-
Notifications
You must be signed in to change notification settings - Fork 0
/
DynamixelFInal.m
216 lines (165 loc) · 9.19 KB
/
DynamixelFInal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
%Inverse dynamics for 3DOF Manipulator
%% Trajectory Generation%%
%%%%%%%%%%%%%%%%%%%%%%%%%%
%%Positions and variables
old_pos = [49.76;0;5.380];
new_pos = [27.780;
0;
27.360];
tf = 3;
t = 0.5;
%% X trajectory
x_a0 = old_pos(1,1);
x_a1 = 0;
x_a2 = (3/tf^2)*(new_pos(1,1)-old_pos(1,1));
x_a3 = (-2/tf^3)*(new_pos(1,1)-old_pos(1,1));
x_pos = x_a0 + x_a1*t + x_a2*t^2 + x_a3*t^3;
x_vel = x_a1 + 2*x_a2*t + 3*x_a3*t^2;
x_acc = 2*x_a2 + 6*x_a3*t;
%% Y trajectory
y_a0 = old_pos(2,1);
y_a1 = 0;
y_a2 = (3/tf^2)*(new_pos(2,1)-old_pos(2,1));
y_a3 = (-2/tf^3)*(new_pos(2,1)-old_pos(2,1));
y_pos = y_a0 + y_a1*t + y_a2*t^2 + y_a3*t^3;
y_vel = y_a1 + 2*y_a2*t + 3*y_a3*t^2;
y_acc = 2*y_a2 + 6*y_a3*t;
%% Z trajectory
z_a0 = old_pos(3,1);
z_a1 = 0;
z_a2 = (3/tf^2)*(new_pos(3,1)-old_pos(3,1));
z_a3 = (-2/tf^3)*(new_pos(3,1)-old_pos(3,1));
z_pos = z_a0 + z_a1*t + z_a2*t^2 + z_a3*t^3;
z_vel = z_a1 + 2*z_a2*t + 3*z_a3*t^2;
z_acc = 2*z_a2 + 6*z_a3*t;
%% Inverse Kinematics %%
%%%%%%%%%%%%%%%%%%%%%%%%
%Variables
L1 = 21.98;
L2 = 27.88;
L4 = sqrt(y_pos^2 + x_pos^2);
L5 = z_pos-5.38;
L3 = sqrt((L4^2)+(L5^2));
%Theta 1:
th1_t = atan2(y_pos,x_pos);
%Theta 2:
phi2 = acos((L1^2+L3^2-L2^2)/(2*L1*L3));
phi1 = atan2(L4,L5);
th2_t = (phi1-phi2);
%Theta 3:
phi3 = acos((L1^2+L2^2-L3^2)/(2*L1*L2));
th3_t = pi-phi3;
%% Forward Kinematics %%
%%%%%%%%%%%%%%%%%%%%%%%%
r1 = 5.38;
r2 = 21.98;
r3 = 27.78;
x = cos(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t));
y = sin(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t));
z = r1 - sin(th2_t)*(r2 + r3*cos(th3_t)) - r3*cos(th2_t)*sin(th3_t);
%% Vectors and Rotatins %%
%%%%%%%%%%%%%%%%%%%%%%%%%%
R1= [cos(th1_t), -sin(th1_t), 0;
sin(th1_t), cos(th1_t), 0;
0, 0, 1];
R3= [cos(th3_t), -sin(th3_t), 0;
sin(th3_t), cos(th3_t), 0;
0, 0, 1];
R2= [cos(th2_t), -sin(th2_t), 0;
0, 0, 1;
sin(th2_t), cos(th2_t), 0];
R12= R1*R2;
R13 = R12 * R3;
%Vectors
d2= [0.1855;0;0];
l= [0.0339;0;0];
d3 = [0.142;0;0];
rvc2= (R1*R2)*d2; %To CoM grid 2
rvc3= (R1*R2*R3)*d3; %To CoM grid 3
rv2 = (R1*R2)*(l+d2);%From CoM to end of servo grid 2
%% Jacobian Matrix %%
%%%%%%%%%%%%%%%%%%%%%
J = [ -sin(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)), -cos(th1_t)*(sin(th2_t)*(r2 + r3*cos(th3_t)) + r3*cos(th2_t)*sin(th3_t)), -cos(th1_t)*(r3*cos(th2_t)*sin(th3_t) + r3*cos(th3_t)*sin(th2_t));
cos(th1_t)*(cos(th2_t)*(r2 + r3*cos(th3_t)) - r3*sin(th2_t)*sin(th3_t)), -sin(th1_t)*(sin(th2_t)*(r2 + r3*cos(th3_t)) + r3*cos(th2_t)*sin(th3_t)), -sin(th1_t)*(r3*cos(th2_t)*sin(th3_t) + r3*cos(th3_t)*sin(th2_t));
0, r3*sin(th2_t)*sin(th3_t) - cos(th2_t)*(r2 + r3*cos(th3_t)), r3*sin(th2_t)*sin(th3_t) - r3*cos(th2_t)*cos(th3_t)];
%xd,yd,zd
cart_vel = [x_vel; y_vel; z_vel]
%xdd, ydd, zdd
cart_acc = [x_acc; y_acc; z_acc]
%Angular velocity
ang_vel = inv(J)*cart_vel;
th1d = ang_vel(1,1);
