forked from jielulovesdessert/LeetCode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
redundant-connection.py
62 lines (55 loc) · 1.77 KB
/
redundant-connection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Time: O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n)
# We are given a "tree" in the form of a 2D-array, with distinct values for each node.
#
# In the given 2D-array, each element pair [u, v] represents that v is a child of u in the tree.
#
# We can remove exactly one redundant pair in this "tree" to make the result a (rooted) tree.
#
# You need to find and output such a pair. If there are multiple answers for this question,
# output the one appearing last in the 2D-array. There is always at least one answer.
#
# Example 1:
# Input: [[1,2], [1,3], [2,3]]
# Output: [2,3]
# Explanation: Original tree will be like this:
# 1
# / \
# 2 - 3
#
# Example 2:
# Input: [[1,2], [1,3], [3,1]]
# Output: [3,1]
# Explanation: Original tree will be like this:
# 1
# / \\
# 2 3
# Note:
# The size of the input 2D-array will be between 3 and 1000.
# Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n
def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x]
def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root:
return False
self.set[min(x_root, y_root)] = max(x_root, y_root)
self.count -= 1
return True
class Solution(object):
def findRedundantConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
union_find = UnionFind(len(edges)+1)
for edge in edges:
if not union_find.union_set(*edge):
return edge
return []