forked from espnet/espnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
asr_inference_k2.py
executable file
·758 lines (670 loc) · 26 KB
/
asr_inference_k2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
#!/usr/bin/env python3
import argparse
import datetime
import logging
import sys
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import k2
import numpy as np
import torch
import yaml
from typeguard import check_argument_types, check_return_type
from espnet2.fileio.datadir_writer import DatadirWriter
from espnet2.fst.lm_rescore import nbest_am_lm_scores
from espnet2.tasks.asr import ASRTask
from espnet2.tasks.lm import LMTask
from espnet2.text.build_tokenizer import build_tokenizer
from espnet2.text.token_id_converter import TokenIDConverter
from espnet2.torch_utils.device_funcs import to_device
from espnet2.torch_utils.set_all_random_seed import set_all_random_seed
from espnet2.utils import config_argparse
from espnet2.utils.types import str2bool, str2triple_str, str_or_none
from espnet.utils.cli_utils import get_commandline_args
def indices_to_split_size(indices, total_elements: int = None):
"""convert indices to split_size
During decoding, the api torch.tensor_split should be used.
However, torch.tensor_split is only available with pytorch >= 1.8.0.
So torch.split is used to pass ci with pytorch < 1.8.0.
This fuction is used to prepare input for torch.split.
"""
if indices[0] != 0:
indices = [0] + indices
split_size = [indices[i] - indices[i - 1] for i in range(1, len(indices))]
if total_elements is not None and sum(split_size) != total_elements:
split_size.append(total_elements - sum(split_size))
return split_size
# copied from:
# https://github.com/k2-fsa/snowfall/blob/master/snowfall/training/ctc_graph.py#L13
def build_ctc_topo(tokens: List[int]) -> k2.Fsa:
"""Build CTC topology.
A token which appears once on the right side (i.e. olabels) may
appear multiple times on the left side (ilabels), possibly with
epsilons in between.
When 0 appears on the left side, it represents the blank symbol;
when it appears on the right side, it indicates an epsilon. That
is, 0 has two meanings here.
Args:
tokens:
A list of tokens, e.g., phones, characters, etc.
Returns:
Returns an FST that converts repeated tokens to a single token.
"""
assert 0 in tokens, "We assume 0 is ID of the blank symbol"
num_states = len(tokens)
final_state = num_states
arcs = ""
for i in range(num_states):
for j in range(num_states):
if i == j:
arcs += f"{i} {i} {tokens[i]} 0 0.0\n"
else:
arcs += f"{i} {j} {tokens[j]} {tokens[j]} 0.0\n"
arcs += f"{i} {final_state} -1 -1 0.0\n"
arcs += f"{final_state}"
ans = k2.Fsa.from_str(arcs, num_aux_labels=1)
ans = k2.arc_sort(ans)
return ans
# Modified from: https://github.com/k2-fsa/snowfall/blob/master/snowfall/common.py#L309
def get_texts(best_paths: k2.Fsa) -> List[List[int]]:
"""Extract the texts from the best-path FSAs.
Args:
best_paths: a k2.Fsa with best_paths.arcs.num_axes() == 3, i.e.
containing multiple FSAs, which is expected to be the result
of k2.shortest_path (otherwise the returned values won't
be meaningful). Must have the 'aux_labels' attribute, as
a ragged tensor.
Return:
Returns a list of lists of int, containing the label sequences we
decoded.
