-
Notifications
You must be signed in to change notification settings - Fork 0
/
appendix.tex
380 lines (369 loc) · 24.3 KB
/
appendix.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
\chapter*{Appendix}
\markboth{APPENDIX}{}
\addcontentsline{toc}{chapter}{Appendix}
\label{chap:app}
In this chapter, we will provide the missing calculations for the proofs of Lemma~\ref{lem:HelmholtzLaplaceDifference} and Theorem~\ref{thm:differenceFundamentalSolutionStokes}.
Therefore, we will build on the notations which were already established at the beginning of Chapter~\ref{chap:2}.
We first collect expressions for the derivatives of the fundamental solutions to the scalar Helmholtz equation and the Laplace equation in $d= 2$.
For the fundamental solution to the Laplace equation $G(x; 0) = -\frac{1}{2\pi} \log(|x|)$, the partial derivatives read:
\begin{align*}
\partial_\gamma G(x; 0) &= -\frac{1}{2\pi} \, \frac{x_\gamma}{|x|^2}, \\[0.5em]
%
\partial_\alpha \partial_\gamma G(x; 0) &= -\frac{1}{2\pi}\, \frac{\delta_{\alpha\gamma}}{|x|^2} + \frac{1}{\pi} \, \frac{x_\alpha x_\gamma}{|x|^4}, \\[0.5em]
%
\partial_\beta \partial_\alpha \partial_\gamma G(x; 0)
&= \frac{1}{\pi} \, \frac{\delta_{\beta \gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^4} - \frac{4}{\pi}\, \frac{x_\alpha x_\beta x_\gamma}{|x|^6}.
\end{align*}
The fundamental solution for the scalar Helmholtz equation is given via
\begin{align*}
G(x; \lambda) = \frac{\ii}{4}\, H_0^{(1)}(k|x|),
\end{align*}
where $H_0^{(1)}(z)$ is the Hankel function of the first kind, see Section \ref{sec:hankel}.
Complex derivatives will be denoted by $\frac{\d{}}{\d z}$.
We calculate using the chain rule and the product rule:
\begin{align*}
%%
\partial_\gamma G(x; \lambda) &= \frac{\ii}{4}\, k\; \frac{x_\gamma}{|x|}\, \frac{\d{}}{\d z} H_0^{(1)}(k |x|)\,, \\[0.5em]
%%
\partial_\alpha \partial_\gamma G(x; \lambda)
%%
&= \frac{\ii}{4}\, k \,\bigg(\frac{\delta_{\alpha\gamma}}{|x|} - \frac{x_\alpha x_\gamma}{|x|^3} \bigg)\, \frac{\d{}}{\d z} H_0^{(1)}(k |x|) + \frac{\ii}{4} \, k^2 \; \frac{x_\alpha x_\gamma}{|x|^2} \, \frac{\d{}^2}{\d z^2} H_0^{(1)}(k |x|)\,, \\[0.5em]
%%
\partial_\beta \partial_\alpha \partial_\gamma G(x; \lambda)
%%
&= \frac{\ii}{4} \, k^3 \; \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \, \frac{\d{}^3}{\d z^3} H_0^{(1)}(k |x|)\\[0.5em]
%
&\quad + \frac{\ii}{4} \, k^2 \,\bigg(\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \bigg)\, \frac{\d{}^2}{\d z^2} H_0^{(1)}(k |x|) \\[0.5em]
%
&\quad+ \frac{\ii}{4} \, k \, \bigg( 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \bigg)\, \frac{\d{}}{\d z} H_0^{(1)}(k |x|) \,.
\end{align*}
We will now present the derivatives of the Hankel function $H_0^{(1)}(z)$ which appeared in the previous calculations by calculating the complex derivatives of the series expansion of $H_0^{(1)}(z)$ which may be found in Lebedev \cite[Sec.\@~5.6]{lebedev}.
The expansions below are a consequence of the series expansions of the Bessel functions of the first and second kind $J_0$ and $Y_0$, respectively.
In the following, $\psi$ will denote the \emph{Digamma function}.
