diff --git a/docs/diagrams/consume_direct.png b/docs/diagrams/consume_direct.png new file mode 100644 index 0000000000..591ed225fa Binary files /dev/null and b/docs/diagrams/consume_direct.png differ diff --git a/docs/diagrams/consume_direct.svg b/docs/diagrams/consume_direct.svg new file mode 100644 index 0000000000..052ef0bcfa --- /dev/null +++ b/docs/diagrams/consume_direct.svg @@ -0,0 +1,73 @@ + + + + + + + %3 + + + cluster_Test Execution + + Test Execution + + + cluster_Client Test Interface + + Client Test Interface + + + cluster_ethereum/execution-spec-tests + + ethereum/execution-spec-tests + + + + eef7344c686e416aa45dad565b12bc95 + + {blockchain_tests, + state_tests}/**/*.json + + + + 01030757c7d64b328a4fe75e7979fb38 + + $ consume direct + + + + eef7344c686e416aa45dad565b12bc95->01030757c7d64b328a4fe75e7979fb38 + + + + + + 4edc3b1e2b884bc3887a84e05bf2bc5b + + $ statetest + $ blocktest + $ eoftest + + + + 01030757c7d64b328a4fe75e7979fb38->4edc3b1e2b884bc3887a84e05bf2bc5b + + + + client interface + + + + 18359fccfc1e410d8dba0b1c4d08690d + + test_report.html + + + + 01030757c7d64b328a4fe75e7979fb38->18359fccfc1e410d8dba0b1c4d08690d + + + + + diff --git a/docs/diagrams/consume_engine.png b/docs/diagrams/consume_engine.png new file mode 100644 index 0000000000..3112bf34ce Binary files /dev/null and b/docs/diagrams/consume_engine.png differ diff --git a/docs/diagrams/consume_engine.svg b/docs/diagrams/consume_engine.svg new file mode 100644 index 0000000000..8737526c8f --- /dev/null +++ b/docs/diagrams/consume_engine.svg @@ -0,0 +1,76 @@ + + + + + + + %3 + + + cluster_Test Execution + + Test Execution + + + cluster_Hive Test Environment (dockerized) + + Hive Test Environment (dockerized) + + + cluster_ethereum/execution-spec-tests + + ethereum/execution-spec-tests + + + cluster_Execution Client + + Execution Client + + + + e29b75cbf1d0467ea480c3300c4b4c5d + + blockchain_tests_engine/ + **/*.json + + + + 395a1c40a0a840b9bf35194136518375 + + consume engine + + + + e29b75cbf1d0467ea480c3300c4b4c5d->395a1c40a0a840b9bf35194136518375 + + + + + + 9662e67154bb44e29b945b881bedd82e + + $ client.exe + + + + 395a1c40a0a840b9bf35194136518375->9662e67154bb44e29b945b881bedd82e + + + + Engine API + + + + 847da55886e0468bb9a2b1f90bf90b03 + + Test Report + + + + 395a1c40a0a840b9bf35194136518375->847da55886e0468bb9a2b1f90bf90b03 + + + + + diff --git a/docs/diagrams/consume_rlp.png b/docs/diagrams/consume_rlp.png new file mode 100644 index 0000000000..b7eb9838b3 Binary files /dev/null and b/docs/diagrams/consume_rlp.png differ diff --git a/docs/diagrams/consume_rlp.svg b/docs/diagrams/consume_rlp.svg new file mode 100644 index 0000000000..192067baa6 --- /dev/null +++ b/docs/diagrams/consume_rlp.svg @@ -0,0 +1,82 @@ + + + + + + + %3 + + + cluster_Test Execution + + Test Execution + + + cluster_Hive Test Environment (dockerized) + + Hive Test Environment (dockerized) + + + cluster_ethereum/execution-spec-tests + + ethereum/execution-spec-tests + + + cluster_Execution Client + + Execution Client + + + + ead4e6b0c012492bad0a5b7ddfe98f85 + + blockchain_tests/**/*.json + + + + c8725475ec794522bfb02da75d33d0d2 + + consume rlp + + + + ead4e6b0c012492bad0a5b7ddfe98f85->c8725475ec794522bfb02da75d33d0d2 + + + + + + e7437028e38343fd8e48728ec8452c23 + + $ client.exe + + + + c8725475ec794522bfb02da75d33d0d2->e7437028e38343fd8e48728ec8452c23 + + + + verify via RPC + + + + c8725475ec794522bfb02da75d33d0d2->e7437028e38343fd8e48728ec8452c23 + + + RLP-encoded blocks + + + + c5dfdd58ed954bc19809bfc05a0518fd + + Test Report + + + + c8725475ec794522bfb02da75d33d0d2->c5dfdd58ed954bc19809bfc05a0518fd + + + + + diff --git a/docs/diagrams/eest_flowcharts.ipynb b/docs/diagrams/eest_flowcharts.ipynb new file mode 100644 index 0000000000..935e0cc40b --- /dev/null +++ b/docs/diagrams/eest_flowcharts.ipynb @@ -0,0 +1,448 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# EEST Flowcharts" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "from diagrams import Cluster, Diagram, Edge\n", + "from diagrams.custom import Custom\n", + "from diagrams.programming.language import Bash, Go, Python\n", + "from scour import scour\n", + "\n", + "\n", + "def embed_svg_images(filename):\n", + " \"\"\"\n", + " Workaround for embedding images in SVG files, see:\n", + " https://github.com/mingrammer/diagrams/issues/8#issuecomment-633121034\n", + " \"\"\"\n", + " with open(filename, \"r\") as f:\n", + " in_string = f.read()\n", + " out_string = scour.scourString(in_string)\n", + " with open(filename, \"w\") as f:\n", + " f.write(out_string)\n", + "\n", + "output_formats = [\"svg\", \"png\"]\n", + "output_dir = Path(\"./\")\n", + "\n", + "add_captions = False\n", + "def add_caption(caption: str) -> str:\n", + " if add_captions:\n", + " return caption\n", + " return \"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "output_path_no_ext = output_dir / \"fill\"\n", + "\n", + "with Diagram(\n", + " add_caption(\"Generating tests with fill\"), show=False, outformat=output_formats, filename=output_path_no_ext\n", + ") as fill_flowchart:\n", + "\n", + " fixtures = Custom(\"fixtures/**/*.json\", \"./img/json.png\")\n", + "\n", + " with Cluster(\"t8n tool\"):\n", + " t8n_python = Python(\"$ eels-daemon\")\n", + "\n", + " with Cluster(\"ethereum/execution-spec-tests\"):\n", + " test_source = Python(\"./tests/**/*.py\")\n", + " fill = Bash(\"$ fill\")\n", + "\n", + " test_source >> fill >> fixtures\n", + " t8n_python >> fill\n", + "\n", + "if \"svg\" in output_formats:\n", + " embed_svg_images(output_path_no_ext.with_suffix(\".svg\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "output_path_no_ext = output_dir / \"consume_direct\"\n", + "with Diagram(\n", + " add_caption(\"Executing Tests via a Client's Direct Interface\"),\n", + " show=False,\n", + " outformat=output_formats,\n", + " filename=output_dir / \"consume_direct\"\n", + ") as consume_direct:\n", + "\n", + " fixtures = Custom(\"{blockchain_tests,\\nstate_tests}/**/*.json\", \"./img/json.png\")\n", + " with Cluster(\"Test Execution\"):\n", + " with Cluster(\"Client Test Interface\"):\n", + " client = Custom(\"$ statetest\\n$ blocktest\\n$ eoftest\", \"./img/clients.png\")\n", + " with Cluster(\"ethereum/execution-spec-tests\"):\n", + " consume = Bash(\"$ consume direct\")\n", + " test_report = Custom(\"test_report.html\", \"./img/html.png\")\n", + "\n", + " consume << Edge(label=\"client interface\") >> client\n", + " fixtures >> consume >> test_report\n", + "\n", + "if \"svg\" in output_formats:\n", + " embed_svg_images(output_path_no_ext.with_suffix(\".svg\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "output_path_no_ext = output_dir / \"consume_rlp\"\n", + "\n", + "with Diagram(\n", + " add_caption(\"Executing Tests by loading RLP-encoded Blocks upon startup\"),\n", + " show=False,\n", + " outformat=output_formats,\n", + " filename=output_path_no_ext\n", + ") as consume_rlp:\n", + "\n", + " fixtures = Custom(\"blockchain_tests/**/*.json\", \"./img/json.png\")\n", + " with Cluster(\"Test Execution\"):\n", + " with Cluster(\"Hive Test Environment (dockerized)\"):\n", + " with Cluster(\"ethereum/execution-spec-tests\"):\n", + " consume = Python(\"consume rlp\")\n", + " # with Cluster(\"Hive Orchestrator\"):\n", + " # hiveproxy = Go(\"hiveproxy\")\n", + " with Cluster(\"Execution Client\"):\n", + " client = Custom(\"$ client.exe\", \"./img/clients.png\")\n", + " test_report = Custom(\"Test Report\", \"./img/html.png\")\n", + "\n", + " consume << Edge(label=\"verify via RPC\", style=\"dashed\") >> client\n", + " consume >> Edge(label=\"RLP-encoded blocks\") >> client\n", + " fixtures >> consume >> test_report\n", + "\n", + "if \"svg\" in output_formats:\n", + " embed_svg_images(output_path_no_ext.with_suffix(\".svg\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "output_path_no_ext = output_dir / \"consume_engine\"\n", + "\n", + "with Diagram(\n", + " add_caption(\"Executing Tests via the Engine API\"),\n", + " show=False,\n", + " outformat=output_formats,\n", + " filename=output_path_no_ext,\n", + ") as consume_engine:\n", + "\n", + " fixtures = Custom(\"blockchain_tests_engine/\\n**/*.json\", \"./img/json.png\")\n", + " with Cluster(\"Test Execution\"):\n", + " with Cluster(\"Hive Test Environment (dockerized)\"):\n", + " with Cluster(\"ethereum/execution-spec-tests\"):\n", + " consume = Python(\"consume engine\")\n", + " # with Cluster(\"Hive Orchestrator\"):\n", + " # hiveproxy = Go(\"hiveproxy\")\n", + " with Cluster(\"Execution Client\"):\n", + " client = Custom(\"$ client.exe\", \"./img/clients.png\")\n", + " test_report = Custom(\"Test Report\", \"./img/html.png\")\n", + "\n", + " consume << Edge(label=\"Engine API\", style=\"dashed\") >> client\n", + " fixtures >> consume >> test_report\n", + "\n", + "if \"svg\" in output_formats:\n", + " embed_svg_images(output_path_no_ext.with_suffix(\".svg\"))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "output_path_no_ext = output_dir / \"execute_live\"\n", + "\n", + "with Diagram(\n", + " add_caption(\"Executing Tests by sending transactions via RPC\"), ## (on a live network)\",\n", + " show=False,\n", + " outformat=output_formats,\n", + " filename=output_path_no_ext,\n", + ") as execute_live_flowchart:\n", + "\n", + " with Cluster(\"Test Execution\"):\n", + " with Cluster(\"ethereum/execution-spec-tests\"):\n", + " test_cases = Python(\"./tests/**/*.py\\n(state_tests)\")\n", + " execute = Bash(\"$ execute\")\n", + " with Cluster(\"Execution Client\"):\n", + " client = Custom(\"$ client.exe\", \"./img/clients.png\")\n", + " test_report = Custom(\"Test Report\", \"./img/html.png\")\n", + "\n", + " execute << Edge(label=\"eth_getTransactionByHash\", style=\"dashed\") << client\n", + " execute >> Edge(label=\"eth_sendRawTransaction\", style=\"dashed\") >> client\n", + " test_cases >> execute\n", + " execute >> test_report\n", + "if \"svg\" in output_formats:\n", + " embed_svg_images(output_path_no_ext.with_suffix(\".svg\"))\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fill\n", + "\n", + "Generates test fixtures from the test-cases in `./tests` using EESTs test filling framework." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: node '34308c1f9d004d69a6060d05e5f9fedf', graph '%3' size too small for label\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7kAAANzCAYAAABs1N8SAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeXxU9b3/8feZJXsCYZd9C1sQRNypt1oXQCsuVVtttba2KiqotSq4IVpte9Uq7lvV1v3aVgWtXvXqTxRQQFYRAUG2ICEQQsg+M+f8/rCJM5NZzmSZCWdez8eDR2bO+p2ThXnP5/v9HsOyLEsAAAAAADiAK9UNAAAAAACgrRByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAYxByAQAAAACOQcgFAAAAADgGIRcAAAAA4BiEXAAAAACAY3hS3QDAaQIBU6W796i0rFwVlftVU1Mnn98vy7JS3TQA6NAMw5DX41FOTpY6F+SrZ/cu6tmtq9xuPpMHANhnWLzzBtqEz+/X+o1b9M22HfL7A8rLL1Bup3xlZ2XL7fHKMFLdQgDo2CxLCvh9qq2rVfW+/araXymPx61B/Xpr2JAB8nr4bB4AEB8hF2gly7K0tWSn1qzbJNOy1KtvX3Xv1UvejIxUNw0ADmi+hgaV7dypndu3y2UYKh4+WP379JLBp4YAgBgIuUAr+Hx+LV6xRmV79qpn797qO3Cg3FQaAKBNBfx+bd+8WaU7dqh710IdcUixvF7+1gIAIiPkAi1UXVOrRUtXqcEfUNHoYuXm5ae6SQDgaNVV+7XhizXK8Lh19GFjlJuTneomAQA6IEIu0ALVNbX6aNHn8mZmadjoYnkzMlPdJABIC76Geq3/Yo189XX64dHjCboAgGYIuUCCfD6/Plr0uSyXWyPHjpXL7U51kwAgrZiBgNauXCmZAR139Hi6LgMAQjAnP5AAy7K0ePkXavAHNGx0cbsF3CcfeVDnnXFquxz7QFC+Z7cmH3eM1qxemeqmtJuX/v6Mzpj0o1Q3AzggudxuDRtdLJ8/oM+Wf8Et2gAAIQi5QAK2luxUWXmFitqoi/KzTz2us045qQ1a5iyLPp6vTp07a2TxwaluSqvxPW659r52fG8ObN6MTBWNLtbu8gptLdmZ6uYAADoQQi5gk9/v15frN6lXnz5MMtXOFn7ykY6acKxcLuf+iTrvwl/p9Xc+SHUzgANabl6+evbprS/WbZLP5091cwAAHQSDWACb1m3cooBpqc+AAba237xpo5596jGtXrlSvoZ6DSkarl9fOlUHjx0nSXrswfv0+j/+R5I06YdHS5K6duuuF/45t+kYlfsqdP/df9SypUuUm5unc877hc44+9yEziN91/35g3ff0cNP/10P3PMnrVz+uU6ceIquuPr3tvb/7ztu07ZtW/TgE8+EnPv6q65Qbl6uZt353yHneeSZ53Tfn+/UqhXL1bNHL0279nqNHnuIFi9aqL8+9rC+3bFdI4tH6/qbb1PXbt1DjlldU62VK5br1jv+ZPs11tXW6srf/kq5ubn6y8OPN93G6fMli3XzdVfr8quu1Wln/sT29Wrc7rmnn9TqlSvk9/k0orhYv7rkchUNH2H7msT6Hr/092f0yovPhQTdFcuW6rmnn9KG9V/J6/Zo9CHj9JupV6hf/4HNvpeP/+2FuD8bkZTtKtVfH39Yq5YtU21djfr3H6SzfnqefvijE0N/Vp76m/7y5zu1etUKderUWWee/VOdee7Pml2jtriWkcT7/bBz7livNdbx410jdCx9BwzUntJdWr9pi4qHD0l1cwAAHYBzyyRAGwoETH2zbYd69e1r6z64mzZu0NWX/1ZZ2dl66Mln9MK/5umwI4/SzGuv0oZ1X0mSLpt2jX52wUXKyc3TOx8t0jsfLQoJuJYsPfbA/TrrnPP04j/n6oyzz9VjD96ntWtWJ3Se4OM9Mudenf3Tn+sf897VFVf/PqH97bJk6amHH9QvfvlrPf/qGyoeM0a33XS9VixbqgXzP9Rd996vx555QWVlZXr4/nua7b9k4UJ5vR6NG3+Y7deYlZ2tmbNma+PGDfrbX5+QJFXs3at77pytI46e0BRw7b7er9ev01VTfyNJuuehx/T8a/N0zvkX6K03/pXQtYj3PQ62YtlS3XjtVSoaPlzPvvxPPfjks2qor9fvLr9Uu0pDu2La+dmI5s7bblZF+V7d+9BjeuX1tzXt2uu1aMF87d1bHnL8R+bcq/MuuEgv/nOuzrvwIj312EN6+803mrZp72sZ69rZPXes1xrr+HauEToOt8ejXn37avO2bxUImKluDgCgAyDkAjaU7t4jvz+g7r162dr+r48+pB49euq6G2fpoN59lJ9foJ//8tcaOWq0Xvz707aOUbF3r44/eaJGjz1EOf+p1PU6qLfee/utFp2nYu9enXDSZI0ee0hTUG+LdkZq94mTT9GwkcXKy8/XRb+9TNVVVXrg3j9r2u+uV9du3dW7b1+ddc5P9emCT1RTXRWy/8JPPtL4I46SNyMjoTYOKRquiy+5XK++9LyWf75Ed981W4bbpWtn3JTw9Xry0QfVtVt33Tj7TvUfMFA52TkaN/5wXX39jS26JnY8+9TjGjBosC6bdo26dOmq3n37auZtd6jB16BXX3o+ZFs7PxuRBPx+rftyjX508iQd1KevMjIzNXTYcM245XYVFnYJOf4JE09R8Zixys3L1+Qfn66TJp2i5555SoFAQFJqr6Wdc9t9rS29RuhYuvfqJZ/fr9Lde1LdFABAB0DIBWwoLStXXn5BU/CKxe/zacXyZTri6Alyh82+fPAh47Rm1Spb53S5XDr0sCNClvUbMEClO79t0XkMw9BhRxzZ5u2M1O6x48Y3PS/o1Fn5+QUqGjZCHq+3aXmffv1lmqZ2lZaGtOnzzz7VMcf+sEVtPOOcn+qwI47SrTN+r2VLFuv6m2apoFPnhI7la2jQFytX6Af/dVyz7dpLQ0OD1q/9UkcePSFkeUFBJxWPPlirli8PWR7vZyMat8ejvv0G6OXn/6aPPnhf1VX7I25nGIYOP/KokGWHHz1B5bt3q/Tbb1N6Le2e2+5rDdfS/ZBa3owM5eUXqLSMajsAgDG5gC179+1XbqdOtrbdX7VfAb9f/3j5Bf3j5RearTcMw9ZxCjp1avYmPicnVzv/E2QSPU9eXn5ISG+Ldka6bUdBp07NJozKzslWYZfQKlh2VrYkqbrq+0ru8mVLVddQryOPOqZFbTQMQyecPFlLPlukIUOH6ZBDD2taZ/dYVdVVCgQCKuzSNeZrj6YltzKpqtov0zTVOUKlsLCwqzZv2hSyLN7PxldrvtDVl/82ZP07Hy2SJM2660964uEHdPddt8sMBDRs5Cid+ZOf6ocnfD/eNCc3L+QDCUnq3Pm7Dwt2796l7NycNruWsdoaSSI/E3ZeayQt3Q+plVuQr4rKylQ3AwDQARByARtqa+vUpae9rsq5uXlyuVz6+UUX6+e//HWLz2kodshM9DyesLHEieyfnZer2praZsv37NmtvPy8hNody6KPP9KYseOaZq9O9DWWl+/RYw/dp6HDhmvjhvV6/R//0zQZk91j5eXmye12a2957G6PiVyTePLy8uVyuVRRsbfZuoqKcuUXhH7AEu8ajygeHTUo9u03QLf/6V7V19Xpi9Wr9Pa81/TH229Rdk6Ojjj6uw8Xaqqr5Pf5QoJuRUWFJKlbtx5tei1jtTWSRH4m7LzWttwPqZWdna09QT1DAADpi+7KgA0+v9/WhFOSlJGRoTGHHKpFn8yXacaeBCUrK0t+v69FbUrkPK3d/6CDemvXrp2qq/0+1O3Yvl07d5QkfN5oLMvSpwsXNHVVTrSNlmXp3rtul8fj1R//8oDOOOen+uvjD+ubjV8ndCxvRoZGjz1En8z/f03jTyOxe03sfI8zMjI0bOQoLVm0MGT5/v2VWvPFah18yLgoe7ZcZlaWxh9+hG687U55MzL01do1Tessy9LSxZ+FbL/k04Xq0rWbeh50UJtfy2giXbuW/NxHe63xvjexrhE6HrfHI7+f2wgBAAi5gC2WZSVUobzkyukq2b5Vf75jlrZu2ayG+npt37ZFr736ip545IGm7foNGKiG+nqtXL6sRUHV7nlau/9xJ5ykQCCgZ558VNVV+7V500Y9/cTDGlI0LOE2R/PVl1+ofM9uHf2DY1vUxn/9z0ta/vlSXX/zLOXnF+jiSy5X/wGD9KfZt6qhvj6hY/126jTt2V2mu2bdpG1bN6umtkYrli3V/Xf/MeFrYvd7fOGvL9E3m77W4w/dr717y/XtjhL9afYtcrs9Oue8X7Tq2jbaVbpTs2Zep+WfL1Fl5T7V1Nbo7XlvyO/zhYyj7tS5UO//71tas3qlaqqr9M5b8/TeO//WLy66uKmbdFtey2iiXTs757bzWiMd3+41QsdjyGjRcAEAgPPQXRloB4OHFOmBx5/W88/8VddNv1y1NdXq2au3jjj6GJ197vlN2x094VhNPOXHuuOWGarav7/ZfXLb6jyt3b9b9x6aeesdevqJh/XveW9o+MhRuvq6GXrgnv9O7MLEsPDj+Ro2fKS6de+RcBs3blinZ558TOf+/EKNOeRQSZLH69XMWbN1xW8u0uMPz9G0311v+/UOHTZc9z3yhP721BO66rLvxouOLC7Wr347NeFrYvd7fOhhh+sPd9+v5595Sr8890x53B4dPG6c/vLI4+ppc1bveHr07KVTp5ypf7z8gjZ89ZUCfr/6DRqkm26/S2PHHdq0ncswdNm0a3Tfn+/U6lUrVVDQSb++ZKpOmXJG0zZteS2jiXbt7JzbzmuNdnw71wgAAHRchsXHnkBcr739oYpGjlKXHt1T3RTH+s0vfqYTJ07Szy64KNVNSWtPPvKgPnj3Hb30euzbEQEdTfmuMm1Y+6XOnHx8qpsCAEgxKrkAOoSnnn851U0AAACAAzAmFwAAAADgGIRcAECT314+ja7KAADggEbIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAAAOAYhFwAAAAAgGMQcgEAAAAAjkHIBQAAAAA4BiEXAAAgzW3cuFGXXXaZBgwYII/HI8Mw+Peff127dtX555+vdevWpfrbBMAmQi4AAEAae/fdd3XYYYfp8ccf19atWxUIBFLdpA6lvLxcL730kiZMmKBPPvkk1c0BYAMhFwAAIE1t3rxZ5513nioqKlLdlA5vz549mjJlihYsWJDqpgCIg5ALAACQpv785z+rvLw81c04YOzdu1ennXYaFV2gg/OkugEAAABIvtraWs2bNy9kWUZGhk499VRlZ2enqFUdR2Vlpd58881my/fu3aspU6Zo3rx5mjBhQgpaBiAeQi6AhJmWpUDAVIPflC/w3T9/wJTPbypgWgpYpkzTkgxDhiS3YcjtMuT1uOVxu+R1G8rwuJXhccvtdsllpPoVAUD62bFjh0pKSkKWnXfeeXr22WdT06AOZv78+RFDrvRd0P3xj3+suXPn6thjj01yywDEQ8gFEJVpWapr8Kuqzq/dlTUqKa/R9j1V+ra8WqX7alS+v05V9QFV1zWoriEgv2nKb1oyTUuWJMuyZBiSKyjkZnrcys3yKj/Lo675WerRKVt9uuSrb9dc9emaq24F2crL9Cozwy2XQfoFgPaye/fuZsvGjh2bgpZ0TD6fL+b6iooKnX766XrjjTcIukAHQ8gFEKLBF1B5VZ2+2lGh5ZvKtGrLbm0u3a9dlbWqqvPJHzDb5bxej1t5WR717JSjIb0KNHZQdx06qJuG9S5Up5wMedxMIQAAbam+vr7ZspycnBS05MDV2HX5zTffpOsy0IEQcgHItCxV1jTo0/Wlemf5Fi3+epd2lFfJ52+fQBuJzx/Q3qqA9lbV66uSvXrr8y3K9Lo1oHu+fjDyIE0+dKDGDOiq3EyvKPACAFLh+OOP1/z580Nus1RRUaHTTjtNc+fO1Q9+8IMUtg5AI0IukOb27K/Tq4u+1v988rU2lu5rt0ptS9T7Alq/o0Lrd1TouY/WaezA7jr/2CKdcugA5WdnpLp5AIA0c8EFF+icc87RtGnTQoIuk1EBHQshF0hTdQ1+vbb4G90/b4W276lKdXPi8vlNLf26VMs27tJT732paaeM0aRx/ZXhdae6aegALMtKdRMQhUHXCzjM1KlTZRiGpk2bJr/f37S8cTKqefPmUdEFUoyQC6ShLWWVuvMfS/W/K7Z1qMqtHaZl6cvt5brm2Y/13soBuuGs8erbNS/VzUKKmL4GNVRXyldXIzOoqoKOwzAMuTweebPz5M3Jl8vNB1M48F166aWyLEtXXXVVyARVFRUVmjJlCpNRASlGyAXSzJpt5br+bwu0assemQdw9auuIaDXF3+jr3dW6k8XHK2xA7uluklIsoaaKtXs3ikr4JPH45HH9d3kZHYrh+HbJVJxjLdta9cnKlYl226V28524dvY28dUoK5B1dX75c6sUEHPvjLcvP3Agc0wDF122WWSpOnTpzer6DZ2XaaiC6QG/8sAaWTTzn2a+fwirdyyxxHdO03L0uqtezT9qY/14G+P1ZgBBN10YfoaVLN7pwwroLz8fLnDqoONITI4TMZ7nOg+sUJyvGPZeR5JpN/b4GWRQmisYNr4ONoxYm2byHEkqaGhQVVVVaravVN53XvLcDFjOg5sjUHXMAxdeeWVzSajYowukDqEXCBNVNX5NOetlVq+qcxWwHUZhixZ6uhZ2LIsfb2zQjf8fZGemXaCenXm9hfpoL5qnwK+euXn5ysQCKimpqbp5zpaaA0OptGW2d2ntdvHamcsdkJn8Fe7y+ysi7SN3XO53W5lZWUpKytLtdX75e9UJ28Wv6s48DUGXcuyIk5GxazLQGoQcoE08cnab/W/y7fG7KLs9bg0sk8XHTmsp/p2zVNNvU+rt+zRp+tLVV5Vl8TWJm711j2a8+YKzf7ZUcrwUCFyMsuy1FBbLZfLJcuyVFtbq0AgkHCINQxDlmXFfBxpWXhbWtL1ONI5wkN6pNed6NdEQmpr18far/GNv8fjkWUGFGioJ+TCUWJNRtUYdBmjCyQPIRdIAw3+gF5fvFH763xRt8nPytBvTx6lnx87TD0658j1nzfa9b6APt9Uptte/kxfbt/bYbs5W5alf326SacfMVhHDeuV6uagnTVOMhUIBGSakSdPs9PtuLVaOv43kWXB6yIF40hBOXyfeMds6fpo20baLxAIyO12y7IsJgmDI8WajOr000+nogskEeUOIA2UVtRq1ZbyqOvdLkOXTSrWtFPGqFdhblPAlaRMr1vHDO+lB37zX+rXwWcxrqrz6eVPNqjexxvodGBZVlOFsKUhti0niIoXWqN1S442fjf4XyLtaslrSsZtfoK/X4ATNXZdnjNnjjye0DpS42RUn3zySYpaB6QXQi6QBsoqa1RZXR91/ah+XXThcSOV4Yl+a48RfQp18Ymj5HF37D8bC9ftVFllbaqbgXZmWZZM04xYxW2v3gbtEQTjjduNtp2dNiUS/IOvmd2wnqjG71mkybAAp2gMug8++GCzCfEIukDydOx3qwDahD9gxRyLe8LBfdUpJyPucX40uo8652S2ZdPaXGlFjdbvqEh1M5BCyahKxgt9iayPtk8iE1UlMnmV3TYmcoxkXHPgQGEn6C5YsCBFrQPSAyEXSAOuKNWhRoN6Fsjtiv8mtXvnHBXkxg/DqeQPmNpaVpXqZqCdteR+rfFE+x1pbRU02rHsVmcjTaiVbIlc30SuF+BkU6dO1UMPPRSx6/KPf/xjffzxxylqGeB8hFwgDcR701lbH7B1q6AGX0A+f8cfU1fd4Ovwtz5C6yUSLhu3ifTP5XI1exy8rC23jdeG4K/B/2Kd2+76RNph57U2Pg7/XoRf80S+R4DTXHrppXrggQfk9XpDljdORkXQBdoHsysDaSH2bU4+37RLP/tBkbxxbr2zYUeF9u6PPra3o8hwuSRZknhTje/4/X6tXr1aq1evVmVlZcRb/9h9nsh+LV0XS6R75dp5bnc/u+tcLpd69eqlI444Qv369bPV9kjHB5ysseuyJE2fPr3Z7YWYdRloH4RcIA0YhhSrtPnh6u1as22PDhnUPeo2Pr+pFz9er5oGf9RtOgyyreMlEpT8fr+ef/55zZ07V1VVVbYrwHarw61Zb3eblmwbLJHrZWfb4FsF/etf/9K1116rQw891PbxCbpIJ41B1zAMXXnllSGzjDeO0SXoAm2LkAtAu/fX6c5/LNWfLjxGg3t0Uvj76AZ/QH/74Cu9tWxzzAmsgGSyE5QMw9CqVas0d+5c7du3T4FAIOIY10iTPkVbHm3bSMeLtX2kbeyOv21J1TfauuCvwQHUzlfTNFVWVqYnnnhC9957r3Jycmy1C0g3jUHXsixNmzaNoAu0M0IuAEnSp+tLNe3J+frVj0bqiKE9lJ+TIb9paVvZfr266Gv9Y+FG1TV0/PG4SA+JVAJXr16tqqqqpoAbPi61Ufj41FjLgtdF2j/a81jbRVoXzk4ADharG3LjslghN3xZ+D4+n0+maWrz5s3auXOnBg8ebLs9QDqaOnWqDMPQtGnTmnVdPu200zRv3jyCLtAGCOwSofAAACAASURBVLlAGrDzdti0LK3cvFvX/32BDirMVWFelup9Ae3cW62KmgbenOKAZBiGKisrm+7PGj4RU6xAGy/otiTkJvo8+Gusx9GEV18jPY4XbKM9N02z6Vr6fD5VVdmb1Zzuykh3l156qUzT1NVXXy2fz9e0vHEyqjfeeIOgC7QSIRdAiAa/qS1l+7WlbH+qmwLEFB7WYoW+4PWN1VyXy9X03G7oTbQam+jySM8bl0X6Gr4+2qRR0cJuopXc4IAbPC43WmglzMJpysrKtHHjxlYf5+STT9ZVV12le+65J2R5eXm5pkyZonnz5mnChAmtPg+Qrgi5QBqI1f0ROBCFhye7P9+JBtiWVHZbsn28ZZEeR3v9kaq28YJs+LpoyxoDbrwPFKIt5+8QDnQ33HCDbrjhhnY9R+MY3fnz56u4uLhdzwU4FffJBQAcsKKNM22peB8IRVofKZxGWmd3WaIV4Xj3vrUbxu22Ldr1sRtgqe4C8ZWXl+uqq66SaZqpbgpwQCLkAmmB6gmcJ1pYilbVjLRdvMDWkkAXa59oITjetpGqudHOFa3ia2c/u68lEsIrErV9+3bdfffdmjJlio4++mhNnz5dFRUVSW/H8uXLdeaZZ2rChAm64IIL9PLLL6u+PvX3hJ8/f77KyspS3QzggER3ZQDAAact7vsar/ts41jTxrG7kda3RKJhN9r5YoX0xtcWadxs8OPgY7UkpDaeP9HvB4E4vQUCAd1///2aPXu29u//fv6HTz/9VFVVVXr66aeT1pbKykqdccYZ2rp1qyRp4cKFev755zVixAj94he/SFo7IvH5fNq2bZt69uyZ0nYAByJCLpAWeEMJ5woOb43P4wXU4O1jaTxO49fG8ajBszS39Nh290ukohseZKMtj7Zf+HnjVcJbgoCb3kzT1IwZM3TvvfdG/FlYsGBBUsdvb926tSngBvvqq69066236uSTT9aRRx7Z7u1wuVxav369XnrppZDltbW17X5uwIkIuUAa6F6QrfOOLVJNvT/+xm1ox95qfbB6u3x+xhShbdmtBrZFoAoOuIFAQJZlyePxyOv1yu12tzjoJtqtOd7j4Ofhldzg1xHteaRj2G0zYNcbb7yh++67L+rv5jHHHJPUn7P+/furX79+2rZtW7N1pmnqyy+/1IsvvqiuXbu2e1ueeOKJZiGXD4WAliHkAmmgd5dc3XDm+KT/Z/nx2m+1cO1O+fwNST0vEK41P/uWZSkQCMjv98vj8aiwsFC7du1qNvlTJK15sx6re3K0cbeN7Q3vnty4PPhYiVyT8PAcSax78UbbDunFNE3Nnj1bgUAgZLnb7VZRUZFOOOEE3XHHHUltU0FBgV577TXNnj1bS5YsUWlpacjP6Pbt2/Xoo4/q5ptvTmq7ALQOE08BacAwDLldhjxuV1L/uV1UfdA+Erkva6R7xCZyHr/fL5/PJ5fLpenTp+uRRx5RcXGxGhoa5Pf7Q+4ZG0lLJqmKtT5e9+VoXZrjnTPWGN94Er22BN30tHbtWq1ZsyZkWf/+/bVixQqtXbtWDz30kAoLC5PervHjx2vu3LnasWOHnnjiCXk8oTWgf/7zn82COYCOjZALwPFcqpJbZfH/WbvktnbLZe2TYdWLscwdWyLdaVsaQgOBgHw+n9xut6ZPn66LL75YhxxyiO666y6NGjVKDQ0N8vl8cW/z0R5BN9YMyol2obYzAVdbIeCmrw0bNsjvDx02M2PGDI0ePTpFLQplGIYuvvhiHXfccSHLN2/erKqqqtQ0CkCL0F0Z6OBMy1JdQ0BVdT7tra5TVa3vuzGB7o7/GdXGnfsUsFI9HtdUjvm+cgMfSvGqVJYlySVT2QoYPVRvjFC9e7QC6ilL3qS0Fq3TlhPWBI/DPf3003XJJZfI6/3u56C4uFh33XWXbrzxRq1du7YpdLrd7qjHa89xhrHG4gZvk+gEU+ETb4WfL5bwLsuM50Wk2wMNHTo0BS2JzjAMFRUV6f33329aVlNTo4YGht0ABxJCLtABWZalOl9A63dU6KM1JVq8oVSbdlWqfH+9GvwHTpcp07I6xKRTLrNabqvMdmHWLclrbVaWFss0O6nOGKdq90nyGf3/sxaplshtaFpTOWwcb7tgwQKtWLFChx12WFNYKy4u1h//+EfdcMMNWrduna2gG+s8LW1feCW3JTMlt5bdLuHcPii9HSjf+0jj3AEcWAi5QAfT4Avok6++1TMffKnFG3apqs6X6ialNZe1TznW/1OWuVxVnlNU7T5JlpWV6mYhgvBb5gS/UW3pPWAbA2tZWZmuuOIKPfroozr00EObjj1q1Cjdc889+t3vfqevv/66aXn4mL6Oqr3DLwAAqdDx+zsCaeSb0kpN++t8XfzIB/pgdQkBtwNxaZ8K/K+o0PeY3Gre5Q7J1ZrJpBLhcrnk8XiUkZGhPXv2aOrUqVq6dGnIeYcPH645c+ZoyJAhqqurk8/nizhJTay2tnb253jHSXR5S9oQ6XsSbSIwgjUAoD0RcoEOwLIsvbtim372l//VW59vUYPvwOmSnF5MZZlL1Nn3iNwqT3Vj0l6ygpJhGE1Bt7y8XNOnT9enn34acv6hQ4fqoYce0tChQ0OCbnt3EQ4OlvGCf0uCbrRj2gnWiZwHaI3a2lqtWbNGGzdujDsJHID0QMgFUixgmvrHoo26+umPtX1PFW8EOzxLmfpSnfzPyKXqVDcG/xEpdDUGv3iVw3i/c8FjbTMyMrR7925dd911WrhwYci+gwcP1gMPPNCsotua80fbN949ae3sl0gb4nVrTuTvFn/j0Jbee+89jR07VmPGjNHIkSN12mmnqaSkJNXNApBihFwghUzL0jvLt2nWy4u1r6Y+1c2BXZapTGul8vxvSKJqkAotqSS2lsvlktvtltfrVWlpqW666SZ98sknIecfMmSI5syZo6FDh6q+vj5q1+VGLbm/bLxQa6e7cKJtSXR2ZIIskmHDhg0655xztGHDBpmmKZ/Pp3//+9+68MIL5fMx3AdIZ4RcIEUsy9LyTWWa/T8E3AORYfmVY36gTGtNqpuSthIJcG0leIxuSUmJbr311mZBt6ioSPfcc4+Kioqa7qMbK+hGE6uLcPDzSBXr1gTdeCG4JcHc7jmARDzzzDPat29fs+UffvihVqxYkYIWAegoCLlAipRV1ulP//pcJXu4wfyByqUa5Qf+KUO1qW5K2mmLkJTIWNLgKmZ40J01a5YWLFgQcrwRI0borrvuCgm6fr/f1jkjhcDw0BqrW3K0oBsvNMdrQ6x9WhuugZYoKyuLuNyyrKjrAKQHQi6QAv6AqZc/Wa/FX+9KdVPQShnmBmWbS2T7JrxoM+01W3H4cSKNRw0PurfcckuzMbrFxcX6wx/+oKKiItXX18vv94eM0bVb4Yw3/jZ43/CwGa17c7TniWjpOFwquenL7/c3W+b1elt8vGOOOSZiN/q8vDyNHTu2xccNb5NpmkxoBRxgCLlACmz4tkIvfrxB/gD/aR74LOUG3pWLam5StcVYUzuTKcXaJjjo7tixQzfeeKM+++yzkO1Hjx6tO+64oynoJnp7ITsTakX6F23fSOdqTeiMFqyBSDZu3NhsWe/evVt8vJ///Oc68cQTQ5Z5PB7dfvvt6tOnT4uPe9BBB4U8DwQC2rp1a4uPByD5CLlAkvkDpl5duFHb9+xPdVPQRrzWFmWYX6W6GYigtdXeeOEzOOju3LlTv//97/X55583C7p/+MMfNHjwYNXV1amhoaGp63Ks6q3dLsmxQmtrx+m2NrBGC+mJTGIFZ6irq9Orr74asiwnJ0f9+vVr8TEzMjL0xhtv6N5779WkSZN09tlna+7cubr66qtb1daioqJmy5577rlWHRNAchFygSTbXFapd5ZvEcWO9tN4y5fkCSjb/ESGxWyeyRQvwMVbFu/Ydte5XC55vV5lZmZq9+7dmj59ulasWNGs6/If//hHDRw4MOT2QrFeU7x18borJzK2tyXLYmntejiLaZqaMWOGNm3aFLJ84sSJys7ObtWxs7Oz9bvf/U5vv/22Xn