-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap2.tex
333 lines (309 loc) · 20.8 KB
/
chap2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
\chapter{Some Facts about Lebesgue Spaces \texorpdfstring{$\Ell^p(\Omega)$}{L\textasciicircum p(Omega)}}
Here, we recall some facts about Lebesgue spaces which should be known from previous lectures.
Throughout this lecture, a set $\Omega \subset \R^n$ is called \emph{measurable} if it is measurable w.r.t. the Lebesgue measure on $\R^n$.
Unless otherwise stated, we always assume in this chapter that $\Omega \subset \R^n$ is measurable.
Then $u \colon \Omega \to [-\infty,\infty]$ is measurable \emph{on} $\Omega$ if $\{x \in \Omega \colon u(x) > \alpha\}$ is measurable for any $\alpha \in \R$.
\section{\texorpdfstring{$\Ell^p(\Omega)$}{L\textasciicircum p(Omega)}: Definition and Basic Properties}
\label{sec:lpBasics}
\begin{enumerate}[i)]
\item If $u,v \colon \Omega \to [-\infty,\infty]$ are measurable on $\Omega$, they are equivalent if $u = v$ a.e. in $\Omega$.
$[u]$ is the equivalence class of $u$.
We always identify a function $u$ with its equivalence class.
\item For $p \in [1,\infty]$, we define the Lebesgue space
$$
\Ell^p(\Omega) \coloneqq \{ u \colon \Omega \to [-\infty,\infty] \colon u \text{ measurable }, \|u\|_{\Ell^p(\Omega)} < \infty \},
$$
where
\begin{align*}
\|u\|_{\Ell^p(\Omega)} &= \left( \int_\Omega |u(x)|^p \d x \right)^{\frac{1}{p}} \text{ if } p \in [1,\infty), \\
\|u\|_{\Ell^\infty(\Omega)} &= \esssup_{x \in \Omega} |u(x)|.
\end{align*}
With the convention from i), $u = 0$ in $\Ell^p(\Omega)$ if $u = 0$ a.e. in $\Omega$.
If $[u]$ contains a continuous function, we assume that $u$ is chosen to be continuous.
\item $\Ell^p(\Omega)$ is a Banach space for $p \in [1,\infty]$, i.e. a complete and normed vector space.
\item $\Ell^p$-convergence and a.e.-convergence: Let $p \in [1,\infty]$, $(u_n)_{n \in \N} \subset \Ell^p(\Omega)$ and $u \in \Ell^p(\Omega)$, such that $u_n \to u$ in $\Ell^p(\Omega)$, i.e. $\|u_n - u\|_{\Ell^p(\Omega)} \to 0$ as $n \to \infty$.
Then there is a subsequence $(u_{n_k})_{k \in \N}$ and a function $h \in \Ell^p(\Omega)$ such that $u_{n_k}(x) \to u(x)$ a.e. in $\Omega$ as $k \to \infty$ and $|u_{n_k}(x)| \leq h(x)$ a.e. in $\Omega$ for all $k \in \N$.
\item Minkowski's inequality: Let $1 \leq p \leq \infty$ and $u,v \in \Ell^p(\Omega)$.
Then
$$
\|u + v\|_{\Ell^p(\Omega)} \leq \|u\|_{\Ell^p(\Omega)}+ \|v\|_{\Ell^p(\Omega)}.
$$
\item Hölder's inequality: Let $p,q \in [1,\infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$ and $u \in \Ell^p(\Omega), v \in \Ell^q(\Omega)$.
Then $uv \in \Ell^1(\Omega)$ and
$$
\|uv\|_{\Ell^1(\Omega)} \leq \|u\|_{\Ell^p(\Omega)} \|v\|_{\Ell^q(\Omega)}.
$$
\item For $x,y \in \R^n$,
\begin{align*}
\|x\|_p &= \left( \sum_{i = 1}^n |x_i|^p \right)^{\frac{1}{p}} \quad\text{if } p \in [1,\infty), \\
\|x\|_{\infty} &= \max_{i} |x_i|
\end{align*}
the discrete versions of v), vi) are valid:
\begin{align*}
\|x + y\|_p &\leq \|x\|_p + \|y\|_p, \\
|x \cdot y| &\leq \|x\|_p \|y\|_q \quad\text{for } p \in [1, \infty], \frac{1}{p} + \frac{1}{q} =1.
