = torch._tensor._rebuild_from_type_v2
return rc
def _read_global_instruction(readline: Callable) -> Tuple[str, str]:
module = readline()[:-1].decode("utf-8")
name = readline()[:-1].decode("utf-8")
# Patch since torch.save default protocol is 2
# users will be running this code in python > 3
if (module, name) in NAME_MAPPING:
module, name = NAME_MAPPING[(module, name)]
elif module in IMPORT_MAPPING:
module = IMPORT_MAPPING[module]
return module, name
def get_globals_in_pkl(file) -> Set[str]:
globals_in_checkpoint = set()
read = file.read
readline = file.readline
op_to_bytes_to_read = {
NEWOBJ[0]: 0,
REDUCE[0]: 0,
BUILD[0]: 0,
APPEND[0]: 0,
APPENDS[0]: 0,
SETITEM[0]: 0,
SETITEMS[0]: 0,
MARK[0]: 0,
TUPLE[0]: 0,
TUPLE1[0]: 0,
TUPLE2[0]: 0,
TUPLE3[0]: 0,
NONE[0]: 0,
NEWFALSE[0]: 0,
NEWTRUE[0]: 0,
EMPTY_TUPLE[0]: 0,
EMPTY_LIST[0]: 0,
EMPTY_DICT[0]: 0,
EMPTY_SET[0]: 0,
BINPERSID[0]: 0,
BININT[0]: 4,
BININT1[0]: 1,
BININT2[0]: 2,
BINFLOAT[0]: 8,
BINGET[0]: 1,
LONG_BINGET[0]: 4,
BINPUT[0]: 1,
LONG_BINPUT[0]: 4,
}
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(readline)
globals_in_checkpoint.add(f"{module}.{name}")
elif key[0] in op_to_bytes_to_read:
bytes_to_read = op_to_bytes_to_read[key[0]]
if bytes_to_read:
read(bytes_to_read)
# ops where bytes to read depends on the data
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
read(strlen)
elif key[0] in {SHORT_BINSTRING[0], LONG1[0]}:
strlen = read(1)[0]
read(strlen)
# first and last op
elif key[0] == PROTO[0]:
read(1)[0]
elif key[0] == STOP[0]:
return globals_in_checkpoint
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
class Unpickler:
def __init__(self, file, *, encoding: str = "bytes"):
self.encoding = encoding
self.readline = file.readline
self.read = file.read
self.memo: Dict[int, Any] = {}
self.proto: int = -1
def load(self):
"""Read a pickled object representation from the open file.
Return the reconstituted object hierarchy specified in the file.
"""
self.metastack = []
self.stack: List[Any] = []
self.append = self.stack.append
read = self.read
while True:
key = read(1)
if not key:
raise EOFError
assert isinstance(key, bytes_types)
# Risky operators
if key[0] == GLOBAL[0]:
module, name = _read_global_instruction(self.readline)
full_path = f"{module}.{name}"
if module in _blocklisted_modules:
raise UnpicklingError(
f"Trying to load unsupported GLOBAL {full_path} whose module {module} is blocked."
)
if full_path in _get_allowed_globals():
self.append(_get_allowed_globals()[full_path])
elif full_path in _get_user_allowed_globals():
self.append(_get_user_allowed_globals()[full_path])
elif full_path in (
[
"torch.nested._internal.nested_tensor.NestedTensor",
"torch.nested._internal.nested_tensor._rebuild_njt",
"torch._dynamo.decorators._DimRange",
]
):
raise UnpicklingError(
"``torch.nested`` and ``torch._dynamo`` must be imported to load nested jagged tensors (NJTs)"
)
elif full_path in (
[
"torch.distributed.device_mesh.DeviceMesh",
"torch.distributed.tensor._dtensor_spec.DTensorSpec",
"torch.distributed.tensor._dtensor_spec.TensorMeta",
"torch.distributed.tensor.DTensor",
"torch.distributed.tensor.placement_types.Partial",
"torch.distributed.tensor.placement_types.Replicate",
"torch.distributed.tensor.placement_types.Shard",
]
):
raise UnpicklingError(
"``torch.distributed.tensor`` must be imported to load DTensors"
)
else:
raise UnpicklingError(
f"Unsupported global: GLOBAL {full_path} was not an allowed global by default. "
f"Please use `torch.serialization.add_safe_globals([{name}])` or the "
f"`torch.serialization.safe_globals([{name}])` context manager to allowlist this global "
"if you trust this class/function."