The aforementioned expansions read:
\begin{align*}
%
\frac{\pi}{2 \ii} \, H_0^{(1)}(z)
%
&= \frac{\pi}{2\ii} \, J_0(z) + \frac{\pi}{2}\, Y_0(z) \\
&= \mathlarger{\sum}_{l = 0}^\infty \, \frac{(-1)^l}{(l!)^2 \, 4^l} \, z^{2l} \Big( -\frac{\ii \pi}{2} - \log(2) - \psi(l + 1) \Big)
+ \mathlarger{\sum}_{l = 0}^\infty \, \frac{(-1)^l}{(l!)^2 \, 4^l} \, z^{2l} \log(z) \\
%&= \frac{2 \ii}{\pi} \, \mathlarger{\sum}_{l = 0}^\infty \, \frac{(-1)^l}{(l!)^2 \, 4^l} \, z^{2l} \bigg( -\frac{\ii \pi}{2} - \log(2) - \psi(l + 1) \bigg) + \frac{2 \ii}{\pi} \, \mathlarger{\sum}_{l = 0}^\infty \, \frac{(-1)^l}{(l!)^2 \, 4^l} \, z^{2l} \log(z) \\
&= \mathlarger{\sum}_{l = 0}^\infty \, a_l \, z^{2l} \, C_l
+ \mathlarger{\sum}_{l = 0}^\infty \, a_l \,z^{2l} \log(z)\,, \\[1.0em]
%
\frac{\pi}{2\ii} \, \frac{\d{}}{\d z} H_0^{(1)}(z)
%
&= \mathlarger{\sum}_{l = 1}^\infty \, a_l \, (2l) \, z^{2l - 1} \, C_l
+ \mathlarger{\sum}_{l = 1}^\infty \, a_l \, (2l) \, z^{2l - 1} \log(z) \,
+ \mathlarger{\sum}_{l = 0}^\infty \, a_l \, z^{2l - 1} \\
&= \mathlarger{\sum}_{l = 1}^\infty \, b_l \, z^{2l - 1} \, C_l
+ \mathlarger{\sum}_{l = 1}^\infty \, b_l \, z^{2l - 1} \log(z) \,
+ \mathlarger{\sum}_{l = 0}^\infty \, a_l \, z^{2l - 1}, \\[1.0em]
%
\frac{\pi}{2\ii} \, \frac{\d{}^2}{\d z^2} H_0^{(1)}(z)
%
&= \mathlarger{\sum}_{l = 1}^\infty \, b_l \, (2l - 1) \, z^{2l - 2} \, C_l
+ \mathlarger{\sum}_{l = 1}^\infty \, b_l \, (2l - 1)\, z^{2l - 2} \log(z)
+ \mathlarger{\sum}_{l = 1}^\infty \, b_l \, z^{2l - 2}\\
&\quad + \mathlarger{\sum}_{l = 0}^\infty \, a_l \, (2l - 1) \, z^{2l - 2} \\
&= \mathlarger{\sum}_{l = 1}^\infty c_l \, z^{2l - 2} \, C_l
+ \!\mathlarger{\sum}_{l = 1}^\infty c_l \, z^{2l - 2} \log(z)
+ \!\mathlarger{\sum}_{l = 1}^\infty b_l \, z^{2l - 2}
+ \!\mathlarger{\sum}_{l = 0}^\infty a_l \, (2l - 1) \, z^{2l - 2}, \\[1.0em]
%
\frac{\pi}{2\ii} \, \frac{\d{}^3}{\d z^3} H_0^{(1)}(z)
%
&= \sum_{l = 2}^\infty c_l \, (2l - 2) \, z^{2l - 3} \, C_l
+ \mathlarger{\sum}_{l = 2}^\infty \, c_l \, (2l - 2) \, z^{2l - 3} \log(z)
+ \mathlarger{\sum}_{l = 1}^\infty \, c_l \, z^{2l - 3} \\
&\quad
+ \mathlarger{\sum}_{l = 2}^\infty \, b_l \, (2l - 2) \, z^{2l - 3}
+ \mathlarger{\sum}_{l = 0}^\infty \, a_l \, (2l - 1) \, (2l - 2) \, z^{2l - 3} \\
%%
&= \mathlarger{\sum}_{l = 2}^\infty \, d_l \, z^{2l - 3} \, C_l
+ \mathlarger{\sum}_{l = 2}^\infty \, d_l \, z^{2l - 3} \log(z)
+ \mathlarger{\sum}_{l = 1}^\infty \, c_l \, z^{2l - 3} \\
&\quad + \mathlarger{\sum}_{l = 2}^\infty \, b_l \, (2l - 2) \, z^{2l - 3}
+ \mathlarger{\sum}_{l = 0}^\infty \, a_l \, (2l - 1)\, (2l - 2) \, z^{2l - 3} ,
\end{align*}
where, in order to increase readability, we introduced the following coefficients:
\begin{align}
\begin{alignedat}{1}
C_l &\coloneqq -\frac{\ii \pi}{2} - \log(2) - \psi(l + 1), \\
a_l &\coloneqq \frac{(-1)^l}{(l!)^2 \, 4^l}, \quad
b_l \coloneqq a_l \cdot 2l, \quad
c_l \coloneqq b_l \cdot (2l - 1) \quad\text{and}\quad
d_l \coloneqq c_l \cdot (2l - 2).
