forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SparseCsrLinearAlgebra.cpp
261 lines (243 loc) · 6.4 KB
/
SparseCsrLinearAlgebra.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#define TORCH_ASSERT_ONLY_METHOD_OPERATORS
#include <ATen/native/mkl/SparseCsrLinearAlgebra.h>
#include <ATen/native/SparseTensorUtils.h>
// Don't compile with MKL for macos since linking the sparse MKL routines
// needs some build fixes.
// Macros source:
// https://web.archive.org/web/20191012035921/http://nadeausoftware.com/articles/2012/01/c_c_tip_how_use_compiler_predefined_macros_detect_operating_system
#if !AT_MKL_ENABLED() || defined(__APPLE__) || \
defined(__MACH__)
namespace at {
namespace sparse_csr {
Tensor& _sparse_mm_mkl_(
Tensor& self,
const SparseCsrTensor& sparse_,
const Tensor& dense,
const Tensor& t,
const Scalar& alpha,
const Scalar& beta) {
#if __APPLE__ || __MACH__
TORCH_CHECK(false, "sparse_mm_mkl: MKL support is disabled on macos/iOS.");
#else
TORCH_CHECK(false, "sparse_mm_mkl: ATen not compiled with MKL support");
#endif
return self; // for stopping compiler warnings.
}
} // namespace native
} // namespace at
#else // AT_MKL_ENABLED
#include <ATen/mkl/Descriptors.h>
#include <ATen/mkl/Exceptions.h>
#include <ATen/mkl/Limits.h>
#include <mkl.h>
#include <mkl_spblas.h>
#include <ATen/Dispatch.h>
#include <ATen/ExpandUtils.h>
#include <ATen/SparseCsrTensorImpl.h>
namespace at::sparse_csr {
#ifdef MKL_ILP64
static constexpr ScalarType TORCH_INT_TYPE = at::kLong;
#else
static constexpr ScalarType TORCH_INT_TYPE = at::kInt;
#endif
class SparseCsrMKLInterface {
private:
sparse_matrix_t A{nullptr};
matrix_descr desc;
public:
SparseCsrMKLInterface(
MKL_INT* col_indices,
MKL_INT* crow_indices,
double* values,
MKL_INT nrows,
MKL_INT ncols) {
desc.type = SPARSE_MATRIX_TYPE_GENERAL;
int retval = mkl_sparse_d_create_csr(
&A,
SPARSE_INDEX_BASE_ZERO,
nrows,
ncols,
crow_indices,
crow_indices + 1,
col_indices,
values);
TORCH_CHECK(
retval == 0,
"mkl_sparse_d_create_csr failed with error code: ",
retval);
}
SparseCsrMKLInterface(
MKL_INT* col_indices,
MKL_INT* crow_indices,
float* values,
MKL_INT nrows,
MKL_INT ncols) {
desc.type = SPARSE_MATRIX_TYPE_GENERAL;
int retval = mkl_sparse_s_create_csr(
&A,
SPARSE_INDEX_BASE_ZERO,
nrows,
ncols,
crow_indices,
crow_indices + 1,
col_indices,
values);
TORCH_CHECK(
retval == 0,
"mkl_sparse_s_create_csr failed with error code: ",
retval);
}
// res(nrows, dense_ncols) = (sparse(nrows * ncols) @ dense(ncols x dense_ncols))
inline void sparse_mm(
float* res,
float* dense,
float alpha,
float beta,
MKL_INT nrows,
MKL_INT ncols,
MKL_INT dense_ncols) {
int stat;
if (dense_ncols == 1) {
stat = mkl_sparse_s_mv(
SPARSE_OPERATION_NON_TRANSPOSE,
alpha,
A,
desc,
dense,
beta,
res);
TORCH_CHECK(stat == 0, "mkl_sparse_s_mv failed with error code: ", stat);
} else {
stat = mkl_sparse_s_mm(
SPARSE_OPERATION_NON_TRANSPOSE,
alpha,
A,
desc,
SPARSE_LAYOUT_ROW_MAJOR,
dense,
nrows,
ncols,
beta,
res,
dense_ncols);
TORCH_CHECK(stat == 0, "mkl_sparse_s_mm failed with error code: ", stat);
}
}
inline void sparse_mm(
double* res,
double* dense,
double alpha,
double beta,
MKL_INT nrows,
MKL_INT ncols,
MKL_INT dense_ncols) {
int stat;
if (dense_ncols == 1) {
stat = mkl_sparse_d_mv(
SPARSE_OPERATION_NON_TRANSPOSE,
alpha,
A,
desc,
dense,
beta,
res);
TORCH_CHECK(stat == 0, "mkl_sparse_d_mv failed with error code: ", stat);
}
else {
stat = mkl_sparse_d_mm(
SPARSE_OPERATION_NON_TRANSPOSE,
alpha,
A,
desc,
SPARSE_LAYOUT_ROW_MAJOR,
dense,
nrows,
ncols,
beta,
res,
dense_ncols);
TORCH_CHECK(stat == 0, "mkl_sparse_d_mm failed with error code: ", stat);
}
}
~SparseCsrMKLInterface() {
mkl_sparse_destroy(A);
}
};
template <typename scalar_t>
static inline void sparse_mm_mkl_template(
Tensor& res,
const Tensor& col_indices,
const Tensor& crow_indices,
const Tensor& values,
const Tensor& dense,
const Tensor& t,
const Scalar& alpha,
const Scalar& beta,
IntArrayRef size,
IntArrayRef dense_size) {
SparseCsrMKLInterface mkl_impl(
col_indices.data_ptr<MKL_INT>(),
crow_indices.data_ptr<MKL_INT>(),
values.data_ptr<scalar_t>(),
size[0],
size[1]);
mkl_impl.sparse_mm(
res.data_ptr<scalar_t>(),
dense.data_ptr<scalar_t>(),
alpha.to<scalar_t>(),
beta.to<scalar_t>(),
size[0],
size[1],
dense_size[1]);
}
static bool inline constexpr is_mkl_int32_index() {
#ifdef MKL_ILP64
return false;
#else
return true;
#endif
}
Tensor& _sparse_mm_mkl_(
Tensor& self,
const SparseCsrTensor& sparse_,
const Tensor& dense,
const Tensor& t,
const Scalar& alpha,
const Scalar& beta) {
if (is_mkl_int32_index()) {
if (sparse_.crow_indices().scalar_type() != kInt) {
TORCH_WARN(
"Pytorch is compiled with MKL LP64 and will convert crow_indices to int32.");
}
if (sparse_.col_indices().scalar_type() != kInt) {
TORCH_WARN(
"Pytorch is compiled with MKL LP64 and will convert col_indices to int32.");
}
} else { // This is for future proofing if we ever change to using MKL ILP64.
if (sparse_.crow_indices().scalar_type() != kLong) {
TORCH_WARN(
"Pytorch is compiled with MKL ILP64 and will convert crow_indices dtype to int64.");
}
if (sparse_.col_indices().scalar_type() != kLong) {
TORCH_WARN(
"Pytorch is compiled with MKL ILP64 and will convert col_indices dtype to int64.");
}
}
AT_DISPATCH_FLOATING_TYPES(
dense.scalar_type(), "addmm_sparse_csr_dense", [&] {
sparse_mm_mkl_template<scalar_t>(
self,
sparse_.col_indices().to(TORCH_INT_TYPE),
sparse_.crow_indices().to(TORCH_INT_TYPE),
sparse_.values(),
dense,
t,
alpha,
beta,
sparse_.sizes(),
dense.sizes());
});
return self;
}
} // namespace at
#endif // AT_MKL_ENABLED