-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgenerate-dataset.py
125 lines (109 loc) · 4.11 KB
/
generate-dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from tempfile import TemporaryFile
from PIL import Image
import numpy as np
import glob
import os.path
import random as rd
import cv2
import matplotlib.pyplot as plt
# Load a random image from the dataset
def load_random_image(path_source, size):
img = rd.choice(glob.glob(os.path.join(path_source, '*.jpg')))
img_grey = Image.open(img).convert('L').resize(size)
img_data = np.asarray(img_grey)
return img_data
def save_to_file(images, offsets, path_dest):
if not os.path.exists(path_dest):
os.makedirs(path_dest)
outfile = TemporaryFile(dir=path_dest, delete=False, suffix='.npz')
np.savez(outfile, images=images, offsets=offsets)
outfile.close()
# Function to generate dataset
def generate_dataset(path_source, path_dest, rho, height, width, data, box):
images = np.empty([box, box, 2], dtype=np.uint8)
offsets = np.empty([8], dtype=np.int8)
k = 0
for i in range(0, data):
img = load_random_image(path_source, [width, height]).astype(np.uint16)
src = np.empty([4, 2], dtype=np.uint8)
dst = np.zeros([4, 2])
# Get upper left corner from the range rho<=x<=(width/2-1) and rho<=y<=(height/2 - 1) to avoid image excess
src[0][0] = rd.randint(rho, int(width/2) - 1)
src[0][1] = rd.randint(rho, int(height/3) - 1)
# Upper right
src[1][0] = src[0][0] + box
src[1][1] = src[0][1]
# Lower left
src[2][0] = src[0][0]
src[2][1] = src[0][1] + box
# Lower right
src[3][0] = src[1][0]
src[3][1] = src[2][1]
# Generate offsets:
offset = np.empty(8, dtype=np.int8)
for j in range(8):
offset[j] = rd.randint(-rho, rho)
# Destination points:
dst[0][0] = src[0][0] + offset[0]
dst[0][1] = src[0][1] + offset[1]
# Upper right
dst[1][0] = src[1][0] + offset[2]
dst[1][1] = src[1][1] + offset[3]
# Lower left
dst[2][0] = src[2][0] + offset[4]
dst[2][1] = src[2][1] + offset[5]
# Lower right
dst[3][0] = src[3][0] + offset[6]
dst[3][1] = src[3][1] + offset[7]
h, status = cv2.findHomography(src, dst)
img_warped = np.asarray(cv2.warpPerspective(img, h, (width, height))).astype(np.uint8)
x = int(src[0][0])
y = int(src[0][1])
images[:, :, 0] = img[y:y+box, x:x+box]
images[:, :, 1] = img_warped[y:y+box, x:x+box]
save_to_file(images, offset, path_dest)
# Group dataset
def group_dataset (path, new_path, box=128, size=64):
group_images = np.empty([size, box, box, 2]).astype(np.uint8)
group_offsets = np.empty([size, 8]).astype(np.int8)
i = 0
for npz in glob.glob(os.path.join(path, '*.npz')):
archive = np.load(npz)
group_images[i, :, :, :] = archive['images']
group_offsets[i, :] = archive['offsets']
i = i + 1
if i % size == 0:
i = 0
save_to_file(group_images, group_offsets, new_path)
# Generate dataset for training
train_data_path = 'train2014/' # path to training dataset
train_size = 500000
train_box_size = 128
train_height = 240
train_width = 320
train_rho = 32
# generate_dataset(train_data_path, 'train-data', train_rho, train_height, train_width, train_size, train_box_size)
# Generate dataset for validation
val_data_path = 'val2014/' # path to validation dataset
val_size = 50000
# generate_dataset(val_data_path, 'val-data', train_rho, train_height, train_width, val_size, train_box_size)
# Generate dataset for testing
test_data_path = 'test2014/' # path to testing dataset
test_size = 5000
test_box_size = 256
test_height = 480
test_width = 640
test_rho = 64
# generate_dataset(test_data_path, 'test-data', test_rho, test_height, test_width, test_size, test_box_size)
# Show sample image
# archive = np.load('train-data/tmp__0n7fza.npz')
# im = archive['images']
# im1 = im[:, :, 0]
# im2 = im[:, :, 1]
# plt.imshow(im1, cmap='gray')
# plt.figure()
# plt.imshow(im2, cmap='gray')
# plt.show()
# Group datasets into batch_sizes (default is 64)
# group_dataset('train-data', 'train-data-combined')
# group_dataset('val-data', 'val-data-combined')