\end{align*}
\item General Hölder inequality: Let $p_k \in [1,\infty], \frac{1}{p_1} + \cdots+ \frac{1}{p_m} = 1$, $m \geq 3$, $u_k \in \Ell^{p_k}(\Omega)$, and $k = 1,\dots,m$.
Then
$$
\int_\Omega |u_1 \cdot \ldots \cdot u_m| \d x \leq \prod_{k = 1}^m \|u_k\|_{\Ell^{p_k}(\Omega)}.
$$
\end{enumerate}
\section{Limit Theorems and Fubini}
\begin{enumerate}[i)]
\item Monotone convergence (Beppo-Levi): Let $(u_n)_{n \in \N}$ be measurable in $\Omega$, non-negative, and point-wise non-decreasing. Then
$$
\int_\Omega \left( \lim_{n \to \infty} u_n(x) \right) \d x = \lim_{n \to \infty} \int_\Omega u_n(x) \d x.
$$
\item Fatou's lemma: Let $(u_n)_{n \in \N}$ be measurable in $\Omega$ and non-negative. Then
$$
\int_\Omega \left( \liminf_{n \to \infty} u_n(x) \right) \d x
\leq \liminf_{n \to \infty} \int_\Omega u_n(x) \d x.
$$
\item Dominated convergence (Lebesgue): Let $(u_n)_{n \in \N}$ and $u$ be measurable on $\Omega$ such that $u_n(x) \to u(x)$ as $n \to \infty$ a.e. in $\Omega$ and $|u_n(x)| \leq h(x)$ a.e. in $\Omega$ for all $n \in \N$ and some $h \in \Ell^1(\Omega)$.
Then $u_n, u \in \Ell^1(\Omega)$ for all $n \in \N$ and $\lim_{n \to \infty} \int_\Omega u_n(x) \d x = \int_\Omega u(x) \d x$.
\item Fubini's theorem: Let $u = u(x,y)$ be measurable on $\R^{n + m}$ such that at least one of the following integrals exists and is finite:
\begin{align*}
I_1 &= \int_{\R^{n + m}} |u(x,y)| \d x \d y, \\
I_2 &= \int_{\R^m} \left( \int_{\R^n} |u(x,y)| \d x \right) \d y, \\
I_2 &= \int_{\R^n} \left( \int_{\R^m} |u(x,y)| \d y \right) \d x.
\end{align*}
Then $u(\cdot,y) \in \Ell^1(\R^n)$ for a.e. $y \in \R^m$, $\int_{\R^m} u(\cdot,y) \d y \in \Ell^1(\R^n)$, $u(x,\cdot) \in \Ell^1(\R^m)$ for a.e. $x \in \R^n$, $\int_{\R^n} u(x, \cdot) \d x \in \Ell^1(\R^m)$, and $I_1 = I_2 = I_3$.
\end{enumerate}
\section{Dense Subspaces and Mollifiers}
\label{sec:mollifier}
In this section let $\Omega \subset \R^n$ be open.
\begin{enumerate}[i)]
\item $\CC_0^\infty(\Omega)$ is dense in $\Ell^p(\Omega)$ for any $p \in [1,\infty)$, i.e. for any $u \in \Ell^p(\Omega)$ and $\varepsilon > 0$ there is $\varphi \in \CC_0^\infty(\Omega)$ such that $\|\varphi - u\|_{\Ell^p(\Omega)} < \varepsilon$.
\item Notation: For $\varepsilon > 0, x \in \R^n$, let
\begin{align*}
\BB_\varepsilon(x) &\coloneqq \{ y \in \R^n \colon |y - x| < \varepsilon \}, \\
\Omega_\varepsilon &\coloneqq \{ x \in \Omega \colon \dist(x, \partial\Omega) > \varepsilon \}, \quad\text{ and } \\
\Ell_{\loc}^p(\Omega) &\coloneqq \{ u \colon \Omega \to [-\infty, \infty] \colon u \in \Ell^p(V) \text{ for all } V \Subset \Omega \} \quad\text{for $p \in [1,\infty]$.}
\end{align*}
\item Standard mollifier: Let
$$
\eta(x) \coloneqq \begin{cases} c \exp\left( \frac{1}{|x|^2 - 1} \right), &|x| < 1, \\ 0, &|x| \geq 1, \end{cases}
$$
where $c > 0$ is chosen such that $\int_{\R^n} \eta(x) \d x = 1$.