"""
# remove any 0's or -1's (there should be no 0's left but may be -1's.)
if isinstance(best_paths.aux_labels, k2.RaggedTensor):
aux_labels = best_paths.aux_labels.remove_values_leq(0)
aux_shape = best_paths.arcs.shape().compose(aux_labels.shape())
# remove the states and arcs axes.
aux_shape = aux_shape.remove_axis(1)
aux_shape = aux_shape.remove_axis(1)
aux_labels = k2.RaggedTensor(aux_shape, aux_labels.values())
else:
# remove axis corresponding to states.
aux_shape = best_paths.arcs.shape().remove_axis(1)
aux_labels = k2.RaggedTensor(aux_shape, best_paths.aux_labels)
# remove 0's and -1's.
aux_labels = aux_labels.remove_values_leq(0)
assert aux_labels.num_axes == 2
return aux_labels.tolist()
class k2Speech2Text:
"""Speech2Text class
Examples:
>>> import soundfile
>>> speech2text = k2Speech2Text("asr_config.yml", "asr.pth")
>>> audio, rate = soundfile.read("speech.wav")
>>> speech = np.expand_dims(audio, 0) # shape: [batch_size, speech_length]
>>> speech_lengths = np.array([audio.shape[0]]) # shape: [batch_size]
>>> batch = {"speech": speech, "speech_lengths", speech_lengths}
>>> speech2text(batch)
[(text, token, token_int, score), ...]
"""
def __init__(
self,
asr_train_config: Union[Path, str],
asr_model_file: Union[Path, str] = None,
lm_train_config: Union[Path, str] = None,
lm_file: Union[Path, str] = None,
token_type: str = None,
bpemodel: str = None,
device: str = "cpu",
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
batch_size: int = 1,
dtype: str = "float32",
beam_size: int = 8,
ctc_weight: float = 0.5,
lm_weight: float = 1.0,
penalty: float = 0.0,
nbest: int = 1,
streaming: bool = False,
search_beam_size: int = 20,
output_beam_size: int = 20,
min_active_states: int = 30,
max_active_states: int = 10000,
blank_bias: float = 0.0,
lattice_weight: float = 1.0,
is_ctc_decoding: bool = True,
lang_dir: Optional[str] = None,
use_fgram_rescoring: bool = False,
use_nbest_rescoring: bool = False,
am_weight: float = 1.0,
decoder_weight: float = 0.5,
nnlm_weight: float = 1.0,
num_paths: int = 1000,
nbest_batch_size: int = 500,
nll_batch_size: int = 100,
):
assert check_argument_types()
# 1. Build ASR model
asr_model, asr_train_args = ASRTask.build_model_from_file(
asr_train_config, asr_model_file, device
)
asr_model.to(dtype=getattr(torch, dtype)).eval()
token_list = asr_model.token_list
# 2. Build Language model
if lm_train_config is not None:
lm, lm_train_args = LMTask.build_model_from_file(
lm_train_config, lm_file, device
)
self.lm = lm
self.is_ctc_decoding = is_ctc_decoding
self.use_fgram_rescoring = use_fgram_rescoring
self.use_nbest_rescoring = use_nbest_rescoring
assert self.is_ctc_decoding, "Currently, only ctc_decoding graph is supported."
if self.is_ctc_decoding:
self.decode_graph = k2.arc_sort(
build_ctc_topo(list(range(len(token_list))))
)
self.decode_graph = self.decode_graph.to(device)
if token_type is None:
token_type = asr_train_args.token_type
if bpemodel is None:
bpemodel = asr_train_args.bpemodel
if token_type is None:
tokenizer = None
elif token_type == "bpe":
if bpemodel is not None:
tokenizer = build_tokenizer(token_type=token_type, bpemodel=bpemodel)
else:
tokenizer = None
else:
tokenizer = build_tokenizer(token_type=token_type)
converter = TokenIDConverter(token_list=token_list)
logging.info(f"Text tokenizer: {tokenizer}")
logging.info(f"Running on : {device}")
self.asr_model = asr_model
self.asr_train_args = asr_train_args
self.converter = converter
self.tokenizer = tokenizer
self.device = device
self.dtype = dtype
self.search_beam_size = search_beam_size
self.output_beam_size = output_beam_size
self.min_active_states = min_active_states
self.max_active_states = max_active_states
self.blank_bias = blank_bias
self.lattice_weight = lattice_weight
self.am_weight = am_weight
self.decoder_weight = decoder_weight
self.nnlm_weight = nnlm_weight
self.num_paths = num_paths
self.nbest_batch_size = nbest_batch_size
self.nll_batch_size = nll_batch_size
@torch.no_grad()
def __call__(
self, batch: Dict[str, Union[torch.Tensor, np.ndarray]]
) -> List[Tuple[Optional[str], List[str], List[int], float]]:
"""Inference
Args:
batch: Input speech data and corresponding lengths
Returns:
text, token, token_int, hyp
"""
assert check_argument_types()
if isinstance(batch["speech"], np.ndarray):
batch["speech"] = torch.tensor(batch["speech"])
if isinstance(batch["speech_lengths"], np.ndarray):
batch["speech_lengths"] = torch.tensor(batch["speech_lengths"])
# a. To device
batch = to_device(batch, device=self.device)
# b. Forward Encoder
# enc: [N, T, C]
enc, encoder_out_lens = self.asr_model.encode(**batch)
# logp_encoder_output: [N, T, C]
logp_encoder_output = torch.nn.functional.log_softmax(
self.asr_model.ctc.ctc_lo(enc), dim=2
)