\end{alignedat}\label{defnConst}\tag{D1}
\end{align}
\section*{A.1\quad Proof of Lemma \ref{lem:HelmholtzLaplaceDifference} for $d = 2$}
\markboth{APPENDIX}{A.1.\quad PROOF OF LEMMA \ref*{lem:HelmholtzLaplaceDifference} FOR $d = 2$}
\addcontentsline{toc}{section}{A.1\quad Proof of Lemma \ref*{lem:HelmholtzLaplaceDifference} for $d = 2$}
\label{sec:A1}
For $\lambda \in \Sigma_\theta$, $\theta \in (0, \pi/2)$, we need to show that for $|\lambda| |x|^2 \leq (1/2)$ the estimate
\begin{align*}
\Big|\, \partial_\beta \partial_\alpha \partial_\gamma \big\{ G(x; \lambda) - G(x; 0) \big\} \, \Big|
\leq C\, |\lambda| |x|^{-1}
\end{align*}
holds with a constant $C > 0$ that only depends on $\theta$.
The strategy will be to first estimate all absolute values of the resulting terms individually and to extract those which cannot be estimated in this way.
We will call the terms whose absolute value that cannot be bounded individually \emph{problematic}.
In the second step, we will show that all problematic terms cancel when added together which shows that the claimed estimate holds.
In order to make the next calculations better to digest, we decompose the third derivative of $G(\,\cdot\, ; \lambda)$ as follows:
\begin{align*}
\partial_\beta \partial_\alpha \partial_\gamma G(x; \lambda)
= A_3 + A_2 + A_1,
\end{align*}
where each $A_i$, $i = 1,\dots,3$, corresponds to the term involving the $i$th derivative of $H_0^{(1)}$.
Let us start with $A_3$.
We have
\begin{align*}
A_3 = - \frac{1}{2 \pi } k^3 \, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \,
%%
&\cdot\,\bigg\{
\; \mathlarger{\sum}_{l = 2}^\infty \; d_l \, (k|x|)^{2l - 3} \, C_l + \mathlarger{\sum}_{l = 2}^\infty \; d_l \, (k|x|)^{2l - 3} \log(k|x|) \\
&\quad\, + \mathlarger{\sum}_{l = 1}^\infty \; c_l \, (k|x|)^{2l - 3} + \mathlarger{\sum}_{l = 2}^\infty \; b_l\, (2l - 2) \, (k|x|)^{2l - 3} \\
&\quad\, + \mathlarger{\sum}_{l = 0}^\infty \; a_l \, (2l - 1)\, (2l - 2) \, (k|x|)^{2l - 3} \;
\bigg\}.
%%
\end{align*}
First, note that
\begin{align*}
\Big|\, \frac{1}{2\pi} k^3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \,\cdot\; c_1\, (k|x|)^{2 \cdot 1 -3} \,\Big|
\leq C \, |\lambda| |x|^{-1},
\end{align*}
with a constant $C > 0$.
This shows that the first term of the third sum in $A_3$ is not problematic.
For the rest of $A_3$ we use the fact $|\lambda| |x|^2 \leq (1/2)$ to trade one $|k| = \sqrt{|\lambda|}$ in the prefactor for a constant times $|x|^{-1}$ and show that the prefactor behaves as
\begin{align*}
\Big|\, k^3 \, \frac{x_\alpha x_\beta x_\gamma}{|x|^3}\, \Big|
\leq C\, |\lambda| |x|^{-1},
\end{align*}
with a constant $C > 0$.
