-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
223 lines (178 loc) · 8.87 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import utils
import argparser
import os
import time
import numpy as np
import random
import torch
from torch.utils import data
from torch import distributed
from torch.utils.data.distributed import DistributedSampler
from dataset import get_dataset
from metrics import StreamSegMetrics
from train import Trainer
from utils.logger import Logger
def save_ckpt(path, model, epoch):
state = {
"epoch": epoch,
"model_state": model.state_dict()
}
torch.save(state, path)
def log_val(logger, val_metrics, val_score, val_loss, cur_epoch):
logger.info(val_metrics.to_str(val_score))
# visualize validation score and samples
logger.add_scalar("V-Loss", val_loss, cur_epoch)
logger.add_scalar("Val_Overall_Acc", val_score['Overall Acc'], cur_epoch)
logger.add_scalar("Val_MeanIoU", val_score['Mean IoU'], cur_epoch)
logger.add_table("Val_Class_IoU", val_score['Class IoU'], cur_epoch)
logger.add_table("Val_Acc_IoU", val_score['Class Acc'], cur_epoch)
# logger.add_figure("Val_Confusion_Matrix", val_score['Confusion Matrix'], cur_epoch)
def log_samples(logger, ret_samples, denorm, label2color, cur_epoch):
for k, (img, target, pred) in enumerate(ret_samples):
img = (denorm(img) * 255).astype(np.uint8)
target = label2color(target).transpose(2, 0, 1).astype(np.uint8)
pred = label2color(pred).transpose(2, 0, 1).astype(np.uint8)
concat_img = np.concatenate((img, target, pred), axis=2) # concat along width
logger.add_image(f'Sample_{k}', concat_img, cur_epoch)
def main(opts):
# ===== Setup distributed =====
distributed.init_process_group(backend='nccl', init_method='env://')
if opts.device is not None:
device_id = opts.device
else:
device_id = opts.local_rank
device = torch.device(device_id)
rank, world_size = distributed.get_rank(), distributed.get_world_size()
if opts.device is not None:
torch.cuda.set_device(opts.device)
else:
torch.cuda.set_device(device_id)
# ===== Initialize logging =====
logdir_full = f"{opts.logdir}/{opts.dataset}/{opts.name}/"
if rank == 0:
logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=opts.visualize)
else:
logger = Logger(logdir_full, rank=rank, debug=opts.debug, summary=False)
logger.print(f"Device: {device}")
checkpoint_path = f"checkpoints/{opts.dataset}/{opts.name}.pth"
os.makedirs(f"checkpoints/{opts.dataset}", exist_ok=True)
# ===== Setup random seed to reproducibility =====
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed(opts.random_seed)
np.random.seed(opts.random_seed)
random.seed(opts.random_seed)
# ===== Set up dataset =====
train_dst, val_dst = get_dataset(opts, train=True)
train_loader = data.DataLoader(train_dst, batch_size=opts.batch_size,
sampler=DistributedSampler(train_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers, drop_last=True, pin_memory=True)
val_loader = data.DataLoader(val_dst, batch_size=opts.batch_size,
sampler=DistributedSampler(val_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers)
logger.info(f"Dataset: {opts.dataset}, Train set: {len(train_dst)}, "
f"Val set: {len(val_dst)}, n_classes {opts.num_classes}")
logger.info(f"Total batch size is {opts.batch_size * world_size}")
# This is necessary for computing the scheduler decay
opts.max_iter = opts.max_iter = opts.epochs * len(train_loader)
# ===== Set up model and ckpt =====
model = Trainer(device, logger, opts)
model.distribute()
cur_epoch = 0
if opts.continue_ckpt:
opts.ckpt = checkpoint_path
if opts.ckpt is not None:
assert os.path.isfile(opts.ckpt), "Error, ckpt not found. Check the correct directory"
checkpoint = torch.load(opts.ckpt, map_location="cpu")
cur_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model_state"])
logger.info("[!] Model restored from %s" % opts.ckpt)
del checkpoint
else:
logger.info("[!] Train from scratch")
# ===== Train procedure =====
# print opts before starting training to log all parameters
logger.add_table("Opts", vars(opts))
# uncomment if you want qualitative on val
# if rank == 0 and opts.sample_num > 0:
# sample_ids = np.random.choice(len(val_loader), opts.sample_num, replace=False) # sample idxs for visualization
# logger.info(f"The samples id are {sample_ids}")
# else:
# sample_ids = None
label2color = utils.Label2Color(cmap=utils.color_map(opts.dataset)) # convert labels to images
denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # de-normalization for original images
train_metrics = StreamSegMetrics(opts.num_classes)
val_metrics = StreamSegMetrics(opts.num_classes)