# It maybe useful to tune blank_bias.
# The valid range of blank_bias is [-inf, 0]
logp_encoder_output[:, :, 0] += self.blank_bias
batch_size = encoder_out_lens.size(0)
sequence_idx = torch.arange(0, batch_size).unsqueeze(0).t().to(torch.int32)
start_frame = torch.zeros([batch_size], dtype=torch.int32).unsqueeze(0).t()
num_frames = encoder_out_lens.cpu().unsqueeze(0).t().to(torch.int32)
supervision_segments = torch.cat([sequence_idx, start_frame, num_frames], dim=1)
supervision_segments = supervision_segments.to(torch.int32)
# An introduction to DenseFsaVec:
# https://k2-fsa.github.io/k2/core_concepts/index.html#dense-fsa-vector
# It could be viewed as a fsa-type lopg_encoder_output,
# whose weight on the arcs are initialized with logp_encoder_output.
# The goal of converting tensor-type to fsa-type is using
# fsa related functions in k2. e.g. k2.intersect_dense_pruned below
dense_fsa_vec = k2.DenseFsaVec(logp_encoder_output, supervision_segments)
# The term "intersect" is similar to "compose" in k2.
# The differences is are:
# for "compose" functions, the composition involves
# mathcing output label of a.fsa and input label of b.fsa
# while for "intersect" functions, the composition involves
# matching input label of a.fsa and input label of b.fsa
# Actually, in compose functions, b.fsa is inverted and then
# a.fsa and inv_b.fsa are intersected together.
# For difference between compose and interset:
# https://github.com/k2-fsa/k2/blob/master/k2/python/k2/fsa_algo.py#L308
# For definition of k2.intersect_dense_pruned:
# https://github.com/k2-fsa/k2/blob/master/k2/python/k2/autograd.py#L648
lattices = k2.intersect_dense_pruned(
self.decode_graph,
dense_fsa_vec,
self.search_beam_size,
self.output_beam_size,
self.min_active_states,
self.max_active_states,
)