Therefore, the only problematic term in $A_3$ is the first element of the last sum
\begin{align}
\label{eq:P1}
%\tag{P1}- \frac{1}{2 \pi } k^3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \; \mathlarger{\sum}_{l = 0}^{0} \; a_l \, (2l - 1)\, (2l - 2) \, (k|x|)^{2l - 3} .
\tag{P1}- \frac{1}{2 \pi } k^3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \, \cdot\; a_0 \, (2 \cdot 0 - 1)\, (2 \cdot 0 - 2) \, (k|x|)^{2 \cdot 0 - 3} .
\end{align}
For $A_2$, we calculate
\begin{align*}
A_2 &= - \frac{1}{2\pi} k^2\, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg) \\
&\qquad \cdot
\bigg\{
\; \mathlarger{\sum}_{l = 1}^\infty \; c_l \, (k|x|)^{2l - 2} \, C_l
+ \; \mathlarger{\sum}_{l = 1}^\infty \; c_l \, (k|x|)^{2l - 2} \log(k|x|) \\
&\qquad\quad\,+ \; \mathlarger{\sum}_{l = 1}^\infty \; b_l \, (k|x|)^{2l - 2}
+ \; \mathlarger{\sum}_{l = 0}^\infty \; a_l\, (2l - 1) \, (k|x|)^{2l - 2}
\bigg\}.
\end{align*}
As the prefactor already behaves like $|\lambda| |x|^{-1}$, we identify the following to terms as being problematic:
\begin{align}
\label{eq:P2}
\tag{P2}
\begin{alignedat}{1}
% & - \frac{1}{2\pi} k^2\, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
% \, \cdot \mathlarger{\sum}_{l = 1}^1 \; c_l \, (k|x|)^{2l - 2} \log(k|x|) \\
% &- \frac{1}{2\pi} k^2 \,\bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
% \, \cdot \mathlarger{\sum}_{l = 0}^0 \; a_l\, (2l - 1) \, (k|x|)^{2l - 2} .
%
& - \frac{1}{2\pi} k^2\, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\, \cdot\; c_1 \, (k|x|)^{2 \cdot 1 - 2} \log(k|x|) \;\;\;\text{and}\\[0.5em]
&- \frac{1}{2\pi} k^2 \,\bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\, \cdot \; a_0\, (2\cdot 0 - 1) \, (k|x|)^{2 \cdot 0 - 2} .
\end{alignedat}
\end{align}
For the last component, we have the following identity:
\begin{align*}
A_1 =
& - \frac{1}{2\pi} k\, \bigg( 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \bigg) \\
&\,\cdot\, \bigg\{
\; \mathlarger{\sum}_{l = 1}^\infty \; b_l \, (k|x|)^{2l - 1} \, C_l
+ \mathlarger{\sum}_{l = 1}^\infty \; b_l \, (k|x|)^{2l - 1} \log(k|x|)
+ \mathlarger{\sum}_{l = 0}^\infty \; a_l \, (k|x|)^{2l - 1}
\bigg\}.
\end{align*}
In this case, the prefactor behaves like $\sqrt{|\lambda|} |x|^{-2}$.
Therefore, problematic terms only arise in the last two sums
\begin{align}
\label{eq:P3}
\tag{P3}
\begin{alignedat}{1}
% &- \frac{1}{2\pi} k\, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
% \, \cdot \mathlarger{\sum}_{l = 1}^1 \; b_l \, (k|x|)^{2l - 1} \log(k|x|) \\
% &- \frac{1}{2\pi} k\, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
% \, \cdot \mathlarger{\sum}_{l = 0}^0 \; a_l \, (k|x|)^{2l - 1} .
%
&- \frac{1}{2\pi} k\, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
\, \cdot \; b_1 \, (k|x|)^{2 \cdot 1 - 1} \log(k|x|) \quad\text{and}\\[0.5em]
&- \frac{1}{2\pi} k\, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
\, \cdot \; a_0 \, (k|x|)^{2 \cdot 0 - 1} .