31VU2ePLnVf/+PO+44denSJWTZk08+qbfffrtVxwWQPIRcIMn+b9V2bWeyqXaV6XEn/5zmV3KrPOnnTVfxqpLRtk302OHLY3V99ng8yszM1N69e3XFFVc0q+iOGjVKf/nLXzRgwADV1taqoaEhJOjGq8gGL4vXdTn8eLEqw60Ju+Ftt1MNJuCmj0AgoCVLlugnP/mJ5syZE7LO5XLpkksuSVHLYuvSpYvOPffckGV1dXU666yzNGvWLLouAwcAQi6QRPtrG/Teym0KmLzJay+GIXXKzUj6eV2qUIa1TkxAlRyxuvm29rgt3aex63Jj0L3mmmu0ePHikGMOGzZMc+bM0cCBA5uCbvisy9EqttECb6T22BmP25pxuLGex1rOuN308Oqrr2rs2LEqKCjQUUcdpddff73ZNmeeeaYmTZqUgtbZM3v2bPXq1StkWV1dnW6//XYNHjxYXbp00eTJk7Vu3boUtRBALIRcIIm+/rZC63dUpLoZjuZ1u9SjU2j3N8NIzgRfGeYaGWo+eyiSz+441Vj7tOQ8wUF39+7dmjFjhhYtWhSy3dChQ3X//fdr0KBBzYJurOpr+Ndo1dzw/eNVeCOdz841idfWWNvCub755htdeOGFWrVqlWpqaiLOSjx27Fg98sgjKWidfT169NALL7yg3NzcZusCgYD27t2rd955RxdddFHyGwcgLkIukERLvy7TvpqGVDfD0QrzstS7y/dvSgyZMqzkdA/3WltkqCYp50JzrQlPLenybKfrcmlpqW655ZZm99EdOnSo7rvvPg0ZMqRpjG5wGLBTyW18bKfLcryQHP664oXfeNfA7no4z9q1a1VXVxdzm1tvvVU9evRIUota7vjjj9dZZ50Vc5u1a9eqvr4+SS0CYBchF0gSf8DU0k27uG1QOxvSs0Bd8rOClvjk1r6knNtt7ZHb2pOUcyF+RTZahTPa9i05R7TlLpdLbrdbXq9XJSUlevDBB7V79+6QbYcOHaqrr75abrc76mzLiXZVjtTueCE52vFiPbcTjCO1Kdo6OMfhhx+ubt26xdzm8ssv15o1a5LUopZ78skn9cILL8Tc5vjjj1dmZmaSWgTALkIukCR7q+u1YUdywlY6O7a4j7K9nqbnLqtObis5E0K5VCuPtSMp50p3bTGZUbwKZaLVy+DlpmkqEAjI5/OpS5cuOv/881VYWBiy/Y4dO/T000/L7/fL7W4+WVpLuipH65ZtJ+hGem3xwqwdsUI7nKd79+56//339ctf/lJHH3208vLymm1TWlqqiy++WH5/xx3e8dVXX+maa66J2N26T58++tGPfqQbb7xRTz/9dApaByAeQi6QJDvKq1VWWZvqZjhaYW6mTh7bT27X97ePcFt75LL2JqkFprxmiZh8Krnaerxna4OvaZry+Xyqr69XQUGBZsyYoVNPPVUez/cfvpSUlGjmzJn6/PPPlZmZKY/HI5fL1ew8LQm4iVSDI702ux8gtHTsLQHX+caOHatnn31WCxYs0Pbt2zVr1ix5vd6QbRYvXqznn38+RS2MzbIszZgxQzU1ocNP+vTpo9dee02bN2/W//3f/+nOO+9s9uEVgI6BkAskydayKtU0dNxPrZ3g1PEDNaRnp5BlXmuTXEkcJ+tWKZNPJUGiXZDbq4IY3g7TNOX3+1VfX6/8/HzddNNNEQPuzTffrKVLlyorK0ter7epkhsvnCbaXTlewI0ViKOFYDvXxM4yOJ9hGOrUqZNuu+22ZrcQsixLf//739vsZyMQCLTZsUpKSvTee++FLOvataveffddnXHGGSG/zwA6JkIukCTflFXK5w/E3xAt0qswR5dNHC2v5/s/a4ZVr0x9oWRWVt3aK0NMQpIMdiqOiYypTbSLcviy4ICbk5OjW2+9VaecckpIV+SSkhLdcsst+uyzz5SZmdkUcA3DsNXNONLjeN2VW9NlOVp35XjdmGN9qEDgTU+XXnqpxo8fH7Ls448/1v79+1t1XNM0dffdd2v48OE67LDDNH/+/FYdT5I+/PDDZlXca665RqNGjWr1sQEkByEXSJKSPVXcH7edZGV4dONPDtPAHvkhyz3aoYzA10lti8vaL8Mi5LY3OyHKbmCNF27tbB8ccDMyMnTnnXc2C7g7duzQzTffrEWLFsUMuOHniBdg7XRXttv9OdY+0a5jayq8SB8ul0tTpkwJWeb3+7Vt27ZWHfeDDz7QzJkztXHjRi1btkznn3++amtbNzRo8+bNzZadccYZrTomgOQi5AJJ4A+Y2rmXW8u0h0yvW9ecNlZnHjlYhmEErTGVHVgkV5JmVm5kWLUyxNjrZGvvbsixlgUH3MzMTN19992aNGlS0xhb6buA23jP3OCAG9z2aAE03vJY7U+0OpxI2I+0fbxj2mk7nKtPnz7NlpWWlrbqmEuXLlUg8H0vqZKSEm3fvr1Vx9y1a1fIc4/Ho+7du7fqmACSi0EFQBIETEvlVVT32lqXvCxdO2WcfvHDYXKFBNzv7lmbbS1SsieBMlQvl2LfI9LJ/H6/AgG/MjOz4m/cRsJDVGNltPFDj3gBzQj72Qne1855A4GAGhoalJeXp7vuuksnn3xyyP4lJSW64YYbtHTp0mYBN9o5w19H8NfgNscLi/G6IccK0eGPg5/H+gAg2rW2c03TWVV1jXKys0I+HHGaSK8tOKC2RKQZmls7a3P4jMqGYfDzCxxgCLlAEtT7Aqqq9aW6GY7hcRs6fGhPXTtlnI4o6hkym7IkGVad8gJzk3broJBzyy/DqpXS9P1QTXW1Xnz+FfXr10fDhg/XwMEDms2q2hYsy5IiBK3WvhGNdoxIIVRS022COnXqpNtvv10TJ04M2W7btm2aOXOmli5dqoyMjGYBNzi0RgqwkYJu8H7B24cfM9LzWNXcaNtG2i7aMjvbUMWNbNnqr/TxZ8s1ZlSRxowsUv++B6XrnxEAaDVCLpAE9f6A6nyE3NbKzvRodL+uOnfCUE0a11+FuZkRAompXPM9ZVkrlOwqbuP5033iKdMMaOvWbdqydZvcLpcGDx6kYSOGqV+/vnJFuB9sWwsOhXbH5QbvF2m78IDb2E3Z5/OpsLBQs2bNatZFefv27U0B1+v1Rgy4kQJto1iV3OA22X2N8bor2xmnG+3Y0c4Rvo5qWGz19fVaunKNPlu2Wnm5OTr04BEaM2qYenXvmuqmAcABhZALJEGD35QvQPUiEW6XIY/bpU45merTNVfjB3fXD0f30dgB3VSYl9mse/J3TOWYC5RnvpmyyZ8MmTLUkJJzdyTBlc6NGzdpw4av5fV6NWjwIA0tGqr+A/q1qltmYyU3OFTFC1Dxqpfxui0H798YcLt27aqbb75ZkydPDnk9jffBXbJkSUIBN97XRuHP7bzuaNcgXqiN1X3ZznkZk2ufy+WS/z/dd6uqa7RgyQrN/3SZuhZ20thRwzS2eJi6FnZOcSsBoOMj5AJJ4PebHXZmZZdhKC/Lq56dctS7a44OKsxVYW6WsjLccqWg6GIYhrwelzrnZuqgzrnq0zVHPTrlqCA7Qx539FBkqEE5gQ+VH/iXXGrdLSlayxBV+2CN49t8Pp82fr1R69etV3Z2loqGFWnI0CHq1bt13TLjjckN3yZ8md3qrWEYMk0zJODecsstEWdRvuGGG7R48eKoXZTDuyfbCbbBbYq2PN5rDX4c72usx5GOFauKi5YJBL773dmzd5/+36LP9cGCJerWpbMOPXikxo0eofy8nBS3EAA6JkIukASBsEksOoLsTI+G9y7UiWP66qhhvTSge74652Yqw+OS2+XSgdOr0JRHO5UX+LeyzQWp7ypsSFLkiVRKd+5U1f7qpDYn2cLvLRmucZKZ2to6fbF6jVatXK2CgnwNHzFcRcOL1LmzvSpVpDG50bZLJHRF67IcHnC7dOkS8T643377rW644QZ9+umnyszMlMfjCanwRhtfGyvohm/TKJFgG/68PYJupGWRKu0tCcEbN2yMu01VZaX2VlTqi6+Se9uwtlJatkexhlg0fli0u3yf3vv4U7330SIN6N9H44qHq3j4YGVlZiappQDQ8RFygaSw37WwvXncLo3u31W/OmGkfjS6j7rkJW8W3LZjyZBPbmuXss2lyrY+lsf8NtWN+k6M7/PKFav0tY036+mi8U17ZeV+LVm8VJs2bdaEHxytvv36tuh4sUJipG0jPY8VcAOBgPx+vwoLCzV79mxNnjy5WQV35syZWrhwYUjAjVa1jdXmaNXeRna7K9sNoNG+xuvGbOd8wetaOib33XfetT3CftPW1t0+JpXcMXqrfM+SZUoyDG3eWqJtJTu1ftMWnXrCsSrIz23vJnY4eXl5Ic8Nw1BubvpdBwChCLlAEhiG1SEqo/lZXv38v4br0omj1aNTto09TBkyJSuQutmCLUtySYblk2HVym3tllfblGl+Ka+5QW7tU2ommIrCMKI25+RJJ+vkScltTrJV7tun5//+YtztXC6XTNNUbk6OhhQN0YiRw9WtBfehTGRMbvD24ctidVkOruB26tRJd955pyZOnNgs4N544436+OOPIwbcaBXZRANuS6uh0UJ9IpXcSFXx4DG2do/Vkg/8pk6bGneb8l1l2rD2S505+fiEj98RzP90mT74ZHHc7dxul0zTUp+DemjsyCKNGTVMuTl2/p4708SJE1VQUKDKykpJ0oQJE9S7d+8UtwpAqhFygSRwu10pv/dhl7ws3Xj2YTrn6CExxrZaMiyf3Notr7lFXm2R29oll7VPhuFLSZY0ZEkKyDDq5TL3yzDqZFituwdi+zIkgz+tkbhcLlmmKW9GhoYOG6rhw4e1ajxutBAVHhSjhap41VtJIQE3NzdXd999t0466aSQ3+dvv/1WM2fO1Pz586MG3EQqucFiVXODt4n22qItS6TrcqTjtSRkM7Nyy7lchkzTUtcunTV2ZJHGHTxChZ0KUt2shLXHfXJHjhyp999/X88995y6dOmiK6+8Uh5P6/4Gh99nl59d4MDDOzEgCbxulzypmMXpP/IyvZr10yN01lFDok4m5bbKlG1+pixzqbzWNhmqDd0g1cVSK+xrB2VJstT294U9UBmGS5Ilj9utQUMGt8nMylL0qmJr3oxGqpY2dlHOzs7WnDlzdNJJJ4WcY+fOnbr++uubVXCjtSda6A1/PcH7RXtsl2EYzcYFB3+NtCxal+VoXZjDxevS3FGGb3RkbpdLAdNUQX6uDikerkMPHqluXQ7smZW7devWbNnSpUs1aVLrurgcfvjhOvzww1t1jEaBQEDLly8PWVZQUKCsrANxaA+Qvgi5QBJkeNxyu1MTcj1uly4/5WCdccSgiAHXbZUr1/q3cgIL5LIq1eFTZIfnkiUmgDEkuVxuDRw8QMOGD1P/Af1Duve2lp2xn+EV05ZUdC3ru9sFnX322c0C7o4dO3TddddpwYIFysjIaDbJVPixo1VtGyvFZtgEdY3nihRsEwm7brdbHo+n2QzPwV8jLYsVaONVhSNtSzU3vsaqZm5OjsaNHqYxI4epd6/Eu/F3VMXFxcrMzFR9/fcTBN59990aNGiQJk6cGDEEJ0sgENDWrVt1//33a+nSpSHrhg8f3mzsL4COjZALJEFmhls5Gamp7k0Y0UsX/HB48y7KVkBZ1nIVmC/JY+4U4batuGUqfcfHyXBpwID+Gjq8SIMGD1KGt31/7sMDVKSAG759vCpieEXV5XLplVde0cEHH6xzzz1XLpdLJSUluv7667VgwQJ5vd6oAdfOBFOBQEANDQ3Kzs5uml06VvU2kaBYWVmp6urqZtXc4NcZb/xtrG7Mwfslsh2V3OayszJ12CHFGjNqmAb2PciRHwgMHDhQxx57rN5///2mZZWVlbrggguUnZ2tsWPH6m9/+5uKioqS2q5XXnlF119/vXbu3KmGhub3OT/vvPMc+f0AnIyQCyRBhsulgpyMpJ83N8ujqZMOVmFuaGXRkE+51nvK8/9LLsW+5QsSYylDlpG+IbegIF+nTjk1Keey2202XhU3fDKn4Aqqy+WSx+NRQ0ODbr31VrlcLh111FGaOXOmFixYII/HEzPgxqvkBgfdM844Q1OnTo36Zrolb7JfeuklPfLIIzJNM+K439YG3HjVcaq49h1+SHGqm5AUd9xxhxYuXBhyuzHLslRTU6NFixbpmmuu0Ztvvpm09pSVlenSSy/Vvn37Iq4/+OCD9atf/Spp7QHQNgi5QBK43S4V5iY/5P7XqN4aP7hHaFVIfuUG3lO++Wrq7ynrQJYyZaVzJTdJolUJ7d5CKHj7eOsbg25dXZ1uu+029enTRxs2bGjqBhxpvGsitwpqXJ+Tk6Nu3bq1aRjMyclp1rZojxP5Gv7Bgd0PHOze+gjOddRRR2nOnDm64oorIlZNN27cmNQPRXbt2hU14Pbt21evvvpqyO8RgANDaqd7BdKE22Woe0Fyg4/bZejso4uUnRE8DtJSprlSeeYbMiwCbnswlSczjSu5yWQ3LEWaMCk8oMV6bhhGU6Ctrq7WunXrmoJvpIAb/DheVTTWuNe2Eu+1x/oabbtox453LLoqQ5J+85vfaN68eRoxYkSzdWeffXZSq/5DhgzR+PHjQ5a5XC6dfvrpWrhwoYYPH560tgBoO1RygSTp0zVPbpehgJmcN3h9u+bpiKLQKq7b2qP8wOtyWfuT0oZ0FDA6ybIyUndf4TQRrTtstEpp+H7Bz4N/R6I9bwy6jaHW5XI1C7jRqrax2he8f319vSoqKtr0DX5tbW1ImI50n127oTRWJRdI1Mknn6xVq1bpo48+0vz587Vnzx4dfvjhuuCCC5LajqysLL3zzjt69NFHVVpaqkGDBmny5MkaOXIkXeyBAxghF0iSAd3z5XG7FDBbd09Auw4f2kMF2cFdpC1lm4vkSgVajQAAIABJREFU1eaknD9dBYxesozkd01PR60d9xlrPG6k58GTN8Xbzu6Y3EZut1tvvfWWli1blvAb60izQjcqKytrCunh6+J1N45VpQ3fxk41N959i5F+vF6vTjzxRJ144okpbUe3bt10yy23pLQNANoWIRdIkn5d85ST4VG9L1kht6fcruAqboWyzU8lKznnT0+GfOojRoKklp1qbqQqa/j+kZ7Heiw1H4sbq03BE1x5vV5VVFSooqKiaVm4llaVvF6vrW7V0ZZFq+RGEy/ohp8PAIC2RsgFkuSgwhwV5mdqb3X7j4V1uwyN6lsY8qbYa22SRzva/dzpzDIy5Xf1S3Uz0kKi3ZWjhap4gVZqXqW18zheBTf4q8vlaroNUfD5wh/HWhZLYyU3XhU3+LHd8bXBj+0GVwIuAKC9EXKBJOman62B3fO1aWdlu58r0+vWQV1yg5ZYyrDWMtlUOwuomwLqkepmpI143ZVjdV+ONkY1XpU20rpooTZ8fayvwf8ateb+uNFec7RlbVXJtdNdGQCA9kafOiBJvB6Xxg3qkZT5iPKzM0LG4xpqkNfckoQzp7cGDZJp5KW6GWnBTnfZ8Ofxglmk57HGqMYLiHarorGO1dJqafjridZlO1b7Y30NPkYir7M1rwMAALsIuUASjR/SQ3lZ7T8pUVaGJ2Q8rsuqkVuR7wOItmKo3jNGFh1kksZOwAreNnx5vBCZaPdeO+HV7jZ22mn3X6T9Ip2bkAoAcApCLpBEw3t3Up+uufE3bKXwarGhOhmqbffzprOA0UUNGpbqZqSlRKq6dpa1JOyGL4tXHY1VBY20XaT9YgX6WNvGC7p2PzygigsA6KgIuUASdSvI1pHDeib93nuGfDIsf1LPmW7qjYNlqnOqm5E2IoUlu9Vcu4/Dj9WSCmi8kGjnHMHP47UvWvCOVR2OFbbjBfForyPWVwAA2hshF0gij9ulE8f0V15msru0ms3Lu2gzlpGpGvexsgxvqpuC/4hVuQzeJlbYjRVMoz22GxbtBtxYAdXuv0j7xTtnvNcX6frZRdgFALQ3Qi6QZOMGd9PoAV1T3Qy0oXqjWD4NTnUz0lKsEBtvn/BlLXkcr5IbadtEA26k1xovYEbbNlr4jfZaYr2O8HPZuQaRriUAAG2NkAskWeecTJ111BB5Pfz6OYGlTFW5TpVlZKa6KWklVlCNFy5jHSdWkAtf3tKgG2vfeNXcSK/ZbvU2XlU33nljhVs7rzXSPgAAtAfeZQNJZhjSiWP6aezA7qluClrNUK3rGDW4hqe6IWnv/7N33+FRVPsbwN+ZLekNSEIKvUR6ld7Ehr1xUa4NvXJ/3qteu4igwlW6V0EsoIhYQSnSVFRUIk06hA6hJCS09L5tZn5/hKzZZMtsyu5m836eJw+Z2TNnvrsJ2bw5Z87UZATR1Wikq/2u9rkzuunsnGpGdF0FUnt9OQq6rmp2FXYdYbglIiJPYcgl8oLo8CCMv64zAvUab5dCtWBBPIq094A/Sj3PWZhTe2zl7Zp8XtuRXEeh01mdap53TUZg3Xku9s7j7LVx9loSERHVB97QkcgLBAG4tlsibu3TGiu2n/J2OVQDshCOAu04SGji7VLoCkVRIAiC3X8rHrcXtipWO69o7+jzyu2rnsPV+e3V42xfharbleut/BxcvS6u9rkb6J316SwUu1M3ecfGjRtRUlLi7TIapT///NPbJRD5DYZcIi8JCtBiwl19cCQjD0fO5Xq7HHKDjBAUaB+EUeji7VIaLXuB1VXArXps5XAKVA+79sKoo3NVbVfbgOuotqrPpULV9s5eN0fb7gTdyq+jszauzkm+Z8WKFVixYoW3yyAiqhXOsSPyorioYMx5aBDiokK8XQqpJAlRKNCNQ5kw0NulEJyPUqoJV86m7drrz9XUXXvndxUKnX1ub9veSKqzfY6mFbsa4VYbYqtyFpBdHUtERFQXGHKJvEgQBPRoHY35jw1DQtNQb5dDTgkwie2Rr/33lYDLH5/e5CpIuXOcms9dhcCq2zUJuPb6qbytJsSqbWvv/M5qdNbW3uvm6jUgIiKqT5yuTORlggAM6NgcH4wfjinf7sSBM1mQ+XugDxEgIRJl4hCUaK6DJDQDILg8iuqfo6BVdSqwo8DnbHqyvb4c9V/1mIptV8fba1fB3nbl/mvzmqnZVvMHAGf9u/rDA8Oub6s8PZ48h/8viOoOQy6RDxAEoG/7GHz4z+H45NcjWLPzLLIKS8H3O28RoEAHSYiBQeyJMnEgLEiEIui8XRg5UDlIOttX9XHA/jW3jva7us628vH2qAm9VWtw1KerIOJOwHR3JNvRKLSz/h390YF8y8SJE3HPPfd4u4xGadWqVZg+fbq3yyDyCwy5RD6kRbMwvHJ3X9zcuzVW/nkKW49dxMX8EhiMFjTEXwslIQoSmvr8wKegKAAUKIIeEiJhEeJgFtrBLLSCJESBU5N9j6OptVVDZOX2VbfrYlVltaPAztrb+9zeduX+7T0nZ6+Vmv3uBF01NTj7+pDvatWqFfr06ePtMhqlPXv2eLsEIr/BkEvkY/Q6Dfp1iEXvttHIzCnGofRcHM7IxfncEhgtEtTMIosOC4JG9H6yNIj9USTeDQi+HhIVQFGgCFoAOijg/YsbGmdh0lXIq82qyjUNupX7r/q5o+3KNdfmdXK2T03QdfVRtT0REZGnMeQS+SitRkSrmHC0ignHLX1bQ1EA+cqIoyuCIED0gWuqFEULWQhGgxgJ9f7LRW6qGqwq73c0BdlRP4C6qcRqg6699pW5e+sgR/WrmY6t5jFH2+6M6DoLuJyuTEREnsSQS9RACAKgEQQwjRE5v+7TVTtHx9TFSK6zf52do+rn9rYr9rnz/Jy1Uzuqq2ZEV20/dTUiTURE5AxDLhHVH0GCACM8PpKraKEInHLs76qOHjoLlmr6crRwlbsjuTWZouxqAStPTVeuuu0s6Krp317AJSIiqm8MuURUb0KkTQiSd0LV6LMA25nYFYcoVQ5XHLSv1KBYcydKhJHqzksNkrORwppMV3YVZp31727AdbTIVeU2FRzVrzYw1nTKspqg62g0V+20ZvJvBw8exOrVq63bQ4cOxYgRI1weV1paiv379yMtLQ0GgwFhYWFo2bIlkpKSEBER4VYNiqIgNTUVp06dwuXLlxEaGoqEhAR0794dQUFBqvuRJAmlpaXWba1W6/J4WZZRUlJi3dZoNAgODnarfiKqOYZcIqo3AsqgUcrUNa76e6/i5DFH+6znNag7JzVozqYsu3sNqKswC9R8JNfesZX3VXxe+Tk5G8119Nzdfa3s7VcTdJ1NVXY1xZmjuY3HgQMH8Nprr1m3J0+e7DTk5uXlYebMmVi8eDFycnKqfe+HhIRg2LBhmDNnDjp37uz03AaDAYsXL8bChQtx5MgRWCwWm76aNWuGO+64A6+88gratGnj8rkcOnQIgwYNsm43a9YMe/fuRdOmTR0ec/bsWXTr1s26PXLkSKxbt87luYiobjSA1WCIiNzFkSJ/VzVMqb3m1FWfjvp19Zg7x7j6vPK2q9FTtR/2nqe94OqqRkevm6PHnY0CE1U4deoUBg8ejNmzZyM7O9vu92xxcTE2bdoErdb5+MzJkycxePBgPPHEE0hJSbEJuBV9ZWVlYdGiRejVqxc++ugjl9+PsiyjtLTU+pGeno4ZM2a4dYzBwD++EnkSQy4RETVIrkJmffRb3wHXXjhVE1wdPQ9nxznbdqe+mrx+RBXKysowevRoHD161LpPEARER0eja9eu6N69O6KioiAIAh566CF07NjRYV/Hjh3DyJEjsXfvXus+URQRHx+PAQMGoFu3bjbTjAsKCvDEE0/grbfecrvuBQsW4NixY24fR0SewZBLRP6Hv0g3WrUNVjUNr2rauBrVdDV6a6/Wmoze1ibcVq3fUZ1qRneJAODzzz/H/v37rdvNmjXDN998g/T0dBw8eBAHDhzAxYsXsWzZMkyePNlhPwaDAQ8++CAyMjKs+3r06IGff/4ZaWlp2L59O1JSUpCamoqnn37aOnXeYrFg0qRJSE5OdqvukpISTJ48md/PRD6K1+QSkf/hZX9+z16ocnRNrbtkWa52nLN73qqp1dkthCr2O9uuvK9qXY7O6aomZ/vUfF6xbW+fveNq8tqR/1u6dKn1c51Oh1WrVmHo0KE2bfR6PcaMGeO0n3feeQe7d++2bvfr1w8//fQTIiMjbdrFx8dj7ty5SEhIwIQJE6AoCsxmMx577DEcPXrU5XToylavXo2NGzfi+uuvV30MEXkGR3KJyLcJNfkxxV+kG5Oajho6GwGtuk+WZbf+tXd8fXxIkgRJkqrtq0k/atqpGVmu+rpz2jI5c+LECevnffv2rRZw1SgpKcHChQut20FBQVi4cGG1gFvZc889Z3Ou1NRUrF271q3zSpKEiRMnwmQyuV0zEdUvjuQSkc9RBA0kIQYmtIcsREFQSqDHaWjlDAgwq+iBQ7n+zt7ooaNb/4ii6HB6rjMVx7v611F7e21cPe6qfV1Q88cAZ6O3lfdVfkwURVXHElVWeWGokJCQGvWxceNGpKWlWbdHjRqFnj17Oj1Go9HgxRdfxObNm63fp5988gnuvvtut869d+9efPbZZxg/frz7hRNRvWHIJSKfoiAQJeKNKNHcAAmRqAisIkoRJG1FqLQaGuS57IVB1/85u/608tTYli1b2txOyN3gJQiC04Bb07Dr7FhX+2rD3ZDraH/Fa2mxWBAUFITY2Fin05zduaUTNR6tW7dGVlYWAGDXrl3IyMhAYmKiW31s2rTJZvvee+9Vddw111yD6OhoXL58GQCwY8cOlJWVubwHbvv27ZGeng6TyQRFUfD6669jzJgxbt/Hl4jqD6crE5HPUKBDkfZOFGpGQ0IUKgdVGcEo0VyHAu3DkIVQ7xVJPsvRFNnrrrsOCQkJMBgMMJvNsFgsbn+YzWabD5PJVG1f1cdMJpP1w2g0wmg02uyrvL/iscrbFR8Gg8H6Ye9xtR/O+rBXi6v6zWYzysrKUFpaiuuvvx7x8fEuvxZEVVUOpAUFBRg9ejQuXrzoVh/btm2z2e7Xr5+q40JCQtC1a1frdk5Ojs30aUe6du2Khx9+2Lp94cIFzJo1S2W1ROQJHMklIp9hEpJQKl4HQOOghQCD2BdlylGESD/D8bW3/GXa39lbIbjqNOWKzxMSEvDhhx9i0qRJOHz4MK+fqyOCICA4OBh33XUXZs+ebQ0mjgJu5a8LAy9VePzxx7F06VLs2bMHQPloardu3fD6669j3LhxCA11/kdNSZJsVlRu0qQJmjdvrvr8Xbp0wW+//WbdTktLQ48ePVweN2XKFKxcuRK5ubkAgHnz5uEf//gH2rVrp/rcRFR/GHKJGgUZUGRvF+GcIMIg9oGMYBcNRRjEvgiW/oCAMvtNFJTfRqiOp3mSb3MUdPPz89GlSxds3LgRZ8+eRV6eq+nupEbF/Ufj4+Nx9uxZSJLkcsGpyv8SAeWjqatWrcKdd96Jffv2AQCys7Px1FNPYdasWXjmmWfw2GOPOZwKXFpaCqPRaN2OiIhwa4Xkpk2b2mxXhFZX4uPjMWHCBEyYMMFaxyuvvIKlS5dar08nIu9hyCVqBAQo5TN/ffh3SwVaWAR1f32XhCjIQjA0ioOQy2zr95xdM1o16MqyjLS0NERGRqJZs2aIi4uze6yza19re11sXV9X60ptg6SrVakrGAwGnDhxAiUlJZyiTDXWsmVL/Pbbb5g0aRIWLVpknW2RkZGBF154AXPnzsWcOXMwZsyYagHSYDDYzM4IDg52K2RWHSkuLCxUfey//vUvLF68GMePHwcArFq1Cn/88QdGjBihug8iqh8MuUSNgCwEQYHe22W4oECApLKpVP7hgKAoDLqNmL2gK0kScnNzbUZxXa2SbG9b7cJQrkJtXYbemtwT195+d7Yd3Q7I1cJTauqlxikyMhLvv/8+Hn30Ubz22mv46aefIEnlP+czMjJw//33Y9++fZg2bZrNSG1AQAB0Op1122AwQJZlaDSOLnuxVVpaarPtanp0ZWFhYXjjjTdw7733WhdhmzhxIpKTk1X3QUT1g/MpiBoBGeGQhChvl+GUoJihU9KgZrhZq1yEKJQ6acGQ2xioGW10du/bqvewrXpPXDVtHbW3187VfXMdta16DrXHOXpczXNwtu3ofrlqPidypU+fPli/fj1+/fVXDBo0yLpflmXMmTMHH3zwgU374OBgBAQEWLcLCwut4ViN/Px8m+2oKPfeK++++26bkdsdO3Zg6dKlbvVBRHWPIZeoEZARAjPawdeTX6CyBxol22kbAWUIUrZBUBwvHiTD+e0fqOFTE5xcjTy6E9LsjWraa+OonZrFlpyFXEd1OOvDnf3ubNf0c0d9ElUlCAKGDx+O5ORkTJs2zToqqygK3nzzTRQUFFjbarVaxMbGWrezs7ORk5Oj+lwVU40rJCQkuFWrRqPBnDlzbGp87bXXbGokIs9jyCVqFAQYNH19/tY7OjkNYdIaiCiy+7gAE0LkjQiU9zvsQ4EOFjERvh7oqW64mvZbk1DmLAS7ComV96l5TG0ArkkfzvpW+9zsPa4m+Do6r6evTaaGTavVYuLEiXj22Wet+7KysrB582abdgMGDLB+riiKdaVmV8xmM1JSUqzbYWFh6NKli9t19unTBw899JB1Oz09HW+99Zbb/RBR3WHIJWokTGgPo9Advh3+JATJyYiUFkEvH4OIEggwQkAZdEhHuOUrhFm+g6AYHfZgERJgRgsP1kzeUBGW1CwwU5MRR3dGNyvvcxYoazOSq6YPV+3sPeYquDsLtFW3Kx9jjyAINtdBczSX1BAEwSZAAuUhsrIhQ4bYbK9cuVJV39u3b0dmZqZ1u0+fPggOdrXCv31Tp061WQH622+/rVE/RFQ3uPAUUSOhCAEo1twMvXISGuWyt8txSICEQGkXAnAQFiEekhAOUSmFVjkPESVwes2uIKJUvAayEO6xesmzKoKRLiAARcXlq6BqNBpYLBZVx9m7xVDl/RWfV31MzXbVc7l6rL65CsSu9rkbbl2dU6vVwmw2Q5IkBATykgJ/ZzabbbZrM4qv19sunFj1j1s33XQToqOjkZWVBQBYs2YNzpw5gzZt2jjsU1EUzJ8/H7L81+31HnjggRrX2aJFC7zwwgt49dVXAcCmXyLyPIZcokbELLRGoeZviLR8AgEGb5fjlAADdMpp6NzIBEahK8o0g+Hbo9VUU5IkQZYkmM1mhEc1w+XMcygpKUF4eDhEUVT1S6WzlZLd3XZnny9QE2zt7VNzja2zx4HyP0RoNBpcuHABWn0A9EFBMJSVQavVQqPV8r6iDYzJZLJ+TR3ZtWuXzXaTJk1qfL7KqxULglBtSnGTJk3w4IMP4u233wYAFBQU4JlnnsHy5curBeQK33zzDVatWmXdjomJwdixY2tcIwA8/fTT+PTTT3H69Ola9UNEtceQS9SoCCgTB0DQGhEhfQlB8e2g6w6LkIh8zWOQUbOpZuS7FEWBZLHAbDbDYjHDbDYjLKopQsIjkZ6ejri4OERERDj8ZdYeR0HUH4Ouo+DpLMza2+fuyHDlx8xmMy5cuICcnBy06NAJCgQYjQZIkhY6WQ+tTqf6li/kfU8++SR2796NcePGYdSoUejQoYP1e76srAxffvklPvnkE2t7e8G0wqxZs1BWVobRo0ejS5cu1f7v7N69G6+//rp1OykpCVdffXW1fiZNmoRVq1bh7NmzAIC1a9dizJgxeO+995CYmGhtZzQasWDBArz00kvWP4yJooi5c+fWeKpyhbCwMEybNg1///vfOR2fyMsYcokaHQ3KhOFQNCEIl76ARsn1dkG1ZhI7Il/zf5CEZt4uheqBJEmwWCyQpCtB98qU17g2HXDhbCoyMjORkZHB0UAfJssyRI0WMS3bIiI6FiZTpdXRr1yrKwgCv4YNwKZNm7BkyRKYzWbs27cPWq0WMTExaNWqFSwWC86cOYPsbNtV8pOSkmxus1PZ8uXLsWfPHrz55pto0aIF+vXrh8TERJSWluL48ePYunWr9ftFq9VixowZCAwMrNZPkyZNsGTJEtx6660oLi4GUD5t+eeff8awYcPQqlUr5ObmYuvWrbhw4YL1OEEQMH78eNx333118vrcc889GDJkSLXFsYjIsxhyiRohRdCgTOgHi9AcYdI3CFAOQVCcX9PoixQEoVQzBMXinT5/H2CqGUVRAMX23rCSJEFRFGh0OsS2bIvQJtEoKyqE2WyCZLFAkiTr1GZFUaCAt6zxBFEoD6iiKEK8MpVV1Gig1WoREBiE4LAIBIWE2CyAJcuy9evLr1HDsGvXLuh0Ous1txaLBefPn8f58+ftto+KisKiRYug0+mqPVZSUoKjR48CKP9j1tmzZ60jsVXp9XrMmDEDd9xxh8Pahg8fjvXr12Ps2LHWIFtWVoaffvrJbnudToenn34a06dPr7PZFzqdDjNnzsTw4cNdrhVARPWHIZeo0RJgFlohX/skAuVdCJZ/hU4+CwG+/6asCAEwIQklmlEwCp2hCOqnqVLDIggCBFGEKIrWkT5RFCGIIjQaDWStFsGhYdDpA6yLGpnNZmvYdff2PFRzlVdOrrjWVq/XQ6PRQKfTQafXl4dfUWPz9cSVf31pijc59uKLL+LWW2/FZ599huXLlyM9Pd1umNPr9RgxYgRmzZqFnj172u0rJCQEGzZswNSpU7Ft2zaUlZVVa6PT6dCvXz+88cYbuOaaa1zWN3z4cOzbtw/Tp0/HV199hdzc3Go/AwICAtC/f3+88cYbGDp0aJ1/7w0cOBBjx47FF198Uaf9EpF6DLlEjZyMYJSKw2AUeiBATEGg/Cf08ukr96r1pXAgQhIiYRI6okwcCJPYCTJCwEWm/J8oitBWGgWqPLVVI2pgtpjLg5RebzOS6+qWNlS3KgcF8cofITQaDTRarTX0ajVa6PR6aLXl/2q0Wuh1ei4+1cB06tQJM2fOxJtvvonU1FTs3r0b586dQ1FREcLDw9GmTRv069cPrVu3dhkghw4dio0bNyIzMxMHDx7EyZMnUVhYCL1ej+bNm6Nfv37o0KGDW98fsbGxmDdvHqZNm4atW7fi5MmTyMrKQmhoKOLj4zF48GC0bt1adX8tW7bE4sWLrdutWrVy2l4QBMyaNcsmlMfHx6s+HxHVHkMuEQEQIAmRKBWGoky8Gjr5HAKUI9DLR6DFBYgogqCY4dnQK0CBHrIQCbOQAKPQBSaxEyxCHBQEeLAO8raKkcGK4GSxWKDVamGxWGAxm6GXA8qv2bVYICtXpjNXmv7KkOsZlUdyK0ZnNRoNREGERqu1Bl7dlUWmtFpd+ddVo2HAbaC0Wi2uuuoqXHXVVbXuKyEhAQkJCRg1alQdVFYuNDQUN954I2688cZa9dO0aVM88sgjbh0TFxfn9jFEVHcYcomoEgEKgmASO8KEDhA0o6BBDnRSJnTKGWiRCY2SBRHFEGCAoJghQAJQcesWd8OECEUQAWihQAcFQZCEcEiIgUVIhFloDYsQBwlRnJJM5VOVr4z+6WQ95CsLUsmyZL1WV5ZlKFeu3VW7MjDVjcoh1zrafiXAVlynq9Vc+WPFlT9acIoyERHVB4ZcInJAgIJAWJAAiyYBZegHARIElEJUiiGiEKJSAI1SUD7Si1KIKIWgGCAIEqBIgHIl/AoCABEKNAD0kBEIBcGQhRDIQgRkIRwSwiEjDLIQemWkliM7ZF9FaMKVKa+OFjCSZRmCIDDgelDF610xMlsRZIWKf698kO/i/xci8gcMuUSkmgINFIRBFsIAxDm4HFYp/1CUvx5XcCXoVnwQ1Q3eeoaobiUnJ+Pvf/8771vsYZIkYdOmTd4ug8hvMOQSUR27EmSFKruIiMinREVVv/XasmXLsH79eru3/KH6Yzabrff3rcze14iIXGPIJSIiImqEkpKS0L17d6SkpNjstxe2yPO6d++OpKQkb5dB1CBxfhcRERFRI6TX67Fw4UJERkZ6uxSqIjIyEgsXLoRez0UXiWqCIZeIiIiokRowYAA2b96Mvn378tp2HyCKIvr27YvNmzdjwIAB3i6HqMHidGUiIiKiRqxr167Ytm0btm3bhnXr1iEzMxOSJHm7rEZFo9EgISEBt912GwYNGsRroolqiSGXiIiIqJHT6XQYPnw4hg8f7u1SiIhqjfNSiIiIiIiIyG8w5BIREREREZHfYMglIiIiIiIiv8GQS0RERERERH6DIZeIiIiIiIj8BkMuERFRPSgsyMdLTz9Ro2MzzqVhwjNP4M5RIzFq+EBs2/wH1q5agVHDByI767K13Yb1azFq+EBcunjB6T7yH2fT0vDYv/6N/sNGoPvV/fHbpmQs/XY5ul/dH5cuX3bdAXnFqtVr0P3q/jh/gf8viTyBIZfIBz32wH34YN7/AMDuL7b1pS7PVfk5VDh2+BAmvfiM0+PUtKlN/0QNwaw3pkAUNfh65VpsSN6OQUOHebsk8hEvv/oaRFGDX39Yj5RdOzByRO1u+dPQA/Lto8dgxpy3bPalHDyEx//ztNPj1LSpTf9E5F0MuUQ+JvNcOjLOpWHgkIb7S219Pwd/eI3If505lYr/Tp6A8Q/9HSn79+KRsaOxYP47yMnOUnV8aUkxTh4/hgGDhyI4JNS6//a7R2ND8nY0i46pr9LJxxUXF+PI0WMYMWwoQkP/+t4YO+ZvSNm1A7Exjet7Iy09HWfT0nDN8Pp5L6jL/u++8w6k7NqB+Li4OqiMiFxhyCXyMdu3bkZwSCi69+jl7VJqrPJzOHIoBa88/x8cPLDP+nhpSTG++mwxZr7xGgCoalOb/ok85UJmBp578p8ICwvH7HnvoVuPXnhj9v/QPC4Bq75dpqqPvNxcAEBAQEB9lkoNUM6V741Afm8AAH5P/gOhoaHo27s39qek4P+efArQ5QWpAAAgAElEQVR79v31XlBcXIwFiz7BhMmvAoCqNrXpn4h8h6AoiuLtIoh83Xc//o4OnTqjSUx0vZ/r+ScfR3RsDF5+9b/4+IP5WPnN19XazHj7XfTqczUAIDvrMr5Y/DF27fgTBQX5aNYsGiNvGIX7H3oEWp3OekxhQT4+++Qj7PpzO/LzctEsJhb9Bw3G2AfHITw8wuW5XB3v6DkAwMUL57Fm5bc4nJKCrMuX0LZDB9xw060YOmIkRFFU3aY2/Tuy4puvseiD+fhq5Vp8+/UX+P2Xn2Eym9CrT1/835PPoHlcPABg5/ZteO3l5zF56nQMGXGNTR97d+/CK8//BxNenYprrrvB6fnIvy37Ygm++HQRVm/4DWVlpXjztUmYPe991cfPnT0dG75f57TNlyvWWEdzN6xfi7lzZuCzb1Yhtnmcw32NQe7lLJw8egR33XSN68YN0JQ3p2HVmrVO2/zy/TrExsTAZDLh4cf+iazsbCz/6gtERUUBAIxGI+5/5FEUF5fg2y+/wMefforPvvyqWj8fvT8fA/r1w6z/vY3lq77D7q2bbR5P3rwFTz33PD77+CP06tkDALDky6/w9rx38esP3+Pzr7/G+h9+RH5BAfb9uQ0AcOnyZXyw8CNs2bYdefn5iImOxq0334T/+8ej0FV6r8rPz8d7CxZi89ZtyM3NRWxsLIYPHYLxjz6CyAjb95qHH/snmjePxaw33wAAZJ4/j6+WfYN9+w/g4qVLSErqiDtvuxU3XHut9b1ATZva9O/IqtVrMGXadGxYu9o6mqv2uR47cQLvL/gIe/fvh9FoRKuWLXDvPfdgzOh7bM5R8TX4bcMP+OLrpVi9bj3KysrQr28fvDrx5UY30k+NG0dyiXxIQX4ejh4+iIGDy6dGjf/3U/j3088DKP/FdkPydmxI3m4NuJcuXsRT4x9BeloapsyYjZXrf8ZzEybhlx+/rzaKOfvNqUjZtw+vT5uJFd//gmlz3kFsbBx+/vF7Vedydbyj5wAAgiBUe65V96lpU5v+Xfn4w/nomNQJS5atwFvvfoiLFy7ghaf+haKiQgBA3/4D0DwuHutWr6h27PrVKxASGobBw0a4dU7yP4ayMsiyjOKS4hod/8xLr+DjL5aWf/7iROv/ww3J263/P6lxmjJ5EtYs/6b880mvIGXXDuvHxBdfsGmr1+vxv1kzYTQa8dKkVyHLMgDgjZmzcDYtHf+bNQPh4WF4/un/WI/95ft11v4G9OtX4zr/9+67aN+uLdYs/xaTJrwEADh/4SLue/BhnD5zFu++/Ra2/rYR/311MtasW19tFHTia1Owa89ezHtrNrb8/isWzJ+H+Lg4rF633qZdXl4eDhw8aDOVuC7fa2ravzvUPNdjJ07goX+Mh8lkxFeffoKNP6zHXbffjulz3sLb78632+97Hy5A+3bt8P2qFVi88EMcP3ESk6f8t8Z1EjVEDLlEPuTPbVshiCL6Dhioqv2nH38Ak9mMqTNmo2NSJwQGBaFH7z544pkXsCV5E44dPmRtm7J/LwYPHYZ2HZKg1+sRF5+AO0ePweh7/67qXGqPr/ocjhxKwdzZMzBwyDD8++nn0LZDB0ya8ibS085i9rQpqtvUpn81EhNb4tobb0JwSCjad0zCxNffQE52FlZf+aVSFEXccsddOLBvL86ln7Uel5OdhT+3bsHI62+AXq9XfT7yTwMGD4UgCHj56Sfx84YfYDabrQGDyJPi45pj2tQp2Ll7N95f+BFWrl6Nteu/x0vPPYsunTrV23lbJCbijltvRXh4GEbfdScAYN7778NkNmP+22+hS6dOCAoKQr+r++KVl17Ext9+R8rBv96rdu/Zg2tHDMdVSUkI0OuRmJCA+++7F+MeuN/mPJs2b4EoihgyaBCA8qnIU96cjpEjhmPiiy8gKakj3po+DafPnMXE115X3aY2/btLzXOd/8GH0Ol0+N+smWjdqhUiIyLwwNj7cM+dd+Dzr77G+QsXq/WbmJiI226+CaGhoejauTPGPfgAduzahYzMzBrVSdQQab1dABH9ZfuWZPTs1RshwSGq2u/YtgW9+lyN8IhIm/09e/cFAKQc2IerunQFALRp3wE/rFuDZjEx6DdwMGJim7tVm9rjqz6Hzl27Y8bb7wKANXQHh4TigXH/sB6jpk1t+ldjwOChNtstW7VGYotW2L9vDx7EeADAjbfchi8Wf4zv13yHx596FgDw/drVkGUZo265za3zkX+6qktXvD5tNj5btBCLPigfZfnbbaPQf8AgPPiP8YiLT/ByhdSYDBsyGP8Y9zAWfboEWq0Wt950E8bcc3e9nnPEsKHV9iVv3owB/fohMtL2var/1eUzhXbv3Yvu3crfqzp27IAV361GbGwMhg0Zgrjm9t9rfk9ORr++fRAaUv5e0LN7d3z0fvn/uYrQHBoain+Nf8x6jJo2tenfXa6eq6Io2LlrN4YNHWKto8L1144sn0q+Zw9uv/UWm8eGDR5ss92hXTsAQEZmJhIT+DOIGgeO5BL5CJPRiL27d2HQEHW3gzCUlaGstAzbt2zGzdcMtn7cNGIQ7rppJACgsKDA2n7y1Gno068/Fi/4AA+NuQvj7rsHH33wLgoLCxydwoaa4919Du6qz/6jmjSxu68w/6/nFx4egaHXXIuff/wBRoMBkiRhw/q1aNchCe06JNV5TdQw9R80GB8s/hwff7EU8YktMHzktdjyx+94/qnHrdPfiTzlzttugyAIMJvNePThB+uoV8fLucRE265dUVZWhtLSMvye/Ad69h9o/ejRbwAGDB8BAMiv9F71v5kzMGjgAMyd/z5uvO0O3HTHXXhr7jybNkajEdt37MTI4fXzXlPf/Vdw9VwNBgOMJhOaNW1a7diKfXn5+dUei25m2z4ktDwgFxXV7DIKooaII7lEPmLv7l0wGY0YMKT6X8HtCQgMhD4gAEOHXYMXJ7ueKhUdE4sJr06FJEk4cyoVO7dvxbKvPkfq8eOqFsZRc7yr53BVl66YNmeu0/M4a1MX/TuSl5uLps2iq+0Lr7LQyR133YNff/oRv2/8GSEhocjNycbYB8fV6Jzk3yIiItGsWTT+8/wE9OzdF9OnTMaBvXsx5Mov9kT1zWQy4cVXXrEGoslT/4vPF32s+tKKsNBQmEwmmM1mm8WhLl12fDssndb2V8vAwEAEBATg+pEjMf2/U1yes3lsLGa+8V9IkoQTJ1Pxx5YtWLTkMxw5egyLF34IANi+YyeMRiNGOLi1T/duXbHg3XlOz+OsTV30r4ar5xoYGIgAvd66qnZlFfuiqoyOA7W7TpjIXzDkEvmI7VuS0TGpU7WgFRgUBAAwm0w2+wVBQP9Bg7F3904UFxUhNCxM1Xk0Gg3ad0xC+45JuHzpIn7+8XsoigJBEByeS+3xjp5DXanP/v/ctgXtO/41Gnsu/SwyM9Ix7JpxNu06duqCjkmdsH7NKgQHB0Ov13NFZXKpYpoybwtEnjTzrf/hZOopLF74IRRFwaP/9y/MfvsdTH55grVN0JWf+yY7P/dbJCYCAE6dPo2rkv76+fjHli2qaxAEAcOHDsH2HTtQWFiE8HD171WdrkpCp6uScOHiRaxet976XvN7cjK6dOpUbdS4rtR3/1U5e65X9+2LP3fuRGlpGYKDg6zH/PLb7xBFEX379PFIjUQNDacrE3nYqdQTGDV8IBbMf8e6T5Zl7Ni+FQPtjFC2atMGALBj+zZYzGabxx57/EkIoohXJzyPQwf2o7SsFHl5udi3ZxfefHUiTp08DgAoLCzAy88+he1bNiMnOwtmkwnHjxzGvj270K1nL+tffR2dS83xzp5DXaht//Ze98oyz6Xj1182oLSkGKdOHsfMqa8jqklT3DF6TLW2t951D1JPHEfK/n0YPGyE6j8wkP/77JOPsOTjBUg9cRwlJSVQFAWpJ47jw3ffQUKLlujWo6e3S6RGYt0PP2LFd6vx/NP/Qc/u3dGrRw88+9ST+HblKvyw4Sdru/bt2gIA/tiyFeYq7zHXXnMNIiMi8Na8d3Hx0iXk5ObivQULERwc7FYtz/3nKYiiiCeeeRZ79+1HSWkpcnJz8efOnXjupZdx7Hj5e1V+QQHG//tJ/J78By5nZcFkMuHgocP4c+dO9O3T2/pek7xli82qx3Wptv0fO3EC3a/uj1n/e9tpOzXPFQCe+tfjMBqMeP7liUhLT0dBYSG+/uZbrPxuNR4Yex/i49xbX4OoseBILpEPOHr4IPLz8jBwSPU31aSrOuP+hx/Ft0u/wEfvz4Msy9Z718Y2j8N7i5Zg6eefYs70/yI7OwsRkZFo27Y9br79LrRp1wFA+bWkYx96BOtWLcd778xBUVEhmkVHY+iIazH2wYdVncvV8c6eQ32/RnXhsX89ia+/WIIF896B2WJGj159MPm/06rdAxgARoy8Dh+//y6Kigox6pbb66Ueapju+tu9+On7dZj/zhycS0uDoawUM/77Gnr3vRpjHxxnnS1BVJ9ST53CGzNm4obrrsX9991r3f/Q/X/H/gMpmDp9Bq5KSkLbNq3RtXNnPP7YP7D4888x5525kGXZep/c4OAgzHtrDma//Q5uuesexERHY/wj49CtSxds+PkX1fXEx8Xhmy8/x0efLMYrr0/B5awsREVFomP7Dvjb3XehY4fy96rIiAiMf/QRLPt2OabNmo2CwkLExkTjhuuuw/hHxgEADhw8iNzcPFxTT9fL1nf/FdQ8VwDodFUSPv9kEd5fuBBjH34ERqMRLVu0wITnn8O9Ve6TS0R/ERRFcbx6ABEBANb+lIxWHTsiOja2Xvpf9OF72JL8O5YsW1kv/XtCfT+H+up/xTdfY9EH8/Ht2h+rrVLtiCzLeOBvd0Cv0+PTpSt4/RPZlZubg5lTX1N1zTvVXvalSzh78gRuv6F+wwl519vvzscvv/6GH9d816D6X7V6DaZMm44Na9dw9JXIAzhdmUgFrU4Hqco0rrq0fevmepvm6yn1/Rx86TU6lLIfudnZGHXr7Qy45JAo8C3Wkywm28WRyD/9nvxHvU1Vrs/+S0pLAZSP4BJR/eN0ZSIVwkKDUVpSUm/9f/LlN/XWt6fU93PwldeotKQYX3/2KULDwnDrHfV7v0lq2Grz94+KKVb8E4p6paUlCAtx71pRanjWrVze4PovLCzCpj/+QPt27WwWjyKi+sM/MxOp0DQyAoV27kVHjcuMqa9i9K03Iic7G5OmTuOCU+RURGRUjacqX7pwEZcvXqzjivxbYX4+mkRylIx8y2+bknHtzbfAaDJh2hTXt/sjorrBa3KJVMjLL8Sm7XvQpXdvBhsiqneb/yi/RcvQYUO8XEnDUFxUiMN792HEoD6Iigj3djlERORlHMklUiEqMhxhoSG4lJnp7VKIyM/JioKTx0/i5PGTkPl3aFUuZZ5HWFgIAy4REQFgyCVSLaldK+RcvozS4mJvl0JEfiwzIxMGgwEGgwGZGfzDmiulxcXIuXwZSW1bebsUIiLyEQy5RCq1iI9Fk8gInE1N9XYpROTHTh4/AVEjQhRFnDh+0tvl+Ly0U6cQFRGOFvH1c4s3IiJqeBhyidzQvVN7FBcW4iKnLRNRPZAsEk6lnoIsyZBlGadSU2GxWLxdls+6mJmJooIC9OjcwdulEBGRD2HIJXJDZEQYOndog/RTp5Cfk+vtcojIz5w9mwaz+a9QK5ktSE8758WKfFd+Xh7ST51C545tEBnBBQGJiOgvDLlEburYrhVaxMci9dhRlBQVerscIvIjJ0+cgCD+9dYsCAKOHzvuxYp8U0lRIVKPHEGL+Fh05LW4RERUBUMuUQ306pqE6KgIHDmQgtysbG+XQ0R+wGQyIe1MOhRZtu6TFQVpaWkwmUxerMy35GZl48iBFERHRaBX1yRvl0NERD6IIZeoBkRRxIA+3dAmMQ4njxxGxtmzkCv9YkpE5K7Tp85AVqr/HFFkBWdOn/FCRb5FlmVknD2Lk0cOo01iHAb06QZR5K8xRERUndbbBRA1VIIgoHvnDggLDcahY6eQc/kyWrRtiybNmnm7NCJqgI4fPw5AAFD93rjHj51A0lWNd9QyNzsb506fhsVkQs8uHdGmZYK3SyIiIh/GkEtUS21aJiAuthkOHTuFk4cPIzQ0FM3i4hDVtCn0AQHeLo+IGoCysjKczzgPRakecBVFQWZGJkpLSxEcHOyF6rzDZDQiLycH2RcuoLi4GC3iY9H1qnYI5M9VIiJyQVDsvaMSUY3kFRThdFoGMi9mQZIkBAQEIDA4CBqtFuUjNERE1Z3LOI/jJ07C0TuyIApI6tAOLRL9fARTUSBJFhhKy2A0GqHRaJDQPBptWyUiiisoExGRSgy5RPVAkmXk5BWgoKAIJWUGmM1mh7+8EhH98ece5BcWOXxcgIDIiDAM7d/bg1V5niAAOq0WIcFBiIgIQ9OoCGh43S0REbmJ05WJ6oFGFBHTNAoxTaO8XQoR+bi8giKs+3mT0zYKFOQXFKJD25Yc0SQiInKBIZeIiMiLTqedQ0R4qM31uAZj+S2DAgP01n2CIOB02jn06d7Z4zUSERE1JJyuTERE5GOWrfkJAHDfHTd6uRIiIqKGhxe6EBERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hu8Ty5RHZMkGZeyc3ApKxf5hUUoLTXAbLGAd+tqXLRaDfR6PSLDQxHdNApxMc0QFBjg7bKIiIiI/B5DLlEdMVssOHEqDWfOnYfFIiE0LBwhERGIimkOjVYHQfB2heRJkiTBZDSipLgIh46fQsqRk2ge0xSdOrRBRFiot8sjIiIi8lsMuUS1pCgK0jMv4vDx05AVBc0TWyC6eXPo9Hpvl0Y+QpFl5OXk4MK5DPy+dTfatIhHp45toNfpvF0aERERkd9hyCWqBbPZgp37DyMrJw+x8fFIbN0aGi3/W5EtQRTRJDoaTaKjkX3pEs6dPo3MS1kY0LsrmkRGeLs8IiIiIr/ChaeIaqiktAzJ2/egoKgEXXr3Qqv27RlwyaVmsbHo3u9qBIWGYcuO/ci4cMnbJRERERH5FYZcohqoCLiKqEGX3r0QEhrm7ZKoAdFotOjYpQuiE+Kxa/8RnD133tslEREREfkNDjsRuclstmD77hToAgLRqUcPiBqNt0uiBkgQBLRq2w4aUYMDh08gJDgI0U2jvF0WERERUYPHkVwiNyiKgp37DsFkkdCxa5caBdwDe/dgwjNPYMxto3D3qGvxn38+il9/2VAP1davpZ9/ijtHjfR2GQ1eYuvWiIqOxo59h1BSWubtcoiIiIgaPIZcIjekZ15EVm4+OnTtAp3e8T1PlyxaiLtvvr7a/uNHDuOVF59BbPM4LPjsK3y5cg0GDRuOOW9Oxa8//VgnNTo6N/mutklJ0AcE4sDhE94uhYiIiKjBY8glUsliseDIidNonpBQ42twN/2+EYos44lnXkCTJk0RHBKK+x54GC1atsZvDXA0l+qGKIpo3b49LmXn4sLlbG+XQ0RERNSg8ZpcIpWOn0qDJCtIaNXKabsF89/B6hXfAgBGDR8IAGjaLBpfrVwLjWh/erOiKDZTnz/+YD5++3kDFn72FebOmYG9u3chJCQUfxv7AO4cPaZG5waA/Xt344vFi3DyxDHoNFp07dkLj/3rCbRo2dqmH7XtqO6ERkSgWUwMUo6monl0UwiC4O2SiIiIiBokjuQSqSBJMs6cO4/miYkubxP0+FPP4r4HxyE4JBQbkrdjQ/J2a8i89c67ERERiffnvoW8vFyUlhRj2Vef4/Lli/jb2Ads+lGgYMG7c3H338bi65VrcefoMVgw/x0cPXywRufev3c3Xnn+aXRISsKSZSsx/+MlMBmNeO7f/4fLly5a+1DbjupeYuvWKC0tw6WsHG+XQkRERNRgMeQSqXApOwcWi4To5s1r1U/zuHhMmT4bu3ftwNg7b8HdN1+PpZ9/iudfnozuPXvbtM3Py8M1N9yIrj16IvjKKG7zuHj88uP3NTr3kkUL0apNWzz+1LNo0qQp4hMTMXHKGzCZTVi+9Eu321HdCwgKQkRUJM6dv+ztUoiIiIgaLIZcIhUuZeUiNCwcOr2+Vv0cPXwQLz//FAYOGYavV67DivU/4+FH/4lZb7yOjRt+sGkriiJ69+1ns69Fq1a4dPGC2+c1mUw4cfQI+g8cbLM/PDwCXbp2Q8q+fW61o/oT2aQpLmVzJJeIiIiophhyiVTIKyhCSETNFpuq7PNPPkZkVFM88fTzaNKsGULDwnD3vWPRb+AgfPTBfJu24RER0FS5RVFwcAiKS0rcPm9xcRFkWUZkVJNqj0VFNUVRYYFb7aj+hIaHw2y2oLTM4O1SiIiIiBokhlwiFcrKDAgKDKp1P5kZ55DYogVE0fa/XuvWbVFYkI+S4iLrPgF1t/BQaGgYRFFEfn5etcfy83MRFh7hVjuqP4HB5d9nvGcuERERUc0w5BKpYLZYXC44VVlgYCAsFnO1/dExscg4dw6yLNvsP3v2NEKCQxAUHFLrWu2dW6/Xo2Onzti1fZvN/qKiQhw+dBDdevZyqx3VH42m/PvMbLF4uRIiIiKihokhl0gFRVHcGllt0ao1TEYjDuzbaxNo77xnDC5kZmDB/HeQm5uD4qIirPpmKf7cugW3jx5TbYS3Jhyd+6FH/4kzp1Ox8L25yMvLxYXzmZg59VVoNFqblZ3VtqP6UXHrIEVWvFwJERERUcPE++QS1YOBg4fixptvxRuvvozioiLrvWqHXjMSb4a8g2++/ByPP3w/JIsFcYmJeOalV3DDTbfU67l7970ab86Ziy8/XYSHx9wFrUaLbr164e0PFiK20qrRatsREREREfkiQVEUDhcQufDdj7+jQ6fOaBIT7e1SqBHYkZyMfj27ICEuxtulkJcsW/MTAOC+O270ciVEREQND6crExERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd9gyCUiIiIiIiK/wZBLREREREREfoMhl4iIiIiIiPwGQy4RERERERH5DYZcIiIiIiIi8hsMuUREREREROQ3GHKJiIiIiIjIbzDkEhERERERkd/QersAImp4ZEWBJMkwWWSYpfIPiyTDbJEhyQokRYYsK4AgQACgEQRoRAE6rQZajQidRoBeq4Feq4FGI0IUvP2MiIiIiMhfMOQSkUOyosBgsqDYYEF2YSkyc0uRkVOMC7kluFRQitwiA4qNEkoMJhhMEiyyDIusQJYVKAAURYEgAGKlkBug1SAkUIewQC2ahgUiJiIICU3CkNg0BAlNQ9AsPAihAToE6DUQBaZfIiIiInIPQy4R2TCZJeQWG3DsfD72nc5CSlo2zl4qwuXCMhQbzLBIcr2cV6fVIDRQi9iIYLRrHo4ebaLRu00zdIyPQkSwHloNr64gIiIiItcYcokIsqKgsNSEP09cwoZ9adiZehnnc4thttRPoLXHbJGQVywhr9iIY5l5+H5PGgJ0GrSKDsOQTnG4qXdrdG/VFCEBOnCAl4iIiIgcYcglauRyigxYvj0V325JxalLBfU2UlsTRrOEE+fzceJ8Pr5IPo4eraPx96EdcHPvVggL0nu7PCIiIiLyQQy5RI2UwWTBdzvPYO66/cjIKfZ2OS6ZLTJ2p17C3lOXseiXI3jq5u4Y1asl9DqNt0sjIiIiIh/CkEvUCKVlFWLait34af85nxq5VUNWFBzJyMWzSzbjlwOtMOHuPkhsGurtsoiIiIjIR3AlF6JG5vC5XPx7YTJ+3Jve4AJuZQaThNU7z2D8B7/jwNlsb5dDRERERD6CIZeoETl9sQATv9yOA2k5kBXF2+XUmqwoOJieg/8s2oyUNAZdIiIiImLIJWo0ig1mzPv+APadzoKiIuCKgtAgVjFWFAWpF/Mx4fPtuJhf6u1yiIiIiMjLeE0uUSOx5egF/LQv3ekIrk4rolNCE/TvGIvEpqEoNZpxMC0Hf564hNxigwerdd/B9BzMW78fU+8bAL2Wf78jIiIiaqwYcokaAZNFwuqdp1BkMDtsExaox/gbOuP+oR0RExkM8cowrtEsYc/pLExZtgNHMvJUjQJ7g6IoWPXnadzRry0GdGzu7XKIiIiIyEs43EHUCFzKL0NKWq7DxzWigMdHdcFTN3dH86gQa8AFgACdBoOSmuPdx4ahhY+vYlxsMGPZlpMwmiVvl0JEREREXsKQS9QIZBWWorDE6PDxzi2a4KERnaDXOr7n7FUJUfjHdZ2h1fj2j41txy8iq7DM22UQERERkZf49m+rRFQnLJLs9Frca7slIiJY77Kfa7slIjI4oC5Lq3OX8ktx4nyBt8sgIiIiIi9hyCVqBERBhOBkqeQ2seHQiK6XUm4WEYTwENdh2Jsskoz0rCJvl0FEREREXsKQS9QIOAu4AFBmlKBmPblSDBsAACAASURBVCmTWYLZ4vvXu5aYzKqeDxERERH5H4ZcokZBcRp0d5+6BIsku+zl5IV85BU5vrbXV+hFEQBTLhEREVFjxJBL1AgIAuBsaHPToUwcPpfjtA+zRcbXf5xAqclSx9XVA9czr4mIiIjITzHkEhGyiwyYtmI3Tl0qsJuFTRYJS347iu/3nnW6gBURERERkbdpvV0AEfmG7ccv4smPkvHIyM7o3yEWoUE6SLKMc9nFWL79FFZsS4XB5PvX4xIRERFR48aQS9QIqJm9qwBIScvBhC+2Ii4qBFGhgTCaJVzMK0F+qQkKR3CJiIiIqAFgyCUiGyaLjLSsIqTxNjxERERE1ADxmlyiRkAQBJe3ESIiIiIi8gcMuUREREREROQ3GHKJGgWO4hIRERFR48CQS0RERERERH6DIZeoUeDKyERERETUOHB1ZaJGIDo8CGOHdkCp0eLR857PK8FvBzNgtsgePS8RERERNV4MuUSNQHyTEEy4q4/H73W7+egFbDt6EWaLyaPnJSIiIqLGiyGXqBEQBAEaAfD0AlQakQteEREREZFnMeQSkd8TUQwBZa4bKgoAEQp0UBAIRdCDK1MTERERNSwMuUQ+TlYUGEwSig1m5JUYUFxmhqIo0Gp8f924UxcLICnevh5XRrC8ESHS74DgIrBeCbkygiAJMTAKV8Go6QoJsVCg80i1RERERFQ7DLlEPkhRFBjMEk6cz0fy4UzsPHkJpy8XIrfICJNF8nZ5qsmK4hOLTolyCTRKlupFpjUAdMpZBGInZDkCBqEXSjTXwyy0vPIoEREREfkqhlwiH2MyS9hy7AI+/e0Idp68jGKD2dslNWqiUoBgZRMC5X0o1t6MEs31UJRAb5dFRERERA4w5BL5kDOXCjHzuz34+cA5mMwNZ8S2MRBRgHDLN9DLp1CgHQcJkd4uiYiIiIjsYMgl8gGKouCXAxl4demfyMwt8fitfkgtGYHyLgjmUuTrHoeEJt4uiIiIiIiq8P2Va4j8nCTLWLH9FJ5ZvBkZOcUMuD5PQQCOIMLyKUSUeLsYIiIiIqqCIZfIi2RFwYZ95/D6sp0oKDV6uxxSS5ERoBxAqGUNAO8vrEVEREREf2HIJfISRVGw73QWpn7LgNsQCYoFwfJvCFAOe7sUIiIiIqqEIZfIS7IKDZi5ag8yc4q9XQrVkIhShEkrIaDM26UQERER0RUMuUReYJFkLNtyAjtTL3u7FKolvXwSQfIuqL4JLxERERHVK4ZcIi84eSEfX28+CYvE6zkbPgUh0s8QOZpLRERE5BMYcok8zCLJWL7tFDJyirxdCtURnZIGvXzM22UQERERERhyiTzubFYhNuxLA+8UVH8EQYAgCB48o4QgeQsExezBcxIRERGRPQy5RB72a0oGMrjYVL0K0Go8f075GDTI9fh5iYiIiMgWQy6RBxWVmfDLgXOQZA7j1hdBACJC9B4/r4h86JXj4AJURERERN7FkEvkQakX8nHifL63y/BrOo2ImIggm32C4JkFvvTyYQiweORcRERERGQfQy6RB+1OzUJBqcnbZfi1qNBAxDcJsW4LkCEonpkerlPSIKDUI+ciIiIiIvsYcok8xCLJ2H36Mm8bVM/axYajSVhgpT1maFDgkXNrlBxolByPnIuIiIiI7GPIJfKQvBIjTp73TNhqzIZ2SUCQTmvdFhUDNIpnFoQSUQatct4j5yIiIiIi+xhyiTzkfG4JsgrLvF2GX4sKCcANPVpAI/51+yCNkgNRyfNQBTJ0cia4+BQRERGR9zDkEnlIelYxSk1clKg+3dKnNdrFRtjs0ymnIXrwOlkNLnHxKSIiIiIvYsgl8pAzWYUwWyRvl+G3mkcF4/Ebu0Kn/evHmqAYEYBD8OTIqgZ5EGD02PmIiIiIyBZDLpGHZOYU8/649SRQr8Ur9/RF65gwm/1anIdeSvVoLaJSBEFhyCUiIiLyFoZcIg+wSDIu5vHWMvUhQKfBs7f1wF3920IQhEqPyAiStkP00MrKFQSlDAJ47TURERGRt2hdNyGi2pJkBbnFHN2ra01CA/H87b3wwPCOEG0Cbvk9a4OU7fD0IlACjBBh8Og5iYiIiOgvDLlEHmA0SyguM3u7DL+h1Qi4un0snr+9F/p1iLVZTRkABMWAUGmtx24dZHNuWCAoZYDgui0RERER1T2GXCIPMFokGMwMubUVFKBF1xZNMWZwe4zq1RJRIQFVpigDgIwQ+RcEKvvhnVv5yFx4ioiIiMiLGHKJPMBkkWGWuOiUOzSiAK1GRERwABKahvx/e3ceZ1dd33/8fe6dfSaTPSQkIayJIhDCHlJALbX80FrkJ1Vb10rV/lxa66+i/WlRrEvR1vpzqYqo1V/VWvcVrba1AorIKqAgYRUIQvZkZjIz957fH0FKErIQkrmTM8/n4zEPHnPn3HM+d5LMY158zz0nxx48M6cdMTeLF8zI1L7ObU5P3qyZnuZl6Wt+o2UXfyrSTJHhlhwbAACRC2NidLQ5bq+sXCuK9HW1Z7/JPdl/ek/mTO3N1N6udHXUU2vBKbdFUaS9rZYpvZ2ZM6U3c6f3ZNbknvR3d6Stvv1r5RUZTk/jPzKp8aXUsn4MJ360WazaAwC0isiFMdBoNls9wja6O9uyaP+pOf2oeTlp4ewsmDkpU3o709FWS71Wy6MulI5LzbRlRfoa30p387LWnypcJMmj3w95zeo1Wfngyp3uYvWadVl+x91ZvXbdnp2NfcbadeszuX/SzjcEALYhcmFMFCnL8bGS21av5YgDpuclv/3EPPWIuZnW19XqkXZDmSIjqZe/Tnfzp+kuf5i25n2tHmqzHfw533nHnbns0st3aTe33fWrPTUR+yiRCwC7R+TCGCiKclysjE7q7sjzT12Ylz3tiMya3L0Lz2imKBtJmmnNRZweUmyO2qIcSltWpq28M53Nm9JeLk+9XNPa2bZWFNsdZ/GSxVm8ZPFOd3HFD36QE45+UubOmbWHhwMAqD6RC2OgXq+lVtv++0nHwrS+rvzVs4/LOUsP2cF7W8sU5UjqeTDtzTvTnjtTL3+dWrk2RTHSkpYsUiZppCg2pdZcn6IYSlGOjv0gu6xICj9aAQBaxW9iMAba67W0teIqTg/p62zP+c85IWefdMh2LyZVLx9Id/OKdDV/mvby7hQZ3HKDVi+Wllv9d5wqk5Rpb/UYAAATlsiFMdDRVk+93prIbavX8sozj8xZJxz0qIFbL1elt/xWehqXplauz7ivyHGvljKdrR4CAGDCErkwBjo76unpaM3q3rInzM7zT1u07SnKZSNd5TXpb342bc0VEbd7Sj3N7Mr7nQEA2BtELoyBjlot/T0dY37c3q62/OkZR2Zq75Yri0VG0lv+W/pGv5RaBsZ8rior05GyELkAAK0icmEM1Ou1TO0d+8g99fD9c+zBs1I84tLORUbT2/xuJjW+0Pp7ylZQmc6UVnIBAFqmtZd7hQmiXisys39sw6deK/LspYelu6P+iEfLdDavS1/jaylKgbs3NNOXppVcAICWEbkwRuZO70t9DK+wPG96X044bMtV3Hq5MpMaX3noAlPsDY1icspy7FftAQDYTOTCGFkwc9IO7k+75x1/6Kz0dz8ytsp0lz9Ke3n7mM0wETWK2SkLkQsA0CoiF8bI/Ol96ekYu7fBH3/oflusHNfLNelu/DhJc8xmmHiKjGRu/GgFAGgdv4nBGJkztSdTJ43N/VPrtSKHz5u6xanK7eVtacu9Y3L8iaosOjNam9/qMQAAJjSRC2Nk+qTuHDhz0pgcq7O9njnTeh/xSJmO8ucuNrWXNTIjjcxq9RgAABOayIUx0t5Wy5KDZmUsLj01qbtji/fjFhlOe/POMTjyxDacg9Is+lo9BgDAhCZyYQwde8is9HXt/YsSdXW0bfF+3Fo5kHrW7vXjTmxFNrUdldLtxwEAWkrkwhhatP/kzJ3eu/MNH6etV4uLDKXI4F4/7kTWKKZlOAtbPQYAwIQncmEMzejvzokL99viglBjochIinJ0TI850WwqjkwzU1o9BgDAhCdyYQy11Ws5/agD0tc51qe0Nrdd3mWPKYvODNRPSVm0t3oUAIAJT+TCGFty8IwcsWB6q8dgD9pUPCkjObjVYwAAEJELY25KT2fOPumQtLf551cFZTqzofb0lMXY3AMZAIAd81s2jLGiSE4/an4WHziz1aPwuBUZrJ2c4dqiVg8CAMBDRC60wMz+7vzJ6Yenq6Pe6lF4HEazf9a3/c/4UQoAMH74zQxaoCiS3z5yXp5x7IGtHoXd1Cz6s7b9xWlkWqtHAQDgEUQutEh3Z1vOe9axOXy+SNrXNNObtW0vyKbiSa0eBQCArYhcaKE5U3vy7heenDlTe1s9CruoUUzN2vYXZ7BY2upRAAB4FCIXWqgoiiw+cGbef+6pmTu9r9XjsENFhmuHZk3b/3oocP34BAAYj/yWBi1WFMlJC2fnQ39yWpYcPDO1otUTsaUijUzNhtozsrr+6mwqDo8fnQAA41dbqwcANofucYfOyj++7LRc/P2b8tWf3JEH1g2kLFs92URVpEx7GsWsDNWOzmBtaUYzL2XR3urBAADYCZEL48j8GZPyV2cflzOPOTBf/PHyXPaLFVmxZmOGNo1mX+zdRjE1jUxPxvnqdFGWScqURUcamZLRYk5GikMyUixIo5gaK7cAAPsOkQvjTEd7PScctl+OOXhm7lm5ITfctSo3/mpV7l21MZtGGyl2IRhnTupOfRyc9zxUOzHra2cnxXiPxDIpy5RFW5L2lHH/YgCAfZXIhXGqrV7Lgln9WTCrP08/7sCUZdJ8aMVxZ4qiSG1XangvK8u2NIue7BMroa3/dgEAsAeIXNhHFEVSL4qoMQAA2D6RC+w9RSNFNmXMV3LLtpSFU44BACYikQvsNb2N/0x38yfZpdXnIlueif2bp5RbPb3czvaP2GBD/axsLJ66a8cFAKBSRC6w1xQZTL0c3LWNtw7Wcgdf295jDx93aNeOCQBA5ewDV4MBeKz2xRsuAQCwJ4hcAAAAKkPkAtVTWskFAJioRC5QPa43BQAwYYlcYHwrdufHlJVcAICJytWVgXGnLOppFLMynEPTLKamKDemI7elrfmrFBnZhT1YygUAmKhELjCulOnKxtrvZmP9aWlkSn4TrLUMpLtxWfoaX0k9q3e6F6ELADAxiVxg3CjTnvVtZ2VD7elJ6lt8rZmebKyfnkYxOVMaH0ut3NCaIQEAGNe8JxcYN4aLRRmonZ6tA/e/FRmqHZfB2rLseKXWe3IBACYqkQsTQjMpm60eYseKWoZqx6aZnp1sWMtQ7biU6dr+JmXcRggAYIISuTABFCnH/VtUy7RltJi9S9s2iqlpFjuI4XH+WgEA2HtELkwAzXSnTEerx9ixspkijV3ctrH5YzsKq7gAABOWyIUJoFn0p1FMbfUYO1RkNO3lndmV99O2lStSKwZ2sMX4X7kGAGDvELkwATTTm5EckvFefl3lVamXD+5wmyKD6S4vT1EOb3ebZrr39GgAAOwjRC5MCEWG6selmb5WD7JD7c07M6nxldTy6LcHKspN6W18L13Na7e7jzLtGa3Ny3gPegAA9g73yYUJYjiHZlPtqHQ3L8/4vcVOI93N/0qtsSEbiv+R0dr8lGlL0kxbHkhP4/vpaf4wRTZtdw+jxdyMZP7YjQwAwLgicmGCKIvObKifmY7yl6mXv271ONtVpJGuxpXpzM8yWuyfRtGfWjmQtvLe1LIxOwz0opaB2lPSLPrHbF4AAMYXpyvDBDJSHJh19XNS7gPvWS0ylPbytnQ1r01HectDpzDveAV6U47IYH1ZnKoMADBxiVyYUIoM1k7K2rY/Sll0tXqYPWq0mJc1beemmR3cPxcAgMpzujJMOPUMFqelrPemv/Hp1MtVrR7ocRuuLcya+svTKGa0ehQAAFpM5MIEVBb1DBYnZLSYk0mjn0tnbkhRjrZ6rMesTHcGar+VDW1npZHxfR9gAADGhsiFCavISHFA1rS/Kl3NK9PT/H7am3ekyPiP3bLozHAWZWP9jGwqDk+ZjlaPBADAOCFyYYJrpicDtVOzqVicztr16Wr+OB3N21LL+oyvWw3V0iimZLhYmMHa0gzXnphmeuMiUwAAPJLIBZIUaRRTMlCcksHa8Wlv3p3O8qZ0NG9KW+5LLetTlCMZ2+gtUqYjzWJKRoq52VQ8KcO1J2a0mJMynWM4BwAA+xKRCzxCkTLdGa4tzHAOS1E/I/WsTHvjnrSXt6ct96RePpBaNqTIUIpyJEUaSZoPPf+xRnAtZVFL0pYy7SnTnUbRn0ZmZbSYl5HiwIwWc9LI1JSFU5IBANg5kQtsR5EyXRnN3IzW52YwJ6RII0UGUis3pJZ1qZVrUy/Xbl7pzUBqGUhRDqUoGknZSMqH4rcoktRSpp6kI810pUxPmkVvmsXkNIv+NNKfZialWfQ9tFLrDmcAADx2IhfYZWXqKTMpzWJSkjnbeTtsufmjLP/762UeCt3ffAAAwN4hcoE97KGQLbZ6CAAAxoDzAQEAAKgMkQsAAEBliFwAAAAqQ+QCAABQGSIXAACAyhC5AAAAVIbIBQAAoDJELgAAAJUhcgEAAKgMkQsAAEBliFwYI+vWrsnr/+yVrR7jYZd842s547SluX/FfXv1OD/9yY9zxmlLc/211+zV4wAAQCJyAQAAqJC2Vg8AVXf78lvz6U9clBt/9rOsXbM6L3nes3PiyctyzvOen+kzZrZ6PAAAqBQrubAX3XfPr/IXr3pZJk3qz4Xv+0COXLwkb7vw7zJ7ztx86fOfa/V4AABQOVZyYS/6wb9/L8ObhvOq1/5lBgcHUhRF5s1fkHnzFzym/Tz4wK/z6Y9flCuv+HHWrl2TGTNm5qlPOyN/9MKXpK29fbe33dq6tWvyTxd/NFf++EdZs3pVZszaLyeevCzPe8GL098/eadz3nj9dfnYhz+Y5b+8OZOnTM3Z5zw38w88cJvtrrj8spz/xv/98OedXV1ZsOCgPPPsZ+f0M87c7df/hX/5TD72offnM1/8ej7/2U/n37/7nZRlmd858+k59xWvSmN0NB/78AfyH9/7t4yMbMqyU5+S1/zF69PR2bnF8Zbfeks+dfFFueH66zI8vClz583P7/3+2Xn6WWdvsd3Dx/vyN/Llz38u3/32NzM0NJjFS47Ja153XmbMnLXT7xkAAHuWyIW9aGhwMM1mMxs2bki9tnsnTty/YkX+/BUvzez95+Yt77wwBxxwYG7++U159zsuyN133p43XfDO3dr20Vz4N2/N/StW5Py3vyvzFxyUlQ8+kCsuvyzf/fY38+zn/OEOn3vLzT/PG173mpxw4tK8/p8+k+7unnzty1/It7725W22PfHkZbnkBz9KkpRlmdWrV+V7l3wrf/+3b093b2+WnXLa43pNH7/oH3P8iUvzgpe+LDddf33e9uY3ZPLkKVlx771ZvOTYvOilL8vPb7wxF7z5DZk+fUZe8rI/ffi5y2+9JX/xypfnSUccmfd9+KL0T56S73/nknzwfX+X++67N+f+6au2Od6nPvaRHHH0MfnEZz6fu+++K2970xvznne8Le967/t3+D0DAGDPc7oy7EUnLTslRVHkDX/2qnz3km9lZGQkzWbzMe3jExd9KMMjI3nrOy/MwkVPTFd3dxYfc2xe+ef/O5f+4D/zixtv2K1tH831116dZaecmkMOW5SOjo7M2X9uznr2H+w0cJPk0xdflL7evpz31xdkzv5zM2Xq1Lzwj/8kw5uGd/i8oigybdr0/MEfviCLlxybb3/tK7v9+n/jgAUH5rSnnp7ent4cf9LSLDv1yfnspz+Z/WbPzpNP/5309Pbl2BNOzCmnPjmXfPPrWzz3kxd9OG1t7fk/b3tn5s1fkP7+yXnWOc/JGc94Zr70+c/m/hUrtjne7LnzcvrTzkhPb18WPeHwPPu5f5Rrr/5p7rv3np1+3wAA2LNELuxFT3jSETn/7Rem3taWj33o/fn5jT/LOb93Ri5821t2OYCuuPzSLF6yJP2Tp2zx+NHHHJckuf66a3Zr20dz0KGH5Vtf/2q+8ZUv5tf3bxtzd9y+PGectnSLjysuvyxlWea6a67KscefkI6Oji2ec/IjVmV/o9ls5gv/8pm88qUvyu//7lMe3tc1V12Ze+/91W6//t84/sSlW3w+/4AFGRoczHFbPT7vwIOyds3qDAwOJNm8qnzd1VdlyXHHpbend4ttT3nyU9NsNvOza6/e5ngnnnTyFp8fdPAhSZIV9927zbYAAOxdTleGvezEk5flxJOX5e677sj5b3x9jj7m2Hzvkm/l2muvykc++c+ZNKl/u88dGhzM4MBgfnTpD3PmU5Y9/HhZlinLMkmybu3ax7zt9rzprW/Pxz/yoXz8wx/KB977nsyes39OPvW0PPf5L9rhe3KHBocyPDycKVOnbfO1R3vs4g9/MF/54ufzmtedlxOWnpzJk6ekVqvlgjedl+W/vGW3Xv8jTZs+fYvPux8K1q0f7+nuSZIMbNiQnu6ebBra/DqmTdtyuySZOm3z61i7ds3Oj9e7eb8b12/YZlsAAPYukQtjZPLkKZkxY2Ze87rzcvQxx+Udb3lTrrv66vzWaU/e7nM6u7rS0dmZU059Sv7yTefvcP+PZdvtmTlrv5z35rem0Wjk9uW35ic/uiyf++dP5dabb86F7/tgDjzokIffS/tIZVmmo6Mja1av2uZrj/bY977z7Zzy5Kfkd898xhaPr7j3vj3ymoqi2N4Xdvi8zq6udHR0ZPWjvo7VSTb/Oe7y8QAAGHNOV4YWmLP/3CRJ51ZX9d1aURQ58eRlufqnP8mG9ev32LY7U6/Xc+jCRfnDF/1xnnr603LD9dc+vHK6vWMfdfQxufqnV2ZkeMv34P7o0v961Oe0t215WvPty2/N7bfdus1+99Rr2hVFUWTxkmNzzU+vzODA4BZf++EP/iO1Wi1HHn3MXp8DAIDdJ3JhL/qniz+aT1704dx6y83ZuHFjyrLMrbfcnH/8v+/N3PkH5MjFR+90H+e+4lUparW8+bzX5Ybrrs3A4EBWr16Va666Mn/z5jdm+S9v3q1tt7Zu3dq84bWvzo8u/WFWPvhARoaHc/NNN+aaq67MkUcv2elq5Qv/+NysW78uf/v2t+T+Ffdl7ZrV+X+fvDjtHdvetmjpst/Kf/3n93PVT67I0OBgbrju2vzDe971qN+Px/OadseLzn15hjdtytvP/6vcc/ddWb9+Xb76xX/NJV//as465znZb/bsPXo8AAD2LKcrw170rHOek+988+t5/3vfnbvvvDNDgwN55wV/nWOOOz7Pe8GL09XdvdN97Dd7Tj7wsU/ms5/6RN79jgvy4IMPZPKUKTn44ENz5jOflYMOOWy3tt1af//kPO+FL8nXv/Sv+cB7353169dlxsyZOeXJv53nveBFO51z4ROflHe85x9y8Uc+lHNf8NxMnjwlZ53znJz5zGfl8h9uuZr7slf/eWr1et7zjgsyODSYRU88PK/9yzfms5/+ZO5fseUpy4/nNe2OQxcuyt9/8KP51Mc/mle//KWb75M7d35e8erX5hlb3ScXAIDxpyh3dA4ikCT52nd+kAULF2bmfvvt9j5WrVqZd731r3Ph+z64ByejapqNZq689IdZeuyRmT1rRqvHAQDY5zhdGXZBW3t7GiMjj2sftcI/N3ZudHTz37OO9m1P8wYAYOf81g27YFJfTwY2bnxc+3ABXnbFwMbN9+zt6+tp8SQAAPsmkQu7YPqUyVm3Ztv7oz4Wk6dMdaoyO7Vu9er09vZYyQUA2E0iF3bBnFnTs2loaExuY8PEVZZlVq98MPvPmt7qUQAA9lkiF3bB1Cn9mdTXm/vvuafVo1Bha1evztDgYA6YN6fVowAA7LNELuyiRYcsyMpf/zoDGza0ehQqqCzL3H3bbZk9a0b6+3pbPQ4AwD5L5MIumr//fpk2ZXLuuPXWVo9CBd1/770ZGhzMkU84pNWjAADs00QuPAZHPfHQbFi3LiuctsweNDg4kHvuvCOHHjg/fb2uqgwA8HiIXHgMpkyelMMPOyh3LV+eNStXtXocKmB0dCS/vOGGTOrpzhMOXdDqcQAA9nkiFx6jhYcsyPz998utv/h5Nq5f1+px2Ic1GqO55YYbk7LM0uOOSr1eb/VIAAD7PJELu2HJEYsyc+rk3HTd9Vn1wIOtHod90Kahodx0zbUZGRrMyccdlc6OjlaPBABQCUVZlmWrh4B9UVmW+dnPb83yO3+VuQsWZP8DDkit5v8bsXNrVq3Kbb+4Od3dHTn52KPS3dXZ6pEAACpD5MLjdPtd9+SGXyxPW0dH5h98cKbNmNHqkRinhgYGc9dtt2b1ylWZN2e/LDlyUdqcogwAsEeJXNgDhjZtyg2/WJ67770/fX19mTFnTqZOn56OTit0E12z0cjaNWuy8v4VWf3gyvT29eTowxdmxrQprR4NAKCSRC7sQavXrs9td/4q96x4II1GI52dnenq6U69rS1J0erxGEPN0dEMDw9naGAgZZJpU/pz0AFzM2/OrBSFvwsAAHuLyIW9oNFsZuXqtVm7dn02Dg5lZGQk/qVNLG1t9XR2dmTypL7MnDYlnZ0uLAUAMBZELgAAAJXhUrAAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyB0lAgQAABCxJREFUAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKELkAAABUhsgFAACgMkQuAAAAlSFyAQAAqAyRCwAAQGWIXAAAACpD5AIAAFAZIhcAAIDKaEvyr60eAgAAAPaE/w9icYz/LBmqmgAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "fill_flowchart" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Consume Direct\n", + "\n", + "A thin test wrapper to execute all the specified tests discovered in the specified input JSON fixture directory via a client's native test fixture consumer interface (e.g., geth's `evm statetest` or Nethermind's `nethtest`).\n", + "\n", + "- Test formats: `state_test`, `blockchain_test`, `eof_test`\n", + "- Where: Any supported platform/arch of the execution client.\n", + "- Type: EVM module test.\n", + "- Aim: Fast test execution against the EVM.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: node 'eef7344c686e416aa45dad565b12bc95', graph '%3' size too small for label\n", + "Warning: node '01030757c7d64b328a4fe75e7979fb38', graph '%3' size too small for label\n", + "Warning: node '18359fccfc1e410d8dba0b1c4d08690d', graph '%3' size too small for label\n", + "Warning: Orthogonal edges do not currently handle edge labels. Try using xlabels.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABOMAAAPLCAYAAAAdQE0IAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd5xddZ3/8fed3tImPSQklARCAgQERF3XBQs/dVkRpNhwXcGCuIIdLIioWBBZCAgRCCxF6SrY14LKIgIJoQUChBYICakkM5Op9/cHazQCyUwSzgTyfD4ePDD3nnvO53xn4pBX7jm3VC6XywEAAAAAXmxXVfT3BAAAAACwtRDjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAWp6u8BANhydHf3ZNGSpVn09LKseGZVWlvXpLOrK+Vyub9HAwBgC1JVVZmampoMHtiU4UOHZPSIYamvq+3vseAloVT2JyyArV5nV1fmPfRoHn78yXR1dadpwMA0DhqQ+rr6VFZVp1Tq7wkBANiSdHd3p6O9PS2rV+WZFSvS092TUSOGZvLE7TJoQFN/jwdbsqvEOICtWLlczmNPPJV77p+fnnI5o8aOzfBRo1JdU9PfowEA8BJR7unJ8qVLs/DxBWlZvSrbjRuTyZO2S011dX+PBlsiMQ5ga9XZ2ZW/3HFPnl66PCPHjMnYCRNSWeXuBQAAbLwlixbl8fnzUyol++45Nc2DB/X3SLClEeMAtkYtrW25+bY709HVnYlTp6SxaUB/jwQAwMtEd3dXHpx7X1YtX549d9s5Y0eP7O+RYEtylU9TBdjKtLS25cabb0+5ojJT9txDiAMAYLOqrKzKpClTMnybMbn1jnvzyONP9vdIsEVxPRLAVqSzsys333ZnqmvrMnn33VNRWdnfIwEA8DJUKpUyfvsdUllRmTn3zEtjQ32GDx3S32PBFkGMA9hKlMvl/GX23eno6s6UPXd7Tohra23L29+8/wb3M37C9jnv4sterDGf4yfXXp1z/us7z/tcXX19fvSL3xY2y+b0g/+emSsuv+QlOz8AQG+MnTAha9racsvsu7Pfq/dKY0N9f48E/U6MA9hKPPbEU3l62YpM2XOPVNfUPuf5+ob6/OLGm9d57J0HvTU7T5mSk772rc06y0Xnn5efXHt1rv3Zr3v9mu9f8oOM23bCZp2jCBtzrgAALyfb77RT7p09O3PumZdX7717f48D/c494wC2Al1dXbl33vyM2mYb94jbQrzzyPd7VxwAsFWoqKjIhB13zKIly7Jw8ZL+Hgf6nXfGAWwF7n/o0XT3lLPN+PGbvK9H5j+Ui84/N3fNmZPOjvbsMHGn/MeHPpJdd99j7TZPL16UC847O3fOmpW2Na3ZdtvtcvDh78zr9n9Dzj3ru/nR1VcmSf7f616VJBk6bHguu+YnGz3Tmra2HHv0+9PY2JjTzz4vlVXP/ni7/da/5AufPi7HfPyTOfDth/R6/r9ud8mF389dc+5IV2dndp4yJe//4DGZuNPOSZJvnfLlPP74ozlrxsx1XveZj380jU2NOelr31rvuT7fZap3zLotl1x4fh6Yd1+qK6syddoeOeojH13nHYHfP+es/PZXv8h5F1+WM759ambddmsaG5ty6Dvfk4PecdhGryEAwIupadCgDBsxInfOfTCjhg9NqVTq75Gg33hnHMDLXHd3Tx5+/MmMGjt2baTaWPMfeiDHHXN06urrM/37M3PZtddnr1fumxM++fE8cP99a7f72pe/kBXLluc708/NFT/6eT72yc/k5pv+kOXLl+XDHzs+R7z339PQ2JRf3HhzfnHjzZsU4pJn7x13wkkn56GHHsjFF8xIkqxYvjynfe3k7POq16wNcb2d/8F59+fjHzkqSXLa9HNz6XXX59B3vTc//fG1fZqrL+d6x6zbcuInP56JO+2Ui354Tc76/kXpaG/PJ475UBYvemqdbcsp59wzz8jBh74zl1/zkxz0jsNy7lnfzdx77urTfAAARRo7YUJaW9uy6Oml/T0K9CsxDuBlbtGSpenq6s7wUaM2eV8XfG96RowYmU+feFJGj9kmAwYMzLvf9x+ZvMvUXP7fFyZJuru6cv+992T/N/2/jN5mbGpqa7PjpJ3yuS9+JUOGNG/0sY9+7zvz/173qnX++dLnPrn2+R0m7pQPfPCYXPWDSzP79lvz7a+fnFJlRT75uc/3af4k+f73zsrQYcNz4slfy7bjJ6ShviF7vGLvHPeZEzd6/g256PzzMn677fPhjx2f5uahGTN2bE748inp6OzIVT+4dJ1tVyxfnv3edECm7j4tDf/3rrhRo8fk1z//6Ys2HwDApqqtr8+gIYPz+JOL+3sU6FcuUwV4mVv09LI0DRiY6pqaTdpPV2dn7pg9K29/x+Gp/IdPYt112h654bprkiSVVVUZO258fnjpxamtrc1e+7xys9ynrjcf4HDQoYdn1m1/yZc+96l0dXbm1NPPzMBBg/s0f2dHR+6ec0cOOfxdz9nuxdLR0ZF5c+/NYe967zqPDxw4KFOm7po7Z89e5/GKiorsudc+6zw2bvz4LHpq4Ys+KwDAphjcPDRPPvZof48B/UqMA3iZW75yVRoHDdrk/axavSrdXV25+oeX5eofXvac5//+vh8nff0bmXH2mfn217+Snu7uTJq8S95+yOF53evfsMlzrE+pVMrr3/Tm3HrLzdlhx0mZtudefZ5/dcvqdHd3Z0jz0I2aoVwu9/k1q1evSk9PTwY/zzsHhwwZmkfmz1/nsYGDBj0nFDY0NOYpMQ4A2MI1DRyYzs6utLatSUN9XX+PA/1CjAN4mWtrW5PmkZt+iWpjY1MqKiry7n//QN79vv9Y77Zjx43PV77xnbSvWZO777ozP7/+upz6lS+mvqEh+7zq1Zs8ywtZtmxpzp3+3ew4aac89MC8/OjqK9d+qEFv529qbEplZWWWL1v/vUzqmxrT1tr2nMeXLl2SpgFNfZq7qWlAKioqsmLF8uc8t2LFsgwYuG5MLcUNjwGAl6a6hvokSUtrmxjHVss94wBe5jq7ujb5gxuSpKamJrtN2zM3/+kP6enp6dVrauvq8oq998mJX/5aqmtqct/ce5IkdXV16erq3OSZ/l65XM53vv6VVFVV59TTz8xBhx6eC847Ow8/9GCf5q+uqcnU3aflT3/4fbq7u19wu9Gjx2Tx4qeypu1vQe7JBQvy1JNPrLNdb861pqYmkybvkltv/t91Hl+16pncc/dd2XXaHi/wSgCAl5bKymf/u7Szq6ufJ4H+I8YBvMyVy+XN9k6qDx77n3liwWP55ikn5bFHH0lHe3sWPP5orrvqisw458wkyeJFT+WkEz6d2bffmmeeWZnWttb8/Pofp6uzM7vv8YokybjxE9LR3p45s2f1OuxtyLVX/iCzb78tn/nCSRkwYGA+8MFjsu347fKNk7+Ujvb2Xs+fJEd/5GNZuuTpfP2kz+fxxx5Ja1tr7ph1W8749qlrt/mX178x3d3dmfn976Vl9ao8Mv+hXDjj7OwwcdI6c/X2XI/8jw/m4fkP5rzpZ2T58mVZ+OQT+cbJX0xlZVUOfed7NssaAQD0t7/eGqTc0/dbe8DLhctUAei17XeYmDPPuzCXzrwgn/7PY9LW2pKRo8Zkn1e9Ou847F1JkhEjR+Wt//b2XP3Dy/LAffelu6sr47bbLp//ytez+x57Jkle9ZrX5oC3/GtO+eLnsnrVqgwdNjyXXfOT9R776Pe+83kfv/y6G7J86ZLM/P65OezdR2a3ac8eo6q6OiecdHI+etS/57yz/ysf+8RnejV/kuw4aad895wZufj8Gfn4h49OkkyeMiXvP/oja7cZNnxETvjSKblwxtn52fU/zk6Td8lxn/5czjztW+vM19tz3XOvvfPVb5+RS2een/cd9vZUVVZl1z32yOnnnJeRm+GTcAEAgC1Dqbwxd5oG4CXjup//LhMn75LmEcP7exQAAMgtN96YfaZNyTajR/T3KNAfrnKZKgAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAglT19wAAAAD0zpq2tnS0t6ersytJub/H4WWmVFGRqqrK1Dc2pqqqur/HgZctMQ4AAGALVS6Xs2LZsixdvCgrli1Ld1d3f4/EVqKuoT5Dmodm2OhRaWho7O9x4GVFjAMAANgCLV+6NI8++GDa16zJ4MGNGb/tsAwYWJ+GuppUVlWkVCr194i8zJR7yuno7E5rS3tWrGzJkiWLs3DBggwZOjTjd9ghtfX1/T0ivCyIcQAAAFuQ9ra2PPzAA1m5fHlGjBiU8btuk7q6mv4ei61AqaKU2tqq1NZWZUhzY7bbbkSWL1ud+Y8szpzbbsvobcZmmwnjU1Hh9vOwKcQ4AACALcQzK1Zk3j13p66uOrvvPiEDB3onEv1rSHNT9hzSmIULl+fRR5/IMytXZNLUKamuFohhY8nZAAAAW4DFCxfm/jvvTPOQpkwT4tiClEqljBnTnN2nTUhXx5rcM2tWWltb+nsseMkS4wAAAPrZ0sWL8/C8eRk7bmh23nlMKircD44tT0N9TabtMSG1NZW5f86cdLS39/dI8JLkMlUAAIB+tHrVqsyfNy9jxzZn/Pjh69127tx5uerKH+euu+/NMyufyZAhgzNu3Ni8+c2vzz+/7tWpqqrKpZdcmcsvvyY/+/kVSfKcX/eHtrY1eetbDt/gdhMmbJsLZ55VwETPuu66n+asM2fkoovPzrbbji3suL3xy1/8NpdeelUWLVqc2traXH/D5f09UpKkuqoyU6eOyx1zHsn9d9+VXabtkcrKyv4eC15SxDgAAIB+0tXVmXl335XBgxoyYcKI9W573XU/zdnTz8/b3vbmnHbaKRkzemSWLV+R//n17/Otb52Zmtra/NM/vbKgyf/mggsuzY+u+9l6Y1F9fV1++7sfr/PYIQe/L7vsslNO+eqJhc+zpR9n+fIVOe206fnQh/49bz/4rVtc7KqsrMjUKeMye/YjeXjevOw4eXJ/jwQvKWIcAABAP1nw8CMppZyddx6dUumFL0295977cvb08/Pu9xya97//XWsfHzlyeN79nkOz5yt2z5q2Nc/72ve897C8572HbfbZefE8sWBhuru7M23a1C0uxP1VbW11Jk0anXvueTwjx4zOgEGD+3skeMkQ4wAAAPpBa2tLFi9cmIkTR28wuFzxg2vT0FCfd7/70Od9fvLkSS/42ue7TPXh+Y/mggsuzZ133pOOjo5M3HGHHP2hI7PbblPWbnPuuTPz61/9PjNnnpXTTpue226bk6amhhxxxME5+JADkyTTp5+fa6+5Pkmy/35vS5IMG9acK6+a2btF+Ae9mWvx4iWZMePi3DH7rrS1tWX8+HE59LC3Zb/9XrtZ5tkc592X9f3++Wfk9O+ck9mz78wBB+yftjVr8stf/DZJ8sEPHp8kOfiQA3PssUflZz/9VU477ewkSUVFRYYPH5rdd5+S//jAezNixLDnrOVFMy/PnXfek87OruwyZaccddSRmbTTDn1a7/Vpbm5Kc3NTHpn3QKbutdd6gzLwN2IcAABAP1gw/+E0NdZl5MhBG9x29qy7stvuU1JTU73Jx33ooYfzsWM/l1e/Zp+cN+P0NDY15UfX/TSf/tSXctZZ31on1pRTzvTp5+fQQw/KZz/38Vx//S8zffr52WnyxEzZZecce+