-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
208 lines (159 loc) · 7.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
# coding: utf-8
# A Convolutional Network implementation example using TensorFlow library.
# This example is using the MNIST database of handwritten digits
# (http://yann.lecun.com/exdb/mnist/)
#
# Author: Aymeric Damien
# Project: https://github.com/aymericdamien/TensorFlow-Examples/
import os
from argparse import ArgumentParser
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import shutil
def build_parser():
parser = ArgumentParser()
parser.add_argument('--learning_rate', type=float,
dest='learning_rate', help='Learning rate',
default=0.001)
parser.add_argument('--training_iters', type=int,
dest='training_iters', help='Number of training iterations',
default=200000)
parser.add_argument('--batch_size', type=int,
dest='batch_size', help='Batch size',
default=128)
parser.add_argument('--display_step', type=int,
dest='display_step', help='Print metrics every display_step',
default=10)
parser.add_argument('--dropout', type=float,
dest='dropout', help='Dropout',
default=0.75)
parser.add_argument('--mnist_data', type=str,
dest='mnist_data', help='Path of MNIST train and test dataset',
default='/floyd/input/mnist')
return parser
def check_opts(opts):
assert os.path.exists(opts.mnist_data), "MNIST data not found at {}".format(opts.mnist_data)
assert opts.learning_rate >= 0, "Please provide a positive learning_rate"
assert opts.training_iters > 0
assert opts.batch_size > 0
assert opts.display_step > 0
assert (opts.dropout >= 0 and opts.dropout <= 1.0), "dropout should be between 0.0 and 1.0"
# Parse command line arguments
parser = build_parser()
options = parser.parse_args()
check_opts(options)
# Check if GPU is available
if tf.test.is_gpu_available():
print("GPU available.")
else:
print("No GPU found... Defaulting to CPU.")
# Read MNIST data from local dataset
mnist = input_data.read_data_sets(options.mnist_data, one_hot=True)
# Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
logs_path = '/output/tensorflow_logs/'
# tf Graph input
x = tf.placeholder(tf.float32, [None, n_input], name="x")
y = tf.placeholder(tf.float32, [None, n_classes], name="y")
keep_prob = tf.placeholder(tf.float32, name="keep_prob") #dropout (keep probability)
# Create some wrappers for simplicity
def conv2d(x, W, b, strides=1):
# Conv2D wrapper, with bias and relu activation
x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')
x = tf.nn.bias_add(x, b)
return tf.nn.relu(x)
def maxpool2d(x, k=2):
# MaxPool2D wrapper
return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
padding='SAME')
# Create model
def conv_net(x, weights, biases, dropout):
# Reshape input picture
x = tf.reshape(x, shape=[-1, 28, 28, 1])
# Convolution Layer
conv1 = conv2d(x, weights['wc1'], biases['bc1'])
# Max Pooling (down-sampling)
conv1 = maxpool2d(conv1, k=2)
# Convolution Layer
conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
# Max Pooling (down-sampling)
conv2 = maxpool2d(conv2, k=2)
# Fully connected layer
# Reshape conv2 output to fit fully connected layer input
fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])
fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
fc1 = tf.nn.relu(fc1)
# Apply Dropout
fc1 = tf.nn.dropout(fc1, dropout)
# Output, class prediction
out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
return out
# Store layers weight & bias
weights = {
# 5x5 conv, 1 input, 32 outputs
'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
# 5x5 conv, 32 inputs, 64 outputs
'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
# fully connected, 7*7*64 inputs, 1024 outputs
'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
# 1024 inputs, 10 outputs (class prediction)
'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
'bc1': tf.Variable(tf.random_normal([32])),
'bc2': tf.Variable(tf.random_normal([64])),
'bd1': tf.Variable(tf.random_normal([1024])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = conv_net(x, weights, biases, keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
optimizer = tf.train.AdamOptimizer(learning_rate=options.learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32), name="accuracy")
# Create a summary to monitor cost tensor
tf.summary.scalar("loss", cost)
# Create a summary to monitor accuracy tensor
tf.summary.scalar("accuracy", accuracy)
# Merge all summaries into a single op
merged_summary_op = tf.summary.merge_all()
# Delete ./model dir if exists to avoid SavedModelBuilder error
if os.path.exists('./model'):
shutil.rmtree('./model', ignore_errors=True)
# Initializing the variables
init = tf.global_variables_initializer()
builder = tf.saved_model.builder.SavedModelBuilder("./model")
# Launch the graph
with tf.Session() as sess:
sess.run(init)
# op to write logs to Tensorboard
summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())
step = 1
# Keep training until reach max iterations
while step * options.batch_size < options.training_iters:
batch_x, batch_y = mnist.train.next_batch(options.batch_size)
# Run optimization op (backprop), cost op (to get loss value) and summary nodes
_, c, summary = sess.run([optimizer, cost, merged_summary_op],
feed_dict={x: batch_x, y: batch_y, keep_prob: options.dropout})
# Write logs at every iteration
summary_writer.add_summary(summary, step * options.batch_size)
if step % options.display_step == 0:
# Calculate batch loss and accuracy
loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
y: batch_y,
keep_prob: 1.})
# print("Iter " + str(step*options.batch_size) + ", Minibatch Loss= " + \
# "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc))
print('{{"metric": "Minibatch loss", "value": {:.6f}}}'.format(loss))
print('{{"metric": "Training accuracy", "value": {:.5f}}}'.format(acc))
step += 1
print("Optimization Finished!")
builder.add_meta_graph_and_variables(sess, ["EVALUATING"])
builder.save()
with tf.Session() as sess:
sess.run(init)
# Calculate accuracy for 256 mnist test images
print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.}))