Then $\eta \in \CC_0^\infty(\R^n)$ is called \emph{standard mollifier}.
For $\varepsilon > 0$,
$ \eta_\varepsilon(x) \coloneqq \frac{1}{\varepsilon^n} \eta \left(\frac{x}{\varepsilon} \right)$, $x \in \R^n$,
satisfies $\eta_\varepsilon \in \CC_0^\infty(\R^n)$, $\int_{\R^n} \eta_\varepsilon(x) \d x = 1$, and $\supp(\eta_\varepsilon) = \overline{\BB_\varepsilon(0)}$.
\item For $u \in \Ell^1(\Omega)$, we extend $u$ by $u(x) \coloneqq 0$ for all $x \in \R^n \setminus \Omega$ to $u \in \Ell^1(\R^n)$ and define its \emph{mollification} $u_\varepsilon \coloneqq \eta_\varepsilon \ast u$ for $\varepsilon > 0$, i.e.
$$
u_\varepsilon(x)
= \int_{\R^n} \eta_\varepsilon(x - y) u(y) \d y
= \int_{\Omega} \eta_\varepsilon(x - y) u(y) \d y
= \int_{\BB_\varepsilon(x) \cap \Omega} \eta_\varepsilon(x - y) u(y) \d y, \quad x \in \R^n.
$$
\end{enumerate}
The mollification has the following properties:
\begin{thm}
\label{thm:mollifier}
Let $u \in \Ell^1(\Omega)$ and $\varepsilon > 0$. Then the following statements hold true:
\begin{enumerate}[a)]
\item $u_\varepsilon \in \CC^\infty(\R^n)$, $u_\varepsilon(x) \to u(x)$ for a.e. $x \in \Omega$ as $\varepsilon \downarrow 0$.
\item If $\supp(u) \Subset \Omega$, then $u_\varepsilon \in \CC_0^\infty(\Omega)$ for small enough $\varepsilon$.
\item If $u \in \CC^0(\Omega)$, $V \Subset \Omega$, then $u_\varepsilon \to u$ uniformly in $V$ as $\varepsilon \downarrow 0$.
\item If $u \in \Ell^p(\Omega)$ for some $p \in [1,\infty)$, then $u_\varepsilon \in \Ell^p(\Omega)$, $\|u_\varepsilon\|_{\Ell^p(\Omega)} \leq \|u\|_{\Ell^p(\Omega)}$ and $u_\varepsilon \to u$ in $\Ell^p(\Omega)$ as $\varepsilon \downarrow 0$.
Moreover, $u_\varepsilon \in \CC^\infty(\Omega)$.
\item If $u \in \Ell_{\loc}^1(\Omega)$, then $u_\varepsilon \in \CC^\infty(\Omega_\varepsilon)$.
\end{enumerate}
\label{thm:mollification}
\end{thm}
\begin{proof}
\begin{enumerate}[a)]
\item For $i \in \{1, \dots, n\}$ and $h \in \R \setminus\{0\}$ let
$$
\DD^h_i v(x) \coloneqq \frac{1}{h} ( v(x + h e_i) - v(x)), \quad x \in \R^n.
$$
As $\eta_\varepsilon \in \CC_0^\infty(\R^n)$, we have $\nabla \eta_\varepsilon \in \Ell^\infty(\R^n)^n$.
So $\DD_i^h \eta_\varepsilon \in \Ell^\infty(\R^n)$ by the mean value theorem.
As moreover $\DD_i^h \eta_\varepsilon(z) \to \frac{\partial \eta_\varepsilon}{\partial x_i}(z)$ as $h \to 0$ for any $z \in \R^n$, the dominated convergence theorem implies
\begin{align*}
\DD_i^h (u_\varepsilon)(x)
&= \int_\Omega \frac{1}{h} (\eta_\varepsilon(x + h e_i - y) - \eta_\varepsilon (x - y)) u(y) \d y
= \int_\Omega (\DD_i^h \eta_\varepsilon (x - y)) u(y) \d y \\
&\to \int_\Omega \frac{\partial \eta_\varepsilon}{\partial x_i}(x - y) u(y) \d y \quad\text{as } h \downarrow 0.