th2d = ang_vel(2,1);
th3d = ang_vel(3,1);
Jd = [ -cos(th1_t)*th1d*(cos(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) - r3*sin(th2_t)*th2d*sin(th3_t)*th3d), sin(th1_t)*th1d*(sin(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) + r3*cos(th2_t)*th2d*sin(th3_t)*th3d), sin(th1_t)*th1d*(r3*cos(th2_t)*th2d*sin(th3_t)*th3d + r3*cos(th3_t)*th3d*sin(th2_t)*th2d);
-sin(th1_t)*th1d*(cos(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) - r3*sin(th2_t)*th2d*sin(th3_t)*th3d), -cos(th1_t)*th1d*(sin(th2_t)*th2d*(r2 + r3*cos(th3_t)*th3d) + r3*cos(th2_t)*th2d*sin(th3_t)*th3d), -cos(th1_t)*th1d*(r3*cos(th2_t)*th2d*sin(th3_t)*th3d + r3*cos(th3_t)*th3d*sin(th2_t)*th2d);
0, 0, 0];
%Angular acceleration
ang_acc = inv(J)*(cart_acc-Jd*ang_vel);
th1dd = ang_acc(1,1);
th2dd = ang_acc(2,1);
th3dd = ang_acc(3,1);
%%Velocities and acceleration%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
z= [0;0;1];
w1 = th1d * z; %omega1
w2 = w1+ th2d* R12(:,3); %omega2
w3 = w2 + th3d * R13(:,3);%omega3
vc2= cross(w2,rvc2); %velocity to the CoM body 2
v2 = cross(w2,rv2); %total velocity body 2
vc3 = v2 + (cross(w2,rvc3)); %velocity to CoM body 3
%% Manipulator Dynamics %%
%%%%%%%%%%%%%%%%%%%%%%%%%%
%Masses
m1 = 0.249;
m2 = 0.3142;
%Inertia tensor 2:
I2xx = 0.00053933;
I2xy = 0.5*10^(-7);
I2xz = 0.397*10^(-5);
I2yx = 0.5*10^(-7);
I2yy = 0.00055977;
I2yz = 0.903*10^(-5);
I2zx = 0.397*10^(-5);
I2zy = 0.903*10^(-5);
I2zz = 0.00005433;
%Inertia tensor 3:
I3xx = 0.00054544;
I3xy = 0;
I3xz = 0;
I3yx = 0;
I3yy = 0.00063851;
I3yz = 0.00001013;
I3zx = 0;
I3zy = 0.00001013;
I3zz = 0.00016132;
h2 = transpose(rc2)*z; % Z part of vector rc2 for height (d2*sin(theta))
h2l = transpose(r2)*z;
h3 = transpose(rc3)*z; % Z part of vector rc3
%Inertia tensors summed
I2 = [0.00053933 0.00000005 0.00000397;
0.00000005 0.00055977 0.00000903;
0.00000397 0.00000903 0.00005433];
I3 = [0.00054544 0 0;
0 0.00063851 0.00001013;
0 0.00001013 0.00016132];
d1 = 0.1859;
d2 = 0.0339;
d3 = 0.1422;
G2 = 9.81;
G3 = G2;
%% Energies and Lagrangian %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%KInetic energy
k2 = (1/2)*m1*(transpose(vc2)*vc2) + 1/2 * transpose(w2) * (I2*w2); %Body2
k3 = (1/2)*m2*(transpose(vc3)*vc3) + 1/2 * transpose(w3) * (I3*w3); %Body3
%Potential energy
u2 = m1*G2*h2; %Body 2
u3 = m2*G3*(h2l+h3); %Body 3
%Lagrangian
L = (k2-u2) + (k3-u3);
%% TORQUE GENERATION %%
%%%%%%%%%%%%%%%%%%%%%%%
Tau1 = (-th2d*(I2yz + I2zy)*sin(th1_t)/2 - th2d*(I2zx + I2xz)*cos(th1_t)/2 + ((th2d + th3d)*(-I3yz - I3zy)*sin(th1_t))/2 - ((th2d + th3d)*(I3xz + I3zx)*cos(th1_t))/2)*th1d + (-2*m1*th1d*cos(th2_t)*d1^2*sin(th2_t) - 2*(2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*th1d*cos(th2_t)*sin(th2_t) - 2*th1d*cos(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) + 2*th1d*sin(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2))*th2d + ((-4*cos(th3_t)*d3^2*sin(th3_t) - 2*d3*(d1 + d2)*sin(th3_t))*m2*th1d*cos(th2_t)^2 - 2*th1d*sin(th2_t)*cos(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) + 