# lattices.scores is the sum of decode_graph.scores(a.k.a. lm weight) and
# dense_fsa_vec.scores(a.k.a. am weight) on related arcs.
# For ctc decoding graph, lattices.scores only store am weight
# since the decoder_graph only define the ctc topology and
# has no lm weight on its arcs.
# While for 3-gram decoding, whose graph is converted from language models,
# lattice.scores contains both am weights and lm weights
#
# It maybe useful to tune lattice.scores
# The valid range of lattice_weight is [0, inf)
# The lattice_weight will affect the search of k2.random_paths
lattices.scores *= self.lattice_weight
results = []
if self.use_nbest_rescoring:
(
am_scores,
lm_scores,
token_ids,
new2old,
path_to_seq_map,
seq_to_path_splits,
) = nbest_am_lm_scores(
lattices, self.num_paths, self.device, self.nbest_batch_size
)
ys_pad_lens = torch.tensor([len(hyp) for hyp in token_ids]).to(self.device)
max_token_length = max(ys_pad_lens)
ys_pad_list = []
for hyp in token_ids:
ys_pad_list.append(
torch.cat(
[
torch.tensor(hyp, dtype=torch.long),
torch.tensor(
[self.asr_model.ignore_id]
* (max_token_length.item() - len(hyp)),
dtype=torch.long,
),
]
)
)
ys_pad = (
torch.stack(ys_pad_list).to(torch.long).to(self.device)
) # [batch, max_token_length]
encoder_out = enc.index_select(0, path_to_seq_map.to(torch.long)).to(
self.device
) # [batch, T, dim]
encoder_out_lens = encoder_out_lens.index_select(
0, path_to_seq_map.to(torch.long)
).to(
self.device
) # [batch]
decoder_scores = -self.asr_model.batchify_nll(
encoder_out, encoder_out_lens, ys_pad, ys_pad_lens, self.nll_batch_size
)
# padded_value for nnlm is 0
ys_pad[ys_pad == self.asr_model.ignore_id] = 0
nnlm_nll, x_lengths = self.lm.batchify_nll(
ys_pad, ys_pad_lens, self.nll_batch_size
)
nnlm_scores = -nnlm_nll.sum(dim=1)
batch_tot_scores = (
self.am_weight * am_scores
+ self.decoder_weight * decoder_scores
+ self.nnlm_weight * nnlm_scores
)
split_size = indices_to_split_size(
seq_to_path_splits.tolist(), total_elements=batch_tot_scores.size(0)
)
batch_tot_scores = torch.split(
batch_tot_scores,
split_size,
)
hyps = []
scores = []
processed_seqs = 0
for tot_scores in batch_tot_scores:
if tot_scores.nelement() == 0:
# the last element by torch.tensor_split may be empty
# e.g.
# torch.tensor_split(torch.tensor([1,2,3,4]), torch.tensor([2,4]))
# (tensor([1, 2]), tensor([3, 4]), tensor([], dtype=torch.int64))
break
best_seq_idx = processed_seqs + torch.argmax(tot_scores)
assert best_seq_idx < len(token_ids)
best_token_seqs = token_ids[best_seq_idx]
processed_seqs += tot_scores.nelement()
hyps.append(best_token_seqs)
scores.append(tot_scores.max().item())
assert len(hyps) == len(split_size)
else:
best_paths = k2.shortest_path(lattices, use_double_scores=True)
scores = best_paths.get_tot_scores(
use_double_scores=True, log_semiring=False
).tolist()
hyps = get_texts(best_paths)
assert len(scores) == len(hyps)
for token_int, score in zip(hyps, scores):
# For decoding methods nbest_rescoring and ctc_decoding
# hyps stores token_index, which is lattice.labels.
# convert token_id to text with self.tokenizer
token = self.converter.ids2tokens(token_int)
assert self.tokenizer is not None
text = self.tokenizer.tokens2text(token)
results.append((text, token, token_int, score))
assert check_return_type(results)
return results
@staticmethod
def from_pretrained(
model_tag: Optional[str] = None,
**kwargs: Optional[Any],
):
"""Build k2Speech2Text instance from the pretrained model.
Args:
model_tag (Optional[str]): Model tag of the pretrained models.
Currently, the tags of espnet_model_zoo are supported.
Returns:
Speech2Text: Speech2Text instance.
"""
if model_tag is not None:
try:
from espnet_model_zoo.downloader import ModelDownloader
except ImportError:
logging.error(
"`espnet_model_zoo` is not installed. "
"Please install via `pip install -U espnet_model_zoo`."