\end{alignedat}
\end{align}
Note that we get from definition \eqref{defnConst}
\begin{align*}
a_0 = 1, \qquad c_1 = b_1 = - \frac{1}{2}.
\end{align*}
Therefore, we can already see that the logarithmic terms in the sum $\eqref{eq:P2} + \eqref{eq:P3}$ cancel.
Next, we observe that if we take the sum over the problematic terms \eqref{eq:P1}, \eqref{eq:P2} and \eqref{eq:P3} and subtract $\partial_\beta \partial_\alpha \partial_\gamma G(x; 0)$, the result is $0$ which is easily seen by grouping the terms having the same power of $|x|$:
\begin{samepage}
\begin{align*}
&\hspace{-2cm}\mathrm{(P1)} + \mathrm{(P2)} + \mathrm{(P3)} - \partial_\beta \partial_\alpha \partial_\gamma G(x; 0) \\[0.5em]
= &- \frac{1}{\pi}\, \frac{x_\alpha x_\beta x_\gamma}{|x|^6} \\[0.5em]
%
%&+ \frac{1}{4\pi} k^2 \bigg(\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3 \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \bigg) \log(k|x|) \\[0.5em]
%
&+ \frac{1}{2\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^4} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^6} \, \bigg) \\[0.5em]
%
%&+ \frac{1}{4\pi} k^2 \bigg( 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^2} \bigg) \, \log(k|x|) \\[0.5em]
&- \frac{1}{2\pi} \, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^6} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^4} \, \bigg)\\[0.5em]
%
&- \frac{1}{\pi}\, \frac{\delta_{\beta \gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^4}
+ \frac{4}{\pi}\, \frac{x_\alpha x_\beta x_\gamma}{|x|^6}
\quad=\quad 0 \,.
\end{align*}
This completes the proof of Theorem~\ref{lem:HelmholtzLaplaceDifference}. \hfill$\qed$
\end{samepage}
%\newpage
\section*{A.2\quad Proof of Theorem \ref{thm:differenceFundamentalSolutionStokes} for $d = 2$}
\markboth{APPENDIX}{A.2.\quad PROOF OF THEOREM \ref*{thm:differenceFundamentalSolutionStokes} FOR $d = 2$}
\addcontentsline{toc}{section}{A.2\quad Proof of Theorem \ref*{thm:differenceFundamentalSolutionStokes} for $d = 2$}
\label{sec:A2}
In this section, we show that, for all $\lambda \in \Sigma_\theta$, $\theta \in (0,\pi/2)$ and $x \in \R^2\setminus \{0\}$ satisfying $|\lambda| |x|^2 \leq (1/2)$, we have
\begin{align*}
\Big|\, \nabla_x \big\{ \Gamma(x; \lambda) - \Gamma(x; 0) \big\} \, \Big| \leq C\, |\lambda| |x| \, \big|\log(|\lambda| |x|^2)\,\big|\,,
\end{align*}
where $C > 0$ depends only on $\theta$.
The means and the strategy to prove this estimate are similar to the procedure in the previous section.
In addition to the derivatives that were calculated at the beginning of this appendix, we will furthermore need the first partial derivatives for the matrix of fundamental solutions of the Stokes problem:
\begin{align*}
\Gamma_{\alpha\beta}(x; 0)
&= \frac{1}{4\pi} \bigg\{ \,- \delta_{\alpha\beta} \log(|x|) + \frac{x_\alpha x_\beta}{|x|^2} \,\bigg\}
\\[0.5em]
\partial_\gamma \Gamma_{\alpha\beta} (x; 0)
&= \frac{1}{4 \pi}\, \bigg(\, \frac{\delta_{\alpha\gamma} x_\beta + \delta_{\beta\gamma} x_\alpha - \delta_{\alpha\beta} x_\gamma}{|x|^2} \, \bigg)
- \frac{1}{2\pi}\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} .
\end{align*}
Now consider the difference
\begin{align*}
&\partial_\gamma \Gamma_{\alpha\beta}(x; \lambda) - \partial_\gamma \Gamma_{\alpha\beta}(x; 0) \\
&\qquad=\partial_\gamma G(x; \lambda) \,\delta_{\alpha\beta}
+ \frac{1}{k^2} \, \partial_\beta \partial_\alpha \partial_\gamma \Big\{ G(x; \lambda) - G(x; 0) \Big\}
- \partial_\gamma \Gamma_{\alpha\beta}(x; 0) \eqqcolon B_1 + B_2 + B_3 \,,
\end{align*}
where we introduced the variables $B_i$, $i = 1,\dots,3$, for the sake of readability.
