forked from marian-margeta/gait-recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
part_detector.py
208 lines (156 loc) · 8.5 KB
/
part_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import tensorflow as tf
import tensorflow.contrib.layers as layers
import torchfile as th
def init_model_variables(file_path, trainable = True):
"""
Initialize all model variables of a given torch model. The torch model pre-trained on MPII or MPII+LSP can be
downloaded from author's pages: https://www.adrianbulat.com/human-pose-estimation
:param file_path: path to serialized torch model (.th)
:param trainable: if the loaded variables should be trainable
"""
def load_conv2(obj, scope = 'Conv'):
with tf.variable_scope(scope, reuse = False):
w = obj[b'weight'].swapaxes(0, 3).swapaxes(1, 2).swapaxes(0, 1)
b = obj[b'bias']
tf.get_variable('weights', w.shape, initializer = tf.constant_initializer(w), trainable = trainable)
tf.get_variable('biases', b.shape, initializer = tf.constant_initializer(b), trainable = trainable)
def load_batch_norm(obj, scope = 'BatchNorm'):
with tf.variable_scope(scope, reuse = False):
gamma = obj[b'weight']
beta = obj[b'bias']
mean = obj[b'running_mean']
var = obj[b'running_var']
tf.get_variable('gamma', gamma.shape, dtype = tf.float32, initializer = tf.constant_initializer(gamma),
trainable = trainable)
tf.get_variable('beta', beta.shape, dtype = tf.float32, initializer = tf.constant_initializer(beta),
trainable = trainable)
tf.get_variable('moving_variance', var.shape, dtype = tf.float32,
initializer = tf.constant_initializer(var), trainable = False)
tf.get_variable('moving_mean', mean.shape, dtype = tf.float32, initializer = tf.constant_initializer(mean),
trainable = False)
def load_bottlenecks(bottlenecks):
for idx, bottleneck in enumerate(bottlenecks):
with tf.variable_scope('Bottleneck_%d' % idx, reuse = False):
connections = bottleneck[b'modules'][0][b'modules']
res_conn = connections[0][b'modules']
skip_conn = connections[1][b'modules']
# Load skip connection
if idx == 0:
# Skip connection involves conv + batch norm
load_conv2(skip_conn[0], scope = 'Conv_skip')
load_batch_norm(skip_conn[1], scope = 'BatchNorm_skip')
# Load residual connection
for l in range(3):
load_conv2(res_conn[l * 3], scope = 'Conv_%d' % (l + 1))
load_batch_norm(res_conn[l * 3 + 1], scope = 'BatchNorm_%d' % (l + 1))
file = th.load(file_path)
with tf.variable_scope('HumanPoseResnet', reuse = False):
resnet = file[b'modules'][0][b'modules'][1][b'modules']
with tf.variable_scope('Block_0', reuse = False):
load_conv2(resnet[0])
load_batch_norm(resnet[1])
for i in range(4):
with tf.variable_scope('Block_%d' % (i + 1), reuse = False):
load_bottlenecks(resnet[i + 4][b'modules'])
with tf.variable_scope('Block_5', reuse = False):
load_conv2(resnet[8])
# Transpose convolution
load_conv2(resnet[9], scope = 'Conv2d_transpose')
def human_pose_resnet(net, reuse = False, training = False):
"""
Architecture of Part Detector network, as was described in https://arxiv.org/abs/1609.01743
:param net: input tensor
:param reuse: whether reuse variables or not. Use False if the variables are initialized with init_model_variables
:param training: if the variables should be trainable. It has no effect if the 'reuse' param is set to True
:return: output tensor and dictionary of named endpoints
"""
def batch_normalization(input_net, act_f = None, scope = None):
return layers.batch_norm(input_net, center = True, scale = True, epsilon = 1e-5,
activation_fn = act_f, is_training = training,
scope = scope)
def conv_2d(input_net, num_outputs, kernel_size, stride = 1, padding_mod = 'SAME', scope = None):