\end{align*}
Hence, $\frac{\partial}{\partial x_i} u_\varepsilon(x) = \int_\Omega \frac{\partial \eta_\varepsilon}{\partial x_i} (x - y) u(y) \d y$.
By induction, $u_\varepsilon \in \CC^\infty(\R^n)$.
By \emph{Lebesgue's differentiation theorem} (see \cite[Section E.4]{evans2010partial}), we have
\begin{equation}
\lim_{r \downarrow 0} \frac{1}{|\BB_r(x)|} \int_{\BB_r(x)} |u(y) - u(x)| \d y = 0 \quad\text{for a.e. } x \in \Omega.
\label{eq:lebdiffthm}
\end{equation}
For any such $x$ we obtain (by choosing $\varepsilon > 0$ small such that $\overline{\BB_\varepsilon(x)} \subset \Omega$)
\begin{align}
\begin{split}
|u_\varepsilon(x) - u(x)|
&= \Big| \int_{\BB_\varepsilon(x)} \eta_\varepsilon (x - y) u(y) \d y - u(x) \Big| \\
&= \Big| \int_{\BB_\varepsilon(x)} \eta_\varepsilon (x - y) (u(y) - u(x)) \d y \Big| \\
&\leq \frac{1}{\varepsilon^n} \int_{\BB_\varepsilon(x)} \|\eta\|_{\Ell^\infty(\R^n)} |u(y) - u(x)| \d y \\
&\leq \frac{C}{|\BB_\varepsilon(x)|} \int_{\BB_\varepsilon(x)} |u(y) - u(x) | \d y \label{eq:pointwise}
\quad\to 0 \text{ as } \varepsilon \downarrow 0
\end{split}
\end{align}
due to \eqref{eq:lebdiffthm}.
\item If $\supp(u) \Subset \Omega$, let $\delta \coloneqq \dist(\supp(u), \partial \Omega) > 0$.
Then for any $x \in \Omega \setminus \Omega_{\frac{\delta}{2}}$ and $\varepsilon \leq \frac{\delta}{2}$ we have $\BB_\varepsilon(x) \cap \supp(u) = \emptyset$ and
$$
u_\varepsilon(x) = \int_{\BB_\varepsilon(x) \cap \Omega} \eta_\varepsilon(x - y) u(y) \d y = 0.
$$
Hence, $\supp(u_\varepsilon) \subset \overline{\Omega_{\frac{\delta}{2}}} \Subset \Omega$.
By a), $u_\varepsilon \in \CC_0^\infty(\Omega)$.
\item For $u \in \CC^0(\Omega)$ and $V \Subset \Omega$, choose $W$ such that $V \Subset W \Subset \Omega$.
Then $u$ is uniformly continuous in $W$ and \eqref{eq:lebdiffthm} holds uniformly for $x \in V$.
Hence, also \eqref{eq:pointwise} is satisfied uniformly for $x \in V$ and thus $u_\varepsilon \to u$ uniformly in $V$.
\item For $x \in \Omega$, by using Hölder's inequality and $\eta_\varepsilon \geq 0$ along with $\int_{\R^n} \eta_\varepsilon(z) \d y = 1$, we get
\begin{align*}
|u_\varepsilon(x)|
&= \Big| \int_\Omega \left( \eta_\varepsilon(x - y) \right)^{1 - \frac{1}{p}} \left( \eta_\varepsilon(x - y)\right)^{\frac{1}{p}} u(y) \d y \Big| \\
&\leq \underbrace{\left( \int_\Omega \eta_\varepsilon(x -y) \d y\right)^{\frac{p - 1}{p}}}_{\leq 1} \left( \int_\Omega \eta_\varepsilon(x - y) |u(y)|^p \d y \right)^\frac{1}{p}
\leq \left( \int_\Omega \eta_\varepsilon (x - y) |u(y)|^p \d y \right)^{\frac{1}{p}}.