xRqa+v2yyXa/Z2rq+c/K3U1dXlzLNOzbChQ/PoowtyxZXXZdq0XTfbPJty3n1d3zPPnJHDD397vnzyZ1NV9ewf0Q844PX5xPGfz4zvn5Edd9xu7fZveeub8pa3vilJ0t3dnccffyJnT78gJ554Ss477/S1UfeBefPznx//XPbZa4+cceY3MnzE0My99/785Cc/z6c+fWyf51yf7bcfmVm3z8/Sp5/OsBHrv9QaeJZPUwUAAChYR3t7VixblrHjmje4bUtLS1paWzN8+NDNcuwZ512UkSOH5YQTjsvo0aMycEBTjjzy8EyevFMuuWTdD3lYsXxl3vCG12XX3XZJY2Njjjji4IwaNTK//PlvNsssfZ2rq6src+fOyxve+LqMGTM6NbU1mThp+3zhC5/MkCGb7zLJTTnvvq7vG9/4L9l1t13WhrjeqqyszIQJ2+bjx30o8x96JA88MH/tc+eeNzPDhg7Nl778mYwfPzYN9fV5xSumrQ1xfZ1zferra9I8dEAWP/lEn+aHrZkYBwAAULDlS5amoqIizc0Dev+izXAJYGdnV2bPvjv77rv3cy6N3X3a1Nx9173rPFZRUZFX7DVtncfGTxibRYsWb/IsGzNXVVVVxo3bJpddenV+97s/ZvXqls06x19t7Hn3dX1LpVL22XvPXs/V2dGZyy6/Ov/x78fmrW85PPvv97Yc+d6PJEkWLnxq7TZ3zrkn//zPr3rBy5/7OueGjBg5MKufWZXOjo4+vQ62Vi5TBQAAKNgzK5dn8OCGVFRsOLA1NjamsaEhTy9essnHXb16dbq6unLFFdfliiuue87z/3jPr4GDBjwn1jTUN+SppxZt8iwbO9cpXz0x3zvnwnzj1DPS3d2TnXeemEMOOTD77f/azTbPxp53X9d3QFNjqvtw6fG5587Mb3/zh3zuhOMzdded09DQkKVLl+ewQ9+frq7uZ2doaUl3d3eam4dstjk3ZMigxpSSPLNiZYaOGN6n18LWSIwDAAAoWGvL6owc3vt3xe2x5665446709HRuUn3jWtsbExFRUWOfN8ROfLIwze4fSnF3JC/L3ONG7dNvn7qF9O+pj133jU3N9zwi5xyymmpb6jPvvvutVnm2djz7uv6Vvbx0tTf/PaPOeigt+SV+75i7WOLFq/7br2mxsZUVlZm2bLlm23ODamorEhdQ21aW1ZnaMQ42BCXqQIAABSso70ztbW9DzGHv/PgtLa25Qc/uOZ5n7/vvnmZPevODe6npqY606btmptu+nN6enp6ffz1qa+rTWdX5ybtY2Pmqq2rzd57T8tJJ30m1TXVmTt33mabpzee7zgvxvr+VblcTnt7+3Ni7G9/88d1fl1dU53ddp+SP/zh5nR3dz/vvl6MOWtrq1ymCr0kxgEAABSsp7s7FRW9/+PYlF12zkc/+oFc8t9XZPr08/PYYwvS2dmVxYuX5PLLrspxHz8xLa1tvdrXR455fxY8/mS+9tXT8+ijC9LR3pHHH38i11x9fb73vQv7fC7jxo9LR3tHZs++a5PCTm/mWrTo6Xz+xK/l9tvvyMpnVqW1rS033PCrdHV2Zdq0XTfrPBvyQsfZ3Ov7V6VSKa/ce89cf/0v8+CDD2f16pb8+Mc/y9Kly56z7Yc/9P4sWbo0X/nyt/LYYwvS2taWWbPm5LTTzn7R5qysKKW75/njH7Aul6kCAAD0g75eCPn2g/81O+08MVdd9eN88hNfzMqVz2TIkEHZdttx+fSnP5Z9/+7SxfXZYYft8r1zv5OLL/phjjvuxLS1tmbUqJHZ91V75bBDD+rzebzm1fvkzW9+Q7580qlZtaolw4Y158qrZvZ5P72Za+TI4Tnw3w7IFVf+KA/c92C6urozfsK4nHTyZ7PHHrtu1nk25IWOs7nX9+8d/4mP5Mwzv59PHP/5VJRK+Zf9X5tjjz06f7jxf9fZbuKk7TN9+jdz4QWX56PHfCZJMnnKpBz9gSPXbrP55ywl5U05O9h6lMrlst8uAC9j1/38d5k4eZc0u5kuAGwxbrnxxkzeeZsMGz6wv0eBzWLu3CfSU6rNxF122eC2t9x4Y/aZNiXbjB5RwGSwxbnKZaoAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKEhVfw8AwEtbuacnra0t6ezoSk93V3+PA2yEUkVFqqoqU9/YmKqq6v4eBwDgZU2MA6DPuru68vRTi7J86dNZtfKZlMvl/h4J2EzqGuozpHloho0elYaGxv4eBwDgZUeMA6DXerq78+Tjj2fhggUppZxhwwZk9KTRaRpQn9qaqlRWuvsBvBSVe8rp6OxOa0t7VqxsyZIli7NwwYIMGTo043fYIbX19f09IgDAy4YYB0CvLFuyJI899GC6OrsyfvzQjB41RHyDl4lSRSm1tVWpra3KkObGbLfdiCxftjrzH1mcObfdltHbjM02E8anosLveQCATSXGAbBBjz/8cJ587LGMHDk4200YnuoaPz7g5W5Ic1P2HNKYhQuX59FHn8gzK1dk0tQpqa6u6e/RAABe0vz1JgAvqKe7Jw/ce08WLliQSZPGZNKk0UIcbEVKpVLGjGnO7tMmpKtjTe6ZNSutrS39PRYAwEuaGAfA8yqXy3no/rlZtXxFdtt1XEaOHNTfIwH9pKG+JtP2mJDamsrcP2dOOtrb+3skAICXLDEOgOe14JFHsmLJ0uw8eUwGDmx4UY5x7rkzc8jB73tR9v1SsHTpsrx+/4Ny991z+3uUF82ll1yZt7z58P4eg82guqoyU6eOS1V1Re6/+650d3f390gAAC9JYhwAz7FsyZI8+dhj2XHi6Awe3LjJ+7vggktz4L++azNM9vJy059uyaDBA7PLLjv19yibzNd4473Ya7c5919ZWZGpU8als709D8+bt1n2CQCwtRHjAFhHT3d3HnvowYwcOdilqS+ym276c8UqPTMAACAASURBVF796le+rD+h8j3vPSw/+/kV/T0Gm1FtbXUmTRqdpYsXZ9XKFf09DgDAS467cAOwjicffzxdnZ2ZMGHbXm3/8PxHc8EFl+bOO+9JR0dHJu64Q47+0JHZbbcpSZLp08/PtddcnyTZf7+3JUmGDWvOlVfNXLuPZ1Y+k9NOm57bbpuTpqaGHHHEwTn4kAP7dJzk2ctef/2r3+f755+R079zTmbPvjMHHLB//vPjH+rV67/+tdPz2OMLcu65p69z7OOP+3yamhpzyldPXOc451/wX/n2t87KHXfcnVEjh+f4TxyTXXfbJX/+822Zcd7FefLJhZkyZeeccOInMmxY8zr7bGltzR133J2Tv3JCr89xzZo1+dAHP5HGxoacedY3UlX17I/xW2+9I5/77Jfzsf/8YA466C29Xq+/bnfRzMtz5533pLOzK7tM2SlHHXVkJu20Q6/XZH1f40svuTKXX37NOkFu1qw5uWjmDzLvgYdSXVmV3Xafmg99+H3Zdtuxz/lazpx51ga/N57P4sVLMmPGxblj9l1pa2vL+PHjcuhhb8t++712nf3PmPHdfOvbZ+XOO+/J4EEDc8gh/5Z3HPpvz1mjzbGWz2dDvz96c+z1nev69r+hNVqf5uamNDc35ZF5D2TqXnulVCpt8DUAADzr5ftX8QD0WXdXVxYuWJBtxw9LTS8+NfWhhx7ORz/6mdTV1+W8Gafnyqsvyt6v3DOf/tSXMu/+h5Ikxx57VN79nkPT2NiY3/7ux/nt7368Togrp5zp08/PoYcelKuuvjAHH3Jgpk8/P/fce1+fjvP3+zvzzBk5/PC358c/uSz/+fEP9en1vVVOOed+b2aOfN/hueLKCzN118n5whe+mlmz5uSPf7g53/r2ybngwrOyePHSnPlf5z7n9bfcfFuqqqryij137/U51tXV5Ytf/FQeeujhzLzw8iTJiuUr841Tv5t99917bYjr7fk+MG9+jvnop5MkZ5z5jVx5zcwcfsTb85Of/LxPa7Ghr/HfmzVrTj7z6S9n0k475vLLZ+TcGaeno6Mj/3nsZ7No0dPPWeMNfW+8kK+c/K2sWL4yZ551aq677pIcf/wxuemmv2T58r+9k6uccs46c0be+57DctVVM/Oe9x6W8867KD/96a/WbvNir+X61q63x17fua5v/71Zo/XZfvuRWdPWlqVPP73hjQEAWEuMA2Ctp59alFLKGT1qSK+2n3HeRRk5clhOOOG4jB49KgMHNOXIIw/P5Mk75ZJLendp4orlK/OGN7wuu+62SxobG3PEEQdn1KiR+eXPf7NRx1mxfGXe+MZ/ya677bL2nWObY87nm/tNB+yXnXeelAEDGnPUUe/N6tWt+e7p38txx38kw4Y1Z5ttRucdhx6Y//3fW9PS0rLO6//0p1uy9z57prqmuk8z7jhx+xx99Pvywx9em9tvvyNf/8Z3U1FZkc9+9mN9Xq9zz5uZYUOH5ktf/kzGjx+bhvr6vOIV0/KpTx+7UWvSGxdecFkmbLdtjj32qDQ3D8k224zOF770qbR3duaKH167zra9+d54Pl1dXZk7d17e8MbXZcyY0amprcnESdvnC1/4ZIYMGbzO/t94wH6ZuuvkNDU15q1vfVMOOGD/XHTRD9Z+OEF/rmVvjt3bc93YNVqf+vqaNA8dkMVPPrHR5wgAsDUS4wBYa/nSpzNs2IBUVm74x0NnZ1dmz747++67dyorK9d5bvdpU3P3Xff26pgVFRV5xV7T1nls/ISxWbRo8UYdp1QqZZ+999zscz7f3HvssdvaXw8cNDADBzRl0qQdU139t3cVjh07Jj09PVm8aMk6M936l1n5p3/ad6NmPOQdB2bvffbMiSd+NbffekdOOOG4DBw0sE/76uzozJ1z7sk///OrnrPdi6WjozP33fdA9t1373UeHzRwQHadOjl33HH3Oo9v6HvjhVRVVWXcuG1y2aVX53e/+2NWr2553u1KpVL22ecV6zz2ylftlaVLluWppxb361r29ti9Pdd/tLGv+0cjRg7M6mdWpbOjY6NeDwCwNXLPOACSJD09PVm98pmMnjS6V9uvXr06XV1dueKK63LFFdc95/ne3kNq4KABz4kNDfUNeeqpRRt1nAFNjWvfbba55iyXy8879z9+8EJ9Q12GNK/7rqL6+vokSUtL69rHZs+ak/aOjuy7714bNWOpVMqb3vgv+cstt2fHHbfLnv93qWtf9rW6pSXd3d1pbu7duyD/0fOtyYasXr06PT09aR7y3A8GGTJkcObPf3Sdxzb0vXHvvffn2I9+Zp3nf/u7HydJTvnqifneORfmG6eeke7unuy888QccsiB2W//v90PrbGxYZ1wmiRDBj8725IlS9PQUL/Z1nJ9sz6fvnxP9OZcn8/Gvu7vDRnUmFKSZ1aszNARw3v9OgCArZkYB0CSpK21NT3lcpqa6nu1fWNjYyoqKnLk+47IkUcevtHHLWX9Mayvx6msWvdHW19e39DYkLbWNc95fOnS5RkwoKlPc6/Pn/705+y++9Q0NTX2ecYkWbZseaaffX4mTto+Dz7wcK695vq1H2rQ2301NTamsrIyy5YtX++x+rImG9LU1JSKioosX7HyOc+tWLEiAwcOWOexDa3xLrvs9IJBa9y4bfL1U7+Y9jXtufOuubnhhl/klFNOS31D/doI2tLSms7OrnWC3F9nGzZs6GZdy/XN+nz68j3Rm3PdnK/7exWVFalrqE1ry+oMjRgHANAbLlMFIEnWXmZWW9e7v6epqanOtGm75qab/pyenp71bltfV5vOrs6Nmqsvx9nU148ePTKLFj+dNWv+Fp+eeGJhFi58qs/HfSHlcjk333xbXvNPr9yoGcvlcr75jTNSXVWVb592Sg55x4E5b8bFmf/QI33aV3VNdXbbfUr+8Ieb194f7fn0dk168zWuqanOzjtPzC1/vm2dx59ZtTp33XVfdt996npfvzFq62qz997TctJJn0l1TXXmzp239rlyuZxbb521zva3/Pn2DB3anFGjRmz2tXwhz7d2G/N9/0LnuqGvzfrWqFfHra1ymSoAQB+IcQAkSXr+LyJUVvT+R8NHjnl/Fjz+ZL721dPz6KML0tHekccffyLXXH19vve9C9duN278uHS0d2T27Ls2Kqj19jib+vr99//n9HT35PvfvySrV7fk4fmPZsaMi7PjxO36PPMLuXfu/Vm6dFle85pXrvN4b2e86sof5/bb78yJn/9EBg5oytFHvy/jx4/LV085LR3tHX3a14c/9P4sWbo0X/nyt/LYYwvS2taWWbPm5LTTzu7zmvT2a/zv739X5s9/NGeffX6WL1+RhQufytdO+Xaqqipz+BEHb9La/tWiRU/n8yd+LbfffkdWPrMqrW1tueGGX6WrsyvTpu26drtBgwfll7/8be6+e25aWlrys5/9Or/65W9z5PuOWHt57OZcyxfyQmvXm2P35lyfb/+9XaPeqKwopbun7xESAGBr5TJVAJ7V91uAZYcdtsv3zv1OLr7ohznuuBPT1tqaUaNGZt9X7ZXDDj1o7XavefU+efOb35Avn3RqVq1qybBhzbnyqpmb/Tib+vrhw4fmi1/8VGbMuDg33PDL7LzzxHzqU8fm9O+c07eFWY+b/nhLdtppxwwfPrTPMz74wPxccMEleee7Dln7LrLq6qp88Yufygc/eHzOOeeCHHf8R3p9vhMnbZ/p07+ZCy+4PB895tn7mU2eMilHf+DIPq9Jb7/Ge+01Ld/45km5+KIf5p1HHJWqyqrsPm1qzpz+zYwatXkucxw5cngO/LcDcsWVP8oD9z2Yrq7ujJ8wLied/NnsscffQlNFqZRjjz06p337zMy5894MGjggRx313hx44AFrt9mca/lCXmjtenPs3pzrC+2/N2vUO6WN+v8PAICtVam8MXdgBuAl47qf/y4TJ++S5g3cXH3Z4qfzwNx789rXTi5osq3T+448Jm96035593sO7e9Rtmrnnjszv/7V73PNtRf39ygveXPnPpGeUm0m7rJLf48CLym33HhjJu+8TYYNH9jfo8Bm0ZefB7fceGP2mTYl24weUcBksMW5yjvjAKBAF//35nuXHQAA8NLjnnEAAAAAUBAxDgDY6nz4w+93iSoAAP1CjAMAAACAgohxAAAAAFAQMQ4AAAAACiLGAQAAAEBBxDgAAAAAKIgYBwAAAAAFEeMAAAAAoCBiHAAAAAAURIwDAAAAgIKIcQAAAABQEDEOAAAAAAoixgEAAABAQcQ4AAAAACiIGAcAAAAABRHjAAAAAKAgYhwAAAAAFESMAwAAAICCiHEAAAAAUBAxDgAAAAAKIsYBAAAAQEHEOAAAAAAoiBgHAAAAAAUR4wAAAACgIFX9PQAAAACbz4C6wamtquvvMdgCLVn9VH+PAMQ74wAAAACgMGIcAAAAABREjAMAAACAgohxAAAAAFAQMQ4AAIBN1lMuZ97y5Vm+Zk1/j1KIJUuX9fcIwEuUT1MFAABgk3T29OQD//M/+eNTT6Whqirnve51+adttunvsV5US5ctz7ChzevdpqurK93d3amsrExlZWVKpVJB0wFbMjEOAACATfK/Tz6ZPz71VJKktasrp9x2W375Mo9xpTx/WJs1e06uvPra3H777Cx+ekm6u7tTXV2dIc3NGbPNuOyy654ZMmhAhjYPytgxozNt10lpqK8reHqgP4lxAAAAbJKKrfAdX/94yitXPpPPff6kXH/DT9PT052Uy+nq6kxFRUXq6xuypq0lTz25ILffekt2mrpXho4Yne6uzgwZMjgHvWW/vHbfPVJR4U5SsDXwOx0AAIBN8qrRo3PQhAlJksE1NTl5n336d6ACdPf0rP3fy5cvzyGHvSuXX35ZVq1cnvY1rWlrXZ32NW0ZOnRohgwelKqqypRKSUWpJ3NuvTH33HFzyuVyVqxclQsuuSZfP+PCPPTIgn48I6Ao3hkHAADAJqmqqMgX9t47P3rkkbxq1KjsO3p0f4/0oiqXyymVSrniqh/l8QWP5+Y/35InnlyYQYMGp7Oj/dmNapLq6trU1dU9e6lqTW1KSTo62tPY2JCWZ5bnjr/8PjtN3SsDBg3N3PseyKlnPJED9n9N3v6W/VJVVdmv5wi8eMQ4AAAANput4YLVRx59PD/92S9z6aWXpa2tJe3tHamqqsqIkWPS2dmRlSuWplSqSENDfdpaW1NdU5NyT3dSKqWmpjZr1rSlsqKUQYMGZd7dt2XcdpMyapsJaV/Tlht+8ZvMf2RB/v2d/5aRw9f/ARHAS5MYBwAAAH0wbGhzKkpJXV1Nlix5Ol1dXRk2bHiWPr0wO+68a1LuSktLS2qqq9PS0pL6+vpUVFakp7sn3d1dqa6uTnv7mix9+qk0Ng3OogXzs3zpopR7utPZ1Z3777o1d95+U959xDsyYNDgVFZUpKmpKRPGj8vAAU39ffrAJhLjAAAA2GTlcjnJxr0zrq2zM7VVVS+ZD4JY096eyqqqVFVVpZxSOjs7s3LlipRK5SxdsijVVVWprq5OqaKU2traDB48KLvvtltumzU7ra2t6erqSlVVVTo6OrJ61fJ0tLfniQW3p1Qqpb6hIfX1DVmy+KkcctC/ZuzYxlRWVqaqqipdXV39ferAZiDGAQAAsPn0Iait6erKsTfemN8/+WTGNjbm3H/5l+zcvOVfmtnZ2ZknnngiLS2t6enpTmdXV1rb1qSupipPL16UAU3PBrT2Ne2prqlOSqW0rWlPuVxKT7kySVfK5aSqqir5v/vPDR46IkOGNOfppxentbU13d3d+cY3v5mRI0dl2+0mZvLkKRk9anj+7S1vTHW1P8rDS5lPUwUAAKBf/OThh/ObJ55Id7mcR1evzul33NHfI/VKVVVVbp81O0k5LS0tqaquTamiItU1NWmor0u5XE5lZWW6u7tTW1Obutq67Dp1Surr61NZWZHKioqUSklPT09KpVKGNDdnu+22y/htx6WqImlsaEhTU2PK5SSlqtTUNeWmm/6Uq6/9UWZeckV/nz6wicQ4AAAANln5//7d2/fFzV+xIlc++OA6j926eHH+57HH1u5rS1VbU5O77r47jzz6WAY0NaWpoS5NDXWpqKhIqVRKys+uQ1tbW9asWZNFixblkksvy7JlS9LR3pbu/4twpVIp5ZRTqqjKyFFjct/ce1Iu96S2rjZVlZUZMGhItttxUtpbV6a7/ZksferR/Omm/83ip5f09xIAm8B7WwEAACjMyvb2nDVnTi6ZNy9dPT0p5dmQN6i6Oq1dXTn697/PP48enc/vtVcmDRnS3+M+r9/87sYMHjw0lRWlVFZWplRKKv7vvm51dQ2pq29IbV1DxkwoZdCQ5lRX16SuviF1tbWpq6tJZbkjnR3taWttzb333p1nnlmVNW2taWttTUVFRZJSGpsGZOCAARm/7fiMGTEw2004ND+5/vosenpp5t73QEYMH9bfywBsJDEONoOurq489NBDmTdvXtasWdPf42wx6urqMnXq1EyYMOHZvyEEAOBl74X+q6+rpydXzJuX786Zk6Xt7Zk2dGjeNmFCvnL77dlnxIjMfP3r82RLS7526635/cKFufmnP827J07Mx6dNy+Da2kLPYUO+c8bZqa+vT6milJrqmiRJZVVVKquqM3Dg4JRLpTQ0DkjjgCEZ2DwitbV1aRowOI2NDRnYUJWe9hVZumRJllcsy6pVz6SisiqrV69KT09PqqqrUlVZmaamxgwd2pwxo4bnwLe8IU1NTVmzZk1+9ev/yeqW1n5eAWBTiHGwiW699dYcf/zxufnmm9PT09Pf42xxqqqqcsQRR+Scc87J/2fvvuOjqPM/jr9m+6b3QCAJJaEjXRQEpCiIVHs9z9NT79Tz1N8hzVNBxN7PcrazYkVBmg1bAiK9g9RQEhLS69aZ3x8pZJNNsmkkgc/zHt7ufGfmO9/ZaDb73m8JDAxs6eYIIYQQQohmUr6aqjdJqaks2LCBPbm5tLNaeWbYMKZ17cqctWvRgL/16YOf0UhCSAhvX3QRPx49yqMbNvC/vXtZevgw9/brxzXdumHQtfxMS5qm4XA6cbmcmExmHA4HeoMBs8GIoiiomopBX/rc7XbhdjlRLFZUtxNFc2MymFA1C3qjhcKCfFwuFxoqqtuJqqllr2Ppog4GvR6jUY/VagUgODgIi9VKw9asFUK0FhLGCdEIP/30E5MmTaKoqKilm9JquVwuPvjgAw4dOsSyZcsICQlp6SYJIYQQQojmVGlExKG8PBZu3Mj3x45h1uu5s08f/ta3L/5GIy5V5bujR4m2WrkgJubU6cCY2FguiInhnV27+M+OHTz4++98+McfzB08mOGVjm0pBp1GWuqxsjnfFPQ6HQaDHlBQFNDrdKiahtPhwN/fH03TSr+4V0qPtVgsGAwGNE3FZrOjamCxmFFVFdXtxuVy4bDbKSoqJC8vj+LiYgIDA0lNO4HBHIifn39LvwRCiEaQME6IBiosLOSmm26SIM5HycnJTJ48mSVLlhDWBparF0IIIYQQ9VN5AYd8h4P/bN3K//buxamqTIiNZebgwcRVGimxIzOTLLudaxISvPZ4M+n13N63L9O7duXJTZv48tAhbvz+e8bHxjJr0CDigoKwuVyYDYbT2k9MURS6dIpl65YtpeFa2VxxbrceXdmiDE4FggICKC4uxu12lS3WAAZD6TEuZ+mccZqmYne68PcPwO1yo7pVnE4nNpuN3Nxc0tLS2Ll7Lx8t+pjoqGiS164jMCKWdtHhp/GOhRBNTcI4IRpo0aJFHDlypKWb0aYkJSUxdepUCeSEEEIIIc4wbk1j4YYNAKw+dozkL78ky26nV2goDw4ezHnt21c7Z31GBgDDvOyrLMrPj6cvuIAbunVj3oYNrDp6lB9TU+kcEMC+/Hz6hIXxxujRRPr5Nf2N1eD/7ruX3r17s2vXLpYuWwGAouiw+AWUhZIamt5MVIcuFOVnobpdqG43docTRVGwlRSjqm50CgQGBuPnH4jDbkPVNNxuN06Xk8LCAvLzC9i/bx/ZWVkU5GZjsoYwKK4HiV07nbZ7FUI0PQnjhGiglStXemwrisKCBQvo2bNnC7WodbnzzjtJTU2tVl4eyC1dupTQVro6lhBCCCGEqJ+k48dZkpICQKHLRaHLRQc/P6Z37ozd7Sa7pISwsnnPyu3IzgZgQIRvq4L2j4ri80su4csDB1i4cSN78vIA2JqVxRs7dzJ7yJAmvKPaDRjQnwED+vPa62/y3epf0et16BQder2OiKh2GAxGdIpC9+7dUTXILyjE7nAAGhazCX+LGbMRdu/Zy9Gjx8jLy0evV/APDKaoIAenw4kC5GRnogEWv0CCI2MJDo1gxLl9MBjko7wQbZn8FyxEA2iaxr59+zzKOnXqxKxZs1qoRa3PrbfeWuO+pKQkJk2axIoVKwgODj6NrRJCCCGEEM3B6WUhs+PFxSzYtAkAnaLQKySEsbGxTOrUiYSQEGL9/WlnsRATEODzdXSKwuUJCWzIyODj/fsryu0ttJBaRmYmBoMepWyePJfTwcn0VKLbdUBnNOFntRASEgy0q5hKr/xYvV5HTEwM337/I0ePHkdDxWz1R1F0gMrY0ReS0KUTxSUlhIVHEBfXmXP69qJ3rx4tcq9CiKYjYZwQDZSTk+OxHR8f30ItaZ1qW00LYM2aNUycOJFly5ZJDzkhhBBCiDZuVIcOjGzfnl/S0rDo9dzfvz+dg4LItdv5IzeXjRkZbMvOZkdODi9u28agyEhu6t6dZZMno1PqN+NbvsPBT8ePV2yHms3c0K1bU9+ST05mnAQNtIrBqaA5nZxIPUZ0+w6l2xqgaKCVzhunaRoK4Har6PQmLjh/KCsLV+NUFRTAbLYS1aELIy68iNtuvrZF7ksI0bwkjBOigdxut8e2Xq9voZa0DTqdrnQFqUrWrFnDlClTZA45IYQQQog2zqjX8/j55zNs8WKu6NqVW3v3rnZMrt3Od0eOsPjAAdZlZLDh5Eli/f25o08frkxIwOjD39OapjFn7VpOlJSQGBTEvvx85gwcSGILfbkbFBSIhoZS6XtoDXC5nKSlHqWwsAfBQUEVezRKAzcNygI5jbzCItxuFbvNhk5RMJstFBcXsmfP7tN+P0KI06P6kjVCCNEMRo4cydSpU6uVl88hl5WV1QKtEkIIIYQQTa2mfm4hZjNXJiayaMIEVk2ezLUJCZy02Zizbh0XLVnC8kOH6hxd8ezmzSxLSWFARAR39OkDlH7p21IunTgB1a2iaRqaVhoWapSGbW63my2bN7Fv3x+4XS5UTUNT1dJHTcNut7Fj+za2b9uGqrpR3W50ej1m/yDys0+Snp7RYvclhGheEsYJIU4Lq9XKhx9+WGMgN23atGpDf4UQQgghRNvj66DTc6OjWTlpEjd260ZqcTF3/forV69axd6yhR2qemnLFl7esYM4f39evfBCjGUhXP0GuTatc4cMJjIyAreqngoSS1M50MDtdnEk5TC//76OvNzc0rBOVTlxIo3f160lI+MEmgY6vQGjyQKKjsL8XFAU7HZ7C96ZEKI5yTBVIcRp4+/vz4cffsi1117L119/7bEvKSmJyZMns3z5clnUQbR9Wum34aq79m/3RctRdAo6vQ6driU/wgkhxJml4l3PhzngjhQUcG9yMs8MH868887j5p49eWzDBn44fpwpK1ZwZ58+/O2cczDqdLg1jcfWr+ftPXuI8fPjvYsuItrPr1nvxVcGg4EJ48fx3geLUDUVBQVFUcoCQg1VVdGA4qIiNm7cQGxsHDZbMdlZmWU1KGiU9u5TdLqK185g0MvfxEKcwSSME0KcVv7+/nzyySdcc801LF261GNfcnKyLOog2jyHzUlxgQ2HzVnnUJvWRqnnBNq1ac33XnqfGgajAYu/Gau/GUVCOSGEaDK+/Ea1lc2/XD5Uq3NwMG+MHcvqo0d5cN06ntu2DbeqckufPtz366/8cPw4CUFBvDN2LB0DA4FK4V8Lm3zpRN77YBFQ9v5XPiGcoqC6T82ZrGkaR48cLl2wQqHsoNKD9Xo9el3pEFa9XoefxUJQoP/pvxkhxGkhYZwQ4rSzWq188sknXHXVVdV6yK1Zs4bJkyezdOlSWdRBtDkOm5OcjHwUFMxmMwZD6dts1ZCrvtsNPadqeWOO8VXlEK6mQK6+x/h6ni9l5dtutxuHw0F+ViFul5uAEL8mDSOFEOJsVJ8vYhxlYVzV37xjYmMZEh3N2rQ0oqxWpi5bxuHCQka0a8dLo0YRbDZXq6ulf3ufN3QIVouFEpsNKF2mQdNK26WqKqXZW2nwpqmgoqJopYGcXq/HZLJiNFtxuVUURYfRaESnaJw8ebJF70sI0XwkjBNCtAiLxcLHH3/Mtdde67WH3LRp0/jyyy8JDw9voRYKUT+qqpGXVYCCQkBAAIqiVKwgrGlaRdDjLfjy9bH8uS91+LrP1+eVy2oKuKpu11Xu7bi69tVWZ01hnbcPh0ajEZPJRHFxMUV5xZgsRsxWU7XjhBBC1F99wjHVS5nVYOBAXh53//orLk3jb717c1VCAhZD6/z4ajKZiIlpz6FDKVDR6a1soKqm0b59TOkwVEUhKzOTkuIiNEVDr9MTFBKOotOjaRoul7tsyKqC2+ngeGoaTqcTo9HYkrcnhGgGrfO3mRDirODn58dHH33E9ddfz5IlSzz2/frrr0ybNo0lS5ZIDznRJjjtTpx2F/7+/rjdbkpKSsq+Da8eiNVV1tBjG7Lfl8e61BWyeXus6Xlj9/t6LIDZbMZkMmG32ykptEkYJ4QQjVSfYaOGssUXyr+4Krc9M5MHf/uNrdnZtLNaeWLYMKx6PVNXrKB7SAj/HT2aEIvF43qtoWdzfFwshw+nQNl8ceXvt4WFhWRlZtGrd28A7A4XxcWF6BQ9QSFh6HU61LLjDQZ9RX12sfu+YwAAIABJREFUpxO9wcCJ9JPEdoxpmZsSQjQbWU1VCNGiyhd1mDJlSrV95Ys65OXltUDLhKgfp8MFlP4xbbfbcZcNv6lryE59hoj60mvN1/OrlvnSG6/qP/Wpo6Ht8qWehgyz1TQNh8OBqqrodLqKn58QQojTw6wvDZ5Kyt4vs0pKmLt2LdNXrmRbdjbTOnVixeTJjOzQgX6RkYzt2JH1J09y7bffklVSUlpJK5qfNC62Y+kTj57ZpUNWDxzYz4kT6egMJgKDw9Dp9ASFhGIwGEsDxfLVVyvRG/T4BwTi52c9fTchhDhtJIwTQrQ4f39/Pv74YyZPnlxt35o1a7j00kvJzc1tgZYJUQ9aacCjqqrHt/z1GQLaUI0Ns3ytu6YQrvJzX0PClurFUPm6mqbhdrsresy15kUnhBCiLfHld3xA2dDLQqeTJQcOMOarr/hw3z46Bwby7tixPDdyJKFlPeBMej1PX3ABN3brxp7cXG76/nsKHI5TPeOa60bqIS42tqI9er2+bJhqWYmisGXLZnLz8jFbrES164DJZK7Yr1GpV2FZMGcyWRjQry/hYbKomRBnIgnjhBCtgtVq5dNPP/UayCUnJzNp0iSys7NboGVC+KY8zCkPd3w5vjbNFVY1dO66mkI5XxaF8LWsPvub6vVRVVVCOCGEaCL1+W0aUrYQQ47Nxp7cXMx6PfPOPZcVkyczokOHasfrFIVHhg7l6q5d2ZmTw/8lJaG2ot/fcXGxoGkVwZrVYkVRdJRHhW7VzYm0NAwGAwGBwZUSuLInZSFcebGi0zH2wgta5maEEM1OwjghRKtRvqjD1KlTq+1LTk5m6tSpZGVltUDLhPBd1blvKqsc+jR32NbY830ZaurLsU25OmttbajteW11l4dxEsgJIUQTqON3qUtVSU5NZc6aNYSWhXHpJSVcmZDAj9Onc2OPHhj1+hrPVxSF+eefz9CoKL49doyP//ijSZvfGLGVhqm6nC5UTcNktmC2+pWVQ35eLpoGVj//siLtVBZHpX5ymkZQYABDhww8/TcihDgtJIwTQrQqfn5+fPjhh14DuaSkJKZNmyY95ESr1Vy93RoaODV2f9Vja5svrjmvWxtfQjRfgkUJ44QQonGcqsr8DRsA+OrQIZYfOsSOzEySUlN5d/du7v75Z4Z+9hk3fP89i/bvRwEsej3HCgvpEhyMv48rhhp1Op4bMYIgo5H1mZkAvL93L/kOR3Pdmk9iO3as9D6j4bDbQQH/wBD8A4OBsjBOVbGVFONWy6ZJKPvfqd5xpTUEBwVisZhb5F6EEM1PVlMVQrQ65Ys6XHfddSxdutRjX/miDsuXLyckJKSFWijE6dGUoVVTLO5QdV/Vnn4tEWg15rrl96VpGkqrmHFICCHartVHj/LdsWMA5Njt3PXrrx77FSDGz48/devG1C5daOfvTwd/fw4XFKBqGrp6vOe19/dnfFwcnx04AMD6kyd5b/du7urXr8nup75CQoIxmUzYbKUhnMvlxKiaQNMwWwNQFB0OWzH5+TkU5JxEpzdUmieu7P2o0v87WjhcFEI0LwnjhBCtUvmiDtdcc021QK58UQcJ5ERr05BQyGazYbPZgOpzsdVnLjdfz2toWdXn5fda+dHXsvoeX/l1rXpM1eMNBgNWqxWdrvbO//Vd8VUIIUTt3F7eAzv6+3NF1650DgqiX0QEsYGBHqFbYnAw3xw9ysniYqL9/X2+1uaMDNZnZHiUFTqdDW98E3C73TidzrJVuhU0RcHpcOAfACgKJrMVPz8reVnpFUGcUjFnXOUFHEofbDb7ab8HIcTpI2GcEKLVslqtfPLJJ1x11VV8/fXXHvvWrFnD5MmTWbJkCWFhYS3UQiEazm63s3r1an799VeysrK8BnmN6e1Wn4UVGnKMN/VduKL8eW292+pTp6Io+Pn50bdvXyZPnkxUVJQvzRZCCNEExsbGMiw6mjXp6QQYjWiaxrGiIpLT0hjbsSPxQUHVzukTHs6qo0fZmpnJxT6EcSeKinhq0ya+OnwYgECjkQKnkxg/P67v3r2pb6leNmzZVbqIExpuVUNRFJxOB1Da609vMhEeEohOryvti62Bpmhlj3isflFah6tlbkQIcVpIGCeEaNXKF3W47rrrWLJkice+pKQkpk6dyldffUV4eHgLtVCIUvVZBEBVVZYsWcI777yDw+EoHSZZyzxsvu5r7HZD54JrSHjna/hW27a3fZqmsWvXLg4cOMDMmTMJDAz0qS0yZZwQQjSOWa/n/YsvJq2wkBCLhXyHgyc3bmRpSgrTVq7kqq5duW/AACKs1opzBpd9abIuPZ2L4+NrrNvucvHWrl28umMHhS4XA8LDmTN4MD3DwkgpKKBzUBAWQ8t+tA0NDiib9qBsMQZNw61pFBbkYfHzJ9DfH7utBL3BUPqPTn9qggQNXC43xUUFFBUV4rCV8PqrL7bczQghmp2EcUKIVq98UYfrr7/eayA3bdo06SEn2pTc3Fw+//xz7HY7Lper2uIIlcO5yttVF1CoaUEFb6FabQsweNuua8hqZXUFfnUFbN72lQdrvg55LX9UVRWXy8XmzZv5/fffGTdunCzOIIQQp4lOUehQ9iWIv9HIcyNHcmNGBvPXr2fR/v0sT0nhH+ecw5/KVk3tHxFBgMHAj8ePM7fKF1NQGmp9m5LCwo0bSSkspL2fH/POPZepXbtWDHft2Ur+/ouKCMVgMOB0uqjczc1ht6G6HJQU5HocrygKOr0eQ9mQVbvdVrqAg6Iw/5EHGTVyxOm9ASHEaSVhnBCiTahrUYcpU6awfPlygoODW6iF4mxXn55xJ06cIC8vD7fbjaIoGAwGryFY+WNNAVxd873VdHxNYVxtgV/Va1RWV4+6yq9R5ceq5VWP8RbG1RTOlT93u0tXp7Pb7ezfv5+LLrrI5/BPCCFE0xsYFcUXEyfy5YEDPLV5M49u3MjH+/Yxd/BgRnXsyIUdOrAsJYVtmZn0i4ysOG9PdjaPrl9Pcno6Vr2ef/Tty+19+uDn46qrp1t4eDjPPPkY/7x/JqrqLp0TDjDodV7fGzVNw+Vy4aoy191f/vwn/nTD9aen0UKIFiNhnBCizahtUYfk5GQuvfRSli1bJos6iFbP5XKhqipwKrzS6XQ+BW++BGe+hnG+BHy11V21jqplVdXUo62mfbUFct7K3G63x/VqW4mucu9DWU1VCCGal05RuDwhgfFxcbyyfTtv79nDzatXM6ZDB0a1b8+ylBTe3LWLF0eOJNdu5/ktW/ho3z7cmsbk+HgeGDSIDgEBLX0bdbrm6ispKChk7kPz0DQNvV5f83siUHWOhDFjLmTu7Aeau5lCiFZAwjghxGlx8OBBHn/88Sapa+DAgaxevZrCwkKP8uTkZCZPnszSpUsJDQ1tkmsJUR/16V1V+djykKs8kKtc5ksQ52svuqY6t2q7y59XVttQVW8rpFYtryuIq1quqiqqqtY5RFYIIUTLCTCZmDFoEFcnJrJwwwa+PXaMX9LSUIBlKSnsW7qUjJISchwO+oWFMXfIEAZHR7d0s+vlr7feTGFRIQufeBa9vvrK3qdWTfV8f+rZozsvPf8Mer2++RsphGhxEsYJIU6LvXv3MmvWrGa/TlJSErfeeiuffvqp/DEjWkRdQyJrG8YJvgdo9Q3YGtLjrq72eHvuy2tTUy+4ys/rW1bflVyrbktoJ4QQp098UBCvjRlDcmoqD65bx6GCAgD25uURajLx9LBhTK80L1xbc+89d5OfX8Db/3vP+wFl7zlWq5Xi4hKGDBnM/956jYA20PtPCNE0qkf1Qog2o6CggGPHjpGdnd1ibSgpKeHIkSNkZ2dXDLtraUuWLGHdunUt3QwhqvEWVvkSzjXVteqqz1vvttp6vNX23Negrz7Xrm/7y9UVtEkQJ4QQLWN4TAxXdu3qUTYqJobLExLabBBX7tKJE3A5nThdLlxuN6qqoqER27EDf7n5T3yy6H0+//QjEnv04vVXXvRp9W8hxJlDwjgh2hhN01i7di2XXXYZnTt3Ji4ujri4OJ599tnT3pZNmzbRp08f4uPj6dixI8OGDePtt9/GWWUi2tPN7XaTlJTUom0QZ6fGhjoNCd4aEk7VFHTVdE5tQZm3oas1lfsS5NWmPq9PfX8WEsgJIUTLuCoxkR5l8/22s1q5o2/fFm5R09i4cRMmkxmdTo9er2fc2NEsev9//PrT9zz04BzOG3ouZpOZ/zz/BBER4S3dXCHEaSbDVIVoQ1RV5cEHH+Txxx/36IVWVFTErFmzuOqqq+jYseNpaYumacyYMYODBw8CpT3k1q1bx7p16/jwww+x2WynpR01SU9Pb9Hri7OPL0Meqy4a4KvaQihfhr7Wt96aesTVNS9cbceU32/lbW+vha9llfdVLW/o6yGEEOL0C7daWTZpEmlFRUT5+WE6Q6YZOXY8jaDgYKZOuZRbbv4T8XFx1Y5JTOzq5UwhxNlAwjgh2ghN05g3bx6PPfaY1/0Oh4O8vLzTGsZlZWV53bd69Wo6derEokWLTsvcFzqdjt69e3uU1baKohDNxVtY1JiwzJfrlQfzOp3O66ptVYeGVlXfttUUtvkyd1zVgM1biOZLWWPU9DNCOsYJIUSL0et0dDxNwzRVt5vDB/ZxcM9ujqccIivjBEUFBTgdDowmE/6BgYRHtSMmvhNdu/ciPiGxQfMQ/+nG69iz7wAPPzgbnU4GpAkhPEkYJ0QbsXXrVhYuXFjj/osvvphu3bqdtvbodDpuu+027r77btxud7X9hw8f5ptvvuGhhx5q9rbk5OQ0+zWEaEoNCZe8rRKqqioulwtVVdHpdJhMJoxGo9cwTNO0Gj8M1Hc4qy/zyNXVI64xveF82V/XPiGEEGePrJMZ/LB0Mb9+u4LNa5Moys8DwGw2EhRgxWoxodfrcLtVSuwO8gtKsNtLp13xDwxiwPkjuODiSxg75TIionxb3TUxoSsPzvqXBHFCCK8kjBOijXj55Zer9faKioriyiuv5Nxzz+Xyyy/HaDSe1jbdcccd9OjRgx9//JFVq1axfv16j/2vvfYa999/v6wMJc4a9Ql/6gqZattXOYgzGAyMGTOGNWvWYLPZUBTFayBXHoA11YeC2uaE8xbO1TYstSnn2mvIMGBN01CQoa1CCHGm2fzbGt7/z3P8uuprVLebrp2jGX1+Al3io4hpH0ZQgLXGcwsKSzielsOhlHT27N/EUzNW8tTMexkx4VJuvPNeBp5/QZ3XP6dv7zqPEUKcnSSME6INcDqdrF692qMsNDSUX375he7du7dQq0o/9I4ePZrRo0czZ84cpk+fzsqVKyv2p6ens3nzZkaMGNFibRTidPFlxc6mGK5aOYjT6/Xccccd3HHHHaxatYpZs2bhcDhQFAWDwVBtWE158FVTb7emWPDBWyDnrTdc5fbUV1MPXQXpRSeEEGeS/bt38vTs+1n343e0iwrhsomDGTygKwH+FjRNw+F043S5yMsvxq2qqGXTFSgK6HQKer0eg15HQudoeiTGcMm4ARQW2diw5SC/rP2JWy75iqEXjuP+Bc+Q2LuPx7VLiovIycoiLDIKi8XSQq+AEKK1kzBOiDagoKCA7Oxsj7Jx48a1aBBXldls5tZbb/UI4zRNIyUlRcI4cdaoGujUJ4DzdXVRTdMqgri7776b22+/HaPRyNSpUysWeSkP5BRF8RrI1Va3Tqdr9PxylQM5X4elVj2/Iftq48sCG0IIIdqGnZs38t1Xn5OeeoywyChGXzqVwcNH4na7eePpx3jr6QWEBftx641jGdC3Ew6Hi6ISO8dPZONwuur1PqDX6bCYjVitZkac14NRw3qyZUcKS1au57pRg7n5/lnc/q857Ni0gTeeWsBvP36L2+XCaDIxYsJk7p33BB07dW7GV0MI0RZJGCdEG+B0OnG5XB5loaGhLdSamoWFhVUrKykpaYGWCHHm0jQNt9tNly5dmDp1qsfw9OnTp6MoCg899BB2u73GQK4mjVmVtbYeck01LLWukK4yTdN8vo4MUxVCiLZBdbt5Yua9fPbmK4SHhxEb34GtSel89MrzDBw+Ep1Oz6bkn7h4dD/Gj+lPic3OsbQsnK7q8xv7yq2qFJXYKSqxkwn4Wc10T2jP3PsuY+UPW3jrqfks/fB/pB8/Sucu8fzjn7fRoWN7Ug4d4bNPl3LDmKG8teInuvbo1WSvgxCi7ZMwTgghhGgi9Ql/GhNIGQwG9u/fz5w5c3jyySdp165dxf4pU6agqiqPPvpoRRiuKEqtPd5quk59yr3ta0jw1hxDUGtTfi3pLSeEEN698trbqKrGXX+/BYA33/6A/PwC7vvn3wD44MPPOHLsOLMf+CcAn362hF279/Lwv2c0eVtef/JRvnj7Nf55/x1MmTYBnU6HpmmsWrGaxxc8j5+fmb/fMp720SGkZWSjqk3/u724xE5xiR2TycDYkX3o1rU9b77/A0FBATzz/DzCw0u/MB9ybn8mTBzL3X+fyb///hc++GFts62uLoRoe2RpFyGEEKIJVA11agp3Ku9vSACk0+kwGAwYDAaSk5N54IEHOHHihMf+qVOnMnv2bPz9/XE4HLhcrnpfr7FDQRtaR1Nq6esLIcSZYNv23Wzfvqtie8fOPWzdtvPU9q69bNmyo2J71+69bNqyvcnbkZ+by7svPsV1N1zBtMsmVixI5HA4+GrxCgICLNz+54sI8DeTk1fULEFcZQ6HixMncwkJ9uMft09Ec7uY+a952Gz2imMCAv35+11/Ydem9ezZvrVZ2yOEaFskjBNCCCGaSF0BXFMoH3ZaOZCbOXMm6enpFcfo9XqmTZvGzJkzCQgIwG6343Q6UVW10W2p7z3WN6CrbX9zzRXXmJ6Kou1btWwpE0adT/qJtFrLWpPW3r5yhw8eYMY9f+eyCWOZMOp81vz6S0s3SbRhW39fi72khElTL/Yof/H5N9i/7wBXTx+GXq/gcquntV1FJXZUTeXm60dz6MBhXnjuvx77+5zTE0VROLR392ltlxCidZNhqkKcxY4dO8Ynn3xCQUEBY8aMYeTIkS3dJCHOaLUt6FA1NKrtuPJArvyYpKQkZsyYwdNPP01kZCQABoOBadOmAfDkk09SVFTk8xxyNV3f1/K6ArjmCORqu4a3cyR8E63F0sWf88oLz/DB50uIiIw6o6658JF/ExYezgdfLMHPP6DZriMaT9M0jh1PxV6pV1e5G667HE2D/fsPAnDl5ZNxu9WK7SmTLsbpdFVsj794DBeOGlaxXZler6dTp7gGDdcsLioEIDDw1L9LmzdtZ/nSb7lwRG9CQ/w9js8vKGHT1oPEdoiga+foel/PmxKbg30HTnAiPRe7w8mwc7sRHhaI261iNusZP6Yfy77+jnEXjWTQ4H4AFBYWo2kaVn//OmoXQpxNJIwT4iy1atUqrrvuOnJycgCYP38+//jHP3j22WdlPgshGqim0KemAKuxdDodRqMRRVFISkpi5syZPPbYY0RHl37oKA/kNE3jySefpKSkpMZArvKqp40N4rzN+9bahrBWJgs4iKomTJrChElTWroZNWrt7QPIz88j5fBBJk6ZJkFcGzFz9qNsqzQctTlEhIex+rvFDTo3PqEbADt37OXcoQMA+O+r7xIZEcTAczp5HKuqGp8v+Y3snEI2bjnEtVcMJ6Zdwxc/UzWN3zfsZ92GfThdbiwWI/5WMyU2Z8UxmgbdE2NYv/kA/331XV5/61kAVi7/DpPZQv+hwxp8fSHEmUeGqQpxFsrNzeW2226rCOIAVFXlpZdeYvny5S3YMiHatqZYDKA+vcLKF2YwGo2YTCZ++uknHnzwQY855AwGA9OnT+eBBx7AYrFgt9txuVyoqlqtrqYaglpbedUeaw0Z2tuYoaynYyixEALy83IBMJvNLdwScabo3uccevQbxGuvvENRUTF7du9n1869nDcksdqXRUePZ5GdU9qTTtM0tu080uDrqqrG0hUbSPptD5ERQdxw9QjuvHUCN98wmo4xYR7HKgqcNziRPbv3sXPHXlatXM2773zMtXf8g9DwiAa3QQhx5pGecUKchTZv3szRo0erlbvdbr7++msmTZrUAq0Som3zJQRqjl6n5T3djEYjAKtXr0ZRFB555JGKVVbLAzlFUViwYAF2u73ivPIJsMvrqtpmX8ur9qyrT0+4hs4FV1v42Zp74onT52RGOh+++zYbf19Hbm4O7dvHcPGlk5l22ZUYyv6b8WbVsqU8/9RC3v1kMdHt2leUZ57M4P2332D9ut/Iy8slIiKSMRdP4Po/3exR3+effMSbr7zER18u48tPP+bblcux2UroN2Ag/7j/gYqhoW+88hJffPIRADdcMbXi/IXPvsiAQUPq1b6mvGa97/OLr/ni00Ws/nYV+fl5XDRhIquWfw3A808t5PmnFhIaGsair5azbk0yD836v4o6zBYL8fGdmXLZFYybMLHBP0Nf2yzaLkVReOSVt7j10tHc9pd7iYlph8ViJMHLENScvCLP7bJgriE2bz/M/oOlX3Klnshh6YqNnDckkXN6x3k9vmvnaKxWE/+6998UFRUz+fo/c9eD8xt8fSHEmUnCOCHOQgZDzf/p17ZPCFE7bwGQL3PE+Vp3TXVVDuQURWH16tVA6fDzqKjSD+B6vb4ikHvkkUew20vnBTIajXXOIVdXO+oK4iofV/7oS1jW0IUVfF3R1mNbsrozzom0VO6541YiIqOY+eAjdE5MJOtkBt8sX8a2rVsYOLjmsMub9BMn+Ocdt9AupgMPL3ySuLhO7N29i6cem8fRlEPMnbew2jnvvfk6ffoP5J2PPuXo0SPMnzuLpx+bz+PPvQTAX/9+N9Ht2jfp/G2NvWZD7vONV19i4JBzeeP9j/nlp9VMnDyVy6+5jr/eeC3//NcsjyG1Q4cNZ9XPa4HS//ZycrL5ftUKnn1iAVZ/f4aPGFVxrK8/w4a0WbRN3Xr35b3v1/LkA/9k7Q/fkNAl2uNLpXImo+f7mslU+9+3pe835e+nnvs6x0XiHt6TAH8LNpuTPfuO8+3qrdgdToYM6FqtLp1OIbZDOBk5Tl5ftJRzR46u/40KIc548qlbiDbA6XTicDg8yvwbMQnswIED6dGjB3v27PEoNxqNXH311Q2u11ubiouLG1yfEG2Jr6FRQwImX3rVVV7UoTyQU1WVxx57rGJRB51Ox2WXXYamacyfPx+Hw1HnHHK1lVXuIVc1iKtpQYfahqnW9No0Z6826TF35nrztZdxOGwseOo5QkJL54ryi+vErX+7q0H1vfPGKzicTh5Z+CRBwSEA9Bs4iDv/+X88MmcGe3buoEfvPh7ntOvQkXEXTwCge49eXHHN9bz20nOkpR6nfUyHRtxdzRp7zYbcZ/sOHblowqUATJw8tVqdNVEUhbCwcK667kY2b1jPyqVfeYRxvv4MG9JmUaolVpM+dU0Fna7+PcY7JSTywqIvGd8rnvAw7/MRdowJR6dTUNXSe4vrWH2IaMbJPHbsPsaRY5nk5hXhdqsYDHrCQgPoFBdJ316xhAT7ExYawLmhCRXnDTinE18tX8+adXsZ2K8zei9hYFhoIBk52TJPnBCiRhLGCdEGbN26FafT6VEWF+e9a7wv/P39ee+997jmmms4eLB0pSur1cr8+fMbtaJqx44dq5Vt3LixwfUJ0dbUtCJqcw1RrXrdynPIAfz888888MADLFy4sGJRB4DLL78cnU7Ho48+WtFDrjyQqy1Mq3w/VberLv5QW6jmLYTzdlxdZbWVV97vradctbZKJnfG2bDuNwYOHlIR4jTWujVJDBg0pCLsKdd/4GAAtm3dXC3wGXqe5wfxzl1Ke9GcSEtttjCusddsyH2eN/wCn9unqiqLP/uYH7/9hmPHjmC32Sr2xVT5O8LXn2FD2izgm29/5JH5T6EB11493WPf/ff+jW6JXYmP68gdd/6Lq66cwrixo0hNPcHD855i+rSJZGfn8O77n3L9tZcTE9OO3Xv2MWniOOLjY9m0eTuREeHEdoxh4RMv8EvSbxV1f774a5574XUA/nbbTfzpxvp9EaxpGnP/djP5OZnEj6jeMw0gKNDKsKHdSf5tL+2iQ+jft1PFvqJiOz/8vJ0/9qcRFh7K+cPOo0vXePz8/MgvKGDf3oP8tnYD6zftp2/veEYN74nJeOpjs6IoXDymH0ePZ3kN4gDiO0awftN+5tx+E0++s0gWRxNCVCNhnBCtnMvl4rnnnqtWPmjQoEbVO2TIEDZt2sQ333xDQUEBF1xwAd27d29UnREREXTq1InDhw9XlH355Zfs37+fhISEmk8U4gxS19xoNc2/VtN+X65V+ZyqQ1bXrFnD7NmzPVZZBZg6dSput5snnniiYg45wKcect6u722IqrdgrrZwzFvdVcvqM/dcQxdzEG2fraQEW0kJ4RGRTVZfSXEJa5N+ZeLo4RXllf+dzM/Lq3ZeWHi4x7bV3w+AooKGz19Vl8Zcs6H3GVGP1/mt1/7DV198yj/uf4Bzzx9GcHAIOp2OeXMf4MC+Pzza4svPsKFtFtCndw9uvOEqNE2j3zm9Wff7pop9cbEdKS4pYdbcR0lM7MLkSeOZN/9pLhp3Ifff93fef/9Tnn7qYZav+J5bb7mBOXMX0L17AtFRkdx7/4N88O4rvPzKW4SGhnD1VdM8wrge3RO58forURQYOrT+f88u+u9/+PaLj7l0/ECvPd7KnTc4kQF9O2EyGSrej05m5vPF0nUYTGYemHMPF48fjcFQfaoGm83OV4tX8L+3PuLY8SyumDqUwABrxX5/PzM9EmNqvHZsx3AuuWgAy5d8xgevnMeNd/6z3vcphDizSRgnRCvmcDiYOXNmxfxP5bp06cKQIfWb68ab4OBgrrrqqkbXU85oNHL55ZfzzDPPVJQVFhZy5ZVXsmTJkkb15hOiLairB1bV43yts74BXdX5U/IMAAAgAElEQVQhq2vWrGHOnDksWLCgIpDT6XRMnz4dTdN4+umnsZX1Tqk8ZLW+w1Jr6kFX+XltgZm3fb6Gcr4GcQ3tYSfaFrPFgtliISvzZJPVZzKbGTFyNP+a+5DP57VEb5jGXLOh91mf+Wa//2YlIy4czfiJnotFnUhNq9YWX36GDW2zgA4d2vO32/8MlP4OfOW1dzz2r/t9E5u37OC2W25EUzVuuO4KQCE9I4PfN2zm0MEjvPziQo4fT2Ptuo10757AH/sOsmfvfvLy8tm0eTuxHWPo26enR719+/TknL69GtTmzIx0/jN/Luf0iadnt7p7eprNpxbvyMsv5rOvfiMmtgNPPP0QERFhNZ5nsZi55rrpnHf+YGbc9xCfffUb1195gUd9demRGMOx41m8+ti/mXDFNURGt/P5XCHEmc97v1ohRIvJyMjghx9+4MUXX+T888/nueeeq/Yh8d5778VisbRQC2t39913ExgY6FG2ZcsWBg0axIwZM1i6dCl79+5FVdUWaqEQzaO+vbB8maenPr3AvCkfsmowGEhOTmb27Nmkp6dX7C9f1OH+++/HarVis9lwOBy43e4GhWZVh6F6K6+pvpqGsNZ2rzUFfLUdK84OiqJw7vnD2LJhA7k5OU1S39Bhw9m04XcKCwqaoIWnWKylvW2cVeaGbU41XbM577Myo8HksX3owH4OHdxfrS2+/AxPV5vPRlrZfGv7Dx7C6XTx+FMvsfqnJAqLSucDfuPtD+jZoxtvvPWBTz2em8Jnb72G017MiPN61Os8TYMV320mKCSYZ56fV2sQV1mnzrE8/cJ87A6VH37ZUe/2XnBed9wOO5+++Wq9zxVCnNkkjBOiFfn444/p0qUL48aN45577mHTpk3Vjhk2bBi33357C7TON/Hx8Tz88MPVvpnPzMzkqaeeYurUqfTs2ZMbb7xRPhyLM059h0nWpy5f9lUtrzyHnNFoJDk5mTlz5nDy5KmeJgaDgenTp3Pffffh5+eH3W7H6XSiqmq1MK3qNWrq+eYtaPPl2NruxZfwsqbrNVXdom255fY7MZrNzJ1xLzu3baWkuIRjR1N489WX2bRhfb3ru/WOu1B0Oh584H52bN1CcUkxOTnZbN64nkcfnMWBfXsb1M74zp0BWLd2Da4q88M2l9qu2Vz3We784Rfwy08/sPH3ddhKStixdQvPP/04ffv1r3asrz/D5m7zmeqH1b8w+qLpXDh2Gq++/j+PfQcPpZCZlQXAjz8ls+TrlTz9xMOMHTOCz7/4GoDkNb/z5ZIV/PJr6eq46RmZHE45CsD2nXsoKiomOyeXffsPetS9+KvlXDh2GheOm8ZHHy+uV5tXL/uKhM7tsFpNdR9cyf6DaRxPzeZfM+8mJCTYY9+KZd9z5+0zuO0v93Ln7TNYufx7j/1xcR24/c6b2bXnGBkn6zfk2WIxkdC1HauXfVWv84QQZz4ZpipEK6FpGjNmzKCoqKjGY3r16sWXX35ZMTl7a3Xvvfdy5MgRXnjhBa/7NU3jo48+4o477mDEiBGnuXVCNK+ahlVWHbpZV0+z2uZpq+8wtPIhqwBJSUnMnTuX+fPnExUVBZQOMZ8+fTo6nY5nnnmGkpISAEwmk8eQVag+HNXbvVWdO66m+/X2WFevivoEnrX1zPPlfNG2tWsfw0v/fZsP3nmTBQ/PpaAgn5iYjlw88VLO8RL81CW6XXtefvN/LHrvHZ56bB6ZmScJDgmhS5cEJk6ZTueuiQ1qZ/cevbj+pr/w6aL3+e9/XkBVVRY++yIDBjV+OoqGXLO57rPcbXf/E51ez9OPzaPEVkL3nr2491+zWPT+/0g/4TlU1defYXO3+UyVkNCFqZMnoGoavXt1J3nN7xX7XnjpvxXPNU3jxZff5MWX3/Q4X9M05j36TMXv0RUrT4VY/7xvLlAa6q39bYPHeV06xzNlygQUoEe3LuzaupnDf+zheMohMlKPk5+bg9NhR6c3YLZYsPr5YfUPIDAomEN7dtGrewxpJ3IICvLDz8+ML++IW7an0OecXgwe4vnf/vFjaTz5+IsVvQABdu7cwzn9+9Chw6lhpZMmX8QH//uELTtSuHj0OXVeTwOKi+3k5xdj0Os5vGc3rz/5KIX5eZQUFWIrLsZms6G6XRhNZoJCQolqH0NMfGc6d+tB1x69MLfSUTBCiKahaPJXqBD1pmkaMTExnDhxoqJs7NixfP/997WcVTtVVWnfvj0ZGRk1HjN8+HBWrVpFQID3ZdxbkyeffJKZM2fW+kH3u+++Y9y4cY2+Vk5ODmFhnsMN7rrrLl566aVG130m+HLljyT27EVYVO2TYGdnnGTf7l2MGNGz1uOEdyfTskg7mk5kZCSapqGqasWcbYDH47Zt27jnnnuA0p5per2+4p/yc6r+U35uffZXLoPS3zNOpxOHw8Ho0aOZN28ekZGn/r1wuVx8/fXXPP744zidTqxWa8VCEDXdS9XFI+pSWxBX/uhtuGtd2263G6fTicvlwm63U1BQwJQpU7j33nsrhsVXPa+852BeXh6KHhJ6dZYV7xpg9+7jqIqZxF4NmwNKiLPVup9/pmePDkREBjV53YGWEMwG38McTdO44aa/s237riZvS2UR4WGs/m4x+bm5JP3wLX9s31IRSJnMZoxGExarFaufP/6BgfgFBJZOt2A0kp+Xy/3XX0a/PnG0iw7FZnPiVlUsFhMWsxGr2UhQsB+hwf4e13Q63bz031Xcdc9fufxKz7kKDxxI4S833lWtne+8/zJdusZ7lL30wpt8s+Jbbv9z9b9dc/OKyMsvpsTmxGZ3YrM50Ot0WCxGTqTnsHXHEZ56/3NCQsNwOZ04nU6Kiwooyi+gpKQYW3ExTqcDh91eGkTq9HTr25/h48Y32YrQ5TILT9R9UAPV5/1g3c8/c27/3nRoH9Vs7RGiFftMesYJ0UrodDpmzJjBrFmzcNYwTCU5OZmbbrqJTz/9tNqKh63JRx99xJw5c2oN4kaOHMnIkSNPY6uEaD0qh0G+Hl/bsd72Vy0rD850Oh06nY4NGzaQkpLiEcYZDAYGDRpEVFQUR44cqbHHXuXHyvV7GyZbfl7Vemp7LH/uyzx1te33prnnMxJCCFG34NBQLr3iai694mqfz3G5XBhNJlRnCb179EWnqz7jktPpxul0YzSe+js5O6cQVVXp2atbteO7do3n0ikXs3zptxVll06+uFoQB9CjZyKff7IEm92JpdJCDk6nG38/CyFVQkAo/RIs7XgaBqOJURMmtfrRLUKI00fCOCFakfvuu49Ro0axYcMGdu3axWeffebR+w5g8eLFfPHFF026CmpTysrK4r777sPlcnmUm0wmJk2axLBhw+jevTtjx47FZKrffB9CtGa1LVRQdThnU12vXE0rnlZtm8vlwuFwYDabefjhhxk4cKBHnampqTz88MMcPHgQq9Xq8UHHWxBX06qq3tpYdbshQ1UbE7DVOYec5HJCiLPMTz8n8/hTpUM0L79sUt0nNJElX6/i1dfeAUXh1puv58orpvh0nsFgoFuf/qQd2soffxwiKjq6dAVwgw6zyYDJZPQI4crZ7KVfcoeEBlfbB/B/M+5EURSWLfmGSydfzP0z7vR6XGjZ+TabZxhXfk0NcDhcOBxOXK7SeVdPpqeTlp5PYu++EsQJITxIGCdEK6IoCoMHD2bw4MEAzJs3j1tuuYXFiz0nt50/fz7Tp09vlW/qL7/8ssdqjQCxsbEsXry44r6EOFv4EsB5C+6a8nrl9btcLpxOJwaDgYULFzJ+/HiPY1NTU5k9ezbr16/HYrFgMpnQ6XRe54erLYirq7eZL4FcXc8b27tNesQJIQTExXZg1MjhaKpKly6d+PmX0oUYenRPxGg0kHLkKP5+/qSdSK+jJoiOiiDjZBYDB/Rl46ZtBAT4U1h4ah7kDjHtOJ56ouL5qJHDUBSFxMQu1epS3W4O7dvLzk0b2L97B4f37eX44UNkpB6jqLAQTXXzw6978fc7RGRkGBazCbPZgL+fmfCwIKKjgjGbTn3Mrfpl0U+rk0n+9Tfm/Ps+KOsxPnnyRSxb8g1Tpl6MXq8rP5EF855l+IjzuHDM8ErvmZ7vIQ6Hi/SMPDKz8ykqtmO3u7DZHWSezKao2EmxzUVW3hYuiAsjOqYjHeI7E5/YnYRevek9YAidu3Vv1SNehBDNQ8I4IVqxkJAQPvjgA0aMGMHGjRsrynfu3Mm2bdsYNGhQo6+xd+9ecnJyGDBgAGazuVF1uVwuPvnkE48yk8kkQZw4q9RnAQdfg7q6er7VdX55jzir1crChQuZMGGCx3HHjx9n5syZbNq0qSKIq/rBoK6ecbW1rbaFE+qaM66mOryFct62femxWFMbhRDiTNalSydmzfgHUPo78J3/LQJg0MC+7Nt3kCsvm0xgUCAnT2YRGhJMZlY2VosFDY3tO3bTs0c39HodaWnp7D9wmOnDzsVoNNKlczxRkRFs3LwNgHP69qKwqIiPFpV+uTx4UH+GDB7g0Za0Y0f5edUy1v7wDfv37CIyuj3xXROJ65rAxKuuJyauE+1j4zCbLUwb3BODms853UKIiAynY3xcvb7Iykg/yU+rk7j+or6Ex3ZGdTnZ9ctqAHb/+j3trW50BiNZRw/x0+okErsn1FqfyWQgtmM4sR3DK17LY0eOkhmqsn1fDib/EL7asAeHw8GJYymkphzm2OGDbFrzK1+99zYZJ9Lo2qMnw8aOZ9SESbSPjfP5XoQQbZeEcUK0clarlRkzZnD11afm1NA0jbVr1zYqjNM0jQULFjBv3jxcLhfDhg1jxYoVBAU1fBLh7Oxs9uzZ41E2adIkCeLEWaOuXm7e5lqrel7l7brmgavt+Ko94gICAnjkkUcYP368x7nHjh1j9uzZbNq0CbPZjNFo9Aji6tszztv91PT6VH1eU1lNQ1i91VWXGsNSn2sQQogzW2FhMXaHk8ysbHbu/oNBA8+hqLiYo0ePk5DQmZzcPAYN7EdOTi7HjpeugHvwUArjxo5kx47daEBBQSHRUREEBgUSFRVB0aHiatdx2O3s2rqZvdu3Yi8pJrF3X8ZOnk5EVHSt4doDT73IzJuvISW1tOddUVEREdExFBQ5KLE5sVqM+PmZCQ3xx2Ss/nF31JjhvPXGBzz9+mKmj+lPXmEJ7339G4qi8O6Xv6C5HAQHWFn8w2Z0ej0XjhnutR0Op4uc3CKKi+0V1w30N5OZfpyS4mKOpBWRkWVjwZtvEVy2CENkdDR9B53rUY+maWRlZLBv13a+W7oYk9lC97796NV/YKO/KBdCtF4SxgnRBgwdOhSDweAxD9uRI0caVWd2djYLFy6sWCwiOTmZxYsX8+c//7nBdR4/frzaB91hw4Y1pplCtBm1BVD1XWW0psCtph5n3kI4TTu1wmhISAgPPvggl1xyicexR48erQjiTCaT1yCucsBW0+IN5W3wNRSra6hqfYetVq3b18CuscNdhRCiLUtKXsfTz72CpmpMnXKqx/SSr1cBsHXbTgB+W3dqdEby2vU11vffN9/36brLV3zHG299AMDNN13D1bfcXq92j5tyGaMmTuXnFUvIyrVhteQReCiTuI4R9OyVUOecxNHRkcx7bDaPP/o8815fDkDffr14/J6/8vLzb/DCh6W95MLCQ5m/cDZRURFe6zEZDURHls4j53A42L1rPzu2Z1JQ5KTE7iInz8EFEyZx8bQram2PoihEREcTER3N+aNPrdQq70tCnNkkjBOiDbBYLJjNZo8wLi8vr1F1ZmZmUlzs+S1lYwM+b21qTE87Idqa2oY8NmY+uNp62XkrU1W1IogLDQ1l7ty5XHLJJR4LMpT3iNu4cSNGo7HeQZy3feXqM0y18nNfy8qf17ZdU5m39kjPOCHE2SgqKoL+5/RB01RiYtrVeuzgQf0oKChiyOB+bN6yg4yMTGJjOxAf35Fdu/4gMjKM3Nx8bHY7ubl5ZGZm11hXREQY/fv1BhQ6dojxqa1FhYUkfbeS1cu+5I8d2xk6agxX3PI3Pn/rVawWA+0jrKjOYnZt30FYWBgRUZH4+Vdf3bTc0PMG8umXb/PxR4t5+40PeeTRmYSHh7LwqQe5bPJNXHXNNP58y7UYvfSsq6y4qJjMkxnkZGWjqirtI60UFDnJyXNw2c23YzKZuOqCgST26sPoSdMYcdEl+AcG+nTPTbnokxCi9ZEwTgghxBlv5+5DdOwQRXBQzX+YNwVvAVFNwZSvgV1DgjhVVXE4HISFhTFnzhwmTpzoEbSlpqYya9Ys1q9fj8lkqjZHnLfhp7UNTW3IMNWq27X1jKtvCFfTdWs7rrl7IDgcTvYfTCU+Nhp/f0uzXksIcebYu+8o4WFBRIR7Xwm0MbolduXhf/8LKP0d+P4Hn9V4rMVioX+/PgQFBtC/Xx8GDTyHd9//FNWtMqB/HxITurBp8za6dInnwIHDrFj1g8f5w8y5TPDPIMxiYPDRnxh663SUDt3qbOPBP/bw/svP8u2XnzHgvOFceevfWPD6eAyG0o+xvfoP5MkH7uG3bSfp1imIyFALWZmZZGVmYrFYCA4NpaTY5bVuo9HAlGmX8NknS7jvH3O5cPRwkpLWYTQamHb5xBqDuKLCIkoKc8nNzsFms1WUZ+bY+ONwPprOzNwXXufym24FwO1ykfzDt3z21mvMv+d2Lpp2BTfedR9du/es8/6FEGcuCeOEEEKc8X7fsJfvVm8iKjKEXj3i6ZbQET+/0xeI1DXEs67zfC0r7xHncrkqesRVDeLS0tKYMWNGRRBXU4+4ugK5ymVVn/tyX1Wf1xSY1TRfnK+BX21tKG9zc/WMc7tUDh05wZ69RziYkorq1rjx2oskjBNC+GzX7iOkHD1BSEgAvXrE0z0xttm/WPJmz559HD16HJvNTlxcB9au20B0VCS/rduI0Whgy9Yd5OTkcujwEfLy8ivOMysqdwYd5vKAVEyKCoDr3X/hXvoshltfQD90Epit1a6XdTKDl+bN4aflS5hwxbV8uHodnRKrh3fTb/wLA88fwWP/dxe///Q9wYEmOsX4Ex5iwWazYUtLIyvPXuN9BQcH8tyLC/jPS2/x1eIVxHeO49kXHyUyMrzGc1IOHsRqKf0YrQFZOXZSUgvJLXAweOQY5jz7HzolnGqr3mBg5PiJjBw/kZT9+/j4jf9wyyUXMvKSydzz0GOER0XV+foLIc48EsYJIYQ445UHNBkn8ziZtY2ff91Khw6R9OoRR9cuHTCbjE16nfLnVYd0+nJe5e26VlGtXFY5iCufI66mHnHr1q2rtmqqt9CtpvZ5O87bHHK+3GPl5zX1ePN17riGXKOpqZrG0aMn2bvvCPsOHMPldKPoFFRV5v4RQjRE6e+O3NxC1q7bxdrfdhLZAl8sZWZlk5lVOvQ0PeMkAAcPplQ7Lj0j02N7qCmHawKPVXzhkaYPJdiRg19OGsfeXUAHvQHD8Oke56xa/CmfvvUal151HQ888TxWv9rDx/iERF7/6htWL/2MVx+dzda9B7GY9bSPtBIVVj3oq6prQieefWF+nceV04DCYhcZ2SWcOFlCid1NQmJn5r60gLFTr4Ja3vPjExJ54Inn+cdDj7Hy80X86+ZruPLm27jkimt8vr4Q4swgYZwQQoiziIZW+sU8x1MzSU3N5PsfNxPXMYpuibEkJsRgNDTsrdGXoZJVA66awqL6DlWtPDQ1ODiYhx9+mEsuuaRaEDdnzhySk5OxWCwYjUZ0Ol2dc8DVNW9cTXPF+dJzzZdgrbbhq95ex6r1+TJnXG3t9VVWdj579h5hx+5DlJQ40Ol0qGrpv2yaBHFCiCZQ/nvqZGYePydv46ekbbSLCqVHYkd6dI/HYql94YKWMMEvozSIMwfwU3EgDp0flpwczokJx/DX5yA8xOP4Lb//RnBYOG8t+6Hec6aNmXIlIydMInnZx3zxzqus/30bh44VYjCUzpf6+ILnGTDwHLr3SKBzlzgiI8M93iercrtVTmZkcuDAYXbt3Mvvv5UuZLFxZxYOp4rFbGTwkH5cfvMdXDD5OgymuoO/cmaLhYEjx+HfLo69WzYR+stPDB0xSuaJE+IsImGcEEKIs5KmaaX9DTSNlKPppBw5wQ8/6ujcuT29esQTHxeNvtKCB/Wtu/zRl8UM6qrLlyDO6XTi7+/PY489xvjx4z0Wa0hNTWX27NkkJSVhNpu9BnF1DUetfN2agriGDFOtvF3XY9Wy+s5NV9vxDfn4k5Wdz779x9i5J4WCgmKPAK78UQghmpqmaeUd5kjPyCEjI4df1uzw+GKpITp2aF9tca9GNpRuju0AuBw2tmXouSoqB/8RYwno0gfTkJHoNM/flf3PPa9RlzSYrIy67GZGTL2R9P0bSV71FWt++Ja9fxxh2+YdbNm0veJYo9FIaGgwQcFB+PlZ0ev1uFUVW0kJebkFZOfk4HQ4K45XFIWYdqF06xbHsDEXc8GE6UQnDkKn9/0jtaZpZGVlseqb/2fvvuObqvc/jr9OVvceUChbUIaA7L2HCAgucODCxc97EdyKV1ERRUFUEC/gvFzHVZAhSwRBNoKyZckeZXYykjbJOb8/SkOSZraF0vJ53kcezVnf8z3hmpO88x2LiY2LpX6D+iQmJbH+9w3oQiNo2rSJz4BQCFF+SBgnhBBuVFXlh7mLS7saJebYiVOcyszBFBric788Sy7nzuaQsyjH535lUW6u1ef2gpDGrqrsP5DGvn3HMIUYub5OVW6oXYWUlISAwhpfrbQCGTPOU7dPX11VnbumhoSE8P7779O9e3eXY06cOMFLL73E6tWrXYI49/MFUld/QZ0zf5M5uG8rSiBX8NxfF1Vv53a+jkCDxJyzF9j192F27jpMZuZZDHo9NrsdCCyAW7F6K6YS6hZ9tTibY0ZTdOw/fLS0qyJEmZJx+jRnMtMxhXh/TziT4fue7OmHpaUr9NStXZ0m9etRq3qqy48z3iiKwpi3X/W4bd78X9CAvr17APDzoqWYLRZu63cLAEt+XUFmZhZ33XkrAL8tX83xEycZeFd/zG/0w7rxZ3LRM7iaDt1DEzFExqC/se3F0OnyBE86vYGU61ty5/Utue0fb3D2+N+cOrSDPVs3sW/XXxw/epTMrHOcO2/BbDlH+vksNBUUHZiMBhJiTVSrXI242EhSUitT84b61LmxCRWq1yMqpTZ6Q3CtEDVNIzc3l6VLfyMrJ4cePXsQFRXFb8uWMW/ufB59/FGys3P49NPPufnmnlStWiWgfzchRNklYZwQ16j4+HjCwsIwm82OdZUrVy7FGglR9nkaMy6YY7wd6ymYcw7iIiMjGT9+PD169HApJy0tjRdeeIG1a9c6Jmtw/3DvrUWcv7/Ox7jXzdt1eVpfEoGcv/KCLUMIIa5F3u5Z8xcuQVNVbu3TE4BFi5eRmZnF7f17A/DrspXs33+QAXf1A2D5ijVs3LyNewbejlbxOo63e5z4Vt0xZB/HFJ9IWJt+V7Q7pt5gIrZKfWKr1KdOu7sAsOWZyTuXidWcgy33Aqo9z3GP0+mNGELCMYbFYIqMC6r7qSd2u53NW7ayZes22rVrS5UqVRzbTp48xZYtWxg2dBjdunfjvkH3sW79BlatWk3fvr2Jjo6WrqtClFMSxglxjUpMTOSZZ55hzJgx2O12mjdvzh133FHa1boq6HQ67u7Xs7SrUWJmLVxG7br1iE9O8rlfxqnT/L1zB+3b171CNbtyvpi2kNw8763jFEUBTUOnK9luqgXPA50UwXl/X2VrmuYyWcO7775L9+7dXfY7duwYL7zwAuvWrfMZxAUyJlxJzqTq6fqDDeS8dVX1t4+3VnDBdFONjgqnRZMbaNHkBp/dVL3p0LYhCfHRAZ6tbNi58xiqEkLtevVKuypClCm/L19O3Rsqk5jk/T1h1k+rOH/e7HW7oij571+K4tJNNT4ykRBDyUzuoCgKmtN9Kf+MTsuKa5CXXycFRVEIfWwsqVnphBj16GN9fw65kgymMAzxYUDRuvQGQlVVjh1LY9lvy7mudm3uvnug1/u7qqr8sugXVq5Yyd333E3HTh359rsfqFG9Gl27dsZoLF8tqoUQEsYJUSYYDIZC40ecPXu2WGUqisKoUaO4++67ycjIoFmzZoSHhxerTE91Cgnx3TVSiNLi7QtMcSZw8BQOeWoxFmgQ560raEEQl5CQwFtvvUWPHj1cjnMO4oxGIwaDwWsQ569lnPu+7uGdc70KePqy4d7d1X1dMIGcr+dF4Tz+UjAS4qNJaFGPVi3q+ZzAQQghSpKiKJD/GxIVrsAEDg89MNDlfXbQvXditlgcy3cPuI2MzCzH8p139KVtmxZA/rhsxqSKl6VeVytN0zh79iy/Lv0No8nErf1vxWTK/7fR3G42Gvn/jgUuXDDzxedfsmD+Ah574jESExP5eNK/6dK5Ezfe2EC6rgpRjkgYJ0QZEBkZSXR0NDk5l8YNWb58OSdPnqRChQpFLldRFBo0aFASVURVVaZPn15ovXR9FVcXBUUHqBqVKyVS74aq1KpZmZDLMIaXr1ZnwR7vvKyqKjabjbi4ON58801uvvnmQpM1vPjii6xdu9ZjEOcpfHOvI1yaGMKZe8sHb9v8URQFnU7nMnad819P63y1dHNe76/7qqeAsSQkxEfTtnUDWreqz5Ejp9n992H+3ncUm9WOolNQZUZVIUQxFbTiTkqMod4N1ahzXSrh4SXT+s2Xli2auiw3bdrIZblRw/ouy/Xr3UD9ejdc9npdjaxWK+vWredY2nHad2hHXHyc7wM0DU+/Bp04cYJRb4yiYaNGPD7kcQ4dOszq1Wvo378fKSkVpeuqEOWAhHFClAEhISG0adOGH374wbEuLS2NLl268Nhjj9GiRQtat25dKjfmAwcOsHLlSn766SdmzZrlsi02NpabbrrpitdJCHcF/20kJ12+LzDegiBfAZyvie3skgwAACAASURBVAc8BXHOwsLCqFSpkkur2ePHj/P888+zZs0ar0Gct/DNvUVcXl4eVqsVVVW9hnCerstfF1vIb+1rNBoxGo2FWsn5C+Z8hXPu5/IVznk7R3HpFIVqVZOpVjWZrh2bcODwCXbtPsz+Q2modgnkhBDByn+PjI2NpN4N1bi+dhVioiNKuU7Cnaqq/P33Xjb8uZGbbmpM0+bNCHT8A1+3ny2btzD0yaHc3Ksndw24iwULfyY8LIx+/foSHh4uoZwQZZiEcUKUEU8++SQzZsxwaamyY8cOnn76aQAefPBBPv/88ys6HfrMmTO55557yMvL87j93nvvJT4+/orVRwhvWjS7ntTKyaX6BcZT10/nbd66tAKFAjS9Xs+xY8cYMWIEY8eOpWHDhpw8eZJnn3026CDOUyBXMDlEaGgo3bt3R6/Xe/3AH+wXgZycHJYtW4bdbkev13tstefpNfA39puvYK0kx4wLht6g47qalbiuZiXy8qzs3Z9GaMjl6UYmhCif6tWtSvu2DUhMiCntqggPNE3j9JkzrFixiuQKFejfv9+l+1oAv78E8hONqqosmL+Q335bzn333ceNjRoyecqn3NS4ER07driin/2FECVHwjghyoj27dvz6KOPMnXqVI/bp02bxogRI6hTp84VqY+mabz77rteg7hatWrx6quvXpG6COFP/bo1rsh53FtjeQq9ito1suDYgjAO4K+//uL555/nlVde4bPPPmPVqlWYTCaPIZe/iRrct2maRlJSEiNHjiQ0tORaEe7bt4/Vq1djs9kC6p5a8NxXkOava6qncku6m6o/JpORejdUuyLnEkKUH9fXruJ/J3HFaZqGxWJh1eq1WHJz6dSlM2Fh+bOuBnVX0QJvmX3+3HmmTpnK/HmVeWLI46DT8f74D7m1bx/q1Kkt48kJUcZIGCdEGaHT6fjwww85d+4c3333XaEbt06nu+K/jBm8DHRfu3ZtZs6cScWK19aAvUJ44q2bqrcuqu4t1TyV4RzI7dixg0cffRSz2VwoiHNv8eb83NtEEe6BovPYbiXBW+u/QMeLc97HVws4b+Gdp/397SeEEEIUsNvtbN26nb3799O8RXOSkpJwjeA0XPuoFiy7ry/YFpxjx47x2qsjadLkJh557BH++HMjvy5dysABd5GQkCBdV4UoIyQ+F6IMCQsLY9q0aXz99dc0atTIMc25Xq/nn//8JzVqXJnWP5D/hfq1114jJia/24ROp6NixYq88MILrF27tsQmhhCiLAm0q6R7WOSv5Zfzc+eQTK/XYzAYyMvLw2g0OoI49xZf/sZfC6QeJcn5XJ5eC/d6erqGQF8/f2W5lyeEEEJ4omkaJ06cZNacuaDXc0vvXiQlJXIpUNM8PHdedl+vOWZTLcrjzz83MfQfT3H48BE6dOzItP9+w+zZc7Db7VfmBRFCFIu0jBOijNHr9dx7773cc8897N+/n2PHjhEXF0eDBg2u+C9hPXv2ZOfOnezevZu4uDiuv/76Eu3OJkRZVRLBjr/WcZqmOYI3uNSCzd8sqd7GivN0DovFwo4dOzCZSm6csyNHjmC3270GaMXtsupr2ZvLNWacEEKI8iMn5yyr1/5Ot+7dMBq9f43Ov/UU3H8U/H88L/pnBrvdzk9zfmLp0mU89NADREZHM2vWbO6443ZpISfEVU7COCHKKEVRqFWrFrVq1SrVeqSkpJCSklKqdRDiauDeQqtgnbfx2byV4a0bqbflgnHkPAVuzs+9jRlXsM79OJ1Ox7Fjxxg4cKBjmz+BfvBXFIXQ0NCAW/D5+xtISzlPf6/kmHFCCCHKLk3T+OuvHTRr3hSDwYCmeemIqmmomoqqFtxLFRRF53J/dOmwqhWEd8VzNucsEydM4rkXnmX//gPY7Xavw8kIIa4O8l+oEEIIcRkEE8R5CvA8LftqyebveTAt4xRFwWAwFKqvv+VAOY9x6as7r7d1gXalDTTQE0IIIXzRNI1z5y8QGRl5aZ37PoBdVbHZrGRmZKKhERcXf3EYCR0F8Z1rh9WSvQ/t2b2HsLBQVFUt0XKFECVPwjghhBCihAQS8ngaK61gvbdJFbxtDyaI8zWbagHn9c4TQbhPHuGsqIGct4kcnJ8HGsh5e00DpWlacXoJCSGEuCb4+wFIxW63YzabWb58OSdOHOf++x8gPCICRTGh03m4X2ol+8OQ/MgkRNkhEzgIIYQQJSiQAMnfsb7GPvMU4rmv9zceW6B/nbvAlvTDuZ7FrXcwr6m3ME8IIYQoKk3TsNtV8vLy2Pv3Xvbt3cvv69axbfs2LBazY6xU10BP7j1CXMskjBNCCCFKgK+QzPmvp+O8LXsr032br3381SeQkMpfnQJpmeZrP2+BXDD19PbwdIy/10oIIYTwTnN5aOSPE2ez2Th//jzr1q3FkmshLy+PH6fPICfnLHl5eaiqejF+uxTKaeSPGZd/z/L03P3ha5tzyUKIq510UxVCCCFKUCCt3zyFVr66obovB9tFFQqPFRfIX2/luF+nry6ngb5O3paL09Iw0HMLIYQInKrB6jNWFp3IY1O2jTSzilWDWKNCp0Qjw64LRadAQqi+iCewwYnVcHwVZO0E86n8daYYiKoBSU2hSncISy7ZCwuQ+x1E0zRUu528vFy2bN5EVmYmVqsVm83GsWNHWbZ0Kb379MZgMGBUjODSXdU5Pgu01ZyPbZq/Y4UQVwsJ44QQQogS4iks8jWJg7/9nbcFGrh5O2/B9mACOedj3J+7n6+4r5mn5UADOX+t7rz9LbgeTdNQKNrYd0IIca1QNfj6kIXRu8zsOW/3uE+9KAOf787hjc1ZDKoZycgmcaRGBviVU7XB39/Brk/BfLLw9gvHIGsHHJkPm96Gqr3gxuEQmVqMqwqOhlYo61JVFavVxpkz6WzZshWbzYZqV/Nbwqkai39ZRJOmTTGZTOj0OgyKwblANA0UJf8vuD4P1KWPFoXrJ4S4Okk3VSGEEOIK8NV909tyIF05fe3jrbxAu3x6O6+v/f29Br7O4ev6fHU/9XYuT8+D3UcIIQSkmVW6rcjmwT/PeQ3iALpVMLL4mBmLXeOzv89Sf+ZRpu056/8EF07A4gGw6S3PQZw7zQaH5sLCPrBvehBXUkzuQZymYrfZyc21sG7dWnItFux2FU1T0TQNu2rn3Llz/DR7NufPX8BqtbrMdFrQWTX/HqS5PNc0FVW1o6r2i/c+Fbvdhs1mxW63OdYXHKNpJT03qxDicpIwTgghhCgh/sIw530C7aZZnOf+wq1A9vH03P06/LVS83a93sr0V2dPdQwkrAskxBNCCFHYS1vPs+yM1ec+BgVaxulZezrXsS7HqvLQytO8tiHD9wlC4iAkIfiK2c2w4V+w+X2udJMwTdNQL07asH/ffg4eOIDVZsVut2O/2CpOVfPHktu48U+2b9+GxWxxmszBV9lgt9t5tJlKx+p27HY7Ybo8BjdVeftmGNFJpUnF/FDOpSi5vQlRZkgYJ4QQQpSAYFqg+drPU0Dl7xyBhm4lEcQFEq4F8vB0XKDX42u7u0BDSAnohBCisJN5Gj02X+BfDSLokmj0uW+jaAN7svIw293uD8CorVl8tC3L+8H6EGg/ESq0KVpFd02FnV8U7dggaU6TNlgvTtqwdu1a8vLysFqtXDBf4NTJk5w7fw6b1YbdbseaZ2XWzJnk5OSQ65jMIb+Pqnaxq6rzAzTsdjvdr1Opl2THZrPyWlfoep3GvtNWokNUxtyio16SjfxWeBePvSKvgBCiJEgYJ4QQQpQQX4GOrxZgno711yrNU5nethe1tVkg9Qg2yPIXyvmri6fz+mol5+v1EEII4Z0GDN5pZnGWnb7bzfy7WRTdkrwHct2SjSw5Zva4LVyvUD/O5PuE+lBo/wkktypahbeOh/RtRTs2SJpGfqu43Fw2bdpIevoZsrOzOXL4MAcPHCAzMxOz2UxWdhZnc85iybWQduwYy5b+isVsxma3O4VnWqFHfrimkXdxIghVVakRa+f3/RamrrXy/Nw8vv0zD51jfLmLx8r9TYgyQ8I4IYQQooQEGrJ5eu7tGH8hnvtxgbYEc37ur1xfx7lvD7RFnKdy/IVsvq6rKLyFjEIIIWDOaRsLMvPHh9tjVum73cykpq6BnEGB+pF6WsQauKWiiSVphcO4cL3CnG4V6JYa7v+khjDo8G9Iap6/rAuBuPqQ2AxCk3wfq9ngz1GXNZC6lHtp2FWVzMxM1q5ew4H9+zl08CA5OTnY7XZU9eL9TFXJzcslOzubrKwsfl64kPT0M6h2u6OenlvG5cvLs2Kz29HpdMzebqNLLZXp96q82tnOjhM2thxXXMoQQpQdMpuqEEIIUcKcQx5fs6m67+98TLDPfa3z9LeAt/XO2wqeO9fV10yq7tfoK+jytK0oLf+CbRXn7ZqFEELk503vHMpzWbfHrNJnu5l5TaN4auNZGsYYeLZOGBVCL7XveKtpPE//ns7unPzx5YIK4goYwqHDFDgwC6rfCqboi5VS4cQa2Dgazu73fGzGFjj5O1QsYus6vy61ZUPTsNlsGIwGzGZL4f0K7pfk3xdtNhuVKlXOv0fhyPQuHaFBwcQP+fcnLraM06MoCl9tMvL74TxaVbHTJEXlmTYaUX9o/HJQj16vd6qdEKIskDBOiBLyxx9/0Lp169KuxjXJZrOVdhWE8BrquAdwvrpjuu/nL3wDz2GavyDO119f5yjgLcTyFdAF8jp5W/YXxBX89dfS0Nd2hcIhqRBCXKt2nVfZcK7wrKl/m1X6bTezqU00ofrC75u9qobTpkIovRYdZ0tGXvBBXAFjBNQZ5LpO0UFKO+j+Ayx7CDK3Fz4uogqYTwR/vkBplwIvRacQERFB/9tuo379Bvy8cAHp6RmADU3VUHQ6FECnKCRXqMDtd95JamoVoqNj0OkUR4HO9yajYuPe+jksPxTCrjM67DYruVaIM1l5vMl5Zu8O4cvNYXy6wcoHPc9RP1Hl5/3h6HQXA1H5gUmIMkPCOCFKSHZ2NuvWrSvtagghSpF7iyxv4ZqnfZ3/AgGFb+7bg2kZ56vFnK/n3urpvj7Q1yvQZV+t5fyt87aPr3MLIcS1bHGGzWsrqy6xeo9BXIGYEB0LeqbwV2YebSuGlnzlTFHQehws7JM/zlxyS6jYFluFdmykMmtzVJ6Cy/oTS37IpiMqKopNmzaiKAqPPPYY69auZd3atVgsFvR6PSaTiU6dO9O8eQs2bdqI0WCkabOm6HT6QvXTNMi1aTRJvkByiJntsQZClDz2Z4aQYdGREJLLow0tLNgbSkyInaSwPFYfDvfY4l4IcfWTME4IIYQoIb66QnrrpuqvpZi3oM1T+b7OGWwQ56lbqrewsLiK2iqu4LmnVnH+yna+bmkZJ4QQrraeVz2uV4BhqX4mYgBiQ3SXJ4grEF0DeszksKk6S7J1/JJp49dtds7YzOiAhyoaiTGW/Pu6o5Oqkt8yTm8w0Kx5c+bMmsXhw4eoXacO9Rs0YMkvi0mpVInu3btz+MgRvvv2W6pWq0rnLl0wGozoFAUUD2O96fRM2BDFbbVzaJZiYdbOMNamRaDT63l3XSy3X5dNl6rnybUrzN4VyrwDUSg6naMM+VlJiLJDwjghhBDiMvIVxHnaL5DnJdlF1Zm38grO7b6f+7GBvh6BrPcXyPk7xtN6Xy0RpWWcEEJccjzP83tinEGhdsTVMQfgR+dq8PS+3EIBlAqcsmqXJYxzpigKer2OsLAw2rZrz4L589m8aROxcXH0uLknZ06fYeHChaSfOUNkVBQDBg4kNDQUvcGAonOum/P9VcffOVG8sz6/a69Op0On1wEKGXnhTN0e4rhf6XQ6dDod+bffS2mc3M2EKBskjBOihISFhZGSklLscgLpjlYcgXyxL47SqL/dbufgwYPFKleI4nJvoeWrFZyv1lpQuIuq8/OSbhnn7ZiCegTSGq6o7x3+uosG+ty9ZZzz6+ntNXc/p7SME0KIS1Qv75lG5fJ2/wyGWfUePKmXMZG69NIo6HQ6DAYjKSkp3NiwIRv//IMzp0+z5MhRdu/aiaqq6PUG+va9lYopKZhCQi6O76ZcLEfD/aVWFB0GQ+HAMz/8K/z13fl4TaI4IcoMCeOEKCFt2rRhyZIlpV2Na1JmZibx8fGlXQ0hHLx1U/V3jK+uoYG0gvO0Ltiuqb6COE/BnHN9i8pfCzdfXVUDad3m7fiS+AFCCCHKowSnVmVhOmgbradnvIHucTpQ7aDTl2Lt8v11vvAEE5AfFiZc5lZxjnMpOgwGPaaQEBo3bszRo0c4dvQoNpsVu6qiUxQaNmpEy1atCAsLx2AwXJpsAWnFJsS1TMI4IYQQooT4bX3lFP74ahXmr7uqpzKL0jKu4FzBBHG+xooLpOVrUbqpui97CuQ8Pbydw/PxfqsuhBDXjC6xBioYdfSI19MuNJuI02shbRVsWgN1HoK6gy/LeTUNTlywkRLh+2vqmTyNn9I9h3FJRoV40+UJ4zzf+3QYDAbCwsNp374Ds2fN5ML5C+gUhfj4BO64804iIiMxmUwuQVx+gSU8TILcy4QoMySME0IIIUqQr1ZxgbbG8tUyzvl5oOGat/X+grhAJ3Fwr3cwihPC+drfPZQLpLuqEEKIfIOTcuH0p7B/FWTtBM0p+NrxCVTqBDE1S/ScmgbPrzvDtwfO89stKdSJ9T5RxJS0PHLsnt/PO8TouZKj2ilKfndVo9FIYlISLVq2ZOmvSwkJCWHA3XeTlJyUP1acXl/s4Vr8kTucEGXH1TH6phBCCFEO+Gp55W1fX+v8jZnmrYWYp/09tRrzdpyn576W/bVIC6Qevs7l67o8He8roPN2rBBCCCf6UDg4GzK3uwZxANazsOx+SFtOofjHkgHnjgZ9Og14/vczvL8jh+NmOx3nH2feofOFwqVjF1SG/HmOOxMM9I733K7knmRj0OcPrq6F/5c/npuekJAQ6tVvQO06tenctSsNGzVydE9VFMXjsZpGiT3yX0m5pwlRFkjLOCGEEKIEeAqAvLVg8xb+BDLBgrf9fO3jrz6BjFVX8NzTtQbbQs7b9mDDSOfn/lq+BdvCTgghrmk6A9R5ALa853m75QyseBxi6kBiUzCEw9mDcHINmGKgy38hqmpAp9I0eOH3M7z/V45j3QmLnb5LTvJzj4psOAunclX2nLPz2xkruSr8ciqPBe1iAJifYXMcVydMx61Jl+crrl6vx263e8268idzMBAeHk63bt0xGI2EhoZiNBkvdU91P1bztLLo4uPjsVlzS6w8IcTlI2GcEFchf190hRBXJ29Bm6fgy185xQnWvL2HBLOf83ndn3vbvyj8tRD018rNXzDnK+ATQgjhQ+37YN/3cO6Q932y9+Q/nJnNsOzB/EAuMtXnKTTghd/TGecUxBUw6RTqxpnotyGLXLe37gMXVG5Zle0SyCnAuFohGC7Dx2ZFUUhNrcz+fQeo36Ce1/0KuqvGXpxYTHexC6svJXVbatW6Bbf0uYU5P/6IXl/6E2wIIXyTME6Iq0xWVha33HIL58+fB6BmzZr8+OOPPm/kmqaxbds25s2bx/bt28nMzCQ0NJRKlSpRt25dOnfuTL169QIO9dLT05k3bx4bNmzg+PHjqKpKSkoKTZs2pU+fPlSoUCGgcjRNY8GCBZw9exbI/yDTu3dvIiMjfR63aNEiMjMzHcu33347JpP3cUOEuNo4h0HeWo0F0nqsqC3jSmLcOOc6ehsrztc1BDvbqr/QLNDQLZCQruC5c0tFyeiEEMKNIRRavQdLHwA1yNZWF9IuBXIRlbzutj/byse7CgdxAM0STGzLUQsFcQWcAzkFqBKi0Dfx8ny9VRSFWjVrcPDQYbZs3sKNDW/0+NlcURR0ej26gpuKouDr03fxbz0alVNT+edTT5KaWon/ffMNDz/0gN8AUAhR+iSME+IqY7PZ2L59uyPAslqtPvdPS0vjySef5KeffvLZ9e3pp5/m/fff91lWeno6o0eP5pNPPiE31/OHLqPRyODBg3n99depWLGiz/I0TeOZZ55hz55Lv5iOHDmS119/3edxL7/8Mps2bXIsZ2RkSBgnrnqexjzz1x000HIDCdGKEtAFO4GD+3b3dYEEcL6uvTiBXHHXCSGE8CCxMbQaC+ueBdX3Z9JCzh+FpQ9C1/9CuOfPjLVijHzTMYl7fjtNnur6ntytUhiLT+X5PMWBCyq9VmWztEMMqWGXtzWYwWCgS6cO7N9/gMWLfuGGevWoVq1wV1wF0C6GcM5XpF3c5sJLi/pAhEeE8+BD93PzLT1ZMG8+6adO8vTwp4iMjJReNUKUARKZC1GGHTp0iA4dOjBnzhy/LVR69Ojhs6ydO3fSqlUrPvjgA69BHOSHg1OmTKF58+YugVmgPvjgAw4cOBD0cUKUBZ4COU9/gynP2/H+yva23VsZvp67H+O+3tP+3h6ertHbOTwt+zqvt+vz9bp4Op8QQggnVXtC+8lgigv+2POHYe/3Pne5vUYkC7pXoEKoa5jWrXIYS075DgAV4NaKJlLD9BivwDdbo9FI7drX0a9vb85lZ7F40WKysrIc0yYUPHD76/7ceV2wFEXh5lt68t9vvyIxMZ6fZs2i/619GDToXqKioqRVnBBlhLSME6KMstvtDBkyhH379jnWhYaG0qVLF5o1a4bJZOLMmTMsXbqUpKQkunfv7rWsQ4cO0aNHD44evTT7VVRUFD179qRJkyYYDAb++usv5s6dS0ZGBgBHjx6le/furFmzhjp16gRc75ycHEaOHMm0adOKcNVClA3+WsgFW1YwLeMKBDqWnLcWcf5ax3m61qLyFZp5WvYXKPrax9cxQgghvEhpB73mwpb34dBPFJph1ZPIqtDwufwwz4+uqeFsvT2Vf23I4D/7zhGqV0iNNLLz7HmvxzSK1jPuxgi6VbyyvSd0Oh1hYWG0btWSnJwcVq5ai6LX0bxlC0wmHzO5emgap+HpHujepu6S+g3qMeyZp1DtdmbN+JEe3btyx239HLO1CiHKDgnjhCij/vzzT3755RfHcnJyMtOnT6dDhw4u++Xl5ZGdne31VzK73c4TTzzhEsS1adOG//znP1x33XUu+x49epRHH32URYsWAfndWh955BGWLFlCSEhIwHX/3//+x//93//RunXrgI8RoizwFMI5P3f+W5Suqu7nKUoXVff6OJfj63kBb4FiMF8CgunC6i9g83Scv1Z0ns4hmZwQQvgRlgStxkD9f8DB2XB8Zf7kDXZz/nZFB2EV8mdXrdILKnfKn5U1QMlheqZ2SOK1JnGsO2lhzzmVOKNCllVDA0w6qBmup32ikbtSTXRONqErxfxJr9cTGxvLLb16cOxYGr/+spiq1apRr0F97+PEud9rPN57Cq9MSExgyJNP0KRpYxbOm891tWoyfNhQQkJCpCWcEGWUhHFClFGLFi1CVVXH8vjx4wsFcQAmk4mkpCSv5SxcuNAl1Ktduzbz5s0jLq5wV4TU1FR++OEHOnbsyObNmwFYtWoV06dPZ9CgQQHX3Wq18vzzz7Ny5Ur5FU+UO+4BkK//j/tq/eVpX0VRCoVyxZnMwd/zQJbdedseSPjo7/Xw1drN13m8dU0tSktFIYS45kVVgRuH5j80O+SdBdUGxsj8SR+KKTXSwJ0XJ/s63TcBs13DpkK4QcFwleVOiqJgMBioWrUKd6VUZPv2v5g35yeaNm9GpUreJ664xPePQSaTkQH33MXAu+9ixW/LWbNiJQ8+MIjY2FiZMVWIMu4qezsTQgTq2LFjjuc6nY6+ffsGXYamaUycONGlFcy4ceM8BnEFoqOjGT9+vMuvcJMmTcJuD6C7gpPVq1fz/fe+xxARoizx19rLX9fIQMMqVVUDGputYD9VVV0eztuL8rDb7X63u+/j75hA9/H0cL9uf69/MP8mQggh/FD0EBILYYklEsQVKl7JD+GiTVdfEOdMURRMJhONGzfijtv6c/TQYRYtXMTZs+cKjRNXeNw4z2vbd2jLtG+/onHjhsybPYcO7dry4IP3Ex8fL0GcEOWAtIwTooyKvPiLIYCqqmRkZBAdHR1UGadPn+bXX391LNeoUYObb77Z73Ht2rWjQYMGbN26FYANGzawb98+v2PHuY899corr9CnTx+XaxGiLPPXKq5gXUhIiMdtgQZCzi3kvP1139/fPp7W+2ox5+u4QATaVdVXd1Rv+xQ8CrrPB1KGEEIIUVw6nY6IiHC6de1MenoGS5f9RlRMDC1atkBv8PDV28MtqXqN6jz19FCSkxP59ZdfaNmiOU8+OQSj0Sg9SoQoR67i3xeEEL7ceOONLsvvvfeeS7fVQKxbt86lRVuPHj0wmfwPgms0Gl1CO7vdzrp16/weFxkZSc+elwbx3b9/Px999FFQdRaiLPA1TpmmaVStWpXExESsViuapjlakwXzsNlsPv96O8Zms2G1Wh3PnR/u652XrVar4+HpuGAfwZ4/0IeqqlitVvR6PQ0bNgx64gchhBCiOAq6riYnJ3HnHbdxXY3q/DR7Drt37sJT+qZp+Y/IyCiGPfMUEyZ9wOGDBzi4dx+PP/YIrVu3wmQySRAnRDkjLeOEKKP69etHamqqY+KFKVOmAPD2228TGxsbUBl//PGHy/JNN90U8PmbNGnisrxhwwYeeOABv8e9+eabrFmzhpycHADef/997r//fqpWrRrwuYW4Wnkbk8x9AoWYmBiGDRvG66+/zoULF9DpdMX6kO2rNVxRji3OeYNVnCDM07EFXV67d+9O586dsVgshfb1NZmDEEIIURIURcFoNFKnTm2qV6/G+vV/MGvGTNq2b09ycpJjH51Ox639+/LwIw+yZfNmli9dRr++vUlKSir25wMhxNVLwjghyqjY2Fg+++wz+vfvj8ViQVVV/v3vf7Nw4UKeeeYZBg8eTEREhM8yTp065bJco0aNJat/QAAAIABJREFUgM/vvq97Wd7UrFmToUOHMnr0aAAyMzN54403+PzzzwM+txBXI2/jlXkK5Gw2G4MGDSIxMZEff/yR48ePB92yVXgWExND+/btefDBBzl37hzgPYhzntlWgjkhhBCXg06nIzQ0lLZtW9OwYQOWLFnKRpuNjp060vvWW2jTrjXnzp3ll4U/06VzR+rUqY3BYJAQTohyTsI4Icqwnj17MmvWLAYNGkR6ejoABw8e5KmnnuKdd97h2WefZciQIV5DuYyMDJdlXxM3uHPf170sX1544QWmTZvGkSNHAPj66695/PHHadmyZcBlCHE1CjSQs9vtpKWl0b9/f+644w7MZnOh4+VDeOCcJ6ExGo2YTCbS0tK4cOGC34kb3LcJIYQQl4NerycmJob+/W8lLe04Sxb9gs1ux26zUadObR579GFMJpPLJGlCiPJLwjghyribb76ZzZs38/zzzzNjxgxsNhsAx48f57nnnuPTTz/liy++oE2bNoWOzc3NdVkuGOw8EO5jy7mX5Ut0dDSjRo3ioYceAiAvL48XX3yRpUuXygcQUS556qpqNpvZvXs34eHhhcaC8TWRgq/1wQZ4VzLwCybsCnS2WU/rbDYbFy5cIC8vT7qmCiGEuKoUjCdXpUoqg+67B7vd7lgnn4GFuLZIGCdEOZCamsq3337LsGHDeOONN1i8eLFjYobdu3fTq1cvfvzxR7p16+ZynHvrtuzs7IDPWTDmm7ey/Bk0aBCTJk1iw4YNAKxYsYKZM2dy5513BlWOEFcTX0GPp0DOZrNx9uxZxz7eAjl/oVtRw7tgtwfKX+AV6Eyq7usCnWk10OeuMzxLS0QhhBBXRkEAZ/A0w6oQ4pog//ULUU4oikKrVq2YP38+S5cuZdiwYezYsQPID84eeOABtm7dSmJiouMY9wAt0HHfAE6fPu2yHGwYp9free+99+jevTs2mw1N03jppZfo06dPUOUIUZZ4CuQCfQ543OZtewFP+7mv97S9pPkLKv2tK+kgTgghyjOb3VraVRBCCOGDhHFClDM6nY5u3bqxdu1aBg4cyM8//wzkd1v9+uuvGT58uGPf2rVruxy7bds2br/99oDOs23bNpdl97IC0alTJ/r378+MGTMA2LdvHxMmTAi6HCGuBoFOAhBIIAc49il47ms/57IDWee83llJdlsNNnzztj7QEM7XtkC6qEpAJ4QoT8zW8yB5nBBCXLWkY7oQ5VR0dDRfffUVUVFRjnUrV6502adt27Yuy6tWrQq4/NWrV/ssK1CjR48mMjLSsTxmzJhCre6EKEsCGfPFORzyFhT5CpZ8Lftb5ys0dN+nOA9fZXvb5mudp2VP27zt5+2aZYweIYQQQghxpcknUCHKsQoVKri0WDt58qTL9rp161K5cmXH8urVqzl48KDfck+dOsUvv/ziWE5MTKRx48ZFqmOdOnX45z//6VjOzMzk6NGjRSpLiNKk0+scgU8wgZzz80ADp0CWndcFG46VhKKGc8FeZ6ABnSeKojhaIOp0OpnBVgghhBBCXBESxglxlbFYLC4zkxoMhiJ/QVRV1WVShtjYWJftJpOJwYMHO5bNZjPvvPOO33LHjRvnUu4999xTqOxgPP/886Smphb5eCFKk6Zp2Gw2wsJC0TQNi8WC0WgsciDn6bm/rpn+Qjnn9f62Xa6WcYHWwdd1FDWU86Rg8OyCf7PwiDBsNhuqqnrcXwghhBBCiJIiY8YJcQWZzWZWrFhB586dMZlMHveZM2cOeXl5juXk5GSPYZzFYsFisfgMwVauXMmhQ4ccy+3bty+0zxNPPMGECRMc4dqXX35Ju3btuP/++z2WOX36dCZOnOhYjoiI4B//+IfXOgQiPj6e1157jccff7xY5QhxJWmaht1ux26zY7VZMYYYiIgM5/jx49SsWZPQ0NCgWp0FMgOqp32Ks640+Qrs/K0LJGzz99oXtIg7ceIENpuVuMRYLlwwYzQa0OsNGAx66cIqhBBCCCEuCwnjhLiCPvzwQ0aMGEGdOnXo06cPHTt2pG7dukRGRnLkyBG+//57Jk+e7HJMp06dPJa1ePFiHn30Ufr370/fvn1p3bo1MTExAFitVhYuXMjQoUOx2WwAxMTEeAzYKleuzLhx43j88cfRNA2r1cojjzzC+vXrGTp0KDVq1EDTNA4cOMAnn3zClClTXFruvfnmm1x//fXFfm0efPBBJk+ezMaNG4tdlhCXW0FrOJvNhtVqw5qXh81mJ7V6Jf7euY+9e/cSHx9PSEhIkUKwYMO0QIK8q10gIVxx9ndntVrJycnh/PnzJFdKJDQshFyLBVU1YTSqKJjAIGPKCSGEEEKIkidhnBBXyK5duxxdQPfs2cP48eMZP368z2OSk5N55JFHPG5bvnw5p06dYurUqUydOhWDwUBycjImk4m0tDSX1nU6nY5x48ZRqVIlj2UNHjyYXbt2MX78eEcg9/HHHzNp0iRiY2MLdXct8Mgjj7jMzlocJpOJsWPH0rVr1xIpT4jLSVVVVLuKzWbDbrNht6vYbFZCw0OpVqsKJ9JOcer0SVR7fpfHgowokBZdouR4alWoKBdbxQEhoSYqpiaRkJSAzWZDUXTodDZ0Oh02nQ0UCeOEEEIIIUTJkzBOiCskOjqaAQMG8M0332CxWPzun5iYyA8//EBKSorH7QUDjheMb2Sz2UhLSyu0X0REBO+9957XUA/yv2y+9957VK1alZEjR5KVleU4R2ZmZqH9o6KiePHFF3n55ZdL9Itqly5duO2225g1a1aJlSnE5aUUGrssLDyUylUrYr5gwWq1kpdnxW6zYbPZsdltaKqKpkkYd6XodPnBm8FgwKA3YDAaMBqNGI0GQkJDCA0NRdFdCu0u56QWQghRHuRk5zBy5Lt88OHo0q6KEEKUWRLGCXGFVKpUiU8//ZSRI0fy448/smDBArZu3cqZM2ew2+0AhIeHU6VKFfr27cvw4cNdZjp1N3bsWHr16sV///tfVqxYwcmTJ7FYLGiaRkhICJUrV6ZXr14MGzbMZUZVb3Q6HU899RS33XYbkyZNYu7cuRw4cACz2QxAaGgo1apVo3fv3jz55JPUqlUroOsOCwsjIiICyA8G/XWbe/vtt1mxYoVLYFmWutqJa4NOp0PR6dDrdagGQ35LOTX/r2Y05oc54QpGmwFTiOliCzp7/n5aQWs5CXyuhIIZU3WKDr1Bj8GQH8bpDXpHOGcw5D/0ep3jr16nR6/Xl3b1hRDimjJr1nwmTpjK9z98QVJSQrkp52o7lxCi9EkYJ8QVpCgKVapUYfjw4QwfPpxz586Rnp5OZmYmISEhxMXFkZCQgNFo9FuWTqejW7dudOvWDavVSnp6OhcuXMButxMREUFiYqLXSSJ8qVKlCmPGjOGtt97izJkzZGdno2kaMTExJCYmBlQ35zr++uuvjnHrdDqd31lXb7jhBnbv3u04BnCMhSfE1UJRFIxGg+O5oijodDp0Oh0Ggy0/1DHasduM2O1q/kQPqj0/gNM0aRl3heT/21x8fvHfR6foMBj06AtCOb0Og8GIwaDHaDJhMOgxGU3oZQIHIYRwsX/fQb766lu2bd9FdlY29937BK3bNOfuu28nMTG+tKsnhBBlioRxQpSiyMhIIiMjqVatWrHKMRqNVKxYsYRqlc9gMFCxYsVil5uQEPwve0U5RogrTVEUTCYjdnt+mGMzGjBebAFnuziOnN1uR1UvtohTNUe3cpAw7kq5NFacgk6noNfnh2zKxVDOYDCgN+TPnmrQG9Dpdej1emmRK4QQTtLSjjN06It06tSODz54iw8/mMyzz/2DDes3MmPGHIYMebi0qyiEEGWKhHFCCCFEMej1evR6MBj0qKqK3a6i2u2oWkEYlx/CKeAI4ySIu3KcwzhFp3OEcgWt5PR6vQRwQgjhx7Klq8jLszJ8+BDMZvPF3h6VqVLF+5Aq7nKyc/jii2/4/fc/yczMIikpidZtmnHfoAHEREcxefKX/PD9bAAGDhjsOG7suDdo2rQxa9du4JURbznWh4SGUL1aFfr3703Pm7s41vsrB+D06XS++vJb1q/fSHZ2DgkJ8XTv0Yn77x/oaPleUuWUxLULIcofCeOEKCHOs5eKK0tee3E1UBTlYjCnB4yOwK1gQgDnZQl9SkdBl2L350IIIXyzmC2oqsq58+fRF7EL/+i3P+DkiVOMGjWCqtWqkJ6ezto1G/h54a8MHNifIUMepkKFZK/jprVu3Zyly+YABZOMZbFo0VLGjp1IeGQ47du1AvBbzokTp/nHk89RKaUib41+hWrVUtm5Yw9jxnzIoUNHeOONl0q0nJK4diFE+SNhnBBF5D6W0IYNG5gwYUKxu5yK4GiaxuzZswutl7GeRGlzDn2EEEKIsqx12xZ897+ZPPv0v+jZqxs2qw1VVYP6vLVl8zbuurMf19WuCUBKSkVuv6NvkeqjKArx8XHcc88dbPxzK/PmLnKEcf589tk0rFYro99+heiYaABuatKQp4Y9wav/epsdO3ZTr971JVpOSV67EKJ8kDBOiCJQFIWaNWuSlpbmWGexWBg2bFgp1ko4C3S2VyGEEEII4Vu9etcz6q0RfPH5N0yZ/CUA/fsNolWrZjw8+F5SUvyPMVyrVg3mzVtEYnICrVo1p0KFpKDqoKoq06f/xK9LfuPI0TRyLbmObZUrpwRczto162natJEjQCvQpEkjALZs2R5QGBdMOcW9diFE+SNhnBBFNHToUNasWeMyILu4OlSsWJEBAwaUdjWEEEIIIcqN1q2b07p1cw4fPsorI0bTpMmNLFq0lE2bt/H5FxOJjor0efzI11/k00+n8emUaXz04RQqVqxA+w6tuPe+u4iJjvJ7/qlT/8PMH+fx9DP/R6tWzYiJiUan0/Haq2+zd+/+gK7BYrFgNltYvXo93bre5ljvPJxETvbZEi+nuNcuhCh/JIwToogGDBjAjh07eOutt7Db7aVdHXFRcnIy33//fYnPLiuEEEIIISA2JprExHiefuZJbmrSkDffGMuWTdto36G1z+OSkxN55ZVnsNvt7N93iHXrNvDNtzPYs3sfH3w42u95Fy1aRoeObejVq5vL+uPHTwVc95CQEEwhJjp2aMPLI54O+LjillPcaxdClD8yqJIQxfD6668zd+5c2rdvf3HQdlFaIiMjuf/++9mwYQMdOnQo7eoIIYQQQpR7lVLyu4eaTKaAj9Hr9dSuU5P7HxhIt64d2bZth6M1WVhYKABWq+fJuYwGo8vy/n0H2b//YKH9vJWjKAqtWzfnjz82c/bseb91LalyChTn2oUQ5Yu0jBOimHr16kWPHj3Yu3cvf//9N2azubSrdM2Ji4ujYcOGJCcnl3ZVhBBCCCHKnS+++AZV1ejYoQ2RUeFomsbfe/YzceKnpKZWolHj+j6Pz845y6g3xnLb7b25/vraxERHsXffATZu3Eyjxg0ckx1Vr14VgHVr/6Dvrb0wGi99XW3bpgW/Ll1B1y7tadCwLn/v2c/kyV/SqFF9Tpw46XI+X+UMGfIQ//zHi4x46U0ef+JBatWuQa4ll/37DzJ3zs8Mun+AY6KFkiinJK5dCFH+KFpBFC+EEKJcmrVwGbXr1iM+2fdgwRmnTvP3zh20b1/3CtVMCFEe7Nx5DFUJoXa9eqVdFSHKlN+XL6fuDZVJTIr2v3Mpy845y8IFi1m5Yi2HDx/DbDZTqVJFmjVrzH2D7iIhId5vGZs2bWPOrPns2LmbnLPnSEpMoF27Vtw36C4iIyMc+3315bfMX7CYzIwsVFVl7Lg3aNq0MRfMZqb8+0tWrfods9lC3Xp1+Oc/HuXrr6ezc+cuvv3uM5fzeSsHICMjk6//+wNr1/5BenoGMbHR1KxZnb59b6ZNm+Yus8SWRDnFvfayIpj7we/Ll9OicX0qp8iP6eKaNF3COCGEKOckjBNCXE4SxglRNGUpjHOWkZHJqDfHyVhnohAJ44QI2HQZM04IIYQQQgghREB0inyFFEKI4pJ3UiGEEEIIIYQQAbk4xJkQQohikDBOCCGEEEIIIURAYmJjpIuqEEIUk4RxQgghhBBCCCGEEEJcIRLGiXLpux+mc+udA2jWtj3Dn3/BZdtXX39Dw+YtycrK8lvOzNlzaNi8JWnHj1+uqgZdp9Ior8CVej2EuNJysnN4evgrpV0N4ceG9Rvp0rkfmzdvd6xbMP8XunTux8mTp0qxZkIIcW0o6v3y++9n06VzP3Kyc/zue6Xe14OpkxBClDQJ40S5c/zECcaMe58mNzVm2c8L+HDse6VdJRGE736YTsPmLTl56vJ/sb6S5xJClF+zZs2nS+d+nD6dXtpVEUIIUcKu5Hu83E+EuHYYSrsCQpS0AwcPoWka3bt0JioqqrSrU67c3r8ft/fvV9rVEKLE7N93kK+++pZt23eRnZXNffc+Qes2zbn77ttJTIwv7eqJANzSuwe39O5R2tUQQohyTe6XQghRsqRlnCh3rFYrACZTSCnXRAhxNUtLO87QoS8SFRXFBx+8RcOG9Rnz7mtUSqnAjBlzSrt6QgghxFVB7pdCCFHypGWcKLf8TbueZ7UyZtz7LPh5Ebl5ebRq0ZwXnnmaypUq+S171549TJo8lY2bN5Obm0u1qlUYeMcdDLjzjkL7njh5ksmffc6atevIyMwktXIl+t96K/cNHIDRaPR6jrTjJ/jn08+Ql5fLpA8/oFrVqkGXZ7Pb+WDix8yeOw+z2UyLZk159eWXqJCc7Nhn+cpVDH3mWcdyaGgotWrU4J4Bd3Frn94u5c2cPYfXR7/Nzz/NplJKCpA/Pt34jyaw9OcF/Pfb73yey5/3P5rAf77+BoDuvfs61k+dNJFWLVoAcPLUKT6ZMpVVa9aSmZVFclISfW7pxROPDHa5/qysLD6ePIWVq9eQkZFBhQoV6Ni+HY8NfpjYmBi/5/J3vCj7li1dRV6eleHDh2A2m1EUhSpVKlOlSuWgyjl16gzTpn3PHxs2kpmVTaWUCtzcqzu3394Ho/HSbXbv3gN8+cW3bNv2F7l5eaSmVqLfrb24tV8vl/K+/342UyZ/yYwfv2LG9J9Y+POvWCwWbmp8I08/8yRJSQmOfXOyc/jii2/4/fc/yczMIikpidZtmnHfoAHEROe3DP7448+YO/dnFi2a4XKetWs38MqIt5gwYQwNbqzrcu7p07/ku//N5NfFv6FpGj17deWJJx7CbrMzecpX/PrrCqx5eXTo2Ianh/8fphCTS9mnT6fz1Zffsn79RrKzc0hIiKd7j07cf/9Al9fEl+3bdjJl8lf8vXcfsbEx3HlnP6pVSy2034L5vzBu3CS++9+nVKiQXOg6ps+Yw+JffiMn5yyLl8wMun7+/n0nT/6SH76fDcDAAYMdx40d9wZNmzYO6FqFEOJqVlL3S4A8q42JEz9l6ZLl5OZZadq0Ef/45yNUrFjB77GB3kch8HuzuxMnTvPKiFHk5eXxzpjXmDdvkd/3+EDvKf7u2XI/EeLaImGcKHeys7MBCA8L97nf+x9NoF3r1vxzyBMcOXqMV998k4cee4IZ331DTHS01+N27dnDA488xk2NGvLNl58TGxvLvAULeXvsOI6mpfHMU0Md+x5LS+PehwZTITmZd98aRZ06tTl16hSzfprLHxs30bplC4/n2Lb9L5569jmqV6vGB2PfdYQ/wZb38b8n07RJE+bPnMHBw4d5+vkX+dfrb/LpJx879unYvh1bN/wOgKZppGdk8NO8+bw26i0iIiPo2qmTz9cxmHP58+ywp6iUksI7Y8exeP7cQkFe2vET3PfQw6RWrsyE8eOoWb0627b/xSuvv8H+AwcY/+4Yx74vv/Y6aceP89G496hRowanT59m+cpVzJ47j4cG3ef3XP6OF2WfxWxBVVXOnT+PXle0huInTpzk//7veZKSEvjXv56j5nXVOXM6nYULlrBly3aaNcv/8Lx37wGGDn2RGxvUZdInY4mOiWbJL78xYcJUjh8/yRNDHipU9heff0PDRg34+ut/c+RIGiNfe4d3x3zEuPffdOwz+u0POHniFKNGjaBqtSqkp6ezds0Gfl74KwMH9i/SNQF89vl/adGiCQ8PvpftW3cycuQ7xMREczztJDfddCODB9/Lzr/28OrId0iIj+fRx+53ek1O848nn6NSSkXeGv0K1aqlsnPHHsaM+ZBDh47wxhsv+T3/7t17efa5V2nVoilffvUxYaFhzJo9n7lzfw7qOiZP+YpmzRrx1X8+Yfny1UHXL5B/3yFDHqZChWQmTpjK9z984RKWCiFEeVAS98sCkyd/SYvmTRg8+F7Sjp3k3fc+YthTL/Pp5xOIjor0elww99FA783udu7cw79eGU2VKpV5Y9TLxERH+X2PD+ae4u+eLfcTIa4t0k1VlBuqqnL02DF+mDmThPh4rqtV0+f+1atWpW/vW4iMjKTuDdfz3ujRnDp9mm+++5/P4yZ+8m+MRiPvvzuG6tWqERsTw6B77uaO/v2Y9s23pB0/4dh3/ISJ5OZamDzhI25q3IiI8HBqVK/OM08N9RrELVqyhMFPDKFN61ZMnTTRpRVWsOWlpqbS95ZeREZG0qBePR66fxC/b9jA0WPHPJ5bURQSExIY/OADtGjWjBkzZ/t8LYpzrqL4aNIk8qxWJo4fR/26dQkLC6NF82aMeOF5lixdxtZtl2ZY/OPPP+naqSM3XH89ISYTqZUrc9/dAwMO0op7vLj6tW7bAkVRePbpf7Hw56XYrDZUVQ2qjMmTvyIvN5f33n2dBjfWJTwsjKpVU3liyEMuH/Y///y/GA0GRr7xIlWqVCYmOoo77uxL797dmT59DidOnC5UdkrlivTo0YmIiAhuuKE2AwfexsaNWzju9B6zZfM22rdrxXW1a2IyGUlJqcjtd/QtVhAHULVqKp07tyciPJyWrZrSvkMbvv7vdCpWTKZL1w5ERETQrMVNdOzQmvkLFrsc+9ln07BarYx++xWuv/46QkNDualJQ54a9gQrV6xlx47dfs//5ZffEhkRwSuvPkdKSkVi42J4+OF7yc2zBnUdlSpVpGfPrkRFRdCnT4+g6xfov68QQpRnJXG/LFAltRI9enYmIiKC2nVq8uqrz3PmTAYzZ/zk87hg7qNFee/+7bdVPD18BM1b3MTYcW86Wpf7E8w95XLds4UQZZOEcaLcuKX/bdzS/3YOHTrMhPfHYTKZfO7fqUMHl+WaNapTvVo1fv/jD6/HaJrG+g1/0KpFcyIjIly2de/aBVVV+ePPPx3rVq1ZS6sWLYiPjwvoGj776j+8+MqrPPrwQ4x+fWShbqfBltehbVuX5dq1agG4BGSqqvLV198w4L77adG+Iw2bt6Rh85asW7+eI0ePBHSeQM9VXMtXrqR50ybExsa6rG/ZvDkAf2zc6FhXp05tZsyazfczZnD8xAmCVdzjxdWvXr3rGfXWCPQGA1Mmf8lfO3bRv98g3h493iXw8mX97xtp2rQRsXHeuy5rmsamjVtp0jQ/QHfWoWMbVFVly+ZthY5r3bKZy3KNGtUASEu7VLdatWowb94i5sxZwMmThQO9omrZoqnLctUqlbFYLLRwW1+lWhWys7K5YDY71q1ds57GjRsQHePawrhJk0YAbNmyHV80TWPzpq00b94Yk8n1PbBdu1ZBXUebNoV/pAimfoH8+wohRHlXEvfLAm3atHRZrlYtlSpVKrNx01avxwR7Hw32vfubb2fw1qj3ue++u3jppeEBD6cAwd1TLtc9WwhRNkk3VVFuLJg9i0OHD/PcyyN4+bXX+GnGdHQ+mtInJBSe+SkhPp70jAyvx1gsFnLz8khMKNxsvGBdZlYWAGazGbPZTHJSUsDX8NP8BSTExxcaq62o5SUlutYzIjI/QDx79pxj3QcTP+ab/33Pqy+/RId2bYmLjUWn0zH8+RfYtdt/C5ZgzlUcZrOZCxfMLFu+gsYtWzvWa5qGpmkAZF3sogzw/ph3+PDjSXw4cRKj3x1L5UqV6Nq5E48+/FBAY74V93hRNrRu3ZzWrZtz+PBRXhkxmiZNbmTRoqVs2ryNz7+Y6LPLjMViwWKxkJjouxtJbm4ueXlWEjyE6AXBenZ2TqFtCQmu+4dH5H8BOX/ugmPdyNdf5NNPp/HplGl89OEUKlasQPsOrbj3vrsC+FVf87ql0LkvfvmJT3ANwsPDwhx1Cg8Lw2KxYDZbWL16Pd263nbpTE7/neZkn/VZK4sl//WKi4sttM3TOl/cZ/gLpn6B/vsKIcS1oDj3S2dx8Z7f2zMzs7weE8x9tCjv3YsWLSMuLpYePbsEfEzBuYK55xXvni2EKG8kjBPlhk6no0b16gy8807eGvMuBw4epFZN711V09MzCgVb6RkZPoOW0NBQQkwmj4Fdwbq4i622QkNDCQ0N5dTpwH/5mjJxAi+88i8eeOQxpk6aSI3q1V3OHWx5ir9ZLMgPALt37cJtt/Z1WX/sWFrA5wn0XMURGhpKSEgI3bt04e03X/e7f8UKFRgz6k3sdjt7/t7LilWr+Oyr/7Bj5y6+mPLvy368KFtiY6JJTIzn6Wee5KYmDXnzjbFs2bSN9h1aez0mJCSEkNAQzpxJ91l2SEgIJpORDA9fNAq+fMTEFB6nMpD/ppKTE3nllWew2+3s33eIdes28M23M9izex8ffDgagMiIcKx5VqxWm8uv/adPe//hwdu5/dUpJCQEU4iJjh3a8PKIp/3W35PQ0PzXy9MXM19f1jwxGlw/5gRTv0D/fYUQ4lpSlPuls8yMrEI/lGRmZhHtI4wK5j5alPfuse+9wahRY3lq6IuMHfcmVasWnizIa72CuOcFcs8WQlw7pJuqKHcKAjbnVlKe/LZypcvygYMHOXT4MC2bN/NyRP4X0ebNmrFu/XouXDC7bFu8dBk6nY5mTZs69u3Qri2/r99ARsb/s3fncTbW/R/H39c5s5gxK8Nz37c/AAAgAElEQVSYYey7bIO2G1N3xs1dKEPu4r5LtCAtSkILqSQqklDRpl/JXrQgIW4RJUL2fRnDrMw+c35/yLkdM2bObOecOfN6Ph49Hq7rXNf3+zkXneV9ru/3m2BX7WE1QvXJB+8pODhY9z/0iPb8+b8704rTnr28PG2H9O7bf0D7Dhwo1T7s5fPXnTaZmZk2+w3DUFSnjtq0ebOSkwu+s+ZKZrNZzZo20cODB+n2bv/Qr9u3W3+tvFZf9p4P93R5peDChrobhqEbb2yvX7ftUGLCtV9vDMNQm7at9Ou27UpLS7d5bP36TTKZTGrdpmWJajabzWrUuL7+/Z9+6nJblHbu3G39dxoefun5HD1yzOacnzf9UqI+82MYhm66qYO2bt2ulJSLxW6jdZuW2rr1d2VdNUfcxo2bHVafvX+/kuTjU0mSlJV17dcSAHA39r5fXum/m7bYbB87dkInTpxSZGSra55TlPfRorx2XxYaGqLp019TYFCgHn98jPbvO2Tz+LVe44v7nlfQezbvJ0DFQRgHt3P5zo3c3IIDk6PHjmn5t9/qwoUL+nPvXo0a+7xCqlbVvf/qV+B5w4c8ooz0DD317GgdPXZMScnJ+r/5X2rRkqUacM+/FB5Ww3rsk8MflZe3t4Y8/rh+2/67UlPTdOToUb359nRt2rwl3/aDg4M1d/ZM1atbR4MeGaJtv/1WovYKc2vnTvp+9Wr9d9PPSktL06+/bdf4V19V+8i2xWqvpC4vvLF+w0ZlZdl+ER/x2HCZTCYNe+JJ/frbdl1MTdX5+Hj9vGWLRjzzrHVYbWJSkh4c+qh+XLdeZ+PilJmZqZ1/7NLPW7aofbtI67+Ra/Vl7/mS1KrDDXrg4SFlek1QNubO/UwffDBP+/cd0sXUVFksFu3fd0jTp7+vWrXC1bpNi0LbePjh++Tp7aVRz47THzv3KC0tXcePn9TsWR9p69bt1uMGPTBAGRmZGjdukk6cOKXklAtasni5VixfqZg+PVSjhv3Dzy9LSk7R00+9oI0bN+vcuXhlZWZpz559+vXX7Wrd5jrrv9NOnW9SYIC/Zs76UGfPnlNCQqLmzv1MPr4+Re7THo88cr9MJpPGPPuSdu7YrdS0NCUkJGrbtu0a98JrOrD/UKFtDBx4j1JSUvTKq28qNvaskhKT9PHHX8irCPP4lEZ99v791q1bW5L086atysrKLnGNAOBKSuP98rITJ05p1aq1unjxog7sP6SXJ0xRlSpBuiumR4HnFeV91N7X7isFBgXqramvqHbtmhrx5Fjt2LHL+lhBr/H2vqfY+57N+wlQcTBMFW7H3uGSIx4brvfmfqhJU95UZlaWrm/fXm9MmljofGDNmjbRJ3M+0IzZs3XPfQOVkZGh2hERGvXUCPXrE2NzbM3wcH3xyUea+d77enr0GCUlJyuiVi3d2eOOAsMuv8qVNXv623rq2dF6ZPjjeuO1ierc8W/Fbq8gI0c8KbPZrLHjxis1LU0tr2uhcWPH6v25H+rkqaINVS0N1zVvrkcGD9LcTz7R5LemKjc3V+/NmK4br79e4WFhmj/vE703Z67GvDhOZ+PiFBwcpMYNG6lv77vUuFEjSVJQYKAefGCgvvhygV6Z9LqSkpMVWr2aunbpogcH3m9XX/acf/nuyGrVQhx5icpO2Y40djkxfXrq229WaerUmTp27KTS0tI0YcJktW/fRv0H9FWlSpUKbaNGjVDNmvWGPv7oc40f/7qSU1JUMzxM3brdptatr7Me16hxfU2f/ro+/PAzDXnkaWVmZqhmzXANe3SwevXqXqz6AwP81X9AXy1bskLTps5ScsoFVQupqqiojuo/oK/1OB+fSprw8ljNmPGB/j3gYVWtWlUDBvRRs2aN9eOanwrooXhCQ6tr9ntvat6nX+rVV9/S+fPxCgwKUP36ddWjRzfVb1C30DaaNm2s1yeP13uzP9Z//jNUQYEB6h3TUz16dNOGDSW7O64o9dn799u0aSP95z/99PkXi/Xuu3OVm5uryVPGq127irLiqqXCvX4AFUlpvF9e9vDD92vevC81Y/r7yszKVtu2rTRu/KhC50wryvuova/dV6vs66vJr4/XuHGT9Mwz4zRu3CjdeGP7Al/j7X1Psfc9m/cToOIwLIy3gpvZ8stWDR46TNPfnKKoTp2cXQ7c2PoNG/XYU09r4f/NU8O/Vo91RUu+/VGNmjVXleoF332VGB+vvTt36m9/a1Lg4ifuKD4+QRNemsKcLUAx/PHHcXl4+6l+kybOLgUoVzavW6dmTWsqpFreeUNdFe+XKMiePSeVa3irUfPmhR67ed06Xd+mhWqGVXdAZYDLWVCxvm2hQmjYoIFMJpO++X6lkpLzrlAIlJbNv/yif/7jHy4dxBXF5Tlf0jMq3rAIk8HbIVBcGZnZ8izCnFEAyi/eLwGgdPBqCrdTpUqwXhw7Rvv27ddt3W/XEyOfcXZJcFMjn3zCrpVdywsfX1+ZDEMXUtIKP9jNlPFiwIDbys3NVXpqhnwr+zm7FAAOwPslAJQO5oyDW7qrZw/d1bPgiWDhOAcOHlTvf91b4DFd/n6r3pz0moMqQn4Mk0l+gQFKTLyo6tULnjvR3VyeuBlA0SQkXpRFUkBQxXrNACoq3i8BoHQQxgEocw0bNNCOX0o26TocI7hqNZ04ckgNGuTKbObmafxPSkqazsSeV6OGtZxdClzI2dgk+QX4M0wVAACgCPimBQCwqlYjVBYZOn0mwdmlwMWcjj2vFd8TquN/0tIyFX/+gqqH13R2KQAAAOUKYRyAa+rW807d0PkW9fv3f7Rx0yZnl1OqFi9dplYdbtCp06edXYpLMXt4KKxWLR07ek6ZmRVvIQcA9jt0MFaVfHxUtVrBKzUDqHiSk5L15BNjnV2GjcOHjmrEk2N1xz//pb/f2ksbNvADEwDnIYxDufX5lwvUqsMNij171iXacce+vl22RCuWLFJl38p6fvwEu87p2eduTZw8xWbfjp1/6JHHHi/wPHuOKUn7sF94RIQ8PD115Eics0sB4KLi4y8oPuGC6jZuJIMZ3QGUAxMmTJHZ7KH5C+ZozY/L1LHjDVqyZIX+fmsvxcWdL/P+HdkXANdHGAfgmgzDUEjVqurc8W86d/68kpKTCzz+6LFjOnL0qG6N6lwm9ZRm+73v7KUdv2xWeFhYKVTmXkxms2o3aKjY2ETFxiY5uxwALiYjI0v79p1W1erV5R8Y5OxyALiQQweP6IXnX9V99z+q33//Q/3vfVjvvPOBzp2Ld2pdSckpOnLkmG6+uYMqV67s1FoAQCKMA2AHb29vSVJWVlaBx/24br38/PzUPjJS23fs0MOPDte2336zPn7hwgXN+mCORj33vCTZdUxJ2kfxVQkJUXjt2jqw/7QSEy86uxwALiInJ1d/7DouT29v1Wvc2NnlAHAhp06d1vDho+Tv76+33npZrVq10GuTXlB4WKgWLlzm1NqSky79oOztzWIzAFwDq6nCJSUmJuqdWbP108b/Kj4+XqGhoYrq1FEPPjBQQYGBemPa2/p43meSpOjbe1jPe2/GdN14/fVa99MGDR/xlHV/pUqV1KBePd1zd1/1vON26/7C2pGk2LNn9e7s97Thv5uUkJio6tWq6Y5/dtfDgx6Qp6en3c+pNPsq6fUp7Pyr2TsE6cd169XpbzfLw8NDbVq10gtjRuuzL+brt+2/60xsrJ4eM1Z39rhDDz0wUJLsOqYk7Rdk8dJlGvfKq/ruq6XWu+PsvS5/7tunGbPe06/btysjI0N1akeoX0yM7u4TY9PHR/M+05vT3taa777Rp//3uZZ+vVxpaWm6vn07PT/6WYVWr27XdXWWWnXrKj0tVX/uOaXmLWoqIMDX2SUBcKKs7Bzt3nVC2Vm5ahHZUmaz2dklAXAhP67ZoMzMLD3xxCNKS0uTYRiKiKipiIiiLfISF3deH334f9qy5VclJSWratUqiu56i/79737y9LT9+nrgwGF9OPf/tHPnLmVkZqpWrXD16tldPXt1tx4zZfI7+uabVZf+PGWGpkyZoeDgIEV3vUVfzl8qSep39wPW4ydPGa927doUqZbkpGTNnfuZNm/epoSERFWrVk033dxe/QfcrcAAf82a9WGhfQGoWAjj4JJGvzBOp06f1rQpr6tevXqKi4vTup82aOnXy3X/gP566vHHFB4WpomTp2jViq/zhBpRnTpqxy+XJmW1WCw6Hx+vr5av0AsTXlZlv8q67ZZbJKnQdk6dPqP+9w9UrZo19fabU1S/bl3t/GOXxo4br0OHD+vNSa/Z/ZxKs6+SXp/Czr+ar4+PJCkpOVkhVavm+/wSEhL0+86duqdfX+u+/EK8q/fZc0xJ2i8Ke67Ln/v26T+DHlTb1q302YdzFBQUpOXffKtXJ0/RiVOnNOKx4XnafWfmLLWLjNSKxQt15NgxPTlylJ4b95Lef/edYtfqCIZhqEGTZjq4d4927DyuRg1rKDQ0b1gLwP2lpmVq1x/HZZGhJq1by+uvO6YB4LL0tHTl5ubqwsWLMpuKNwDrzJk4DRv6tMLDaujlV8aqTp1a2rN7n157baqOHj2u8eOftR574MBhDR8+Si2va6YZ705WQGCAVq9cq7fffk+nT8fq4UfulyQ9PfJR3d3vTt1/3zA9/fQw/fP2rtY2QkOra/rb72n+l3NVrVrVYtfyyqtvKfbMWU2YMEa160To/Pnz2vTfX/Tdtz+oX7879cgjAwvsC0DFwzBVuKSt27bptlui1LRJE3l7ealWzZrq/69++QZFhbk879kD9/1H17dvr4WLl9p97rQZM5SZlaXpb05Ri2bN5OPjo+s7tNeYZ0Zq9ZoftWPnH0WupzT6Kun1Ker5bdu0lqenpz7+dJ4SEhLyPWbtTxtkMpnU8eabJV0agjru5Vf191uiNHrk02rSpLGmvPqKDh0+otEvvGj3MSVpv6jsuS7T350pT09PvTHpNdWtU0dBgYEacM+/FHNnL33y2f/p1OkzedqtVauWevyzu/z8/HRd8+a6/98DtPmXX3Ti5Mli1elIJrNJjZq3UFitWtq375T27TutLFZZBSoMi8WiU6fi9fv2I/LwqqQWkZHy9WW+JQB53fS362UYhp568jl9+90aZWdlKzc3t0htfPDBJ8rKytIrr45VkyYNValSJbWNbKXHHn9YP63fpN2791qPnTPnU3l6eOjF8aMUEVFTgQH+iunTQ7ffHq0FC5bpzJmSLURVlFp+375TnTreqIaN6svLy1NhYTXUO6aH+vW7s0Q1AHBfhHFwSY0bN9LCJUs1f+FCnT6TN9woTG5urj6a95nu7v9vXd8pSq063KBWHW7Qz1u26PiJ43a3s+6nn9ShXaSCgmwnqL6hQwdJ0tZffy1ybaXRV0mvT1HPj6hVS6+Me1ErvvteUV276fGnR+Y55sd163R9+3by+2tS3DatWum9GdPVPjLSeoyfn5+GPDhYk16eYPcxJWm/qAq7LhaLRVt+2aobr+9greOy6Nv+rtzcXG3dti3PeZ3/9jeb7UYNGkhSuQjjLouoV0+NWrRQYlKaftl6SCdOnldOTtE+YAMoPywWi+LjL+jX3w7r0OE4VQ+rqWatW8vTk/mWAOSvefMmmvDyGJk9PDR71ofatftP3dlrgF595U2dzufHyvxs+u8WtWlznQICA2z2R0a2liT9/vulH6ctFot++3WHItu1VmVf22k0OkfdrNzcXP2+fWeJno+9tUhSgwb1tHz591q27BvFxrIaPYDCMUwVLumN1yZq6jszNHX6DL0yabJqhofrtltv0eCB9+c7p9nV3pr+jj77Yr6eH/2sOnf8m4KDgmQymfTEyGf05969hZ4vSWlpaUpNTdOP69arzQ03WfdbLBZZLBZJUmJS6aw0WdS+Snp9inr++fh4vfTqRN3SuZOeffopVQsJsXk8IyNDmzZv0cgnHi/uJShQWbd/WWHXJT09XRmZmfkO1b28LyExMc9j1UJsj6/sdynIS0m5UAbPouxUCQlRUHCwTh0/rqNHT+jY0XOqWtVPwcH+8vOrJG9vD5nN/MYDlEe5uRZlZeUo9WKGEpMu6ty5FKWnZyq4alU1btFA3n9NVwAABbnppg666aYOOnbshMaOeUWRkS31/fdr9Nv2nZozd7oC/P2ueW56errS0tK1ceMWdbntLuv+Kz8PJyelSLr02TAzM0tVqwTnaafKX/uS/lq0oTiKUoskvThulN5//xO9P/sTTZs6WzVqhKpT5xt1b/++CgzwL3YdANwXYRxcUo3QUL024SXl5ORo3/4DWr9hgz746GPt3vOn5s6eWej5X634RtG3/V139exhs//kyVN211CpUiV5e3sr+u9/16svjSvqUyiSovZV0utT1PN/2bpNFy5e1OD7788TxEnSps1blJGRoVuiOufbX6uW12nW29MKrKmgY0qjfXsUdl0qVaokby8vnY+Pz3Pu5X3BV93ZKJVsHjtXYzKbVatuXYXVqqW4M7FKOBenfftOWT+Ywn3F//Wl5qef9ji5EpS1Sr4+Cg4JVbWwUPkwJBVAMQQFBigkpIqeHDFUbSNb6aXxk/X7bzvVqfNN1zzH29tbXt5eiup8s0aPebLA9r29veXl5an4hLw/gib8tS/wqjvaiqIotUhS9eohGjt2hHJycnTo4FH9/PMv+uz/Fmrf3oN6a+orxa4DgPsijINLM5vNata0iZo1baLTZ85o6dfLZbFYZBiGfP76lT4zMzPfc72uGkqzb/8B7TtwQGE1Qm32X6sdwzAU1amjNm3erOTkFAWUwq9apd1XSa5PYedfKSn50l1511q84cd169SiWTNVr1bNrrqLqqzbv1pB16VD+/b6ecsWpaamydf3f3eKrFrzo0wmk9q3a+eQGp3N7OGhGrVqqkatmrLk5io1NVVZmVnKzWE+OXd17NgJHT56Qo2aN3d2KSgDhskkDw+zfCpXloeH/SuFA0BhLq9a7+VV8DB3wzB0000dtHXrdqWkXJS//7V/DDAMQ23attKv27YrLS1dPj6VrI+tX79JJpNJrdu0LLS2y+dlZeX9bG5vLVcym81q1Li+GjWur9jYOH333Q9XfDbPvy8AFRNhHFxOYlKSRo4eq3v73a0WzZspKDBQe/ft189btqh9u0hrUNSwQX1J0voNG3V3TG95ev7vy8OtnTvpm+9XqnvXaLVt01p7/tyrN95+W+0j2+rkKdu74wpqZ8Rjw/XvBwZr2BNP6snhj6pJk8ZKT0/X/gMH9OXCxXpo0EA1bdLE7udWGn2V9PrYe/6VcnMv3fVkmPJ7LFfrNmzQvXffbfd1KIqStv/nvn26u/+/1f9f/TTqqRHXPM7e6zJ8yCP6z6DBeurZ0Xr26REKCgrSim+/06IlSzXgnn8pPKxGseoszwyTSZX9rj3sBO4hPvHSnXFVHBSKAwDKl7lzP1NurkVRnW+Wn7+vLBaL9u87pOnT31etWuFq3aZFoW088sj9enTYKI159iU99PB9atConjLSM3To0BF9vew7Dfj33WrY6NJn3EEPDNDw4c9o3LhJGj78QQUEBuiHVWu1YvlKxfTpoRo1Cn+/qlu3tiTp501b1aNnd3l6/u/rsb21JCWnaML4ybqr9+1q0qSRAgP8deDgYf3663a1bnOd9TNkQX0BqHh4BYDLCQoM1IMPDNQXXy7QK5NeV1JyskKrV1PXLl304MD7rcdd17y5Hhk8SHM/+UST35qq3NxcvTdjum68/nqNHPGkzGazxo4br9S0NLW8roXGjR2r9+d+mCeMK6id8LAwzZ/3id6bM1djXhyns3FxCg4OUuOGjdS3911q3KhRkZ5bafRVGtfHnvPzk19Q9/vOnYqPT9CtUVFFuhb2Kuv2L7P3ujZr2kSfzPlAM2bP1j33DVRGRoZqR0Ro1FMj1K9PTJnWCAAA3IdhGLLIfaZ5iOnTU99+s0pTp87UsWMnlZaWpgkTJqt9+zbqP6CvKlWqVGgboaHVNfu9NzXv0y/16qtv6fz5eAUGBah+/brq0aOb6jeoaz22UeP6mj79dX344Wca8sjTyszMUM2a4Rr26GD16tXdrpqbNm2k//ynnz7/YrHefXeucnNzNXnKeLVr18buWgID/NV/QF8tW7JC06bOUnLKBVULqaqoqI7qP6CvXX25DYtFBtMHA3YxLEz0A6AQH3z4kd5+d6Y2rfsxz4pVb749Xat+WKNvly0pk77Lqv3FS5dp3Cuv6ruvlrn93WxLvv1RjZo1V5Xq3NGE4juw/6BWfrdSQ4cPcXYpAOAWtm3cqLp1QxQWlncRgvIuPj5BE16awnxpFczOncfk5RuoenbcsLB53Tpd36aFaoZVd0BlgMtZQG4N4JosFovOxsXpx/XrVatmzTxBnCT9uG69br3Gwgqloazav5iaKkl2rT4LAABQ2ir5VFJamnvOH2bi9qgKKS0tU5V8Cr8DEgDDVAEUoHuvu5SQmKgG9evrpReey/eYrxctKNMayqL95OQUrV2/Xg0bNLBZhAEAAMBRfP38lfLXIlnuxo0WkoedMjKylZGRJV+/ki96B1QEhHFACR04eFC9/3Vvgcd0+futenPSaw6qqPR899VSZ5dQ6tasXadRzz2vJo0b6ZVxLzq7HAAAUEEFVqmiuDNnlJWZLU8v9/paFhgUyBDVCuZ8fIpMZrMCAgKcXQpQLrjXqz7gBA0bNNCOXzY7uwzY6e+3ROmXDeudXQYAAKjggoKryGQ26UxsoiIiQpxdDlAisWcSVTUkRIaJIcqAPfg/BQAAAAAczGQ2KTQsXCdPxis7O9fZ5QDFdu58ii5cSFf1muHOLgUoNwjjAAAAAMAJwuvUkWGYdPRYnLNLAYrFkmvRkcNnVS00VH7+DFEF7EUYBwAAAABOYDabVatefZ0+laALF9KdXQ5QZEePnVNmZo4i6tdzdilAuUIYBwAAAABOEhIaqoDAQO3efUKZmVnOLgew27lzKTpx4rxq168vTy9vZ5cDlCuEcQAAAADgJIZhqFGLFjKZPLR790nl5jJ/HFxfSkqa9u47pdDwcFUPZ644oKgI4wDAzZlNJuVY+GAPAICrMnt4qEnLlkpPz9KOHce4Qw4uLSH+gnbuPK6AwCDVbtCgyOfn5lz6XGo2E0eg4uJfPwC4OQ9PT+Vk8aEeAABX5u3joxZtI5WdLW3ffpQ55OCSTp2K167dJ1QlJESNW7SQYRhFbiM7+9LnUi9Pz9IuDyg3COMAwM35+/kq9eJFZ5cBAAAK4e3joxaRkark66ft24/o4MFYZWdzdzuc7+KFDO3YcUyHDp1VrXp1Vb9pUxmm4sUJqRdTJUl+fr6lWCFQvng4uwAAQNmqGhSoIyfPOLsMAABgh8tDVs/Fxur4oUOKi0tSzZpVFBoaJC8vvr7BsVJS0nXqVLzi4pJVOcBfLdq2VWV//xK1mZyQoMqVfbkzDhUar+YA4ObCqlfV3oNHdCElRX4l/PAEAADKnmEYqlajhqpUC9Gpo8d04sRpHT16Tv5+leQf4CMfHy95eJhVjBGCQIFycizKzsrRxdQMJSZeVEZGlnwr+6p+06YKqV69xO1bLBYlnD+niBohpVAtUH4RxgGAmwsOCpC/X2XFnjwpv6ZNnV0OAACwk9nsoYj69VWzTl0lJsQrKT5eSckpio1NVk5OjiwWi7NLhJsxmUzy8DDLx7eyqoaGq0pIFVX2Dyi19pMSEpSelqbatcJKrU2gPCKMA4AKoEmDOtq2Y4/CatWSr5+fs8sBAABFYDKbVCUkRFVCuJsI5ZfFYtHxQ4dUo3qIAvwqO7scwKlYwAEAKoCI8FBVCQrUkQMHnF0KAAAAKqDYU6eUnpamlk0bOLsUwOkI4wCggmjVrKEuJCfrzMmTzi4FAAAAFUhaWqpOHj2ihnUj5FeZVVQBwjgAqCCCAv3VvFE9HTt4UInn451dDgAAACqA7Ows7f/jD/n7+qhpwzrOLgdwCYRxAFCBNG5QRxHhoTrw5x5dTEl2djkAAABwYzk52dr3xy7JYtFN7VvJbDY7uyTAJRDGAUAF0/a6JqoWHKjdv+9QfNw5Z5cDAAAAN5SRnq7dv21XVnqabm7fSt5eXs4uCXAZhHEAUMGYTCbd2K6l6tUK0/7du3TiyBHl5uY6uywAAAC4icT4eO369Td5mA3dcnN7Vk8FruLh7AIAAI5nGIZaNW8kfz9f/fHnQZ0/e1YR9eurSkiIs0sDAABAOZWemqZjhw4o4Xy8aoWFqm3LJvJgaCqQB2EcAFRg9WrXVFhoiP7486D279olPz8/hYSFKbhqVXl5ezu7PAAAALi43JwcJSUm6nzsGSWcO6/Kfr7qdENbhVQJcnZpgMsyLBaLxdlFAACcLyEpRYeOntDJM3HKycmRt7e3Kvn6yOzhIclwdnlwsjNn47Rz525F3xbl7FIAAIALyM3OVmZmptJTU2WRVCUoQPVq11StsOoyDD47AgVYwJ1xAABJUnCgv9q1aqY21zXR+YQkJSWl6GJaurKyssTPNvD6a5ZZHzMfrgEAgOThXUneVQIU6O+nalWC5O3NAg2AvQjjAAA2zCaTqlcNVvWqwc4uBS5k55/e2vb7bl3ftoWzSwEAAADKNVZTBQAAAAAAAByEMA4AAAAAAABwEMI4AAAAAAAAwEEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAAAAAByGMAwAAAAAAAByEMA4AAAAAAABwEMI4AAAAAAAAwEEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAAAAAByGMAwAAAAAAAByEMI+Gd+4AACAASURBVA4AAAAAAABwEMI4AAAAAAAAwEEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAAAAAByGMAwAAAAAAAByEMA4AAAAAAABwEMI4AAAAAAAAwEEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAAAAAByGMAwAAAAAAAByEMA4AAAAAAABwEMI4AAAAAAAAwEEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBAPZxcAAAAAAKh4srOzdfr0aR0/flyxsbHKzs52dkkOYTKZ1KFDB9WuXdvZpQBwEsI4AAAAAIDDJCQkaMaMGVq0aJF27typnJwcZ5fkcEFBQVqwYIG6dOni7FIAOAHDVAEAAAAADvHJJ5+oadOmev7557V9+/YKGcRJUmJionr37q1Vq1Y5uxQATkAYBwAAAAAoUzk5OXrmmWd0//336+zZs84uxyWkpKQoJiZGK1eudHYpAByMYaoAAAAAgDJjsVg0efJkTZkyRRaLxeaxqlWrKjIyUjVq1JCHh3t/Pd2zZ49+/vlnm30pKSnq06ePFi1apOjoaCdVBsDR3PvVDgAAAADgVBs2bNCLL75oE8RVq1ZN48aNU//+/RUYGOjE6hzn3XffzRPGSf+7Q27JkiW67bbbnFAZAEdjmCoAAAAAoEzk5OToueeeU2ZmpnVfnTp1tG7dOg0dOrTCBHGFSUlJ0V133aXVq1c7uxQADkAYBwAAAAAoE9u2bdOGDRus256enpo/f76aNWvmxKpcQ9OmTW2G5qakpLCoA1BBEMYBAAAAAMrEV199pdzcXOt2v379dP311zuxItfRo0cPvfvuu/L09LTuuzxklUAOcG+EcQAAAACAMrFt2zab7X79+skwDCdV43oGDx5MIAdUQIRxAAAAAIAycerUKZvt5s2bO6kS12QYhgYNGqR33303z5DVmJgY5pAD3BRhHAAAAACgTCQlJdlss2BDXoZhaPDgwXrnnXfynUOOQA5wP4RxAAAAAIAyYbFYnF1CufHwww/nO2SVRR0A90MYBwAAAACAC3jwwQevOYfcypUrnVgZgNJEGAcAAAAAgIsYNGiQZsyYkSeQ69OnD3fIAW6CMA4AAAAAABdxeQ65/BZ1YA45wD0QxgEAAAAA4EIuB3IzZsywCeQuXLhAIAe4AcI4AAAAAABc0EMPPZQnkOMOOaD8I4wDAAAAAMBFPfTQQ5o5c2a+q6yyqANQPhHGAQAAAABQxsxms812Tk6O3ecOGjQo31VW+/TpQyAHlEOEcQAAAAAAlLHQ0FCb7djYWLvPNQzDusrq1UNWY2Ji9MMPP5RanQDKnkfhhwAAAAAA3El2drZOnz6tkydPKj09vcz6ycjIsNnesGGDAgMDy6w/ZwgMDFRERISqVKkik+na97vUrl3bZnvz5s3KzMyUl5eXXf0YhqEHH3xQFotFw4YNU3Z2tqRLizrcddddWrx4sbp06VL8JwLAYQjjAAAAAKCCiIuL05tvvqn58+fr8OHDDu//zjvvdHifjmA2m9WuXTsNHjxY9913X74BW7NmzRQREaHjx49Lkg4ePKhvvvmmyNfkoYcekmEYGjp0qDWQuzyH3KJFixQdHV3yJwSgTDFMFQAAAAAqgGXLlql58+Z67bXXnBLEubOcnBxt2bJFDz30kG6++Wbt378/zzE+Pj7q0aOHddtiseipp57S6dOni9zfgw8+mO8ccjExMVq1alXxngQAhyGMAwAAAAA39/nnn+vuu+/WuXPnnF2K29u2bZtuvfVWHThwIM9jI0eOVOXKla3bhw4dUvfu3bV3794i9zN48OBrBnIs6gC4NsNisVicXQQAAHBtO/88oPnLvtfLo4Y5uxQAQBHt2bNHN954o5KTk637DMNQWFiYmjVrJh8fHydWV75ZLBYlJiZq586dNtdXkjp06KCNGzfahGWSNHHiRI0dO1ZXfhX39/fXAw88oJiYGDVq1Eje3t529z9nzhyNGjXKpj0/Pz8tWbKEOeQA17SAMA4AABSKMA4Ayq++fftq4cKF1m1fX19NmzZN/fv3J4grJbGxsRo3bpxmz55tDcUMw9CcOXM0cOBAm2NzcnI0YMAAffHFF/m2ZTKZ5OXlJcMw7O4/PT1dV3+19/f31/Lly9W5c+ciPhsAZWwBw1QBAAAAwE3FxcVp2bJl1m2TyaRPP/1UgwcPJogrRaGhoZo5c6YGDx5s3Xf5rrWrQzKz2ayPP/5Yw4cPzzdwy83NVXp6utLS0uz+L797bFJSUvTcc8+V/pMFUGKEcQAAAADgptauXausrCzrdseOHdW7d28nVuTexo8fLz8/P+v25s2blZKSkuc4Ly8vTZs2TUuWLFHLli3LrJ7z58+XWdsAis/D2QUAAAAAAMrG8ePHbbajoqKcVEnFEBYWpqZNm2rr1q2SpOzsbJ08eVIBAQF5jjUMQ7169VK3bt20fv16LV26VL///rvOnDmj9PT0YvWfk5OjM2fOlOg5ACh7hHEAAAAA4KauXlQgv1Dosl27dmn06NGyWCyaMGGC2rRpY3c/y5Yt09SpU1WvXj1NmjRJ1apVk3RptdBnn31W+/bty3co5bWYTCa1b99er732mqpWrSpJ2r9/v5555hldvHhRL730km688Ua721u5cqUmTpyo8PBwvf7666pZs6bN4wkJCRo1apT27t2r4cOHq0+fPna3fbXAwECb7aSkpAKP9/b2VnR0tKKjoyVdGqZ65d2MRXH8+HE1atSoWOcCcBzCOAAAAACoIApaFOCBBx7Qli1bJF0KdbZv325Xm/Hx8erfv78uXryotWvXqnLlypo+fbok6bHHHtOKFSuKVev27dsVGBioKVOmSJKGDBmiH374QZK0e/du/f7779agriBHjx5V3759rcGkYRiaN2+ezTETJ07U+++/L0naunWrbrrppjyBnaOYTCa7V1O9mpeXVylXA6AsMGccAAAAAEB//PGH9c/79u1TZmamXecdPnxYFy9ezLed06dPl6imy+dbLBb9+eef1v0nT57UuHHjCj0/NzdXI0eOtLlDcM+ePXmOu7Lm1NRUHT58uARVA0DBCOMAAAAAAHmGkdo7rLSg81588UUFBwcXq56IiAiNGDHimv3MmjVLv/76a4FtfP/991q0aFGB9ea3ryhDagGgqBimCgAAAAAoEz179tSRI0d07tw5m4Br4sSJmjNnjnV7woQJuueee6zbJpNJoaGh8vX1vWbb2dnZevzxx7VmzRp5enrmefzixYsaOXKkcnNzS+nZAEDpIIwDAAAAAJSZgICAPAtHXL3IQbVq1dSgQYMit71hwwbNmzdPAwcOzPPY22+/rV27dhW5TQAoawxTBQAAAACUW88995zOnTtns+/QoUOaNGmSkyoCgIIRxgEAAAAAyq1Tp07lWcxh5MiRSkpKck5BAFAIwjgAAAAAQLn2wQcfaMuWLZKkb775RkuXLnVyRQBwbYRxAAAAAIByxdPTU/Xq1bNuZ2Rk6KmnnlJKSopGjBhhs2hDkyZNnFEiAFwTCzgAAAAAAGzk5uZq9erV+a5SerX9+/c7oCJbHh4emjx5svr166ecnBxJ0saNG9W9e3ft3bvXepyvr68mTpyo3r17O7xGALgWwjgAAAAAgI2MjAzdcccdzi6jQB07dtSAAQP08ccfS5IsFos2btxoc8xjjz2mFi1aOKM8ALgmhqkCAAAAAModwzA0ceJEValSJd/H69Wrp2effdbBVQFA4QjjAAAAAADlUlhYmCZMmCDDMGz2m0wmvf766woMDHRSZQBwbQxTBQAAAADYMJvN6tmzp0ymwu/fSEhI0Jo1axxQVf4eeughSdK6deuUk5MjDw8P3X777cwTB8BlEcYBAAAAAGx4eXnp888/l7e3d6HHbt26VR06dHBAVfnz8PDQ0KFDNXToUKfVAABFQRgHAAAAAMAVsrKylJGRUeAxnp6edt05CABXI4wDAAAAAOAKvXv3lofHtb8uG4ah5s2ba86cOWrYsKEDKwPgDgjjAAAAAAC4QlJSUqHHrF+/Xs8995y++OILB1QEwJ1wTy0AAAAAQBEREdY/h4aGysvLy67zwsPDbe4iu7Ide/qy95xatWpZ/+zv72/3SqnVq1e3eS759WVP//nJzc0t1nkAKjbCOAAAAACApk2bpvr166tevXqaNm2aDMOw67zw8HC9/PLLqlGjhtq3b6+xY8cWes59992n22+/XSEhIRo0aJC6dOlS4PGGYWjy5Mlq3LixIiIiNHXqVLsWl5CkoKAgvfXWWwoLC1OrVq00fvz4PMc8++yzuuGGGxQUFKTAwMBC/wsKClKbNm304osv2lUDAFyJYaoAAAAA4KZ8fHxstlNTU695bLdu3bR3715JKnC+tPyMGjVKTz75pDw9Pe0K8YKDg7V8+XKlp6erUqVKdvXRuXNn7d69W7m5ufL09CxSfUOHDtXgwYPl4eGR76IL9evX16ZNm5ScnCyLxVJoe4ZhKCAgIN/nevU19vX1LVKtANwfYRwAAAAAuKnw8HCb7W3bthV4fFFDuCvZO6z1SvYGcZeZzWaZzeYi9yMVXp9hGHYPfb2W5ORka6B5uc2aNWuWqE0A7odhqgAAAADgpjp27GgTXn3zzTf65ZdfnFiRe3vnnXcUHx9v3W7ZsqWCg4OdWBEAV0QYBwAAAABuql69err55put21lZWYqJidGmTZvsGo4J+2RlZWnWrFl55qO755578h0WC6BiY5gqAAAAALixCRMmqGvXrsrMzJQkHT9+XLfccos6duyoNm3a5JlXDvazWCxKTEzU+vXrtWvXLpuAs06dOho2bJgTqwPgqgjjAAAAAMCNRUVF6fnnn9cLL7xgDYsyMzO1Zs0arVmzxsnVuafKlSvr008/lb+/v7NLAeCCuF8WAAAAANzc6NGj9fLLL5dogQbYp1q1alqyZIk6derk7FIAuCjCOAAAAABwc2azWWPGjNGmTZv0z3/+U97e3s4uye1UqVJFjz76qHbs2KHo6GhnlwPAhfGzCAAAAABUEO3bt9fy5ct15swZbdu2TSdPnlR6enqZ9Td+/HglJCRYt1955RVVrly5zPpzhsDAQNWpU0cdOnSQn5+fs8sBUA4QxgEAAABABWIYhsLCwnTHHXeUeV9vvvmmTRj38MMPq2rVqmXeLwC4MoapAgAAAAAAAA5CGAcAAAAALmjH7v2KjYt3dhkAgFLGMFUAAAAAcEFbd+zWoaMnFFIlWG1bNlGrZo0VHOjv7LIAACVEGAcAAAAArshikSSdi0/QDz9t0ep1Pyu8RnW1bdlU1zVpIL/Kvk4uEABQHIRxAAAAAODicnNzJUmnYuN06mycVqz+SbXCQhXZsqlaNmukSt5eTq4QAGAvwjgAAAAAKCcsFot06YY5nTgdqxNnYrV81Xo1qBuhls0aqUWT+vLy9HRukQCAAhHGAQAAu32x7HtnlwAAFUbc+YQCH78czOXIogNHjmn/oaP6eqWHWjRpoNbNm6h+3VoyGYaDqgUA2IvVVAEAQKEC/f10XdOGzi4DAAAAKPe4Mw4AABSqds0aql2zhrPLAIAKZe7nS5VyMfWajxuGIRmSSQbDVAGgHCGMAwAAAIBy4nIAJ4tYwAEAyinCOAAAAABwcSaTSZbcXIWHVlPblk11XZMG8qvs6+yyAADFQBgHAAAAAK7or8UXQqoEq23LJmrVrLGCA/2dXBQAoKQI4wAAAADABbVv1Vy339ZJodWqOLsUAEApIowDAAAAABfUqnkjZ5eAfJw4cULz5s1TRESE7r77bnmyYAaAIiKMAwAAAADADqmpqfrHP/6h3bt3S5KOHj2qMWPGOLkqAOWNydkFAAAAAABQHvzwww/WIE6S1q1b58RqAJRXhHEAAAAAANhh4cKFNtuRkZFOqgRAeUYYBwAAAABwa1lZWVq7dq127dpV7DaSk5P13XffWbcNw1Dfvn1tjtmxY4d++uknZWVlFbsfAO6PMA4AAAAA4LaSkpLUrVs33XrrrWrbtq0+/PDDYrWzdu1anT171rrdtGlTtWzZ0ro9a9YsRUZGKioqSr169VJycnKJawfgngjjAAAAAABuKTExUXfeeafWrFkj6dIdcp988kmx2rp6iGqvXr2sK6laLBZ99NFHysnJkcVi0bfffqu+ffsqJSWlZE8AgFsijAMAAAAAuJ3ExETdddddWrt2rc3+tm3bFrmtlJQUmyGqktSnTx/rnw3DyNPuypUrFRMTowsXLhS5PwDujTAOAAAAAOBWkpKS8g3ioqOjNX78+CK3t3btWsXFxVm3GzdurDZt2tgcM2nSJHXq1Mlm36pVq9S7d28COQA2COMAAAAAAG4jKSlJPXr0yBPEde3aVYsXL5a/v3+R2/zyyy9ttnv37i2z2WyzLyAgQF9//bWioqJs9l8O5BiyCuAywjgAAAAAgFu4HMT99NNPNvujo6O1aNEi+fn5FbnN1NRUrVixwrptMplshqheKTAwUEuXLtUtt9xis3/VqlXq06cPizoAkEQYBwAAAABwAwkJCerVq1e+QdzixYuLFcRJ0g8//KCEhATrdoMGDQqcdy4oKEhLlizJE8itXLlSffr04Q45AIRxAAAAAIDyLSEhQb1799a6dets9nft2lULFy4sdhAn5V1FNSYmRiZTwV+lLwdynTt3ttm/atUqFnUAQBgHAAAAACi/rrVYQ5cuXbRgwQIFBAQUu+20tDQtX77cum02m9W7d2+7zg0KCtJXX32V76IOBHJAxUYYBwAAAAAoly7PEZffHXFLliwpURAnSatXr1Z8fLx1u0GDBoqMjLT7/MDAQH399dd57pBbuXKl7rrrLoasAhUUYRwAAAAAoNy51mINXbt2LfZiDVdbsGCBzXZ+q6gWJjAwUMuWLcszh9zq1atZ1AGooAjjAAAAAADlyrUWa+jSpUupBXEpKSn67rvvrNsmk8nuIapXCwoK0uLFixUVFWWzf+XKlerbty93yAEVDGEcAAAAAKDcuNZiDdHR0aUWxEnS2rVrFRcXZ91u3Lix2rRpU+z2goODtXTp0jxzyK1cuZI55IAKhjAOAAAAAFAuJCYm5rtYQ3R0tBYuXFjiOeKudPUQ1TvvvFOenp4lajMoKEhff/21OnbsaLOfRR2AioUwDgAAAADg8q61WEN0dLQWL15cqkFccnKyzRBVwzDUp0+fUmk7MDBQy5cvz3dRh969ezNkFagACOMAAAAAAC7vySef1IYNG2z2XQ7iSmto6mXr1q2zGaLatGlTtWrVqtTav7yow9WB3KpVqzR69OhS6weAayKMAwAAAAC4NIvFov/+9782+zw9PTVt2rRSD+KkshmierWgoCC98cYbedrduHFjqfYDwPUQxgEAAAAAXFp+w0SzsrLUp08fHT9+vFT7unoVVUmlNkT1SgcPHtS9996rrKws6z7DMNS3b99S7wuAayGMAwAAAAC4vBdffFH33Xefzb7du3erW7duOnHiRKn1c/Uqqo0aNVLr1q1LrX1JOnz4sLp166b9+/fb7B8yZIieeeaZUu0LgOshjAMAAAAAuDxPT0+9//77euCBB2z27969W127dtWxY8dKpZ+rh6jGxMTIbDaXStvSpSDutttu04EDB2z2P/roo3r77bfl4eFRan0BcE2EcQAAAACAcsHT01MzZ87U4MGDbfbv2bNH3bp1K3Egl5qaqhUrVli3TSaTYmJiStTmlQ4dOqQuXbro8OHD1n2GYWjYsGGaOnVqqYZ+AFwXYRwAAAAAoNzw8vLSjBkz8twht2fPHv3jH/8o0Rxyq1evVnx8vHW7QYMGioyMLHZ7Vzp48KC6deumQ4cOWfcZhqEhQ4YQxAEVDGEcAAAAAKBc8fLy0qxZszRw4ECb/X/++WeJArmFCxfabMfExMhkKvnX5gMHDqh79+42c8QZhqGhQ4dq2rRpDE0FKhjCOAAAAABAuePp6anZs2fnCeSKe4dcWlqali9fbt02m83q3bt3ies8fPhwniBOkvWOOII4oOIhjAMAAAAAlEuXA7n8hqwWdVGH1atXKyEhwbrdsGHDEg9RPXz4sLp06ZJnsYZhw4axWANQgRHGAQAAAADKLU9PT82aNSvPog6Xh6wePXrUrnauXkW1d+/eJZrH7eDBg+rSpUueOeKGDRumadOmMUccUIERxgEAAAAAyjVPT0/NmDEj30DOnlVWU1JS9N1331m3TSZTiYaoFrRYA0EcAMI4AAAAAEC55+XlpXfffTffRR26detW4Bxya9euVVxcnHW7cePGat26dbHqOHjwoLp3724zNJUgDsCVCOMAAAAAAG6hsEUdrnWH3NVDVHv16iVPT88i93/o0CF169Ytz2INrJoK4EqEcQAAAAAAt+Hp6an33ntPgwYNstl/OZA7ceKEzf7k5GR9//331m3DMNS3b98i93vs2DFFR0fnu1gDQRyAKxHGAQAAAADcioeHh2bOnJnvHHJjxoyx2bd27VqdPXvWut20aVO1atWqyH0+9dRTLNYAwC6EcQAAAAAAt3N5UYcHH3zQZv+ZM2dstktjiKrFYrFp1zAM69BUgjgAVyOMAwAAAAC4JS8vL82YMUOPPvqofHx8FBoaqlGjRlkfT0lJsRmiKqlYQ1QNw9CYMWMUEhIiX19fjRgxQlOnTiWIA5AvBq0DAAAAANyWp6enpk+frtGjR8vPz08BAQHWx0pzFdXu3btr//79SktLU1hYWInrBuC+COMAAAAAAG4vPDw8z75FixbZbMfExJTobragoCAFBQUV+3wAFQPDVAEAAAAAFdKVK58ahqGYmBgnVgOgoiCMAwAAAABUSPfee688PC4NGOvWrZsiIyOdXBGAioBhqgAAAACACmnIkCHq0KGD4uLidOutt8owDGeXBKACIIwDAAAAAFRIhmGoQ4cOzi4DQAXDMFUAAAAAAADAQQjjAAAAAAAAAAchjAMAAAAAAAAchDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAAAAAByGMAwAAAACUCcMwnF0CALgcwjgAAAAAQJkIDAy02U5KSnJSJRVDcnKyzfbV1x+AayCMAwAAAACUifDwcJvt3bt3O6mSimHXrl0221dffwCugTAOAAAAAFAm2rVrZ7M9f/58WSwWJ1Xj3iwWi7788kubfVdffwCugTAOAAAAAFAmevbsKZPpf18758+fry1btjixIve1du1aff3119ZtwzDUs2dPJ1YE4FoI4wAAAAAAZaJdu3bq2LGjdTsrK0v9+vXTnj17nFiV+9m5c6cGDBigrKws677o6Gg1a9bMiVUBuBbCOAAAAABAmTCbzXr55Zfl5eVl3Xf06FFFRUVp5syZLOhQQgkJCZo+fbqioqJ06tQp634vLy+9+uqrNnclAnAdhoUB+wAAAACAMmKxWDRp0iSNGTMmz3xxVatWVWRkpGrUqCEPDw8nVVj+ZGVl6dSpU9q+fbvi4+NtHjOZTHrjjTf0xBNPOKk6AIVYQBgHAAAAAChTOTk5Gj16tKZMmcICDmXIbDZr9OjRGj9+PHfFAa5rAf93AgAAAADKlNls1uuvv64PP/xQ1atXd3Y5bik8PFzz5s3ThAkTCOIAF8edcQAAAAAAh0lISNCMGTO0aNEi7dy5Uzk5Oc4uqdwym81q3bq17r77bg0ZMkQBAQHOLglA4RimCgAAAABwvOzsbJ0+fVrHjx9XbGyssrOznV1SueHh4aEaNWooIiJCYWFhMpvNzi4JgP0I4wAAAAAAAAAHYc44AAAAAAAAwFEI4wAAAAAAAAAHIYwDAAAAAAAAHIQwDgAAAAAAAHAQwjgAAAAAAADAQQjjAAAAAAAoIx/N+0ytOtygxMREZ5eixUuXqVWHG3Tq9GlnlwJUaIRxAAAAAFDOff7lArXqcINiz551q75cTVk/94p8bYGKhDAOAAAAAAAAcBDCOAAAAAAAAMBBCOMAAAAAoBx7Y9rbmjh5yv+3d69RWpXnHYf/YFSIU5kIiiANoFXEZtlGGBEQVE6Kh6iJq/FAKlZd2HiKGDXmYAyJCURAwWNOmrjUVCVqqsbV2sSKdlVHNFZNizapShWtUxGVgAwV+sEycaSVwYG7aq7r07x7nvXse7/zaX5rv/tNkow/6JDs3jQsuzcNy/3NzW1r/uPFF/PVr38jYycelD2Gj8wBnzgsl175naxatardXkuXLs03ps/I/occmqaRo3LwJ4/IhRddnKWvvNLhc63P2meotbT8Z2bNmZv99p+Yj+81YoNnXbvPiy0tmT5zVkaPm5Bho/fN6Z8/K88tXrzOeRc++WROnfr5jBwzLkNHjsqnjjo6N877SYfn6+y1/9cbb+SiSy7NPhMOyJ6j9skpZ0xt93HU9e3/1rlmzJqd0eMmZNTY8Zl58ZysXr06ra2tb74P4/fPXvvsmy9/bVpWrlzZodmAWh/6/x4AAACAd+/M009L3z598q0LZ+auO25L7+22a/f7xc+/kGMmH5d+O+yQubNnZscBA/LY47/Kl87/Wv7tqacye8b0trXnnnd+Fj//fObM/HYGDhyYlpaW3HPvfbn1ttszedIx6z3Xhpg1d26GD9szP73pxvztz3++wbO27TNnbvYePjynnDQl//7sc/nKtGmZfOKUzPvxdemx9dZJ3gxxf378ifn4n+ye667+QRobG3P7z+7MNy+cmWcXL87U005d73xHHH5Yp6790iuuzJA99sgdN8/L04sW5YyzybZt8QAACrZJREFUzsmXz5+W711+aZL1/x3XmnP55dl7xPCcfNKU/PKRf8rUs8/JRxob8+xzi7Pn0CE55aQpefSxx/O5s8/Jtr165fSTP7tBcwKbnjvjAAAAPsDmXHZZWletyiWzZ+aPBw9O9+7ds2fT0Hzx7LPyd7+4O48+9njb2gUPPZSx++6TXQcNypZbbJF+O+yQY478dCZPOmajz/WH/frl0IMPztZb/0GOOPywDZ51rQEf/WgOOejANDQ0ZPCug/LtCy7Iiy0tue7Hf9W25pLLr8jmm2+eWTOmZ0D//mns0SOTjjoynzrs0Fxz3fVZ/PwLHZqvM/r165dDDpyYhoaGfGy33TL5M5PywIMP5tnnntugfXYcMCAHjB+fhq22yqiRIzJ2zH757lVXp2+f7TNx/wlpaGjIiOF7ZfyY/XLzT/+603MDG58YBwAA8AF2z733pmnIHmlsbGx3fFhTU5JkwcMPtx3bZZedM++WW3PDvHl5/oV1A9XGtO/oUZ2a9Xf7jG73eseBAzKgf/88sGBBkmTNmjVpfnBB9tqzKQ1bbdVu7fixY7J69eoseOihDs3XGaNHjmz3eueddkqSDY5xe48Y0e71wP79s2LFinWPDxyYl19+Ob9dvvxdTAtsSj6mCgAA8AG1YsWKLF++InffMz9/Omx42/E1a9ZkzZo1SdL2PLgkmTX9W7n40sty8SWX5YIZF2aHvn0zdr99c8Jxk9PYo8dGnW27bbft1Kxr9ey5zbrHttkmLy1ZkiR5/fXXs7K1Nb169lxn3dpjLy9dut75OmvbXu3Pv1XDm2HwtdeWdW6f/wmMvd5+/MMfTpIsW7as7WfgvUGMAwAA+IDq1q1bttxyy4wfMybfnHb+etdv37t3pn99Wt544408+a+/zvz77sv3f/ij/PO/LMxV37lio862+Yfa/zu6obOu9dJLS9YJZy8tWdIWD7t165Ytt9iiLc69fV2SfORtd+L9b/N1VpcuXTbpPhtrf2DT8zFVAACA97nu3bsnSVpbW9sd79KlS/YZtXf+8YEH8uqrr3V4v8022yyDdx2UKSccn4MO2D8PP/JI291p/9e5Ouvdzvr3997b7vVTTz+dZxYtyrCmoW37Ng0dmvubm7N8+Yp2a+/6xd3p2rVrhg4Z0qFzbaprr9ofeG8Q4wAAAN7n/minHZMk8+/7h6xatard76aedmq6du2akz93Rh7+5SP57fLleWnJktzf3JypZ38hC594IsmbHwE98bOn5O575ufFlpa0trbmscd/lfubmzN0yB5td16907k6q6OzvtUzixbl9jvvzLJly7LwiSdyzpe+kl49e+boIz/dtubUvzwpK19fmTO/cG6eWbQor7z6aq6/4cb85JZbM+moI9O3z/Ydmu+drn3hk09m96ZhmTFr9ru+/k353gLvHWIcAADA+9zHdtstJ51wfK665po07T06uzcNy/3NzUmSvn365IZrr8ngXQfli189P6PGjs+fTfpMfnTt9Tn4wInZZeedkySNPXrkxL84Lrfd8bMcfexxGTlmXM4977xMGDcuF82Y3qFzdVZHZ32rqaedmkcefSwTDz08x544Jb17987V372y3TPuBu86KNf84PvZbLOuOerY4zLmgANz08235Jwzp+bM00/r8Hyb8tor9gfeG7qsWXuvMQAAALxP/PDa6zJ7ztzMv+tv1vn2VYD3sJvcGQcAAAAARcQ4AAAAACiycb+rGQAAgN87v/7Nb/LJI49+xzXjxuyX2W959hzA7yvPjAMAAACAGp4ZBwAAAABVxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAUEeMAAAAAoIgYBwAAAABFxDgAAAAAKCLGAQAAAEARMQ4AAAAAiohxAAAAAFBEjAMAAACAImIcAAAAABQR4wAAAACgiBgHAAAAAEXEOAAAAAAoIsYBAAAAQBExDgAAAACKiHEAAAAAUESMAwAAAIAiYhwAAAAAFBHjAAAAAKCIGAcAAAAARcQ4AAAAACgixgEAAABAETEOAAAAAIqIcQAAAABQRIwDAAAAgCJiHAAAAAAU+W+hJ5is3e8gGAAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "consume_direct" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Consume RLP\n", + "\n", + "A Python re-write in EEST of the Hive Golang `ethereum/consensus` simulator. Copies a `genesis.json` and RLP-encoded blocks from blockchain fixtures to the client's Docker container for the client to load upon startup.\n", + "\n", + "- Test format: `blockchain_test` JSON fixture\n", + "- Where: Hive test environment\n", + "- Type: System test of fully instantiated client\n", + "- Aim: Tests the client's sync code path.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: node 'ead4e6b0c012492bad0a5b7ddfe98f85', graph '%3' size too small for label\n", + "Warning: Orthogonal edges do not currently handle edge labels. Try using xlabels.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRAAAAOmCAIAAAAcvS6BAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVxUZd/H8TMrMAPDLjuoyCaiuKbtWlk93VqmppZpq6XlUqmlZopmri2K5i6aaa6ZZvuulpWKuOIGCiqCrLIOsz5/zH1PhIdhQHFAP+8XfzDnXOc6v+ugc+Y7Z5OYzWYBAAAAAAD8m9TRBQAAAAAA0BgRmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAEQQmAEAAAAAEEFgBgAAAABABIEZAAAAAAARBGYAAAAAAETIHV0AgFua0WjKycvPyS0oKi4pL9fqDQaz2ezoogAAgMNIJBKFXK5SOXto3Px8vfx8vGUyDvLBYSR8NgXgEHqD4VRaxtnzWQaD0dVNo3Z3c3F2kckVEomjKwMAAI5jNgtGg75CW1F2paS0pFgul7UICYwMD1PIOdQHByAwA7jRzGZz5sXsYyfTTWazf3Cwr7+/Qql0dFEAAKDR0et0udnZ2RcuSCWS2KiWoUH+Er5Zx41FYAZwQ+n1hr9TjuXmF/oFBgY3by7j22IAAGCT0WC4cO5cTlaWr7dnl/hYhYIPD7hxCMwAbpyy8oq9+w/rDMaINrFqVzdHlwMAAJqMstKS00ePKeWybp3aqlUuji4HtwoCM4AbpKy84re9BxROzpFtYhVKJ0eXAwAAmhi9rvLU0WP6Su093TqSmXFjEJgB3Ah6veG3vQfMUllMu3ZSmczR5QAAgCbJZDSmHjokmIz3duvIudm4AQjMABqc2Wz+Y9+hK6XlsR3aVz22XFFe0efhHjUtFda85dI1665vJTs+3/Lx/PerTXR2cfni25+v74rq7bNPkjauX9t46gEAoLHR6yqPJR/UuKru6NyOe4ChofGtDIAGl3kxO7egqFpaFgTBReXy7W97rS8HPfZIdGzslBlz6r2i1SuW7vh8y+df/2C72fK1n4WENq/3Wq4jOwsGAABWCqVTRJvYY8kHMy9mhwUHOLoc3OR4CDiAhmUwGI6fSvcPCuIuX/YYNORZDi8DAGCb2tXNLyjw6Ml0vd7g6Fpwk+MIM4CGdTItw2gyB4WF1XXBc+lpq1csOXLokF5XGR4R9dxLw+PatbfMyr2cs3LposPJyRXa8tDQFo8PGHRPj/uXJH74xZZNgiA8dE83QRC8fXzXbd1h/+q0FRWvvvisWq3+YNFSy8OuDuz7++1xY0aMfqNXn76267HMXbtq+ZFDKQa9Pjo29tlhIyKiogVBmDN96vnzGYnLkqwtx49+Re2qnjJjjmjB1U7JTknev3bVitOnTihk8jbx7V8Y/or12PjyjxN//v7bpWvWfTR3ZvL+fWq1a/9Bgx/r90RdtzMAAE1RcFjz/JzLp9IzYqPCHV0LbmYcYQbQgIxG09nzWf7BwXV93nJ62ukxI150dnFZuDxp3edfdrqt64Q3Rp8+ecIyd8bUt4sKCt9fuGTjF9+MfGP83t93FRYWvDzytYFPP6NSu377295vf9tbp7QsCIKzi8uEKQlpaafXrFwmCEJRYeG8GQldut1hScu26zlz6uTo4S8IgjBv4ZJPt33Z/8mnv9r+ea1rrLXglOT9E98YHREVtXrD1sTlq3WVla+PeOlyTra1gVkwL1nw0eP9B63fuuOxfk8sSfww9diROo0aAIAmSiaX+wcHnzt/yWg0OboW3MwIzAAaUE5evsFg9PX3r+uCKxcvbNbMb9zEKQGBQW5umqeGPhfTus36T1YJgmA0GE4eP9aj50MBQcFKJ6dWkVFvTZ7m6ellf+cvPj3ooXu6WX/eeesNy/TwiKjnh43Y/NmnBw/sm/tegkQmfeOtSbXWIwjC8sWJ3j6+ExNmhIY1V7mo2nfsPGb8xLoO+WqrVywNa9Hy5ZGveXl5BwYHT5g6XafXbf7sU2uDosLC7j0fbNMuXqV27T9osH9A4A/ffHXt6wUAoEnw9ffXGww5efmOLgQ3M07JBtCAcnILXN00CqWyTksZ9PqUg8l9+g2QVXkAVVx8+53btgqCIJPLg0PCNny6xsnJqVOX2+pxabSNm3491n9A8v6/33lrrEGvn/nBAo27R6316HW6o4dS+g54UnZdH5el0+lOpR5/4smnrVM0GvfYNnGHDx60TpFKpR06dbG+DAkLy8m+dB1rAACgMVMola5umpzcgkA/X0fXgpsWgRlAAyq8UqJ2d6/rUiWlJUaDYcuGdVs2/OuxUtZHR0x5b9ayRQvmvjfNZDRGxrTu03fAPffdf10Klkgk9/V8eN9fe8NbRcZ36GRPPaVlpUaj0dPL285V2Pkwv9LSEpPJ5PHvI+eent7n0tOtLzXu7lVTukqlziYwAwBuJWqNW1FxsaOrwM2MwAygAVVUaL386nw+tlrtKpVKn3rm+aeGPifaIDgkbNqs9yu12qNHDn/z5baZ0ya7qFRdut1+zfUKBQX5SxZ+2CoyKu30qS+2bLLcQ8t2Pa5qV5lMVlggfj6Yi6u6oryi6pT8/DxXN9daK3F1dZNKpUVFhVUnFhUVuGn++QJCIvDwSQDALc3FxSU/J8fRVeBmxjXMABqQ3mCo6+2+BEFQKpVt4zvs3bPLZLJ1Gw8nZ+eOnbtMnDpDoVSeSD0mCIKzs7PBoK93tWaz+f33psnlipkfLHis/4CVSxedTTtTaz0KpbJNu/g9u341Go1Xzw0ICLx8OVtb8d/MnHXhQnbWRetcGwUrlcrImNb79v5hnVJSUnzs6JG4+Pai7QEAuAXJ5HKDgSdLoQERmAE0ILPZXL+joMNeHXXxQubs6VMyM87pKisvnM/Ytnnjso8XCIJwOSd7yoRxBw/sKy6+Ul5R/s2X2w16fbv2HQVBCAlrrqusPHQw2XbSrsnnmz47eGD/+LenuLlpnh82IjSsxayEd3SVlbbrEQThxeEj8/Ny35sy6XzmufKK8pTk/R/NnWmZde99DxiNxqTli8tKS86lp61atig8ItK6RtsFD3lu2Nn0M0sXflRYWHAp6+KshMkymbz/oMH1GBoAADcliSCx81onoH44JRtAY9QyPGLB0lWfJq0cN2pERXmZn39gl26393viSUEQmvn5P9K7z5YN606fOGE0GEJatJg07b127TsIgtDtjrse/L//TJ/8VmlJiY3nML/49KBqU9Zv21mYn5e0fMkTTw1pG99BEAS5QjFhSsIrLzyzdNH8ka+Pt1GPIAitIqM+/HjZmhXLRr/8oiAIMbGxz7443DLLx7fZhHemr1q26Osvt0fFtB4z7q0F8+ZY12u74A6dOr8796NPk1YMfaKPXCaPa9/+g4+X+tX9luMAAACoH76SAdCAtn3zS0RMa69m3LsSAABcfwWXc0+nHu/zcHdHF4KbFqdkAwAAAAAggsAMAAAAAIAIAjMAAAAAACIIzAAAAAAAiCAwAwAAAAAggsAMAAAAAIAIAjMAAAAAACIIzAAAAAAAiCAwAwAAAAAggsAMAAAAAIAIAjMAAAAAACIIzAAAAAAAiCAwAwAAAAAggsAMAAAAAIAIAjMAAAAAACIIzAAAAAAAiCAwAwAAAAAggsAMAAAAAIAIuaMLAIDamU2m8vIyvc5gMhocXQsAALgmUplcoVSoVCqJlKN3aOwIzAAaL6PBkJudU5ifW3Kl2Gw2O7ocAABw3UgkEjd3jae3r6+/n0xOKkEjxT9NAI2RyWjMOn/+0oULEsHs4+MWEBng6ubipJTLZHwVDQBA02Y0mip1htKSiqKisgvn0s+fOxsQHBwYEiKVyRxdGlAdgRlAo1OQl5eZdsagN4SFeQf4exKSAQC4mchkUpWLUuWibNbMPTzcdCm7MDPjQl5Odmh4Ky8fH0dXB/wLgRlA43L+7NmszEw/P48WzX0VSt6jAAC4mclk0uAgbz9f97Pnck8fOxYYGhrSooWjiwL+wYdRAI2FyWhKO5lamF8QGRno5+fu6HIAAMANolDKIyMD3N1Vp89c0FaUh0fFSDm/DI0D/xABNApmszntZGpJYVHbuBDSMgAAtyA/P/e2cSElhUVpJ1O52ScaCY4wA2gULpw7V5SXH9smRKNRVZu1bdtXiQuWrV6zKDQ02DoxNzd/wBPPvfDi008+2U8QhE/Xblq/fuvX32y8LsVUVGgf+b8BNc1t3jx0VVLidVmRlWWM1SY6Oztf44iu72Zp5BITl1/Kyn5v5mTRuWPfeEepVNQ0105LliT98P2vWz9fcy2dWDXEX6fqMDds+Pznn3cvWfK+lKe2AGg6NBpV69jgw0cyL547F8y52WgECMwAHK8gLy8rMzMyMtDDQ+3oWgRBEFxcnH/+Zbv1Zd/Hh7ZuHTX93Yn17nDlyk+/2Pb1lzvX225W7UsBWNiz9TIyLuzY/s3ixfNuWFWNX5/HHtm8aft33/388MP3O7oWAKgDjcYlopX/qVOZKjc37gEGh+NbZwAOZjIaM9PO+Pl5XMuZ2IOffuIWOY5aJ7fOZtm0cVt0VESriJaOLqQOGvqv4+Ts1LNn940btjXcKgCggfj5ufv5eWSmnTEZjY6uBbc6jjADcLCs8+cNen3z5qHX0on17NZff90zLWHuihXzW4Y3t859882EgvzC5Ss+EgThbHrGypWfHj58TKfTRbQKf/GlIW3bxtZpXTZ6uHw5b9myNSkHj1RUVISFhfR/4tHu3e9auHDF51u/FAShR/dHBUHw8fHatDmpTmu0nAmclJQ4b97C/fsPubqqBg58/PG+vQRBsD3eqif9WjpZvuKjD97/+ODBww8+2GPU6JeSkw+tTvrs1Ok0hUzetl2bl14eaj3EbWOl1rkrVs6fOycxJeWov5/va6+PiGvb+s8/9y9buiYr61JsbPSEia/7+HjZs91srMuerVdRof35l93Dhg2tOnHXb3+sWrUuOzsnPLzFa68Nr7aIjYFbSl2dtP7w4WN6vaF1bNQLLwyJjAq/+u/y/Xe/zJu3cMiQAYOffsKeAVbb+Na/juX6gmqdd+rSfs7sqba7rXWY991/z8aN2w4fPlbXf+QA4HAtWvju35eedf58cPPmjq4FtzSOMANwJKPBcOnChdAwH+V1eoLU7bffplarf/jhV+uUwsKi5AOHHnjgXkEQ0tLOvvLKeGcX56XLPti0ZXXn2zqMG/vOqZNp9vdvu4dpCXOKCq8sSJy5bdva114b8fvvfxcWFr366gtPDe6vVqt//mX7z79sr2tatjAL5oULV/Tv/9jmLase79tr4cIVx46fqHW8V3eyYMGyAQP6bN+xzpKWx4+bGhnVav36ZUuWfaDT6Ua9+mZOTm6tK7XOXbI4acjQARs3rWoTF/P22+8mJx/avWvvnLkJK1clXr6cv2D+Eju3m4112bP1Dh86VqmtjItrbZ1y6NDRhIQ5d99z+6ZNq8aNH7lq1bqysjLrXNsDP30qfcQr4wRB+GjBrE1bkwYM7LNjxzdXr3TDhs/nzk0c89rLlrRszwCrbvyqXfn6eltGZ/lJmD5BIpGEhQbX2q3tYQqC0LJlmFql2vdX8tX1A0Ajp1DIQ8K8L124YDQYHF0LbmkEZgCOlJudIxHMAf6etbZ8ZugrPbo/av25+oichVKpuOfeO3766TeTyWSZ8vNPu81m83333y0IwrKlq/38fCZMGBMQ4K9xcx0yZEBMTNTatXU4LdZGDwaDITX11P0P3BMYGKB0UkZEtnz77Tc8PT3s77zaGCdOmG6dVVR45f7774lr21qtVg8c+Li/v9933/xU63irKSq88sAD98a1bS2XywVBWLVyXfMWoa+++oKXl2dQUMDb74yt1Os3bvi81pVa5/Z8sHt0dKSbm/qFF54uLS3/8IPFY14b7uPjFRQU0K9/rz/+2GfNb7Vuedvrsu3kqTOCIDRvHmKdsjrps9ato5977imNu6Z589BXXn3+1Kl/sqvtgS9ZmuTj7f3O1PFhYcEqF5eOHePHjnu16urMZvOiRStWr/4sYdpb//d/D9g/wKobvyZn0zNmvfdh65ioYcOeqbVb28MUBEEqlTZvEZZ64rSdWxIAGpUAf0+JYM7NyXF0IbilEZgBOFJhfq6Pj5vMjmctrl6zqOpRuI2bVtXUsmfPe/PyCg4ePGx5+f0PP3fo1M7b20uvNxw8eLRr184ymczauF18m6NHjttZre0e5HJ5SEjQuk+3/PLL7tLSspq7sXeMVW/pLJVKO3aKt74Max6ck3PZ9niv7l8ikXTp3MHyu06nP3HidNeuna1z3TVucW1iUlKO2rNSy9z27dtafte4azRurpGRrRSK/6bB4OBAk8l0OSdPqG272bMu2woLitQqlTWIms3m46knb7utg7VBUFBgUFCAPQPX6/SHDx27++5uVUutymgyvfvu+99/9/O8udNuv72LZaI9A6y68Wtypbhk0qQZrq7qhOlvKRRy293aHuY/o3N3KygotL1eAGicZDKpj49bYV5u7U2BBsM1zAAcxmQylV4pDois/hH/GsXFtfbza/bDD7927BifkXHh9Kn0iZNeFwShtLTUYDBs3Lht48Z/3QZJIpHY2XOtPUx/d+Lij1fNmvmR0WiKjo7o27dX9x53XY8xCRp3t6qpSeWiys7+7zfuNY33am6uaoVSYR2LyWTy8vzXjdY8PT3S0zPsWallbtXnFbmonD29/jmc7uLiIghCWVm5YN+Wt70u28yCWajSVXFJqV6n9/j3sX2P/43U9sBLy8qMRqOXV42nPGgrKvb+sa9tu9iY1pHWifYMsOrGF2U0GqdNnV1QWLhg/ixLAba7tT1MK55jCqBJ8/BwzT2VZTaZJDwhDw5CYAbgMBXl5Saz2dXV5fp2K5FIHuh579YtO14bM/zH739xcXG+686ugiCo1WqpVDpk6MAhQ2p8xrJttfYQEhL03szJldrKw0dSd+78dvr0eS4ql65dO9V/MP8jEWpM9TWN92qyKicDu7q6SqXSwqIrVRsUFRVpNG72rLTWuVXZs+Xt7+1qXl6eZWVlBoPBcpBZ4+aqUCquVBta4RVXtVqobeCuarVMJrNxSFatVk+ZOn7CW9OmTZv7zjvjLCHfngHKbJ6JLQjCooUrDh48MmnS69YbjNnu1vYwrYqLS2zkfwBo5FxdnU1mc0VFuUrt6uhacIviqxoADqPX6QRBcHK+/t/c9ezZvaJCu2v33h9/+u3ue253cnYSBEGpVMTHx/3++5/Wy33rys4enJydOneOnzJlvEKpSE09JQiCi7OT3qCv30rtITpe25RKRXR0xF9/7rdOKS4pPXLkRLt2ba57ede45WvdelGRrQRBOJueaXkpkUhioiP/+vuAtcHFi1lZWdnWYmwMXKFUtG0Xu2vXXmPNDzJp2zZ29uyp+/cdnJ4w12AwXPsABUH4+qvvv/ji60GD+t53/z3Wiba7tT1MC7PZfO5cZnR0RP2qAgCHc3KSC4Kgq2zAfShgG4EZgMNYHq4oa4CTrIKDA2NiIpcvW5OTk1v1ftHDRzx74XzWjHc/yMi4oKvUnT9/ceuWLxcvrvFy6KvZ6CEnJ3fSxBkHDqRcKS4pr6jYufN7g94QHx8nCEJIWIiuUnfw4JF6Byrbahqvbc88+2R6esaiRSsKC4suXcqeMX2uXC4bMPDxhqjwWrZ8rVsvrl1rpZPyyJFj1ilDnxl07OiJ1Unri68UZ2Rc+HhRUkSVRzTbHvjLLz2bl58/beqczMwL5RUVycmH5s1bVG2NbeJi5sydun9/yrSEOZbMfC0DPJueMX/+0i63dXz+hcHVZtnu1vYwBUFITz9XVlbWuUt7e8oAgEbIcpcTk5EbZcNhOCUbgOM05NWVD/TsvmD+Uh8fL0tktQgPb7F4yftrVm8YM2ZiRXm5v79f126dnuj/mP3d2ujBz8+3V+8HN2764vSJMwaDMax5yJSEN9u3jxME4Y7buzz88P1Tp8wsKSmz8RzmZ4a+Um3Klq2r7TyfVnS8tnXqFD9r9pQ1qzcMGviCXCZvF99mwcLZ/v6+di5eJ9ey5WvdeioXl/t63P3TT7usj4lu3z5u8jtjk1at/2zD5y1bhL322ohly9ZY29seeERky4ULZ69auf6VEeMFQYiJjXzx+SFXVxUbGzNnXsKb46YmTJ3zzpTx1zLAi1nZer3h778O3H9fn3+K7NJ+zuyptru1PUxBEH76cVdwcCAPYQbQ5HE7BjiOxMz9QAA0mG3f/BIR09qrmXgGK7icezr1+F13xdzgqnDzyci48MLzoz7+eF5EZMvaW98adJW6J58c9tzzT1mffQUATdHu3am1fpbo83D3G1wVbh2ckg0AaPLCwoJ7P/rwqqRPHV1II7Lti6+8vDweeug+RxcCAEATxinZAICbwciRLzq6hMZlwIA+Awb0qb0dAACoGUeYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQIXd0AQBwrcrKtMUl2vKySoPBYDI5uhrgOpHJpEqlXK128nBXKZTsr4E6YL/gWDKZRCaTqdROGjdntdrZ0eUA14QdMICmSq83XLpUlJNdpK3Uy2QytYtKLpPLJJw4g5uEXm8oLS67eCHfLAgaNxf/AE9fXzeJROLouoDGi/1CI6HXmyqM+pycK0aj0dlJ4efvERDgoVCQO9Ak8Q8XQNNjMpsvXSzMzMyTSKT+3r4+nt5uKrWjiwIahMlkLCopzinIO30q6/wFZatwf3d3laOLAhod9guNU0l5WV5hftbF3IsXCkJDfQKCPKV864emhsAMoIkpK9OeSLaVr10AACAASURBVM3SVupD/AJD/AKkUpmjKwIakFQq83L39HL3rNBq0y6eO3w4w9fHPSLKXybloBnwX+wXGi03ldpNpQ4LCDqfc+lcRlZ2dlF0TCAnaaNpYXcLoCkpKCg5lJKhlDt3at0uLCCYT0W4dbg4O7cJj27TKrqoqPxQSkZlpcHRFQGNAvuFxk8qlYUFBHdq3U4pdzqUklFQUOLoioA6IDADaDIuXSo8fvyir5dPm1bRzkonR5cDOICXxqN9dBvBJElJOVtWXunocgAHY7/QhDgrndq0ivH18jl+/OKlS4WOLgewF4EZQNNQUFCSlpYT5h8UGdqSK6BwK3NWOsVHxrooXY4dPa/Xc5wZty72C02OVCKJDG0Z5h+UlpbDcWY0FQRmAE1AWXnliROX/Lx8QwOCr723xasWPz64z7X34yj5Bfk9enU/cvyIowup3doNnzzc72FHV3ETksnkrcOjpBLpsaPnTUaemYNbke39wrad27r/595qP43q7ahB3x5TT6ZOm5XQb2jfno89MOCZJ8a+Pfbn334yGAzV1uuot+jQgGB/n2YnUrPKyrQ3fu1AXRGYATR2JrP5xPGLbip1q9AW9Vh85dqV/xnwyHWvyoF+37vH3d09NjrW0YVUd/Ntahuu12Dr3Y9CJo8Nj67