2*th1d*sin(th2_t)*sin(th3_t)^2*d3^2*m2*cos(th2_t) + 2*cos(th3_t)*d3^2*m2*th1d*sin(th3_t))*th3d + (m1*cos(th2_t)^2*d1^2 + I2zz + (2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*cos(th2_t)^2 - 2*sin(th2_t)*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) - cos(th3_t)^2*d3^2*m2 + d3^2*m2 + I3zz)*th1dd + (((I2yz + I2zy)*cos(th1_t))/2 - ((I2zx + I2xz)*sin(th1_t))/2 - ((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th2dd + (-((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th3dd - th2d^2*(I2xx - I2yy)*cos(th1_t)*sin(th1_t) + th2d^2*(I2xy + I2yx)*cos(th1_t)^2/2 + th2d*(-th2d*(I2xy + I2yx)*sin(th1_t) + th1d*(I2yz + I2zy))*sin(th1_t)/2 + th1d*th2d*(I2zx + I2xz)*cos(th1_t)/2 + (th2d + th3d)^2*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) + (th2d + th3d)^2*(I3yx + I3xy)*cos(th1_t)^2/2 - ((th2d + th3d)*((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + th1d*(th2d + th3d)*(I3xz + I3zx)*cos(th1_t)/2
Tau2 = (2*th2d*(I2xx - I2yy)*cos(th1_t)*sin(th1_t) - th2d*(I2xy + I2yx)*cos(th1_t)^2 - ((-th2d*(I2xy + I2yx)*sin(th1_t) + th1d*(I2yz + I2zy))*sin(th1_t))/2 + th2d*(I2xy + I2yx)*sin(th1_t)^2/2 - th1d*(I2zx + I2xz)*cos(th1_t)/2 - 2*(th2d + th3d)*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) - (th2d + th3d)*(I3yx + I3xy)*cos(th1_t)^2 + (((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + ((th2d + th3d)*(I3yx + I3xy)*sin(th1_t)^2)/2 - th1d*(I3xz + I3zx)*cos(th1_t)/2)*th1d + (((I2yz + I2zy)*cos(th1_t))/2 - ((I2zx + I2xz)*sin(th1_t))/2 - ((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th1dd + (-(I2xx - I2yy)*cos(th1_t)^2 - (I2xy + I2yx)*sin(th1_t)*cos(th1_t) + I2xx + (I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + d3^2*m2 + I3xx)*th2dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th3dd + m1*th1d^2*cos(th2_t)*d1^2*sin(th2_t) + (2*cos(th3_t)^2*d3^2 + 2*d3*(d1 + d2)*cos(th3_t) + (d1 + d2 + d3)*(d1 + d2 - d3))*m2*th1d^2*cos(th2_t)*sin(th2_t) + th1d^2*cos(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) - th1d^2*sin(th2_t)^2*sin(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2) + m1*G2*cos(th2_t)*d1 + m2*G3*(cos(th2_t)*(d1 + d2) + (-sin(th2_t)*sin(th3_t) + cos(th2_t)*cos(th3_t))*d3)
Tau3 = (-2*(th2d + th3d)*(I3yy - I3xx)*cos(th1_t)*sin(th1_t) - (th2d + th3d)*(I3yx + I3xy)*cos(th1_t)^2 + (((th2d + th3d)*(I3yx + I3xy)*sin(th1_t) - th1d*(I3yz + I3zy))*sin(th1_t))/2 + ((th2d + th3d)*(I3yx + I3xy)*sin(th1_t)^2)/2 - th1d*(I3xz + I3zx)*cos(th1_t)/2)*th1d + (-((-I3yz - I3zy)*cos(th1_t))/2 - ((I3xz + I3zx)*sin(th1_t))/2)*th1dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th2dd + ((I3yy - I3xx)*cos(th1_t)^2 - (I3yx + I3xy)*sin(th1_t)*cos(th1_t) + I3xx)*th3dd - ((-4*cos(th3_t)*d3^2*sin(th3_t) - 2*d3*(d1 + d2)*sin(th3_t))*m2*th1d^2*cos(th2_t)^2)/2 + th1d^2*sin(th2_t)*cos(th3_t)*d3*m2*(cos(th3_t)*d3 + d1 + d2)*cos(th2_t) - th1d^2*sin(th2_t)*sin(th3_t)^2*d3^2*m2*cos(th2_t) - cos(th3_t)*d3^2*m2*th1d^2*sin(th3_t) + m2*G3*(-sin(th2_t)*sin(th3_t) + cos(th2_t)*cos(th3_t))*d3