\end{align*}
Raising this to the power of $p$ and integrating w.r.t $x \in \Omega$, by using Fubini we have
\begin{align}
\label{eq:lpinequality}
\begin{split}
\|u_\varepsilon\|_{\Ell^p(\Omega)}^p \|
&\leq \int_\Omega\int_\Omega \eta_\varepsilon(x - y) |u(y)|^p \d x \d y
= \int_\Omega |u(y)|^p \underbrace{\left( \int_\Omega \eta_\varepsilon(x -y) \d x \right)}_{\in [0,1]} \d y \\
&\leq \int_\Omega |u(y)|^p \d y = \|u\|_{\Ell^p(\Omega)}^p.
\end{split}
\end{align}
In particular, this implies $u_\varepsilon \in \Ell^p(\Omega)$.
Given $\mu > 0$, we may choose $\varphi \in \CC_0^\infty(\Omega)$ such that $\|u - \varphi\|_{\Ell^p(\Omega)} < \frac{\mu}{3}$.
As $\varphi$ and $\varphi_\varepsilon$ have compact support in $\Omega$ by b), we deduce from c) that $\varphi_\varepsilon \to \varphi$ uniformly in $\Omega$ as $\varepsilon \downarrow 0$.
Hence, we may choose $\varepsilon_0 > 0$ small enough such that $\|\varphi_\varepsilon - \varphi\|_{\Ell^p(\Omega)} < \frac{\mu}{3}$ for all $\varepsilon \in (0, \varepsilon_0)$.
But then,
\begin{align*}
\|u_\varepsilon - u\|_{\Ell^p(\Omega)}
& \leq \|u_\varepsilon - \varphi_\varepsilon \|_{\Ell^p(\Omega)} + \|\varphi_\varepsilon - \varphi\|_{\Ell^p(\Omega)} + \|\varphi - u \|_{\Ell^p(\Omega)} \\
&\leq \|\eta_\varepsilon \ast u - \eta_\varepsilon \ast \varphi \|_{\Ell^p(\Omega)} + \frac{2}{3} \mu \\
&= \|\eta_\varepsilon \ast (u - \varphi) \|_{\Ell^p(\Omega)} + \frac{2}{3}\mu
= \|(u - \varphi)_\varepsilon \|_{\Ell^p(\Omega)} + \frac{2}{3}\mu \\
&\overset{\eqref{eq:lpinequality}}{\leq} \|u-\varphi\|_{\Ell^p(\Omega)} + \frac{2}{3}\mu < \mu \quad\text{for all } \varepsilon \in (0, \varepsilon_0).
\end{align*}
We still have $u_\varepsilon \in \CC^\infty(\Omega)$ since for $x \in \BB_\delta(x_0)$ with $\overline{\BB_{2\delta}(x_0)} \subset \Omega$ we have for
$x \in K \coloneqq \overline{\BB_{2\delta}(x_0)}$ and $\varepsilon \in (0, \delta)$, $u_\varepsilon(x) = \int_K \eta_\varepsilon(x - y)u(y) \d y$
with $u \in \Ell^1(K)$. Hence, the same argument as in a) shows $u_\varepsilon \in \CC^\infty (K)$ and therefore $u_\varepsilon \in \CC^\infty (\Omega)$
as $\Omega$ is open and $x_0 \in \Omega$ was arbitrary.
A similar argument shows e).\qedhere
\end{enumerate}
\end{proof}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Eigener Lösungsvorschlag
% a): Let $h > 0$, $x \in \R^n$ and fix some $i = 1,\dots,n$. Since $u \in \Ell^1(\Omega)$, by extending $u$ with $0$ we can assume $u \in \Ell^1(\R^n)$.
% We denote this extension again with $u$.
% Then, we have
% $$
% \frac{u_\varepsilon(x + h e_i) - u_\varepsilon(x)}{h}
% = \int_{\R^n} \frac{\eta_\varepsilon(x + h e_i - y) - \eta_\varepsilon(x - y)}{h} u(y) \d y .
% $$
% The integrand on the right hand side of the above inequality is pointwise convergent to $\partial_i \eta_\varepsilon$.
% Furthermore, by the mean value theorem and the fact that $\eta_\varepsilon \in \CC_0^\infty(\R^n)$ we have
% $$
% \left|\frac{\eta_\varepsilon(x + h e_i - y) - \eta_\varepsilon(x - y)}{h} u(y)\right|
% \leq \|\partial_i \eta_\varepsilon \|_\infty |u(y)|, \quad \forall y \in \R^n.
