From 8b87442fcc95648e8ea2ad26b8a6203a724d1c3c Mon Sep 17 00:00:00 2001 From: marcopremier Date: Wed, 6 Nov 2024 12:00:02 +0100 Subject: [PATCH] Remove debug prints statement --- python/src/robyn/modeling/pareto/pareto_optimizer.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/python/src/robyn/modeling/pareto/pareto_optimizer.py b/python/src/robyn/modeling/pareto/pareto_optimizer.py index 3a311420c..e04053b6d 100644 --- a/python/src/robyn/modeling/pareto/pareto_optimizer.py +++ b/python/src/robyn/modeling/pareto/pareto_optimizer.py @@ -378,7 +378,7 @@ def prepare_pareto_data( calibrated: bool, ) -> ParetoData: result_hyp_param = aggregated_data["result_hyp_param"] - print(f"~~~~~~~~~~ aggregated_data['x_decomp_agg'] PRE MERGE: {aggregated_data["x_decomp_agg"]}\n\n------------\n\nresult_hyp_param:{result_hyp_param}") + # 1. Binding Pareto results aggregated_data["x_decomp_agg"] = pd.merge( aggregated_data["x_decomp_agg"], @@ -386,7 +386,7 @@ def prepare_pareto_data( on="solID", how="left", ) - print(f"~~~~~~~~~ 1") + # Step 1: Collect decomp_spend_dist from each trial and add the trial number decomp_spend_dist = pd.concat( [ @@ -414,7 +414,7 @@ def prepare_pareto_data( on="solID", how="left", ) - print(f"~~~~~~~~~ 2") + # 3. Determining the number of Pareto fronts if self.model_outputs.hyper_fixed or len(result_hyp_param) == 1: pareto_fronts = 1 @@ -453,20 +453,18 @@ def prepare_pareto_data( pareto_fronts = int(auto_pareto["robynPareto"]) # 5. Creating Pareto front vector pareto_fronts_vec = list(range(1, pareto_fronts + 1)) - print(f"~~~~~~~~~ 3") + # 6. Filtering data for selected Pareto fronts decomp_spend_dist_pareto = decomp_spend_dist[ decomp_spend_dist["robynPareto"].isin(pareto_fronts_vec) ] - print(f"~~~~~~~~~ 3.1: \n\n") result_hyp_param_pareto = result_hyp_param[ result_hyp_param["robynPareto"].isin(pareto_fronts_vec) ] - print(f"~~~~~~~~~ 3.2: {aggregated_data["x_decomp_agg"]}\n\n") x_decomp_agg_pareto = aggregated_data["x_decomp_agg"][ aggregated_data["x_decomp_agg"]["robynPareto"].isin(pareto_fronts_vec) ] - print(f"~~~~~~~~~ 4") + return ParetoData( decomp_spend_dist=decomp_spend_dist_pareto, result_hyp_param=result_hyp_param_pareto,