-
Notifications
You must be signed in to change notification settings - Fork 12
/
vlsv_layout_plot.py
109 lines (84 loc) · 3.12 KB
/
vlsv_layout_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import ast
import hashlib
import numpy as np
import struct
import sys
import xml.etree.ElementTree as ET
import matplotlib
import matplotlib.pyplot as plt
### User parameters ###
scale_size = 1e6 # scaling of file sizes
cmap = matplotlib.cm.hsv # colormap to use
### End of User parameters ###
if (len(sys.argv) != 2):
print "This script takes a vlsv file name as input!"
sys.exit()
file_name = sys.argv[1]
max_xml_size = 1000000
fptr = open(file_name,"rb")
# Eight first bytes indicate whether the system is big_endianness or something else
endianness_offset = 8
fptr.seek(endianness_offset)
# Read 8 bytes as unsigned long long (uint64_t in this case) after endianness, this tells the offset of the XML file.
uint64_byte_amount = 8
(offset,) = struct.unpack("Q", fptr.read(uint64_byte_amount))
# Move to the xml offset
fptr.seek(offset)
# Read the xml data
xml_data = fptr.read(max_xml_size)
# Read the xml as string
(xml_string,) = struct.unpack("%ds" % len(xml_data), xml_data)
# Input the xml data into xml_root
xml_root = ET.fromstring(xml_string)
fptr.close()
positions = []
names = []
sizes = []
for child in xml_root:
positions.append(ast.literal_eval(child.text) / scale_size)
size = ast.literal_eval(child.attrib["vectorsize"]) * ast.literal_eval(child.attrib["arraysize"]) * ast.literal_eval(child.attrib["datasize"]) / scale_size
sizes.append(size)
names.append(child.tag)
if ("name" in child.attrib):
names[-1] = names[-1]+"_"+child.attrib["name"]
names[-1] = names[-1]+"_"+"%.1e" % size
positions = np.array(positions)
sizes = np.array(sizes)
names = np.array(names)
positions_sorted = positions[positions.argsort()]
sizes_sorted = sizes[positions.argsort()]
names_sorted = names[positions.argsort()]
total_size = np.sum(sizes)
colors=[int(hashlib.md5(i).hexdigest(), 16) for i in names_sorted]
norm = matplotlib.colors.Normalize(vmin=min(colors), vmax=max(colors))
m = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
colors = m.to_rgba(colors)
fig = plt.figure()
plt.figtext(0.5, 0.95, file_name+" memory layout in MB (total size %.1e MB)" % total_size , fontsize=36, ha="center")
plt.subplot(121)
ax = fig.gca()
#left=0
bottom=0
for i,val in enumerate(positions_sorted):
# patch = ax.barh(0, sizes_sorted[i], height=1.0, left=val, color=colors[i])
patch = ax.bar(0, sizes_sorted[i], width=1.0, bottom=val, color=colors[i])
coords = patch[0].get_xy()
x = 1.05*patch[0].get_width() + coords[0]
y = 0.5*patch[0].get_height() + coords[1]
ax.text(x, y, names_sorted[i], rotation=0, ha="left", va="center")
#ax.set_aspect(0.05*np.sum(sizes))
ax.set_aspect(1.0/(0.05*total_size))
plt.subplot(122)
ax = fig.gca()
patches, texts = ax.pie(sizes_sorted, labels=names_sorted, explode=0.0*np.ones(len(sizes)), colors=colors)
for i,patch in enumerate(patches):
texts[i].set_horizontalalignment("left")
texts[i].set_verticalalignment("center")
texts[i].set_rotation_mode("anchor")
angle = 0.5*(patch.theta1 + patch.theta2)
if (angle > 90.0 and angle < 270.0):
angle = angle - 180.0
texts[i].set_horizontalalignment("right")
texts[i].set_rotation(angle)
ax.axis('equal')
plt.show()