% $$
% But the right hand side is by assumption in $\Ell^1(\R^n)$, so Lebesgue's theorem yields
% $$
% \partial_i u_\varepsilon(x) = (\partial_i \eta_\varepsilon) \ast u (x),
% $$
% with $\partial_i \eta_\varepsilon \in \CC_0^\infty(\R^n)$.
% This procedure can now be repeated yielding arbitrary derivatives of $u_\varepsilon$.
% We now show that $u_\varepsilon(x) \to u(x)$ a.e. for $\varepsilon \downarrow 0$.
% Since
% \begin{align*}
% |u_\varepsilon(x) - u(x)|
% &\leq \left| \int_{\R^n} \eta_\varepsilon(x - y) u(y) \d y - u(x) \right| \\
% &\overset{\mathrm{iii)}}{=} \left| \frac{1}{\varepsilon^n} \int_{\R^n} \eta\left(\frac{x - y}{\varepsilon}\right) ( u(y) - u(x) ) \d y \right| \\
% &\leq \frac{C}{|\BB_\varepsilon(x)|} \int_{\BB_{\varepsilon}(x)} \|\eta\|_\infty |u(y) - u(x)| \d y,
% \end{align*}
% where we have used properties of the standard mollifier, the claim follows from the Lebesgue differentiation theorem.
% b): If $\partial \Omega = \emptyset$, then $\Omega$ is clopen.
% But since $\R^n$ is connected, the only clopen sets are $\emptyset$ and $\R^n$.
% In both cases, the claim follows by choosing $\varepsilon = 1$.
% Hence, in the following we will assume that $\partial \Omega \neq \emptyset$.
% Since $S: \supp(u)$ is compactly contained in $\Omega$ by assumption, the continuous function
% $$d(\cdot,\partial\Omega) \colon \supp(u) \to \R, x \mapsto \d(x,\partial\Omega) \inf_{z \in \partial \Omega} |z - x|$$
% attains a minimum $\varepsilon_{\mathrm{min}}$. If we now choose $\varepsilon < \varepsilon_{\mathrm{min}}$, we deduce that
% $$
% \supp(u_\varepsilon) \subseteq \supp(u) + \overline{\BB_\varepsilon(0)} \subsetneq \Omega
% $$
% and the claim follows.
% c): Note that $V \Subset \overline{V}_\gamma \Subset \Omega$ for some $\varepsilon > 0$ since $V$ is compactly contained in $\Omega$.
% Since $u \in \CC^0(\Omega)$, this function is uniformly continuous on $\overline V_\gamma$. Hence, for all $\alpha > 0$ there exists $\beta > 0$ such that for all $x,y \in \overline V_\gamma$ with $|x - y| < \beta$
% $$
% |u(x) - u(y)| \leq \frac{\alpha}{C \|\eta\|_\infty},
% $$
% Then, with the same estimates as for a), for all $x \in V, y \in \overline{V}_\varepsilon$ and $\varepsilon \leq \gamma$ the following holds:
% $$
% |u_\varepsilon(x) - u(x)|
% \leq \frac{C}{|\BB_\varepsilon(x)|} \int_{\BB_{\varepsilon}(x)} \|\eta\|_\infty |u(y) - u(x)| \d y \leq \alpha.
% $$
% Therefore, the convergence on $V$ is uniform.
% d): We extend $u$ with $0$ outside of $\Omega$ and calculate
% \begin{align*}
% \int_\Omega |u_\varepsilon(x)|^p \d x
% &\leq \int_\Omega \left| \int_\Omega \eta_\varepsilon(x - y) u(y) \d y \right|^p \d x\\
% &\leq \int_\Omega \left| \int_\Omega \eta_\varepsilon(x-y)^{1 - \frac{1}{p}}\eta_\varepsilon(x - y)^{\frac{1}{p}} u(y) \d y \right|^p \d x \\
% &\leq \int_\Omega \left(\int_\Omega \eta_\varepsilon(x - y) \d y\right)^{1 - \frac{1}{p}} \left(\int_\Omega \eta_\varepsilon(x - y)|u(y)|^p \d y \right) \d x \\
% &\leq \int_\Omega |u(y)|^p \left(\int_\Omega \eta_\varepsilon(x - y) \d x\right) \d y,
% \end{align*}
% where we used the Hölder inequality.
