diff --git a/test/pytest/test_qkeras.py b/test/pytest/test_qkeras.py index f068e4e503..45d015807b 100644 --- a/test/pytest/test_qkeras.py +++ b/test/pytest/test_qkeras.py @@ -399,6 +399,38 @@ def test_qactivation_kwarg(randX_100_10, activation_quantizer, weight_quantizer) assert sum(wrong) / len(wrong) <= 0.005 +@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus']) +@pytest.mark.parametrize('io_type', ['io_parallel', 'io_stream']) +def test_quantizer_parsing(randX_100_10, backend, io_type): + X = randX_100_10 + X = np.round(X * 2**10) * 2**-10 # make it an exact ap_fixed<16,6> + model = Sequential() + model.add( + QDense( + 8, + input_shape=(10,), + kernel_quantizer=None, # Incorrect usage, but shouldn't break hls4ml + kernel_initializer='ones', + bias_quantizer=None, + bias_initializer='zeros', + activation='quantized_relu(8, 0)', + ) + ) + model.compile() + + config = hls4ml.utils.config_from_keras_model(model, granularity='name', default_precision='fixed<24,8>') + output_dir = str(test_root_path / f'hls4mlprj_qkeras_quant_parse_{backend}_{io_type}') + hls_model = hls4ml.converters.convert_from_keras_model( + model, hls_config=config, output_dir=output_dir, backend=backend, io_type=io_type + ) + hls_model.compile() + + y_qkeras = model.predict(X) + y_hls4ml = hls_model.predict(X) + + np.testing.assert_array_equal(y_qkeras, y_hls4ml.reshape(y_qkeras.shape)) + + @pytest.fixture(scope='module') def randX_100_8_8_1(): return np.random.rand(100, 8, 8, 1)