)
raise
d = ModelDownloader()
kwargs.update(**d.download_and_unpack(model_tag))
return k2Speech2Text(**kwargs)
def inference(
output_dir: str,
maxlenratio: float,
minlenratio: float,
batch_size: int,
dtype: str,
beam_size: int,
ngpu: int,
seed: int,
ctc_weight: float,
lm_weight: float,
penalty: float,
nbest: int,
num_workers: int,
log_level: Union[int, str],
data_path_and_name_and_type: Sequence[Tuple[str, str, str]],
key_file: Optional[str],
asr_train_config: Optional[str],
asr_model_file: Optional[str],
lm_train_config: Optional[str],
lm_file: Optional[str],
word_lm_train_config: Optional[str],
word_lm_file: Optional[str],
model_tag: Optional[str],
token_type: Optional[str],
bpemodel: Optional[str],
allow_variable_data_keys: bool,
streaming: bool,
is_ctc_decoding: bool,
use_nbest_rescoring: bool,
num_paths: int,
nbest_batch_size: int,
nll_batch_size: int,
k2_config: Optional[str],
):
assert is_ctc_decoding, "Currently, only ctc_decoding graph is supported."
assert check_argument_types()
if ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
logging.basicConfig(
level=log_level,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
if ngpu >= 1:
device = "cuda"
else:
device = "cpu"
# 1. Set random-seed
set_all_random_seed(seed)
with open(k2_config) as k2_config_file:
dict_k2_config = yaml.safe_load(k2_config_file)
# 2. Build speech2text
speech2text_kwargs = dict(
asr_train_config=asr_train_config,
asr_model_file=asr_model_file,
lm_train_config=lm_train_config,
lm_file=lm_file,
token_type=token_type,
bpemodel=bpemodel,
device=device,
maxlenratio=maxlenratio,
minlenratio=minlenratio,
dtype=dtype,
beam_size=beam_size,
ctc_weight=ctc_weight,
lm_weight=lm_weight,
penalty=penalty,
nbest=nbest,
streaming=streaming,
is_ctc_decoding=is_ctc_decoding,
use_nbest_rescoring=use_nbest_rescoring,
num_paths=num_paths,
nbest_batch_size=nbest_batch_size,
nll_batch_size=nll_batch_size,
)
speech2text_kwargs = dict(**speech2text_kwargs, **dict_k2_config)
speech2text = k2Speech2Text.from_pretrained(
model_tag=model_tag,
**speech2text_kwargs,
)
# 3. Build data-iterator
loader = ASRTask.build_streaming_iterator(
data_path_and_name_and_type,
dtype=dtype,
batch_size=batch_size,
key_file=key_file,
num_workers=num_workers,
preprocess_fn=ASRTask.build_preprocess_fn(speech2text.asr_train_args, False),
collate_fn=ASRTask.build_collate_fn(speech2text.asr_train_args, False),
allow_variable_data_keys=allow_variable_data_keys,
inference=True,
)
with DatadirWriter(output_dir) as writer:
start_decoding_time = datetime.datetime.now()
for batch_idx, (keys, batch) in enumerate(loader):
if batch_idx % 10 == 0:
logging.info(f"Processing {batch_idx} batch")
assert isinstance(batch, dict), type(batch)
assert all(isinstance(s, str) for s in keys), keys
_bs = len(next(iter(batch.values())))
assert len(keys) == _bs, f"{len(keys)} != {_bs}"
# 1-best list of (text, token, token_int)
results = speech2text(batch)
for key_idx, (text, token, token_int, score) in enumerate(results):
key = keys[key_idx]
best_writer = writer["1best_recog"]
# Write the result to each file
best_writer["token"][key] = " ".join(token)
best_writer["token_int"][key] = " ".join(map(str, token_int))
best_writer["score"][key] = str(score)
if text is not None:
best_writer["text"][key] = text
end_decoding_time = datetime.datetime.now()
decoding_duration = end_decoding_time - start_decoding_time
logging.info(f"Decoding duration is {decoding_duration.seconds} seconds")
def get_parser():
parser = config_argparse.ArgumentParser(
description="ASR Decoding",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Note(kamo): Use '_' instead of '-' as separator.