% The right hand side is finite since by assumption $u \in \Ell^p(\Omega)$ thus $u_\varepsilon \in \Ell^p(\Omega)$ as well and we furthermore have
% $$
% \|u_\varepsilon\|_{\Ell^p(\Omega)} \leq \|u\|_{\Ell^p(\Omega)}
% $$
% considering that the integral of $\eta_\varepsilon$ is $1$ by iii).
% Now let $\delta > 0$ be given.
% We know that $C_0^0(\Omega)$ is dense in $\Ell^p(\Omega)$.
% Thus, there exists $\tilde u \in C_0^\infty(\Omega)$ with
% $$
% \| \tilde u - u \|_{\Ell^p(\Omega)} < \frac{\delta}{3}.
% $$
% Furthermore, since $\tilde u$ has compact support, by c) we know that that $\tilde u_\varepsilon$ converges uniformly to $\tilde u$.
% Therefore, there exists $\varepsilon' > 0$ such that for all $\varepsilon \leq \varepsilon'$ we have
% $$
% \|\tilde u_\varepsilon - \tilde u\|_{\Ell^p(\Omega)} \leq \|\tilde u_\varepsilon - \tilde u\|_{\Ell^\infty(\Omega)} \leq \frac{\delta}{3},
% $$
% where we used the fact that $\tilde u$ and $\tilde u_\varepsilon$ have compact support to estimate the $\Ell^p$-norms.
% Finally, we have by the previous calculations that
% $$
% \|u_\varepsilon - \tilde u_\varepsilon\|_{\Ell^p(\Omega)}
% = \|(u - \tilde u)_\varepsilon\|_{\Ell^p(\Omega)}
% \leq \|u - \tilde u\|_{\Ell^p(\Omega)} \leq \frac{\delta}{3}.
% $$
% We can now deduce
% $$
% \|u_\varepsilon - u\|_{\Ell^p(\Omega)} \leq \delta
% $$
% by the usual argument and conclude that $u_\varepsilon \to u$ in $\Ell^p$.
% e): Extending $u$ by $0$ outside of $\Omega$ we can assume $u \in \Ell^1_{\loc}(\R^n)$.
% Let $\varepsilon > 0$, $x \in \Omega_\varepsilon$ and fix $i =1,\dots,n$.
% Choose $h> 0$ such that $x + he_i \in \Omega_\varepsilon$. Like in a) we calculate
% \begin{align*}
% \frac{u_\varepsilon(x + h e_i) - u_\varepsilon(x)}{h}
% &= \int_{\R^n} \frac{\eta_\varepsilon(x + h e_i - y) - \eta_\varepsilon(x - y)}{h} u(y) \d y, \\
% \intertext{where the right hand side is well defined, since the difference of two $\CC_0^\infty(\R^n)$ functions has again compact support and we furthermore deduce}
% &= \int_{\BB_{\varepsilon + h}(x)} \frac{\eta_\varepsilon(x + h e_i - y) - \eta_\varepsilon(x - y)}{h} u(y) \d y.
% \end{align*}
% We can now argue as in a) to prove the differentiability.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Polar Coordinates}
\label{sec:polar}
Let $f \in \CC^1(\overline{\BB_r(x_0)})$ with $x_0 \in \R^n$, $r > 0$. Then by the transformation rule with $x = x_0 + sz$, $s \in (0,r)$, $z \in \partial \BB_1(0)$ we have
$$
\int_{\BB_r(x_0)} f(x) \d x = \int_0^r \left( \int_{\partial \BB_s(x_0)} f \d \sigma(x) \right) \d s = \int_0^r s^{n - 1} \int_{\partial \BB_1(0)} f(x_0 + sz) \d \sigma(z) \d s.
$$
In particular, if $x_0 = 0$, $f$ is radially symmetric and $\omega_n$ is the surface $|\partial \BB_1(0)|$ of $\partial \BB_1(0)$, we get
$$
\int_{\BB_r(0)} f(x) \d x = \omega_n \int_0^r f(s) s^{n - 1} \d s,
$$
where $s = |x|$.
\begin{proof}
See \cite[Section C.3]{evans2010partial}.
\end{proof}