forked from jielulovesdessert/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
self-crossing.py
70 lines (67 loc) · 1.9 KB
/
self-crossing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Time: O(n)
# Space: O(1)
# You are given an array x of n positive numbers.
# You start at point (0,0) and moves x[0] metres to the north,
# then x[1] metres to the west, x[2] metres to the south,
# x[3] metres to the east and so on. In other words,
# after each move your direction changes counter-clockwise.
#
# Write a one-pass algorithm with O(1) extra space to determine,
# if your path crosses itself, or not.
#
# Example 1:
# Given x = [2, 1, 1, 2],
# ┌───┐
# │ │
# └───┼──>
# │
#
# Return true (self crossing)
# Example 2:
# Given x = [1, 2, 3, 4],
# ┌──────┐
# │ │
# │
# │
# └────────────>
#
# Return false (not self crossing)
# Example 3:
# Given x = [1, 1, 1, 1],
# ┌───┐
# │ │
# └───┼>
#
# Return true (self crossing)
class Solution(object):
def isSelfCrossing(self, x):
"""
:type x: List[int]
:rtype: bool
"""
if len(x) >= 5 and x[3] == x[1] and x[4] + x[0] >= x[2]:
# Crossing in a loop:
# 2
# 3 ┌────┐
# └─══>┘1
# 4 0 (overlapped)
return True
for i in xrange(3, len(x)):
if x[i] >= x[i - 2] and x[i - 3] >= x[i - 1]:
# Case 1:
# i-2
# i-1┌─┐
# └─┼─>i
# i-3
return True
elif i >= 5 and x[i - 4] <= x[i - 2] and x[i] + x[i - 4] >= x[i - 2] and \
x[i - 1] <= x[i - 3] and x[i - 5] + x[i - 1] >= x[i - 3]:
# Case 2:
# i-4
# ┌──┐
# │i<┼─┐
# i-3│ i-5│i-1
# └────┘
# i-2
return True
return False