We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I change controlnet args as follow:
class ControlNetModel(nn.Module): _supports_gradient_checkpointing = True
def __init__( self, in_channels: int = 4, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), block_out_channels: Tuple[int] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: Optional[int] = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1024, attention_head_dim: Union[int, Tuple[int]] = (5,10,20,20), use_linear_projection: bool = True, upcast_attention: bool = True, resnet_time_scale_shift: str = "default", controlnet_conditioning_channel_order: str = "rgb", conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256), global_pool_conditions: bool = False, )
But failed to compile, the error info:
RuntimeError: A/B shape mismatch! A: [{ 'depth': 0, 'name': 'batch_size', 'nop': False, 'symbolic_value': batch_size, 'values': [1, 8]}, { 'depth': 0, 'name': 'embedding_size', 'nop': False, 'symbolic_value': embedding_size, 'values': [77, 462]}, {'depth': 0, 'name': None, 'nop': False, 'symbolic_value': 768, 'values': [768]}], B: [{'depth': 0, 'name': None, 'nop': False, 'symbolic_value': 320, 'values': [320]}, { 'depth': 0, 'name': None, 'nop': False, 'symbolic_value': 1024, 'values': [1024]}]
The text was updated successfully, but these errors were encountered:
compile_controlnet.py is using lllyasviel/sd-controlnet-canny. hidden_dim is not passed to compile_controlnet. This results in dimension mismatch for text_embeddings as the config is edited for v2.
lllyasviel/sd-controlnet-canny
hidden_dim
compile_controlnet
thepowefuldeez/sd21-controlnet-canny
local_dir
hidden_dim=controlnet.config.cross_attention_dim
Sorry, something went wrong.
No branches or pull requests
I change controlnet args as follow:
class ControlNetModel(nn.Module):
_supports_gradient_checkpointing = True
But failed to compile, the error info:
RuntimeError: A/B shape mismatch! A: [{ 'depth': 0,
'name': 'batch_size',
'nop': False,
'symbolic_value': batch_size,
'values': [1, 8]}, { 'depth': 0,
'name': 'embedding_size',
'nop': False,
'symbolic_value': embedding_size,
'values': [77, 462]}, {'depth': 0, 'name': None, 'nop': False, 'symbolic_value': 768, 'values': [768]}], B: [{'depth': 0, 'name': None, 'nop': False, 'symbolic_value': 320, 'values': [320]}, { 'depth': 0,
'name': None,
'nop': False,
'symbolic_value': 1024,
'values': [1024]}]
The text was updated successfully, but these errors were encountered: