-
Notifications
You must be signed in to change notification settings - Fork 90
/
IOU.py
84 lines (67 loc) · 2.3 KB
/
IOU.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
_IOU_threshold = 0.6
def IOU(Reframe,GTframe):
"""
自定义函数,计算两矩形 IOU,传入为均为矩形对角线,(x,y) 坐标。
"""
x1 = Reframe[0]
y1 = Reframe[1]
width1 = Reframe[2]-Reframe[0]
height1 = Reframe[3]-Reframe[1]
x2 = GTframe[0]
y2 = GTframe[1]
width2 = GTframe[2]-GTframe[0]
height2 = GTframe[3]-GTframe[1]
endx = max(x1+width1,x2+width2)
startx = min(x1,x2)
width = width1+width2-(endx-startx)
endy = max(y1+height1,y2+height2)
starty = min(y1,y2)
height = height1+height2-(endy-starty)
if width <=0 or height <= 0:
ratio = 0 # 重叠率为 0
else:
Area = width*height # 两矩形相交面积
Area1 = width1*height1
Area2 = width2*height2
ratio = Area*1./(Area1+Area2-Area)
# return IOU
return ratio
def computeLoss(pre_box_list, label_box_list, R_weight = 1):
pre_box_list = np.array(pre_box_list)
label_box_list = np.array(label_box_list)
total_pre = len(pre_box_list)
total_label = len(label_box_list)
# compute precise
p_count = 0.0
for box_pre in pre_box_list:
for box_label in label_box_list:
print(IOU(box_pre,box_label))
if IOU(box_pre,box_label) > _IOU_threshold:
p_count += 1
break
P = p_count / total_pre
# compute recall
r_count = 0.0
for box_label in label_box_list:
for box_pre in pre_box_list:
if IOU(box_pre,box_label) > _IOU_threshold:
r_count += 1
break
R = r_count / total_label
# compute F1-score
F = 2*P*R*R_weight/(P+R*R_weight)
return P,R,F
if __name__ == '__main__':
# 1.test iou
# tests_iou = [
# [ [[10,40,30,80],[10,40,30,80]], 1],
# [ [[10,40,30,80],[30,80,60,120]], 0]
# ]
# for t in tests_iou:
# v,_,_ = IOU(t[0][0],t[0][1])
# print(v, t[1])
# 2.test compute
pre_box_list = [ [10,40,30,80], [30,80,60,120], [40,100,80,140], [42,100,80,140], [44,100,80,140] ]
label_box_list = [ [10,40,30,80], [30,80,60,120] ]
print(computeLoss(pre_box_list, label_box_list))