# '-' is confusing if written in yaml.
parser.add_argument(
"--log_level",
type=lambda x: x.upper(),
default="INFO",
choices=("CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG", "NOTSET"),
help="The verbose level of logging",
)
parser.add_argument("--output_dir", type=str, required=True)
parser.add_argument(
"--ngpu",
type=int,
default=0,
help="The number of gpus. 0 indicates CPU mode",
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--dtype",
default="float32",
choices=["float16", "float32", "float64"],
help="Data type",
)
parser.add_argument(
"--num_workers",
type=int,
default=1,
help="The number of workers used for DataLoader",
)
group = parser.add_argument_group("Input data related")
group.add_argument(
"--data_path_and_name_and_type",
type=str2triple_str,
required=True,
action="append",
)
group.add_argument("--key_file", type=str_or_none)
group.add_argument("--allow_variable_data_keys", type=str2bool, default=False)
group = parser.add_argument_group("The model configuration related")
group.add_argument(
"--asr_train_config",
type=str,
help="ASR training configuration",
)
group.add_argument(
"--asr_model_file",
type=str,
help="ASR model parameter file",
)
group.add_argument(
"--lm_train_config",
type=str,
help="LM training configuration",
)
group.add_argument(
"--lm_file",
type=str,
help="LM parameter file",
)
group.add_argument(
"--word_lm_train_config",
type=str,
help="Word LM training configuration",
)
group.add_argument(
"--word_lm_file",
type=str,
help="Word LM parameter file",
)
group.add_argument(
"--model_tag",
type=str,
help="Pretrained model tag. If specify this option, *_train_config and "
"*_file will be overwritten",
)
group = parser.add_argument_group("Beam-search related")
group.add_argument(
"--batch_size",
type=int,
default=1,
help="The batch size for inference",
)
group.add_argument("--nbest", type=int, default=1, help="Output N-best hypotheses")
group.add_argument("--beam_size", type=int, default=20, help="Beam size")
group.add_argument("--penalty", type=float, default=0.0, help="Insertion penalty")
group.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain max output length. "
"If maxlenratio=0.0 (default), it uses a end-detect "
"function "
"to automatically find maximum hypothesis lengths",
)
group.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length",
)
group.add_argument(
"--ctc_weight",
type=float,
default=0.5,
help="CTC weight in joint decoding",
)
group.add_argument("--lm_weight", type=float, default=1.0, help="RNNLM weight")
group.add_argument("--streaming", type=str2bool, default=False)
group = parser.add_argument_group("Text converter related")
group.add_argument(
"--token_type",
type=str_or_none,
default=None,
choices=["char", "bpe", None],
help="The token type for ASR model. "
"If not given, refers from the training args",
)
group.add_argument(
"--bpemodel",
type=str_or_none,
default=None,
help="The model path of sentencepiece. "
"If not given, refers from the training args",
)
group.add_argument(
"--is_ctc_decoding",
type=str2bool,
default=True,
help="Use ctc topology as decoding graph",
)
group.add_argument("--use_nbest_rescoring", type=str2bool, default=False)
group.add_argument(
"--num_paths",
type=int,
default=1000,
help="The third argument for k2.random_paths",
)
group.add_argument(
"--nbest_batch_size",
type=int,
default=500,
help="batchify nbest list when computing am/lm scores to avoid OOM",
)
group.add_argument(
"--nll_batch_size",
type=int,
default=100,
help="batch_size when computing nll during nbest rescoring",
)
group.add_argument("--k2_config", type=str, help="Config file for decoding with k2")
return parser
def main(cmd=None):
print(get_commandline_args(), file=sys.stderr)
parser = get_parser()
args = parser.parse_args(cmd)
kwargs = vars(args)
kwargs.pop("config", None)
inference(**kwargs)
if __name__ == "__main__":
main()