As in the previous section, we will study the terms $B_i$ independently and extract the terms that do not exhibit the desired behavior.
For $B_1$, we have
\begin{align*}
B_1 = -\frac{1}{2\pi} k\; \frac{\delta_{\alpha\beta} x_\gamma}{|x|} \;
\cdot \,\bigg\{ \;
\mathlarger{\sum}_{l = 1}^\infty \; b_l \, (k|x|)^{2l - 1} \, C_l
&+ \mathlarger{\sum}_{l = 1}^\infty \; b_l \, (k|x|)^{2l - 1} \log(k|x|) \; \\
&+ \mathlarger{\sum}_{l = 0}^\infty \; a_l \, (k|x|)^{2l - 1} \; \bigg\}.
\end{align*}
In this expression, we only detect one problematic term, namely the term corresponding to $l = 0$ in the last sum
\begin{align}
\label{eq:Q1}
\tag{Q1}
%-\frac{1}{2\pi} k\; \frac{\delta_{\alpha\beta} x_\gamma}{|x|}\, \mathlarger{\sum}_{l = 0}^0 \; a_l \, (k|x|)^{2l - 1} .
-\frac{1}{2\pi} k\; \frac{\delta_{\alpha\beta} x_\gamma}{|x|}\, \cdot \; a_0 \, (k|x|)^{2 \cdot 0 - 1} .
\end{align}
For the expression $B_2$, we have
\begin{align*}
B_2 = k^{-2} \, \Big( \, A_3 + A_2 + A_1 - \partial_\beta\partial_\alpha\partial_\gamma G(x; 0)\, \Big) \eqqcolon A_3' + A_2' + A_1'\,,
\end{align*}
with the variables $A_i$, $i = 1, \dots, 3$, which were introduced in the previous section.
We will now list the problematic terms for $A_i'$ where we will already take into account the cancellations from the previous section.
This will result on the one hand in additional terms and on the other hand in subsequent terms in the same sums compared to \eqref{eq:P1}, \eqref{eq:P2} and \eqref{eq:P3}.
For $A_3'$, we see that the following term does not meet the desired behavior:
\begin{align}
\label{eq:Q2}
\tag{Q2}
\begin{alignedat}{1}
%&- \frac{1}{2 \pi } k \, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \; \mathlarger{\sum}_{l = 1}^1 \; c_l \, (k|x|)^{2l - 3}.
&- \frac{1}{2 \pi } k \, \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \; \cdot \; c_1 \, (k|x|)^{2 \cdot 1 - 3}.
%&- \frac{1}{2 \pi } k \frac{x_\alpha x_\beta x_\gamma}{|x|^3} \; \mathlarger{\sum}_{l = 1}^{1} \; a_l (2l - 1) (2l - 2) \, (k|x|)^{2l - 3}
\end{alignedat}
\end{align}
For $A_2'$, we see that, compared to $A_2$, every summand is problematic which after cancellation leads to:
\begin{align}
\label{eq:Q3}
\tag{Q3}
\begin{alignedat}{1}
% &- \frac{1}{2\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
% \,\cdot \mathlarger{\sum}_{l = 1}^1 \; c_l \, (k|x|)^{2l - 2} \, C_l \\
% %
% %&- \frac{1}{2\pi} \bigg(\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3 \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \bigg)
% %\cdot \mathlarger{\sum}_{l = 1}^1 \; c_l \, (k|x|)^{2l - 2} \log(k|x|) \\
% %
% &- \frac{1}{2\pi} \, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
% \,\cdot \mathlarger{\sum}_{l = 1}^1 \; b_l \, (k|x|)^{2l - 2} \\
% %
% &- \frac{1}{2\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
% \,\cdot \mathlarger{\sum}_{l = 1}^1 \; a_l (2l - 1) \, (k|x|)^{2l - 2} .
