-
Notifications
You must be signed in to change notification settings - Fork 240
/
05_export.py
149 lines (136 loc) · 5.1 KB
/
05_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
from collections import OrderedDict, defaultdict
from sense2vec import Sense2Vec
from sense2vec.util import split_key, cosine_similarity
from pathlib import Path
from wasabi import msg
import numpy
import typer
def main(
# fmt: off
in_file: str = typer.Argument(..., help="Vectors file (text-based)"),
vocab_file: str = typer.Argument(..., help="Vocabulary file"),
out_dir: str = typer.Argument(..., help="Path to output directory"),
min_freq_ratio: float = typer.Option(0.0, "--min-freq-ratio", "-r", help="Frequency ratio threshold for discarding minority senses or casings"),
min_distance: float = typer.Option(0.0, "--min-distance", "-s", help="Similarity threshold for discarding redundant keys"),
# fmt: on
):
"""
Step 5: Export a sense2vec component
Expects a vectors.txt and a vocab file trained with GloVe and exports
a component that can be loaded with Sense2vec.from_disk.
"""
input_path = Path(in_file)
vocab_path = Path(vocab_file)
output_path = Path(out_dir)
if not input_path.exists():
msg.fail("Can't find input file", in_file, exits=1)
if input_path.suffix == ".bin":
msg.fail("Need text-based vectors file, not binary", in_file, exits=1)
if not vocab_path.exists():
msg.fail("Can't find vocab file", vocab_file, exits=1)
if not output_path.exists():
output_path.mkdir(parents=True)
msg.good(f"Created output directory {out_dir}")
with input_path.open("r", encoding="utf8") as f:
(n_vectors, vector_size), f = _get_shape(f)
vectors_data = f.readlines()
with vocab_path.open("r", encoding="utf8") as f:
vocab = read_vocab(f)
vectors = {}
all_senses = set()
for item in vectors_data:
item = item.rstrip().rsplit(" ", vector_size)
key = item[0]
try:
_, sense = split_key(key)
except ValueError:
continue
vec = item[1:]
if len(vec) != vector_size:
msg.fail(f"Wrong vector size: {len(vec)} (expected {vector_size})", exits=1)
all_senses.add(sense)
vectors[key] = numpy.asarray(vec, dtype=numpy.float32)
discarded = set()
discarded.update(get_minority_keys(vocab, min_freq_ratio))
discarded.update(get_redundant_keys(vocab, vectors, min_distance))
n_vectors = len(vectors) - len(discarded)
s2v = Sense2Vec(shape=(n_vectors, vector_size), senses=list(all_senses))
for key, vector in vectors.items():
if key not in discarded:
s2v.add(key, vector)
s2v.set_freq(key, vocab[key])
msg.good("Created the sense2vec model")
msg.info(f"{n_vectors} vectors, {len(all_senses)} total senses")
s2v.to_disk(output_path)
msg.good("Saved model to directory", out_dir)
def _get_shape(file_):
"""Return a tuple with (number of entries, vector dimensions). Handle
both word2vec/FastText format, which has a header with this, or GloVe's
format, which doesn't."""
first_line = next(file_).replace("\ufeff", "").split()
if len(first_line) == 2:
return tuple(int(size) for size in first_line), file_
count = 1
for line in file_:
count += 1
file_.seek(0)
shape = (count, len(first_line) - 1)
return shape, file_
def read_vocab(vocab_file):
freqs = OrderedDict()
for line in vocab_file:
item = line.rstrip()
if item.endswith(" word"): # for fastText vocabs
item = item[:-5]
try:
key, freq = item.rsplit(" ", 1)
except ValueError:
continue
freqs[key] = int(freq)
return freqs
def get_minority_keys(freqs, min_ratio):
"""Remove keys that are too infrequent relative to a main sense."""
by_word = defaultdict(list)
for key, freq in freqs.items():
try:
term, sense = split_key(key)
except ValueError:
continue
if freq:
by_word[term.lower()].append((freq, key))
discarded = []
for values in by_word.values():
if len(values) >= 2:
values.sort(reverse=True)
freq1, key1 = values[0]
for freq2, key2 in values[1:]:
ratio = freq2 / freq1
if ratio < min_ratio:
discarded.append(key2)
return discarded
def get_redundant_keys(vocab, vectors, min_distance):
if min_distance <= 0.0:
return []
by_word = defaultdict(list)
for key, freq in vocab.items():
try:
term, sense = split_key(key)
except ValueError:
continue
term = term.split("_")[-1]
by_word[term.lower()].append((freq, key))
too_similar = []
for values in by_word.values():
if len(values) >= 2:
values.sort(reverse=True)
freq1, key1 = values[0]
vector1 = vectors[key1]
for freq2, key2 in values[1:]:
vector2 = vectors[key2]
sim = cosine_similarity(vector1, vector2)
if sim >= (1 - min_distance):
too_similar.append(key2)
return too_similar
if __name__ == "__main__":
typer.run(main)