return layers.convolution2d(input_net, num_outputs = num_outputs, kernel_size = kernel_size,
stride = stride, padding = padding_mod,
activation_fn = None, scope = scope)
def padding(input_net, w, h):
return tf.pad(input_net, [[0, 0], [h, h], [w, w], [0, 0]], "CONSTANT")
def bottleneck(input_net, depth, depth_bottleneck, stride, i):
with tf.variable_scope('Bottleneck_%d' % i, reuse = reuse):
res_conv = stride > 1 or stride < 0
stride = abs(stride)
# Res connection
out_net = conv_2d(input_net, num_outputs = depth_bottleneck, kernel_size = 1,
stride = 1, padding_mod = 'VALID', scope = 'Conv_1')
out_net = batch_normalization(out_net, tf.nn.relu, 'BatchNorm_1')
out_net = padding(out_net, 1, 1)
out_net = conv_2d(out_net, num_outputs = depth_bottleneck, kernel_size = 3,
stride = stride, padding_mod = 'VALID', scope = 'Conv_2')
out_net = batch_normalization(out_net, tf.nn.relu, 'BatchNorm_2')
out_net = conv_2d(out_net, num_outputs = depth, kernel_size = 1,
stride = 1, padding_mod = 'VALID', scope = 'Conv_3')
out_net = batch_normalization(out_net, scope = 'BatchNorm_3')
# Skip connection
if res_conv:
input_net = conv_2d(input_net, num_outputs = depth, kernel_size = 1,
stride = stride, padding_mod = 'VALID', scope = 'Conv_skip')
input_net = batch_normalization(input_net, scope = 'BatchNorm_skip')
out_net += input_net
out_net = tf.nn.relu(out_net)
return out_net
def repeat_bottleneck(input_net, all_params):
for i, (depth, depth_bottleneck, stride) in enumerate(all_params):
input_net = bottleneck(input_net, depth, depth_bottleneck, stride, i)
return input_net
end_points = { }
with tf.variable_scope('HumanPoseResnet', reuse = reuse):
with tf.variable_scope('Block_0', reuse = reuse):
net = padding(net, 3, 3)
net = conv_2d(net, num_outputs = 64, kernel_size = 7, stride = 2, padding_mod = 'VALID')
net = batch_normalization(net, tf.nn.relu)
net = padding(net, 1, 1)
net = layers.max_pool2d(net, 3, 2, padding = 'VALID')
with tf.variable_scope('Block_1', reuse = reuse):
net = repeat_bottleneck(net, [(256, 64, -1)] + [(256, 64, 1)] * 2)
with tf.variable_scope('Block_2', reuse = reuse):
net = repeat_bottleneck(net, [(512, 128, 2)] + [(512, 128, 1)] * 7)
with tf.variable_scope('Block_3', reuse = reuse):
net = repeat_bottleneck(net, [(1024, 256, 2)] + [(1024, 256, 1)] * 35)
with tf.variable_scope('Block_4', reuse = reuse):
net = repeat_bottleneck(net, [(2048, 512, -1)] + [(2048, 512, 1)] * 2)
end_points['resnet_end'] = net
with tf.variable_scope('Block_5', reuse = reuse):
net = conv_2d(net, num_outputs = 16, kernel_size = 1, stride = 1, padding_mod = 'VALID')
end_points['features'] = net
net = layers.convolution2d_transpose(net, num_outputs = 16, kernel_size = 16, stride = 16,
activation_fn = None, padding = 'VALID')
# net = tf.nn.sigmoid(net)
return net, end_points
# with tf.Graph().as_default():
# init_model_variables('/home/margeta/data/hp.t7')
#
# input_tensor = tf.placeholder(tf.float32, shape = (None, 256, 256, 3), name = 'input_image')
# hp_net = human_pose_resnet(input_tensor, reuse = True, training = False)
#
# # config = tf.ConfigProto()
# # config.gpu_options.per_process_gpu_memory_fraction = 0.5
# # sess = tf.Session(config=config)
# sess = tf.Session()
# sess.run(tf.initialize_all_variables())
# print('Model was loaded!')
#
# img = np.reshape(th.load('img').swapaxes(0, 1).swapaxes(1, 2), [-1, 256, 256, 3])
#
# res = sess.run(hp_net, feed_dict = {input_tensor: img})
#
# res = np.squeeze(res)
#
# print(res.shape)
# print(www.shape)
# print(res[200,160,:])
# print(www[200,160,:])
#
# img = res[:,:,0]
# fig = plt.figure()
# plt.imshow(img)
# fig.savefig('img.png')
#