forked from m2lines/L96_demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
references.bib
263 lines (243 loc) · 9.21 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
% L96 Jupyter Book
@article{Lorenz1995,
title = {Predictability: a problem partly solved},
journal = {Seminar on Predictability},
volume = {1},
year = {1995},
pages = {1-18},
publisher = {ECMWF},
organization = {ECMWF},
address = {Shinfield Park, Reading},
url = {https://www.ecmwf.int/node/10829},
author = {Lorenz, E.N.}
}
@article{Wilks2005,
doi = {10.1256/qj.04.03},
url = {https://doi.org/10.1256/qj.04.03},
year = {2005},
publisher = {Wiley},
volume = {131},
number = {606},
pages = {389--407},
author = {Daniel S. Wilks},
title = {Effects of stochastic parametrizations in the Lorenz {\textquotesingle}96 system},
journal = {Quarterly Journal of the Royal Meteorological Society}
}
@article{Arnold2013,
doi = {10.1098/rsta.2011.0479},
url = {https://doi.org/10.1098/rsta.2011.0479},
year = {2013},
publisher = {The Royal Society},
volume = {371},
number = {1991},
pages = {20110479},
author = {H. M. Arnold and I. M. Moroz and T. N. Palmer},
title = {Stochastic parametrizations and model uncertainty in the Lorenz '96 system},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Brajard2021,
doi = {10.1098/rsta.2020.0086},
url = {https://doi.org/10.1098/rsta.2020.0086},
year = {2021},
month = feb,
publisher = {The Royal Society},
volume = {379},
number = {2194},
pages = {20200086},
author = {Julien Brajard and Alberto Carrassi and Marc Bocquet and Laurent Bertino},
title = {Combining data assimilation and machine learning to infer unresolved scale parametrization},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Schneider2017,
doi = {10.1002/2017gl076101},
url = {https://doi.org/10.1002/2017gl076101},
year = {2017},
month = dec,
publisher = {American Geophysical Union ({AGU})},
volume = {44},
number = {24},
author = {Tapio Schneider and Shiwei Lan and Andrew Stuart and Jo{\~{a}}o Teixeira},
title = {Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations},
journal = {Geophysical Research Letters}
}
@article{Russell2017,
doi = {10.1016/j.cpc.2017.08.011},
url = {https://doi.org/10.1016/j.cpc.2017.08.011},
year = {2017},
month = dec,
publisher = {Elsevier {BV}},
volume = {221},
pages = {160--173},
author = {Francis P. Russell and Peter D. D\"{u}ben and Xinyu Niu and Wayne Luk and T.N. Palmer},
title = {Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures},
journal = {Computer Physics Communications}
}
@article{Crommelin2008,
doi = {10.1175/2008jas2566.1},
url = {https://doi.org/10.1175/2008jas2566.1},
year = {2008},
month = aug,
publisher = {American Meteorological Society},
volume = {65},
number = {8},
pages = {2661--2675},
author = {Daan Crommelin and Eric Vanden-Eijnden},
title = {Subgrid-Scale Parameterization with Conditional Markov Chains},
journal = {Journal of the Atmospheric Sciences}
}
@article{Dorrestijn2013,
doi = {10.1098/rsta.2012.0374},
url = {https://doi.org/10.1098/rsta.2012.0374},
year = {2013},
month = may,
publisher = {The Royal Society},
volume = {371},
number = {1991},
pages = {20120374},
author = {J. Dorrestijn and D. T. Crommelin and J. A. Biello and S. J. B\"{o}ing},
title = {A data-driven multi-cloud model for stochastic parametrization of deep convection},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Law2016,
doi = {10.1016/j.physd.2015.12.008},
url = {https://doi.org/10.1016/j.physd.2015.12.008},
year = {2016},
month = jun,
publisher = {Elsevier {BV}},
volume = {325},
pages = {1--13},
author = {K.J.H. Law and D. Sanz-Alonso and A. Shukla and A.M. Stuart},
title = {Filter accuracy for the Lorenz 96 model: Fixed versus adaptive observation operators},
journal = {Physica D: Nonlinear Phenomena}
}
@article{Hatfield2017,
doi = {10.1175/mwr-d-17-0132.1},
url = {https://doi.org/10.1175/mwr-d-17-0132.1},
year = {2017},
month = dec,
publisher = {American Meteorological Society},
volume = {146},
number = {1},
pages = {49--62},
author = {Sam Hatfield and Aneesh Subramanian and Tim Palmer and Peter D\"{u}ben},
title = {Improving Weather Forecast Skill through Reduced-Precision Data Assimilation},
journal = {Monthly Weather Review}