%
&- \frac{1}{2\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\,\cdot \; c_1 \, (k|x|)^{2\cdot 1 - 2} \, C_1 \\[1.0em]
%
%&- \frac{1}{2\pi} \bigg(\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3 \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \bigg)
%\cdot \mathlarger{\sum}_{l = 1}^1 \; c_l \, (k|x|)^{2l - 2} \log(k|x|) \\
%
&- \frac{1}{2\pi} \, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\,\cdot \; b_1 \, (k|x|)^{2 \cdot 1 - 2} \\[1.0em]
%
&- \frac{1}{2\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\,\cdot \; a_1 (2 \cdot 1 - 1) \, (k|x|)^{2 \cdot 1 - 2} .
\end{alignedat}
\end{align}
The same holds for the expression $A_1'$:
\begin{align}
\label{eq:Q4}
\tag{Q4}
\begin{alignedat}{1}
% &- \frac{1}{2\pi} \, \frac{1}{k} \, \bigg(\, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
% \,\cdot \mathlarger{\sum}_{l = 1}^1 \; b_l \, (k|x|)^{2l - 1} \, C_l \\
% %
% %&- \frac{1}{2\pi} \, \frac{1}{k} \Big( 3 \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \Big)
% %\mathlarger{\sum}_{l = 1}^1 \; b_l \, (k|x|)^{2l - 1} \log(k|x|) \\
% %
% &- \frac{1}{2\pi} \, \frac{1}{k} \, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
% \,\cdot \mathlarger{\sum}_{l = 1}^1 \; a_l \, (k|x|)^{2l - 1} .
% %
&- \frac{1}{2\pi} \, \frac{1}{k} \, \bigg(\, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
\,\cdot \; b_1 \, (k|x|)^{2 \cdot 1 - 1} \, C_1 \\[1.0em]
%
%&- \frac{1}{2\pi} \, \frac{1}{k} \Big( 3 \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \Big)
%\mathlarger{\sum}_{l = 1}^1 \; b_l \, (k|x|)^{2l - 1} \log(k|x|) \\
%
&- \frac{1}{2\pi} \, \frac{1}{k} \, \bigg( \, 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^5} - \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha\gamma} x_\beta + \delta_{\alpha\beta} x_\gamma}{|x|^3} \, \bigg)
\,\cdot \; a_1 \, (k|x|)^{2 \cdot 1 - 1} .
\end{alignedat}
\end{align}
Now it is time to sum all problematic terms, expand the variables and add the term $B_3$.
As before, all the terms will cancel which will then prove our initial claim.
With
\begin{align*}
a_0 = 1, \quad a_1 = -\frac{1}{4} \quad\text{and}\quad c_1 = b_1 = -\frac{1}{2},
\end{align*}
we see that already within the sum \eqref{eq:Q3} + \eqref{eq:Q4} a lot of terms cancel which leaves us with:
\begin{align*}
\label{eq:Q33}
\tag{Q3'}
&- \frac{1}{2\pi} \, \bigg(\, \frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\, \cdot b_1 \, (k|x|)^{2\cdot 1 - 2}.
\end{align*}
Now let us consider the expression $\eqref{eq:Q1} + \eqref{eq:Q2} + \eqref{eq:Q33} + B_3$:
\begin{align*}
&-\frac{1}{2\pi} \, \frac{\delta_{\alpha\beta} x_\gamma}{|x|^2}
+ \frac{1}{4 \pi }\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4}
%
+ \frac{1}{4\pi} \, \bigg(\,\frac{\delta_{\beta\gamma} x_\alpha + \delta_{\alpha \gamma} x_\beta + \delta_{\alpha \beta} x_\gamma}{|x|^2} - 3\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4} \, \bigg)
\\[0.5em]
&\quad - \frac{1}{4 \pi} \, \bigg(\, \frac{\delta_{\alpha\gamma} x_\beta + \delta_{\gamma\beta} x_\alpha - \delta_{\alpha\beta} x_\gamma}{|x|^2} \, \bigg)
+ \frac{1}{2\pi}\, \frac{x_\alpha x_\beta x_\gamma}{|x|^4}
\quad = \quad 0\, .
\end{align*}
As all problematic terms add up to zero, we have proven the initial claim.\hfill$\qed$
%\newpage
%\pagestyle{empty}