results = {}
# check if random is equal here.
logger.print(torch.randint(0, 100, (1, 1)))
while cur_epoch < opts.epochs and not opts.test:
# ===== Train =====
start = time.time()
epoch_loss = model.train(cur_epoch=cur_epoch, train_loader=train_loader,
metrics=train_metrics, print_int=opts.print_interval)
train_score = train_metrics.get_results()
end = time.time()
len_ep = int(end - start)
logger.info(f"End of Epoch {cur_epoch}/{opts.epochs}, Average Loss={epoch_loss[0] + epoch_loss[1]:.4f}, "
f"Class Loss={epoch_loss[0]:.4f}, Reg Loss={epoch_loss[1]}\n"
f"Train_Acc={train_score['Overall Acc']:.4f}, Train_Iou={train_score['Mean IoU']:.4f} "
f"\n -- time: {len_ep // 60}:{len_ep % 60} -- ")
logger.info(f"I will finish in {len_ep * (opts.epochs - cur_epoch) // 60} minutes")
logger.add_scalar("E-Loss", epoch_loss[0] + epoch_loss[1], cur_epoch)
# logger.add_scalar("E-Loss-reg", epoch_loss[1], cur_epoch)
# logger.add_scalar("E-Loss-cls", epoch_loss[0], cur_epoch)
# ===== Validation =====
if (cur_epoch + 1) % opts.val_interval == 0:
logger.info("validate on val set...")
val_loss, _ = model.validate(loader=val_loader, metrics=val_metrics, ret_samples_ids=None)
val_score = val_metrics.get_results()
logger.print("Done validation")
logger.info(f"End of Validation {cur_epoch}/{opts.epochs}, Validation Loss={val_loss}")
log_val(logger, val_metrics, val_score, val_loss, cur_epoch)
# keep the metric to print them at the end of training
results["V-IoU"] = val_score['Class IoU']
results["V-Acc"] = val_score['Class Acc']
# ===== Save Model =====
if rank == 0:
if not opts.debug:
save_ckpt(checkpoint_path, model, cur_epoch)
logger.info("[!] Checkpoint saved.")
cur_epoch += 1
torch.distributed.barrier()
# ==== TESTING =====
logger.info("*** Test the model on all seen classes...")
# make data loader
test_dst = get_dataset(opts, train=False)
test_loader = data.DataLoader(test_dst, batch_size=opts.batch_size_test,
sampler=DistributedSampler(test_dst, num_replicas=world_size, rank=rank),
num_workers=opts.num_workers)
if rank == 0 and opts.sample_num > 0:
sample_ids = np.random.choice(len(test_loader), opts.sample_num, replace=False) # sample idxs for visual.
logger.info(f"The samples id are {sample_ids}")
else:
sample_ids = None
val_loss, ret_samples = model.validate(loader=test_loader, metrics=val_metrics, ret_samples_ids=sample_ids)
val_score = val_metrics.get_results()
conf_matrixes = val_metrics.get_conf_matrixes()
logger.print("Done test on all")
logger.info(f"*** End of Test on all, Total Loss={val_loss}")
logger.info(val_metrics.to_str(val_score))
log_samples(logger, ret_samples, denorm, label2color, 0)
logger.add_figure("Test_Confusion_Matrix_Recall", conf_matrixes['Confusion Matrix'])
logger.add_figure("Test_Confusion_Matrix_Precision", conf_matrixes["Confusion Matrix Pred"])
results["T-IoU"] = val_score['Class IoU']
results["T-Acc"] = val_score['Class Acc']
results["T-Prec"] = val_score['Class Prec']
logger.add_results(results)
logger.add_scalar("T_Overall_Acc", val_score['Overall Acc'])
logger.add_scalar("T_MeanIoU", val_score['Mean IoU'])
logger.add_scalar("T_MeanAcc", val_score['Mean Acc'])
ret = val_score['Mean IoU']
logger.close()
return ret
if __name__ == '__main__':
parser = argparser.get_argparser()
opts = parser.parse_args()
opts = argparser.modify_command_options(opts)
main(opts)