)
elif key[0] == NEWOBJ[0]:
args = self.stack.pop()
cls = self.stack.pop()
if cls is torch.nn.Parameter:
self.append(torch.nn.Parameter(*args))
elif (
cls in _get_user_allowed_globals().values()
or cls in _get_allowed_globals().values()
):
self.append(cls.__new__(cls, *args))
else:
raise UnpicklingError(
"Can only create new object for nn.Parameter or classes allowlisted "
f"via `add_safe_globals` but got {cls}"
)
elif key[0] == REDUCE[0]:
args = self.stack.pop()
func = self.stack[-1]
if (
func not in _get_allowed_globals().values()
and func not in _get_user_allowed_globals().values()
):
raise UnpicklingError(
f"Trying to call reduce for unrecognized function {func}"
)
self.stack[-1] = func(*args)
elif key[0] == BUILD[0]:
state = self.stack.pop()
inst = self.stack[-1]
if type(inst) is torch.Tensor:
# Legacy unpickling
inst.set_(*state)
elif type(inst) is torch.nn.Parameter:
inst.__setstate__(state)
elif type(inst) is OrderedDict:
inst.__dict__.update(state)
elif (
type(inst) in _get_user_allowed_globals().values()
or type(inst) in _get_allowed_globals().values()
):
if hasattr(inst, "__setstate__"):
inst.__setstate__(state)
else:
# mimics load_build in pickle
# https://github.com/python/cpython/blob/f0c6fccd08904787a39269367f09f263d496114c/Lib/pickle.py#L1854-L1867
slotstate = None
if isinstance(state, tuple) and len(state) == 2:
state, slotstate = state
if state:
inst.__dict__.update(state)
if slotstate:
for k, v in slotstate.items():
setattr(inst, k, v)
else:
raise UnpicklingError(
"Can only build Tensor, Parameter, OrderedDict or types allowlisted "
f"via `add_safe_globals`, but got {type(inst)}"
)
# Stack manipulation
elif key[0] == APPEND[0]:
item = self.stack.pop()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only append to lists, but got {type(list_obj)}"
)
list_obj.append(item)
elif key[0] == APPENDS[0]:
items = self.pop_mark()
list_obj = self.stack[-1]
if type(list_obj) is not list:
raise UnpicklingError(
f"Can only extend lists, but got {type(list_obj)}"
)
list_obj.extend(items)
elif key[0] == SETITEM[0]:
(v, k) = (self.stack.pop(), self.stack.pop())
self.stack[-1][k] = v
elif key[0] == SETITEMS[0]:
items = self.pop_mark()
for i in range(0, len(items), 2):
self.stack[-1][items[i]] = items[i + 1]
elif key[0] == MARK[0]:
self.metastack.append(self.stack)
self.stack = []
self.append = self.stack.append
elif key[0] == TUPLE[0]:
items = self.pop_mark()
self.append(tuple(items))
elif key[0] == TUPLE1[0]:
self.stack[-1] = (self.stack[-1],)
elif key[0] == TUPLE2[0]:
self.stack[-2:] = [(self.stack[-2], self.stack[-1])]
elif key[0] == TUPLE3[0]:
self.stack[-3:] = [(self.stack[-3], self.stack[-2], self.stack[-1])]
# Basic types construction
elif key[0] == NONE[0]:
self.append(None)
elif key[0] == NEWFALSE[0]:
self.append(False)
elif key[0] == NEWTRUE[0]:
self.append(True)
elif key[0] == EMPTY_TUPLE[0]:
self.append(())
elif key[0] == EMPTY_LIST[0]:
self.append([])
elif key[0] == EMPTY_DICT[0]:
self.append({})
elif key[0] == EMPTY_SET[0]:
self.append(set())
elif key[0] == BININT[0]:
self.append(unpack("<i", read(4))[0])
elif key[0] == BININT1[0]:
self.append(self.read(1)[0])
elif key[0] == BININT2[0]:
self.append(unpack("<H", read(2))[0])
elif key[0] == BINFLOAT[0]:
self.append(unpack(">d", self.read(8))[0])
elif key[0] == BINUNICODE[0]:
strlen = unpack("<I", read(4))[0]
if strlen > maxsize:
raise UnpicklingError("String is too long")
strval = str(read(strlen), "utf-8", "surrogatepass")
self.append(strval)
elif key[0] == SHORT_BINSTRING[0]:
strlen = read(1)[0]
strdata = read(strlen)
if self.encoding != "bytes":
strdata = strdata.decode(self.encoding, "strict")
self.append(strdata)
elif key[0] == BINPERSID[0]:
pid = self.stack.pop()
# Only allow persistent load of storage
if type(pid) is not tuple and not type(pid) is not int:
raise UnpicklingError(
f"persistent_load id must be tuple or int, but got {type(pid)}"
)
if (
type(pid) is tuple
and len(pid) > 0
and torch.serialization._maybe_decode_ascii(pid[0]) != "storage"
):
raise UnpicklingError(
f"Only persistent_load of storage is allowed, but got {pid[0]}"
)
self.append(self.persistent_load(pid))
elif key[0] in [BINGET[0], LONG_BINGET[0]]:
idx = (read(1) if key[0] == BINGET[0] else unpack("<I", read(4)))[0]
self.append(self.memo[idx])
elif key[0] in [BINPUT[0], LONG_BINPUT[0]]:
i = (read(1) if key[0] == BINPUT[0] else unpack("<I", read(4)))[0]
if i < 0:
raise ValueError("negative argument")
self.memo[i] = self.stack[-1]
elif key[0] == LONG1[0]:
n = read(1)[0]
data = read(n)
self.append(decode_long(data))
# First and last deserializer ops
elif key[0] == PROTO[0]:
self.proto = read(1)[0]
if self.proto != 2:
warnings.warn(
f"Detected pickle protocol {self.proto} in the checkpoint, which was "
"not the default pickle protocol used by `torch.load` (2). The weights_only "
"Unpickler might not support all instructions implemented by this protocol, "
"please file an issue for adding support if you encounter this."
)
elif key[0] == STOP[0]:
rc = self.stack.pop()
return rc
else:
raise UnpicklingError(f"Unsupported operand {key[0]}")
# Return a list of items pushed in the stack after last MARK instruction.
def pop_mark(self):
items = self.stack
self.stack = self.metastack.pop()
self.append = self.stack.append
return items
def persistent_load(self, pid):
raise UnpicklingError("unsupported persistent id encountered")
def load(file, *, encoding: str = "ASCII"):
return Unpickler(file, encoding=encoding).load()