-
Notifications
You must be signed in to change notification settings - Fork 23
/
main.py
42 lines (33 loc) · 1.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os, sys
import numpy as np
import yaml
import torch.backends.cudnn as cudnn
import torch
import shutil
def main(cfg):
# creat folders
os.makedirs(os.path.join(cfg.output_dir, cfg.train.log_dir), exist_ok=True)
if cfg.test_mode is False:
os.makedirs(os.path.join(cfg.output_dir, cfg.train.vis_dir), exist_ok=True)
os.makedirs(os.path.join(cfg.output_dir, cfg.train.val_vis_dir), exist_ok=True)
with open(os.path.join(cfg.output_dir, 'full_config.yaml'), 'w') as f:
yaml.dump(cfg, f, default_flow_style=False)
# cudnn related setting
cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.enabled = True
# start training
from src.trainer_spectre import Trainer
from src.spectre import SPECTRE
spectre = SPECTRE(cfg)
trainer = Trainer(model=spectre, config=cfg)
if cfg.test_mode:
trainer.prepare_data()
trainer.evaluate(trainer.test_datasets)
else:
trainer.fit()
if __name__ == '__main__':
from config import parse_args
cfg = parse_args()
cfg.exp_name = cfg.output_dir
main(cfg)