}
@article{Kwasniok2012,
doi = {10.1098/rsta.2011.0384},
url = {https://doi.org/10.1098/rsta.2011.0384},
year = {2012},
month = mar,
publisher = {The Royal Society},
volume = {370},
number = {1962},
pages = {1061--1086},
author = {Frank Kwasniok},
title = {Data-based stochastic subgrid-scale parametrization: an approach using cluster-weighted modelling},
journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences}
}
@article{Chorin2015,
doi = {10.1073/pnas.1512080112},
url = {https://doi.org/10.1073/pnas.1512080112},
year = {2015},
month = jul,
publisher = {Proceedings of the National Academy of Sciences},
volume = {112},
number = {32},
pages = {9804--9809},
author = {Alexandre J. Chorin and Fei Lu},
title = {Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics},
journal = {Proceedings of the National Academy of Sciences}
}
@article{Dueben2018,
doi = {10.5194/gmd-11-3999-2018},
url = {https://doi.org/10.5194/gmd-11-3999-2018},
year = {2018},
month = oct,
publisher = {Copernicus {GmbH}},
volume = {11},
number = {10},
pages = {3999--4009},
author = {Peter D. Dueben and Peter Bauer},
title = {Challenges and design choices for global weather and climate models based on machine learning},
journal = {Geoscientific Model Development}
}
@article{Gagne2020,
doi = {10.1029/2019ms001896},
url = {https://doi.org/10.1029/2019ms001896},
year = {2020},
month = mar,
publisher = {American Geophysical Union ({AGU})},
volume = {12},
number = {3},
author = {David John Gagne and Hannah M. Christensen and Aneesh C. Subramanian and Adam H. Monahan},
title = {Machine Learning for Stochastic Parameterization: Generative Adversarial Networks in the Lorenz {\textquotesingle}96 Model},
journal = {Journal of Advances in Modeling Earth Systems}
}
@misc{Simonyan2013,
doi = {10.48550/ARXIV.1312.6034},
url = {https://arxiv.org/abs/1312.6034},
author = {Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps},
publisher = {arXiv},
year = {2013},
copyright = {arXiv.org perpetual, non-exclusive license}
}
@article{Baehrens2010,
author = {David Baehrens and Timon Schroeter and Stefan Harmeling and Motoaki Kawanabe and Katja Hansen and Klaus-Robert M{{\"u}}ller},
title = {How to Explain Individual Classification Decisions},
journal = {Journal of Machine Learning Research},
year = {2010},
volume = {11},
number = {61},
pages = {1803--1831},
url = {http://jmlr.org/papers/v11/baehrens10a.html}
}
@inproceedings{Adebayo2018,
author = {Adebayo, Julius and Gilmer, Justin and Muelly, Michael and Goodfellow, Ian and Hardt, Moritz and Kim, Been},
booktitle = {Advances in Neural Information Processing Systems},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {},
publisher = {Curran Associates, Inc.},
title = {Sanity Checks for Saliency Maps},
url = {https://proceedings.neurips.cc/paper_files/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf},
volume = {31},
year = {2018}
}
@inproceedings{Ancona2018,
title={Towards better understanding of gradient-based attribution methods for Deep Neural Networks},
author={Marco Ancona and Enea Ceolini and Cengiz Öztireli and Markus Gross},
booktitle={International Conference on Learning Representations},
year={2018},
url={https://openreview.net/forum?id=Sy21R9JAW},
}
@article{Bach2015,
doi = {10.1371/journal.pone.0130140},
author = {Bach, Sebastian AND Binder, Alexander AND Montavon, Grégoire AND Klauschen, Frederick AND Müller, Klaus-Robert AND Samek, Wojciech},
journal = {PLOS ONE},
publisher = {Public Library of Science},
title = {On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation},
year = {2015},
month = {07},
volume = {10},
url = {https://doi.org/10.1371/journal.pone.0130140},
pages = {1-46},
number = {7},
}
@book{Rasmussen_Williams_2005,
title={Gaussian Processes for Machine Learning},
url={http://dx.doi.org/10.7551/mitpress/3206.001.0001},
doi={10.7551/mitpress/3206.001.0001},
publisher={The MIT Press},
author={Rasmussen, Carl Edward and Williams, Christopher K. I.},
year={2005}
}
@book{Bishop2006,
author = {Bishop, Christopher M.},
title = {Pattern Recognition and Machine Learning (Information Science and Statistics)},
year = {2006},
isbn = {0387310738},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg}
}