Q6jMz86+9DKBpsXO/sGbJml92/mr9+WbLNzeswmpu5Nvjtp3bXh33ioeHx/vvfvDV5q8WzE2Mj2s3+6PZf+77s4HWWI/RhQc3d1O7nkjNMpnNDVQVcL0QmAE0dlkXC7WV+siwcM64s9jz1547brtD2hRukvz0wCEO/IR601M5uTQPCLmYVVBRoXN0LcANdRPsFxro7fHYiWMLlyUOHvD0qJdHh4WEKRRKP1+/wQOe/mjWfLWq+hPpHPgWLZVIopq30lbqL13kYmY0djxWCkCjptcbzmfmhfgF2r6bS/q5syvXLj987LCuUhcRHjHs2WFtY9sJgrBwWeLWHVsFQej+n3sFQfDx9tm8ZotlkSvFV+Ylzt1/8ICrWj2w76C+vfvW2psgCItXLf7h5+9XJK58f+G8g4cPPtjjwdHDx9hoP2PejMwLGUs/WmbtfMxbY1xd1e++PcPa28qFq+bMn51y5JC/r9/rr74eF9v2z31/Lk1aknUpKzYmduIbk3y8fayLl5WXpRxOmTZpuu1StdqKYaNfUqtUiXMXyuVyQRD2Je97c8r4US+PfuyRx2yP0TJ39bpVh48e0hsMraNbvzh0WGSrSNvDEd3Uazd8sn7LZ9YPZMmHDqxet/rkmVMKubxtm3YvP/dSaHBY1Q2b9PHqmv4o1VzOu7w0aWnK4YMV2oqw4LD+jz/R464e1n6Wz18xZ8HsQ0cPe2jc+z7ar/9j/e3549oYeDU1/buy0blowaL91DQ0UQE+fpfyctLTL8fGXoerFYAmwc79Qk1u7rfHDVs/U6lUTz3xVLXpMVExVzeuVkOt+z7RGmzsZ21zUihD/AIzMy8189MoFEQSNF5N4AAFgFtZVlahRCIN8Quw0SbtbNorY0c4O7ss+2jZ5rVbO3fsMnbS2FNnTgmC8OqwkYMHPK1Wqy3n41n34mbBvHDZwicee2LLmi19e/dduCzx2IljtfZmXXbBkvkDHx+447MvRw8fU2t728yCefHKxUMHDd20enOb2DaTpk9MPnRg9x+75k6ft2pR0uW83PlLPqra/q99f8oV8o7xHWyX6uzs8s74yWln01Z9ukoQhKKiopkfvNe1czfLx0HbNZ9OOz3ijeGCIMyfk7j5ky0D+w7c8fX2WgdS06a2Sj50YNzkcZGtIj9b+dnSj5bpdLqRY1/Nyc2puilq+qNcLWHW1KKiosQ5iV+s++L1V9/4/c/fC4sKrf0sWDp/8BNPb1mz5emBTy9NWvLVdzsts67XwEUHa7tz0YJF+7ExtKtJJJIWQWEFBSXcMRu3Dnv2Czbc3G+PBw8djGsdp1Qo67pZ7Nn3idZQ6+hsCPELkEikly4V1bVa4EYiMANo1C7nXPH39rX9XM2lSUv8fJtNfH1igH+gxtVt6KChMVGtP9mwxsYiRUVF93e/Py62rVqtHth3UIBfwLc/fmNnb0VFRQ907xkX29ZyaKIea69WyYP39YyOjHFzdX1hyIulZWUfLPpgzCuv+Xj7BAUG9X+s3x9//VFWVmZtv2fvni4duigUylpX3So84sVnhm3Y+tmBlP3vfThDKpO+OeZNe8a4eNViH2+fKW9NDQsJU7moOsZ3GjtqnJ3DsWHl2pUtwpq/Omykl6dXUGDQ5DffqdTrN2z5rOqmqOmPUo3BYEg9mXp/9/sDA4KUSqeI8IjJ4yZ7enha++nZ48G42DhXV9dHHvzPQ/c9lLQ+yWg0NvTAbXRuu2D7hybKS+Ph7OR0OYdPnLhV2LNfsBj68tCqN/2akPCWZfrN+vZYVlZWVl7m6+Nbjxrs2ffZ+RZtP6lU5u/tm5PN2xcaNQIzgMarrEyrrdT7eHrbaKM36A8ePti1czeZ7J8PT/Ft448es3UTaalU2im+k/VlaEhozuUcO3uTSCRdOna+lrVXq6R92w6W39017hpXt6jwKIVcYZkSHBhsMplyci9bV/d38t93drvTzlX3e7Rflw5dJiRM3J+8f+LrE9017rUuqNfrDh89dPftd1ede+10et2JUye6dr7dOsXdTRPXuk3KkZSqm0L0j3I1uVweEhS6btO6n3f/XFpaWm2uRCLp0qmL9eVtnbvm5+dn52Q36MBtd267YPuHVhMfD+/8/LLa2wFNnz37BatqN/2aOWWWddbN+vYoCIJQ9+u67dmh1K0Gu/l4emkr9dwuG40ZFwwAaLyKiytkMpmbSm2jTWlpqcFg2Pj5ho2fb6g6XWLzE4NGo6n6sUDtor50+ZKdvbmpXRX/O9utHms3//uOoBqNpurtu1xcXDw9/zmc6OKsEgShrOy/wSn5UHKlrrJrp252rloikfTs0fOvA3+1atmqQ7uO9tRcWlZmNBq9PL1qqt/2cGpSWlpqMpmqHSn19PBKP5dufVnTH+X4ieOvjB1hnf7Lzl8FQXh38vSPV3w86/2ZRpMxOjK6X+9+3e/+74W+arXa+o2DIAge7h6CIOQV5KpUqvoNXLSAqwdo+89ho+Bq7G/5zxhd3S/kZOkNRoX8en6OBxohe/YL9rg53h6rUavVapU693/fsdrPnh2KnTXUlZvKVSaTFZdo1Wrna+8NaAgEZgCNV3m5Tu3sYruNWq2WSqVDBg0dOmio/T1LBPFAa09vMrnc/vYqtaqi4l9fnOcX5ru5udZaiag9e3e3axPv6upqZ6kFhQWJyxMjwiPOpJ/ZumOr5QYtthd0VatlMllBYUH9hlMTV1dXqVRadOVf590VXSnUuGmsL2vaFK2jW1+dUUOCQmdOmVVZqT187MjO776cNmeai4uqa+eugiCUlZXpDXprZras1MfLt94DFy2gmlr/HDYKrnfLf9auchEEQVteqdBUvwsucJOxZ79gj5vj7fFq7du1TzmSotPr6nQZsz07lDrtrepE7exSwV0Y0IhxSjaAxstgMFQ9VChKqVDGx7X//c89JpNJtIGzk5Neb7BzjbX2Vtf2gX4BObk5Wm2F5eXFrIuXsrPsLKYas9m89++9lvOx7Vm12Wye9eFMhUwxb8YH/R7ttzRpadrZ9FoXVCiUbdu02/XHLstFv3Uajo1NrVQooyOj/9y31zqluLTkyPGj7drE2zX4Gjg5OXfu0HnKm1MVCmXqqVTLRLPZvO/APmubv/b/6e3l7e/nfy0Dv1q1wdr5L+fqgmvaaKJDq4lSLhcEQWewq3KgSbNnv1Crm/jtcWDfQeXl5es3r682/cSp1IOHkmtaqq77vmrqtJ+9mlyuMPD2hUaMwAyg8TKZBKmk9repES+MuJB1YcbcdzPOZ+h0lecvZm7ZvmXxyo8tc0NDwnS6yoOHD9r5OcB2b3Vt3+Oe+0wm4/I1y0tLS9PPnV22Zmmrlq3sKeNqx08ezy/Iv6PrHXauevO2TQdSDkwaN0nj6vbiM8PCQsPenTNNp6usdcHhzw3Py89LmDU180JGeUV58qED8xLn2jMc25v62aeeSz+Xvmj5wsKiwkvZWe/OmSaXywb2G1SPTZGTmzNx2sQDKfuvlBSXV5Tv/HanwaCPj/vvh0t3d4/vfv72yPEjZWVlX33/1Xc/fTd00DOWMwnrPfCrXT1YG53bKLhaP7aHVhOJRCoIgtlo1/mfQJNm537Btpv47TE2OvaVF19du+GThcsSMy9k6A36y3mX1236dPSbo8vKy20sWNd9X1V13c9WI5NIjbx9oRHjlGwATV54i/AlHy5Zs27N6LdGV5SX+/sFdO3S9YnHBljm3nHbHf/3wP9NeW9ySWmpPc+HtN1bXdv7evtOHvfOsjVLv/x2Z3Rk9LhRY99P/KB+w9yzd09Uqyhf739uf2pj1WfSTq/4ZMWT/Z+yHKNQyBXvjJ/84qhhi1Ysem3E67ZrjgiPWDRv0cq1K0e8MUIQhNbRrV8cMsye4dje1J3ad5qdMGfN+tUDnx0gl8vbxbVLnLvQv5lfPTaFn69f74d7b9y28dSpkwajMSw0bOqEhPZt21vmSiWSV4eNnDt/zqGjh93dNC8OebHXw71q3WK2B361qwdro3MbBV/dj42hAaiToS9XP8F469rPCwryb+K3R0EQHu/1eHRE9OYvNr0+8fUrxVc83T1DQ8LGjx5v+8qOuu77qqrrfhZoWiR23pAAAOph2ze/RMS09mom/oiLgsu5p1OP33VXTE2Lp6ZelBgUMS0jGqzApmTIS0N69nhg8ICnHV1Io7Z41eIffv7+80+3ObqQG21X8p8x0UE+vpramwJNGfuFm09q+mmzXB8TE1RTg927U2v9LNHn4e4NViBudRxhBoCm4ZOlnzi6BAAAgFsL1zADAAAAACCCwAwAuHkMf274LXg+NgAAaCAEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAAAAABEEZgAAAAAARBCYAQAAAAAQQWAGAAAAAEAEgRkAAOD62/d3co/uj6akHG24HjZu/KJH90eLrxTX1ODrr77v0f3RnJzL9a6hTqsDgJuP3NEFAACAm82u3/6YOnW25XepVOqmcYttHTVkyMDIqPBqbSZPHtu9x1219qBxd4uLjRnyzMDw8BY3oH4AACw4wgwAABrE5Mljf/5l+7ffbZ45c3JWVvboMRMuXMiqRw/ffLt5+vQJZ89ljhr51sWLdesBAIBrQWAGAAANSC6XR0dHDB/xfKW28uuvfqhHDwqFPDY25pVXXqio0H61sz49AABQP5ySDQAAGlxISIAgCLl5+fXuITQsSBCEy7l5NTXIzc1fnbT+77+Tr1wp9vb2eqDnvU8/PUCh+O9HnY0bv1i6JGnL1tVbNu/45tuftFpt+/i4114f4evrbe3h8uW8Tz7ZuH9fcmHRlcAAv4cefuDxx/9j7eHMmbNJq9YfOXKsUqcLDg58tPfDvR99uGoBR4+kLl2y+vSZNA8P9379Hg0LC65Thfb0IEqnNyQmLv/5x98qdfqOHdu98urz/v5+NTWudRS2N0JV2dm5kyZO1+l0M2e9ExwcWHyleNWqdX/9daCwsMjX17fb7Z2eGvyEu8bNniEAQKNFYAYAAA3ufOZFQRD8mvleYw/NfH1E52Zn574yYmxggP+7MyaFhQWnHj81a9ZHGRnnExLeqtps1cp1bdu1+fTTxefPZ015Z+bsWfPnvT/tfz3kDB8+ztfX++23x7Zs1TwvN/+br388dOhop07xgiCcOXN25Mg349rELPp4rsZd8+P3vy5YsOzSpZyXXn7GsvjJk2feGDu5a5eOSasXuji7bPviqy+//LZOFdbaQ02WLEnq0rnDc889mXUxZ/ac+aNHTVi+coHGzfXqlrWOwvZGqCo19dTbk2aEhAQlTJ9gScUz3vswJ/vy9OkTQ8NC8vPz9/6x79tvfhow4DF7hgAAjRanZAMAgAZkMBhOnDi1+ONVbm7qR/7zQP16OH785Mcfr3J2dv6/R8R7WLHiE71eP+O9SVFRrZydndt3aDtq9Eu7d+09fvxk1WYBQf49e96rVqujoyMGDOiTnHzo0qVsy6wlS1brKivnzJ7aJi5G5eISGhr80svPWIPiypVrFXL5lIQ3Q0KC3DVuffv1euSRBzZv3p6dnWtpkJS03lWtnjR5bECAv4en+7PPPlmp09epwlp7qElIcGDPB7ur1eqIyJaTJ4/Lyyv4fMsO0Za1jsL2RrD69dc9r42Z2LlL+7nzplmPIR9KOXLXnV1bRbRUKhUBAf6P9+1FWgZwEyAwAwCABjF9+rwe3R/t+UDfEcPHFZeUzk+cHRDgX48eHuzZb+LEd0NCghYsmBkcHHj2bEaP7o9af/bu3ScIwt4//o6Pb6Nx11iX7dChnSAIhw7965lM3W7rZP29RYswQRCysv4bmP/+K7ljx3Yenu5Xl2E2mw8mH+7QsZ1apbJOvPue200m06GUI5YGKQcPd+4cr1QqrA3uvLNr1U5sV2hPDzW5/fbbrL+HhQWHhAQlHzxcj1HY3ghW69ZveXf6+0891f+tt8ZUPVU7PLzFzp3fbd/+dU5Orj1lA0CTwCnZAACgQVgeGaWr1B1ITpn53kcfL1wxc9Y7Mpmsrj3U2kyr1VZUaH///e/77+tjmWI2m81msyAIxVdKqrb09va0/q5SqwRBKCstt/Sg1Wp9fLwFMZWVlTqd3tvLs+pELy9PQRCuXCkWBEGrrdTp9J6eHlUbVH1Za4W19mCDp1f1pQoLi+o1Clsbweq7737x9PTo+WCPatOnTH1z+fJPli/9ZP5HS/39/e66u+uTT/XnGmYATR2BGQAANCClk7Jbty5jxrz87rvvb9myY8CAPtfYYYsWYT//sr3qFLPZrHRS3nP37RMmvmZ7WYlEIjrdycnJydkpr4Z7kjk5OSmVioJ/p1BLKHV31wiC4OzspFQqCsUa/NODzQpr7cGGwoIiHx+vqktpxGJqraOwvRGs5s5JmD597qiRb86dNy009J/bkjVr5jNp0utGozE9LePPP/etW7/l1Mm0Dz+aYc8QAKDRIjDDAU6cOPH555+fOHFCq9U6upbrw9nZuX379oMHD/b1rf/9bADgJtbjvru3bv3y07WbH/6/B0TvR3UtJBJJt26d9+9PKSkpc3NT16+Hrl077fsruajwytUnJEskkvj2bZMPpFRUaF1cnC0Td+3aK5VK28XHWRq0i4/bv/+QXqdX/O+c6t9//8v+CmvtwYY/9v4dEdnS8ntm5oULF7IGD+4vuopaR2FjI1j5+fkkJs4aN37q6NET58yeal21hUwmi4hsGRHZMicn99tvfzKbzTV9SdFA5Aqpi4rPt41LRbnBoDc5ugqgnnhDwQ1lMBhmzJgxZ86c8vJyR9dyna1du/b999/fvHlzt27dHF0LADRGzz3/1LixUzas3zrspaHXvfOXX37m1VfenPjWtGEvDQ2PaFGprUxPP/fl9m8HP/1Eq4iWtS8vCC+9NDQl5eibb00d+eqw8FYt8vLyv/7qh46d4i23vHr+ucEjR46fOnX2yJEvatw1P/3w61c7v+/br5e//3+/J3322UGjR02Y8d4Hw4c/6+zk9MX2b5T/fhRTrRXW2kNNLlzI+uGHX2+/vfOlrJw5cxZ4eXn06dtLtGWto7C9EazcPdw//GjGxAnTX39t0oyZb7dtG3uluGR6wtw+jz8SFRXhrnE7k3Y2OTmlXXybG5yWBUGQyiRK5zqc9o8boLLSKNh1AzugMSIw44aaNWtWQkKC5aqtm8/Fixf/85//7Nix44477nB0LQDQ6HTsGN++fdzn23b27dvL+3+nEE+fPm/69HlVm7351qgHH7yvrp37+TVbuuyDT9dueu+9D/PzC9w9NC1bNu/V66GW4c3t7MHf32/JkvfXrP4sIWFOcUlJUGDAQw/d165dG8vciMiWiYlzkpLWDX95rE5XGRQU+MqrLzxa5QnG0dGRc+YmLFu6ZsiQER7umsf79u7V66E9e/45RFxrhbX2UJOXXnrm0083LUpcrtMb2rdvOzXhzZquHK51FLY3QlVqlWrunISpU2ePHz916tQ3u3bt9NTg/tu3fTX/oyXFJaW+Pt733HPnU2IHugGgaZHcrNEFjVBaWlqbNm1umtOwa+Ll5bV9+/Y777zT0YU0Ctu++SUiprVXDU9eLbicezr1+F13xdS0eGrqRYlBEdMyosEKBG4Su5L/jIkO8vHV1N4UaMpq3S8onWVu7sobWRJqVXJFp9Maa5qbmn7aLNfHxATV1GD37tRaP0v0ebj7dSgUEMMRZtw4n3zySdW07OTkpKryZIumq7i42Gj8ZzdQUFDQq1evL7/8kswMAAAANGkEZtw4v/32m/V3Jyen5OTksLAwB9ZzvbRu3TozM7PqlKKiot69e2/fvv2uu2p/GgrQJJhMZrMgmM1mQbBckWiWSCRSyY2/PhEAYC+dTqdUcrwduCYEZtwgZrM5KyvL+jIqKqp169YOrOc6Ki0tvXpiYWFh7969d+7cyfXMaCqMJnO5Tl9Yrs8v1eaVVuaWVuSXVhaV64u1urJKg1Zv0BtNRpPZZBYEQZBKBIVcppRJVEqFxkWhcVZ4uzr7ujr7ujn7ujp5ujq7OckVMqmjxwQA182x/PyEv/8uNxje7NDhrqAazx9uVM5mnI+KCHd0FUDTRmDGjVM1WN4Kj18qKiqynJtNZkajpdUbLhVVnM4tOXqx4ET2lXN5pXml2lKtXmswGYxmo9lkMtd+pwvLYWapVCKXSpzkUpWTwkulDPFSR/m5tw3xivZ3D3JXqZ3kHIwG0HSZzeZRu3all5QIgjDit99+7dPH28XF0UXVTvRt90xa+q+/7T556nRxcYlcLnNzcwsOCQtvFeWucfXy0DTz9fL00PCODVgRmHHj3Ap3mPP09Kx6SXNhYWGvXr127NjB9cxoVCr0hrTLJXvO5Ow5czk1qyi3VKvVG031/R9qydQmo9lgFLR645UK/aWi8mNZRd8du+gkl3urla2aaW4Pb3Z3pH+Un7ubM8kZQNNjNJuz/vdEzFKD4VxxcdMIzP9+v01LPzt1+nu7du2RSiVSqcxsNikUSk9v3/LSb2Vyp+i4Ti5qN8FsbhEW0q/3fTGRdj2PDbjpEZiB66lr1669e/ceOXKkwWCwTLFmZq5nhsOZzeaiCv0fZy5vO3juz7O5uSVao6kBv8YymwWt3nCxyHCxqHz36Zxlu0+2D/Z6tH1oj+jAZm4upGYATYhcKu0ZHLwjI0MQhDgvr7Y+Po6uyC5VvwndveePZ54fVliQbzabzSajyWRWqVSBQUFZmelqtatRr/9z17dhLaNbRsWlnc2csyDptk7t+vW+38fLw4H1A40BgRm4zl566SWz2Tx69Gi9Xm+ZUlRU9Oijj3KcGY6l1Rt2n768fPfJP9Nzy3WGG7x2k9mcX1r544lLu07ntAnyfOaOVv+JC9W4KG5wGQBQbx/cfXfm118fLShY+8ADCpnM0eXYxUOjOXvuvMGgP3Hy5KTJU68UFQqCWS6Typ2UJrPg7eMjCIKPbzOJRFJZWalWuZw/e7KoIDembRdnldvve/cfPnaqzyM97rvnNinfceIWRmAGrjOJRPLyyy8LgjBq1Khqx5m5BxgcJftKxQc/HN18IKNEq3NsJTqjKTkz/+jFwh0p5yc/Eh8T6M7nMABNgkwicZLJpBKJs7xpfH4uKyvf+/eBlatWZ2Sc1VXqJFJJWItWlZXakqJCo8noJJM7OTlptVonJ2eJRHByctJWVGjc3TUazfFDe8Natm4WGFpcXPzp5i9TT50dOrCXu8bV0QMCHINbmALXnyUzJyYmyqp8A225B9iePXscWBhuTWmXi59dvTvp99MOT8tWOqPpx9SsgSt+/fLweUNDnhYOANddU/mST61WubqqystKystK9fpKo8FQkJfj5d3M18/PxdlFpVKVl5crFAqJRDCbTCajQemkrNRW5OflKJXOhXkXs8+fqijOy8/O/PHH70eNfbu0rMxgMBiNxlvhljRAVU3jGzKgybFkZrPZPHLkyKr3AOvduzf3zcaNdL6wbGjS7hPZVxxdiIhLReWjPvvrSrn+yS4t5bKm8hEUAJoGs9lsNpnd3TWVlXqjyWgylvv6+lzOvhgYGHClqFCpVJSXlysVCnd394qKigqt1mg0ymUynV5fWlygLZcfP5JiNhmVTk5Go0np5PRCacEdd97polK5ODs3bx52R9fOjh4fcINwhBloQMOHD09MTJRXOXfLcm42x5lxYxRX6F/f9HfjTMsWZZX6yduTv0jJqPc9ugHghrHzfepEQcGYXbvG7Np1qrCwYQuyyWw26/W60tIymVxm0OsrKioqtdqC/LyC/HyFXC6XyxUKuUbj1qPHvX5+/jK5k0KhlEilcrncbDYbDXq9wWg0SwSJTCKRyOXy8rJSbXmJtrwsNLS5h7uHyWRy4NCAG4kjzEDDslzPXPUeYJbjzNu3b+e+2WhQJrN50/6zu05li86VSCReKmV4MzeNszK3RJuWV1Kq1d/gCi3KKvUzvz4c6efeNtjTIQUAgL3s+GpPZzQO/fHHy1qtIAj7Ll/+9fHHFdL/Z+++46OotgeA3ztl+256r6SRAAESSuggUXvW5gAAIABJREFUIChdxAJYUBEVQcGHPntDEBXRn6ggKuoTsYCF3pHeIYFAegKk181m++6U+/tjIYQQQgKbfr7v83RndubeuxGyc2buPadlHlDxvJCenlFQUEBhzPGCVK6w2u1SqdRms1IYi6KAMYURlkqkcoWcpimeYEKIKIo0TTM0HRUVFRAQmHwuyWQyIiKkp6dpdVURUV0vZOaZjcaePbrNe/4pKBMIOgIImAFoWjfLATZhwgTIAQaalNZkW3M8u87CUUop83CfTo8PiApyUzA0tvFienHViv1pO84XcEILPDTIrTR+vS9t2YN9FBL4VgIAtGq3DBBPlZQ4omWEUKHZnFha2tfXt6lHVSeJhC0sLCgoLFKrFAqFgqYolqEZhkEEYZqyWK2iSHRVVZu3bLXZOYvFghFBCGGEeZ5TKJQ0K7HZbRaLmWUZuUzm6ubh4enj5x+Qcu6kvqrSZjGc6t+7T6+eLfLRAGhOcGkCQJOrjpnnzJlTPYVJp9NNmDBh48aNEDODJnKhUJdRrL9xv0LCLBjV7enBnWXslaR0chYldPKK9HH5QJG09kQO3+wxMyFob1rhmdyKQRE+zdw1AAA0nOMG5M1i5nKLZVli4h/Z2TV3Tt+1a2pk5PyePd1ksqYeXi2EkF17/lUoFAwjYViGpmmaoliJRCKRSqRSjuOlUplUJmMZVsUwvgzDMBQiROA5na6ySm90cXG7mJ0mioJUKiUIKVXqoOAQuZQaP27MhQvn8/MLEs+eh4AZdAQQMAPQHDDGzz33HEKoZg4wrVY7fvx4qM8MmgIhKK24yn71D1tNd8f4zxgQWR0tV3NXSOaN7HI2T3s2X9ssY7xOpdm2/XzBgHBvqDIFAGhzbILwU0rKl+fPGzhugI9PntGYZzIt6NGjs5vbJ4mJP2dkbLp06cXu3adHRzfn9Ozvf1wjkSoDg5UMwwgCT9MMxpRSrZFK5TK5Qq5Qq1y9FEq1UqVRqlQqhYwVDXpdhU5XeTbxtMliQ4joq6oojBmGVimVLhp1WFingX3jEhL6XLiQ8vOan/X6Ou7JAtD+QNIvAJrPc8899+WXX0IOMNAMCCJ6Sx1FpGQsfV98iFrG1nlWkJvqnm4BLRKxEoJOXiqrsrTMOmoAAGiIK0tcavyWJAjtvHz5no0bP0xMdJdKVwwZsjAhocBs7u3lNbtHj5HBwZvHj3+rVy+C0HunTo3btOlgQUGzjTY3L99iMdttNqvFIggCy0pomsII8ZxdEARe4InIY4wEgSMCz1BEwtI0I7FZbTpdpSgIFov5ylIyQhiGkbCMQiYLDPRHCPn5+bm7uYtQFBB0DPCEGYBm9cwzz4iiOG/evOocYNVzs+E5M3Aumqoj8HVVSMK9NDc7BWMUG+DOUpS9JVYyF+ks5UaLm0LS/F0DAEAD1UxzlarVLjp16nBxsYplX+nZ88kuXaQM80VSkkjItKgox3EsRT3ZtevEsLBPExP/yM5+fM+eEQEBb/TuHeri0tRD5TjOoK+iaVoURYJQpVZLYYpmGIqm5DK5zW5XqTU0zSCEGYaWSliFTIJp2mTQ66t0NrsgioIgipSIBUEQBIHjOIvF5Lh6sVjMHE88Pd2b+iMA0BpAwAxAs3LMzcYY18oBNn78+E2bNkHMDJyozuSlFML1VzxmGIqiKNQSAbONFwxWvvn7BQCAhrqaJbvCYlmWlPRHVpaI0JSwsJfj470VCsdbe/LzpRQ1IjCw5nkecvniAQOmRUUtPHVqd0HBwaKix6Oj53TvrpY04S3CbjGRpSVFmKIoipZIWJlUgjGmKAohzNvMWm2li4uGpmmEEEVR1NW54kQUrTYbK5HZ7XZCCC8IHGc3mUyVOt2lS5eOHDshk8n27T9oMNuiffyabvAAtB4QMAPQ3Bw5wDDGc+bMqV7P7HjOvGnTJsgBBpqUwcYX6cyR3jd9yHyxzMDVtfK5OWAEC5gBAK3WJb2+wGzmRHHp6dO/Z2dX2e29vbze7N27h5dX9TF6my2lsjLey0sjld7YQjdPz99Gj9588eKSM2dWpaT8k5PzWHR0WmWli0Qyt0cPn6sht7MMHDggJjqKoqiUlDSbKAi8wLAsxogQxAuC2s3bbNIhUSSIYIRomhaEKxOwBVEICPYSBI5mGN5us3O00WjU6XQZGRk2O7dn926zxd4puqef502/SgBoTyBgBqAFOGJmURRfeOGF6pjZUWsK8mYDp8A3KY5ptHHbzhcMiPBh6pqwrbdwOy4U1FmJqhlghGkImAEArRIh5Nl//y0ymxFCq1JTJRQ1Pzb26W7d5Ox1KSEuaLU8Ib29vW/WDsZ4fFjYiKCglefPf5eSsjQpybE/s6rq93vuce6YQ0NCTp88Vl5e0aVHb4wpmqZYVuLm6UNhSsIyahdXiVSm0+ksVqsoCDRNSVkai3aT0VBRUWGzWRmGVSg1OmsJz3EURlW6SppmVC7uUqlM7eapVKh6x3Vz7oABaJ0gYAagxcyePZuiqLlz51bPzdZqtePGjdu4cePgwYNbdmygvSKErD99cUC497jugbVial4gPxzJPJJd2lJjAwCAVssuCNk1kkLbRfGz5OSvLlwI02j6+fgMDwxM8PWV0HS+0YgQ6uZ+i8W9CpZ9KS4uxs1t9oEDjj2pWq1ISFPMsikrK3MUlMIYiwJfVVHq7etPM4y7qyYyIpwQRIiIrs7KpmkKi9y2nXty8/IRERiaUard7DYTw0o8PT0EgS/Mu9gzvm9wcMCjU8dJmnI+OQCtBwTMALSkZ555hhDy4osv1swBNnHiRMgBBu7cTZ4xo0qz/dW/TpUZrZPjQ1zlEoQQIahEb/n2YPr3hzLtfAvNxwYAgFZMyjDD/P13FxQghPwVigQfHyvPXzIYsvX6NJ3ux/R0d6l0Ymjo1KioX+++O1TToLnKpWZz9evB/v5NtCaltKyMpiiEECEEIcRx9uKifB/fQEIQIQhjhGtM7hEEkaaYu4YO2rVnX7m2SiKVMqzE0y+4f/8Bq75YTAghhFDNWBkLgNYAAmYAWpJjbrYjZq6ZA2zChAmbN28eMGBAyw4PtGEE1XPpVaK3vPXPmf8dzYwL9nBTSIurLKcul+dpTVxL5PoCAIA2YfnQoRM2by4ymzeMHesplzt2mjjuVEnJzry87bm5P6Sn/5SRMcTPb3a3br5KZf2tXdbrPz17Vk7TVkHo5u7+SZOtxrJarYRct9CG57jiwjx/f99a+x0EgdCszNXFRVtlQgixEqlS45aamiaKIkVRN7sVC0A7BgEzAE5W59dP/Rw5wObOnVtzPfP48eNhPTO4I/X+UbTxwvkC3fkCHUVhqKUJAAC3JGMYFctKabo6WkYIKVl2aGDg0MDAt/v23Xbp0k9pafsKC/cXFg7281sQFxfr6VlnU3qb7dl9+wwct7BPn/dOnfKRyxXXr4V2ov79+rEsa7fbEcIII4QQRkgQ+PTUFLVKFRgYiDEmBDuSgWGMTGZzRlpqcUkpZ7dajBa/4MiKkkKJVKLTVbm7uzXRIAFozSBgBsCZjhw50qdPn9s7VyKRWCyW6k2tVjthwoTt27ffdoOgg2vgcwCIlgEA4M5JaXpSeHg3d/dyq3X5uXMHiooOFRdP7tSpZsUpB6PdPnPv3jSdblpk5AORke+dOlXfjKA7ptGohwweuHPXHkxRmCCEEMEYEcRx9oz0tNLSkuiYLgq5nCCMiJifn3f5Yo4gipiiGIalacZQVUkQYhimvEILATPomCBgBsCZqqqqTp8+7azWtFrttGnTzpw5o1arndUmAAAAAG4PQaie0FYk5P7t2+8PC1szevTBgoIlp0+vz8nZlZ//Rq9eUyIiHDcxtVbrzD17EisqxgQHv5eQIIoiqrdNpxg39t4du/YQUcQYU45HyQgJokgQ0lVWnjh+LDw8ws3NNSM9zWAwYIREgjCmKJpxfCiMsZRlZbI6CmUB0BFAwAzaj/Ly8iNHjuTk5Hh6ek6ePFnh7HqGDvv27Ttz5oynp2e/fv0iIyObejFPVlbWzp0777///ibtBbRLsNIMAACakyiKFp7PMxoxQkMCAgb4+a1NT1+alPTK0aM7cnO/Gjo012ic9e+/lwyGiaGhnwwaxFCUrVkm+YwaOUIqkdjsdkKISBDGGGEkXk1aIQpCRkY6TaHqyJ0gTFEUTVECIRghlqEZltGoVU0/UgBaIwiYQXug1+vff//977//XqfTOfb88ssvGzduZJ29ImjlypVz5sxxrDSWSCQjRoz49NNPndvFjc6dOwcBMwAAgI6sQqvXqBUs28IXrvUHt5woijVuVjIU9VhMzMigoE/OnJkcHr4rL+/1Y8eMHDe7a9f/xMfXzInd1Hc3XV1d+iX03X/wEEKIIIIIwQiLooAdfROEHLWl8JUn6JiiWJZVUrRIMMMwcplU4G0cxzfxMAFopSBgBm1eaWnpmDFjak2E3r59e0ZGRteuXZ3YkSiKq1atqs7LZbfbt23bduzYMYxxdHS0EzvSaDQnTpyo3qyqqnJi46DjgOfLAIB2I/l8TnLKxfBO/iqF0lNTdyat5lHP5B0RIUfhpZo7/VWqD/r3f//EiXXZ2QqG+XzQoPGdOjX/DKDOUZEHDh3GNb4ZRJEolAqaZjBCHMeZzSbHe1K5XKl2I4RwHC+IIoUphqaqKo25+QVeXi35kwegpUDADNo2juOmT59+47JhlmU1DauC2HAYY1dX11o7KysrPTw8Nm7cGBkZ6ayOKisr3d3dqzerQ3QAGoOopGyAqwI7O3AmiOitvMFqd26zAABQP1EkWdkFIiEMnVVYUhYdHh7o49vckWe91QcojDHG4vXHHC4sfOPYsctGYxdX12WDBm3PzX1i9+7lQ4eqJZLqY5rhMwQHB2KMsSPgv/pTM5vMsd17YowMRtPFrHREkEQqUatdHc/JWZZhCKm+RZCXX9grrkfTjxSAVgcCZtC2/fXXX7t37661UyaTffDBB0FBQc7tC2P8ySefTJ48OTc3t+b+ioqK119/fd26dc7tDoA7gTGelhD2YJ9Qp7csCOSjHckr9qU5vWUAAKgHxtiRIosXhNSc7POZGTKpLDosLCq0k7+PT/PEzfUn/WIwphCyiVfWBheZTB+eOrX58mUa4+e6dp3Xs6dISLpOt7+oaOqOHT+NHOkhlxPHhOimD/tDgmtdFGGRiJdzL7t7eIaHR1jsolQmFwRe4+qOsOO+AMbVAyNEIpWZzJY62gWgA4CAGbRtP/zwQ83NCRMmvPTSS927d3dza5LKB7169UpPT8/MzNywYcOiRYusVqtj/7Zt2woKCgICApqiUwBuD0tTLE05vVmBJjSkEwMAtCjH3CurzXouLTUpNUUpV3SJiOgSEeHuUnsiWHOiKUpK02aOM3HcqvPnv0tNNfN8d3f3hf36db9akHn50KHvHDv2S2bmo7t2/Tp6tJSmm2dsQYGB1b+4HS8IQRjh8+eTXd3cpXK1q7snz9kxphAhjoXOV44mCCGkVGsG9oMil6CDgoAZtGFms/ns2bPVm9HR0b/++msTJceuJpPJYmNjY2NjDQbDxx9/7NhpMpnOnj0LATMATkVulWEH3/lMxrPpaXZ7e5heXlxaLhJOkQd1X0D7VFJWWed+x/xnk8V8+kLyyeRz7q5uPWKieveMdtE0SUrn+n8lURirJRKd3Z6m1X6RnOwrl7/Tu/f9kZE1bzLSGC/s1w8h9Etm5ux9+74ZNgw1y5TswMAAx3RxjLBMJrfZbAgRhDEh5MKFC336DXZz96ooK75u0jkh6OpHjooIDw1x8sQ9ANoKCJhBG2YymYxGY/VmQkJCU0fLNQ0fPrw6YEYIFRcXN1vXoMPiBNHOi3ZBpFquZpRACHe1GElT4pXsHxjpb/Y2JoQgiYjceRIkiMEC8UDodh7UpGVnmSztYZ6h1WbVGw0U5fw5BQC0Bharrf4DRJFgjLS6ypPnkjnBPrR/vFwma4qR1Pm7lyCUWVmpZFlPmeyyweCnVL4aF/dYTIycqeNKG2P8Xr9+pRbLrvz8/6tx379JqVQqdze38ooKEYmiKEplMmSz8TxPCDIY9IQQVipjWIbj+OpAueYj5hHDBjXPOAFohSBgBm2YKIo1c1FKpc36aKVWd5CaCzQRQSTFesv5gsrEPG1mcVWJwWKx8xRFtVTATBAp1JmbuheMRBafpXHpLQ8khBVpV06MsYsDeNKJkMYVk3tozLjbHmSrcuDMsZjoAE8vJyc7BKCV2Hcg6dyFi3W+RVGUKIosw4YHB3fuFBYVHuzi1iShcmZlZbHZbOK4xNLSOG9vgpCZ41K02kOFhbvy8tJ0uo/69/dVKM5rtUqWfSY2tp6maIw/GThw7ObNq9PTRULyjMYqm82lKS9jMMZBQQHlFRWIEJvNKleoFCoXQeAtZiPPcSajQaVWoyvVpRzRMq75sDm+Z30fB4D2DQJmAABopey8kFpc9Vfi5T0phZcrTFaerzc/a8dEMLbTqJSmyyRUol1MsAijRAKFTwBo/7DjfxgH+/t3jYgMDw6mKRoh1ETzLERCZv37b5nVihB6eOdOX7ncKgham83xe1lG06OCgrq4u6dXVhKEcg2G2FtFvy5S6cs9e847fBghdKGy8pXDh78ZPrwpRl4tMDDwTOI5hJEoijzPUYxErtRQFGU1m6qqKjmbyWoxY4rGCKEa0TJBCCHCcVyTjg2A1gwCZgAAaHUIQXmVph8OZ647fbFEb4E4uQEIhfUyejdDZZu4qTwJh0LUALQ7V34VYowwpoL9/GPCw8ODg1mmcfNKbo+Z43JNJsdruygWWiyBCkWkq2tXd/fe3t79fH0dZaLOlZcjhDJ1uljPW9+5q7Rdm2d+pqysaQZ+DUZIJCKFMMGYs9tkcgXGmJUqKJox6rWiXUbRrGMmNqlVPovceko8AO0YBMwAIEJIyy0IBaA2QSSHskoWbTmblKcVIVZuHMLgHDW70sg/xQmdEYYFvQC0H6JIEMZuGqW/t++QPgkySbOuw1JJJIN8fQ8UFV0ZDCG9vL1fiY/3vj55Soy7O0IouaJickREPa1d1us/PHVqZ35+9Z7hgYFNMOprzBar3mAkhIiEYIwFQgSepymKEKJxdVUqFI4sildXLuOa+c0IIu0jOSIAtwcCZtBx8Ty/Zs2alStXGo3GkSNHvvXWWx4eHi09KNDRCSL568yldzcllejbQyaqFkHhChXznQHN4cVQeM4MQPvg5qYePKB758jAvDwt5tlmjpYdVt5114acHE4UwzSaz5KS/szJ2ZGX93y3bk906VJdHSrGzU1O0ydLb5p/wWi3f52cvDotzSYIA318nurSJVmr9ZTJptQbYN85g8GUfTHX8QtRJAQTYrWYNa7ucqlErVJceWxwLc0XQQgRgmw2q8moDwr0j4oIa9LhAdCaQcAMOq5333130aJFjtcXLlzYv3//oUOHlEply44KdHB/J15+7a/TOgvcy78jFNYqmR8M3IsigbtgALQHPWLDW3oISM4wD0dFOV739/PblJPzUWLiR4mJv2dlvdGr14jgYIyQlGHiPD2Pl5aWms21Hj6LhPydnf1JYmKJxRKqVr8WH393SAhG6K6g5ijX5OPt4ePlfulizpVgGCGOs5cW5dIUVV5M0QxD0wzDMDTDMDRD0bTVYjGZDALPe3t5Lf/8E7g6Ah0ZTFcDHdTFixc//fTTmnuSkpJWrVrVUuMBACG0P6P4jX8gWnYOBucpmL8xgnV3AADnozCeGB6+a+LEOd26FZvNT+/b98SuXVk6HUJoZFCQQMj2y5drHp9YWjpl69YFR46Yef7VuLjtEyaMCglp5gkwMx6bTtHXKizQNOVIkCaKIme3Wy1mo0Gvq9SWl5eUFhfqqyoFnpfJZKu++TIwIKB5RwpA6wJPmEEHlZGRYbVaa+08d+5ciwwGAIRQYZX5tb9OVxghwHMaCT5pp3vYhd4wMRsA0BSULPuf+PgHIyOXnD69LTd3zObNj0ZFPRwZyVLU2oyMR6KjKYyLTaaPz5zZcOkSRujhiIiX4uK85PIWGe39kycZjMb/vv42EkWEEE3TtX4zkuv+hSiKWvrxh3E9ezbnIAFohSBgBm1bzTrMjUrc5e/vT9N0reLJQY2ZFlWrOwLJmcAdEETy8bbkrFJ9Sw+kXcHYLqd38kKUiFxaeiwAgHYrSK3+atiwY0VFC0+dWp2WtvHiRReWTa+qmnfgQLiLy3cpKUae7+ft/WafPl1bOlXKjMce0ev1Hyz+hKIwVesy5sq/rl3MzJ83d/y4Mc06PgBaJZiSDdowg8FQ8ymxZwNKOFTr0qXL5MmTa+7x8fGZNWtWw1uolSGsoqKi4ecCUMvxi2V/Jl6GnNhOx6BLLH0WIfjBAgCaVj8/v41jxy5KSCAIldtsCKFNly9/fu6cu0y2YsiQtaNHt3i07PDCnNnz5j5HX81S5nBDtIznPv/c3Oefa96hAdBKQcAM2rBdu3aJoli9GRwc3PBzaZpetWrVs88+K5PJKIpKSEjYunVrYGOKOgQEBNT8vtmxY0fDzwWgJoud/3JvisXOt/RA2iPMS6mjGJtaehwAgPaPpqhpnTuvHj782h6MN40de09oaKuqXvnaqy+HBAcKgiAS8WoVKaSQy0ePGrls6ZKgkNCnnnpywX/mtaoxA9CCYEo2aKuKi4uXLFlSvckwzF133dWoFlxdXVesWPHZZ5/ZbDYXl0bP2HRxcUlISDhy5Ihj8+DBg+vXr58yZUpj2wHgTG7FgcySlh5Fa9Akz4EZ6jKDL3IktikaBwCAWmLc3SM1mky9HiE0IiBAI22BClj1q6rSl5aVEYREQcRIHDRwwOOPPTJ0yCCFQoEQOp+S8dor81t6jAC0IhAwgzYpKSlpxowZubm51XsGDBgQHn47NSdkMplMJruNEymKmj59enXALIrijBkzTCbTtGnTWJa9jQZBx2TnhXWnL1s54daHtncURVGU8x9oYGSVUEmc0AVh+tZHAwDAnWFp+vd77tl48aKCYSaEtcbyxeeSk1lWImGlE8aPeeLxRzt3jqr57isLXoTLGABqgoAZtBk2m23t2rXHjh27cOHCqVOnbLZryYQZhlm8eLGjOkJzevLJJ7/66quUlBTHpslkeuKJJxYtWtS3b9/OnTvPmDGjUVnEQMdUpLf+m1bY0qNoFVgKy5im+FtMWCqDwnoRuTVB4wAAUJubTPZ4TIzTmyWEVFaUlxUV6nWVVquVoii5Qunm4entH6BUqRreTreuXTqFRbz04uyRw4fd+K78tp4iANCOQcAM2oz58+evWLHixv0Y4wULFgwYMKD5hySTyVatWnXvvfcaDAbHHkJIZmZmZmYmQmj16tVJSUm3MdkbdCjHc0qLqiwtPYpWQS1jVTJJU7RM4QqaKhBFCJgBAG2M3WY7dfjA8X17zp08mpVywVhVeeMxmKK8/AKiY3vGDRjUf/ioqK6x9S8/dnd3f2rGIwl9ezfZqAFoVyBgBm2DIAhr166t86377rvvgw8+aKnUFAMHDvz222+nTp16Y1mpS5cuHTp0aOzYsS0yMNAm2AVxX0YxJMd28HVRaGTV30oixk4rSY2RhcHZHOrmrAYBAKCpXUg8ve77lXs2/mnUV7loFOGhPiMGRHh7aVw1SqVCyrIMIcRm5wxGq1ZnLC7RXc46vWLvtv97+79BYRHjpj42+fGZnt4+N2t88qTxkNMLgAaCgBm0DTRNBwcHJycn3/jWvn37zp8/36NHj+YfFULIbDavXr26ziLMFEU1KnE36IC0RltSrralR9FadPV3lbFXvpUwNmNkrf/4RmGoHCTyiMC3HgCgtTt36vjy9988dWCvu5tqcN/I+O6d/H3dHeGtIIiCKIoiIYRgjJRKmZenJpLyc7zL80J6dtHppOzvP3n/+6WL73t85tMvv+Hh5X1jFxAtA9BwcOkA2oxVq1Y9/fTT6enpHMfV3K/Vau+7776kpCSNRtP8o/rvf/+7c+fOWjsxxl5eXv/5z39iYyExL6jP5Qpjgc7c0qNoFRQSZkC4d/UlHIUrMeacmDabxqUUMcAyZgBA61GYl5uZcp5l2a5xvVzc3BFCRr3+0zdf3rBmtZ+3y1OPjIiLDSWEmK328kq93c7bOb7OG/QYI4ahpSwrlbKRYb5dOwfeP77f/iMpG39etfX3NS+899H9jz+FMT574tjfP3+fnZYiVyj7Dhn+wFPPuLjCr0QAbg0CZtBm9OvX7/Tp05WVlRkZGd99993atWt5/krd2osXLy5evLhmlanmcfr06ZUrV9bcEx8f71hQ7eHhoWpMBg7QMaWXVJnt3K2P6wAivNQ9g9yvbhEG5yMi1ndCI1HISOFKkcDVIQCg5ZUVF30w/7mD2zc7AmBWKp0wbcawsROXLJhTUZT34MR+AxOizRZbcVml1Xbr7whCEMcJHCcYzVaEEMvQKqVs1LDuQ/rH/LX5xKJ5zxzcsYXn7Ed2bw8KCojt0cVoMH2/dOHv3361/I9N0d17NvmnBaCNg4AZtCUSicTHx8fHx2fw4MGDBw9+7rnnqmPmH3744Y033lCr1c05nq+++qp6AAih++67b82aNY4yhgDcEi+IacU6WL+MEGJoanKvUC91dWpWkaEynN2JjaLKkdAaS7wAAFqDsrLynbv3T3t4MsZYq9Vt2bpz+rQpFEVVVen/2bjtkWlTaJo2mkzr12+aPu3+Oym8pK/SPTX2LkuV9rU35/fu29Nut+/dfXDtml/+/OGbQH+P/744iWXp/KJyUbzNrweOFyqrTLoqk1Ihmzp5QGyX4J9/32a1cXPnzbr/gXGOydjl5drXX/lg3tRJfx4/36gM2wB0QM1dhgcAZ5k5c+bUqVOrN0tLS/fv39/YRvR6/UcffbRgwYJz58419lyr1bpp06bqTR8fn++++w6iZdBwNl64WG5s6VG0Ct0D3CbFhVBXJ2RTyMTgTOd2gbFAo1LntgkAaE/mJ50hAAAgAElEQVQOHTmx5OMvTCYzQujEyTMff/qVtlKHEDqTeG7psq+LikoQQsnJqZ9+vuJybv6ddPTtJ4u0JYXLVy4Zfe9dHh5ufn4+sd1jOLs9Jipg1uMjLDa7Tm+67Wi5GkHIaLbmF1cEB3rMf26cWi3fsmmn49MhhDw93d9f/Kq2tHjTr/+7w44AaPcgYAZt2KxZs2puVtdDbiCe5ydPnvzqq69++umngwcPTk9Pb9TpJSUl5eXl1ZsPPPCAu7t7PccDUIuFE0v0zsxr1Ua5KyTz7+4a4FJ9s4kwVBaNK5zdj0hRkF8NAHBTjtnRBJHq18ixh1x7F9V893bt+PP3cRNG+fv7OjbLyirefO1DPx/XiWP76I0WUXTmahRCUJXBjDB55vGRRQWFH7y3rHrwvr7eXWOjE48ddmJ3ALRLEDCDNiwsLEwqlVZv5uc37o5vUVHRvn37HK/1ev3WrVsbdXphYWHNzejo6EadDoDBYteZnVY5qY1SSJj5o7qNiPGvTveFkV1KH0bImZeMDhTSOXddNACg7SI3iOkcOfvZJyQsSwiJCO80+9kn5HI5ISQ0NGj2s09oNGpCSGCA/+xnn3B3c73x9Ab2y9ntFaUlnTqFVO/5ZMmXnN06ZlQczwvVOyt1pkqd6bY/nSCIRSW6jOwiRyMcL2AKTx6fcPTwiS2bd1UfJpFIOLv9tnsBoIOANcygDaNpmmEYm+1KyFH9ooHMZrMgXPtyMhgMjTq9VncSiaRRpwNgtPEmG3/r49ovjZxdcHfskwMjJXT13VvCUFks1bjZIg2EkQljgcCdYgAAQhs3bf/hp19v3L9j595GvXZYvPCNLl06N6RfhmVVLi4lJWWOzeNHTx8/emrcPb0U8mtXEVk5xRu3nSIEjb+3V1S4X0OarWaz88dOZp67cNlm4xBCEeG+k8b0QQgRQvx8XaOjAr5d+fOIkUPkcpnZbEm5kD59zvhGtQ9ABwQBMwAA3L7My5dy8nI7h4YH+/tRVOMiMYONs/Id9IEnhXGIh+rd8T1Hdw1grkXLCGOTnN7m3ArMNTo1I8QjdPupegAA7YauSp+dc9lZrVmtDb1ljzEeMnrc5o1bpjw4XqVS/rr2L28vl+hI/5rHHDya5ljDfPBoWqMCZq3O+NfG41V6S2S4X+dIPzcXpYuLsuYBAxM6r17z77ateyZOuuezpSt4QZz0yBMNbx+AjgkCZgAAuH12zp6alZWalSWRSKLDwjt3CvP38cG3Pg8hhAxWjqsxAa+DwBh5KGUP9A6dPSzGz0V+/Zu8jN7LUqlN1jmHsODE2s4AAHAbnnvtnQPbN7304ltPPf1I0pnku4fF1nzXbucrtFemvFVWGq02TiZt0G0+u51f/88xvcEilbI0jeUyibeXS61j3FyVIUGef/2xaeumXTk5uQtX/ugbEOiUDwVAOwYBMwAA3BGMKZGINrv9fEb62bRUhVzWOTQsMrRTgI9P/Sea7XyHit2UUqaLn+vY7oETeoQEuytveJ9I6WNyeltTrF52wIjHiOtQP3MAQCvkHxyy8p+dr82c/spL7yCEwjpd92UhXr8cuuHpsnleUCiknu5qgtCl3LLU9IIBCZ0H9I2qdVh4mO+efck9+w/+4es1sb373sHnAKCjgIAZAACcQxBFhJDZYj2XnpaYmuKq0cSEhUeHhblqat/jd7BygthCVZglNKWWsS4KiULCsBTGuIEPxRsHYyRjGW+1LNhd2S3ArVuAa5CbUsowdfUmSOnDSnpdE03GvjogEaEOvWgcANBKxPSIW3/k7OuzHju6c6NKKav5lkzKatRyvcGCEFIpZTXXNiOEqvTmnEulZRV6i8VO05RGLQ/0dw8J8qJpSqGQPvLgYMdhPC/u2Hv2yPH0sBBvXx/Xmi34eLkghF7+cFmXnvFN+yEBaC8gYAYAACdzRM46vf7Y2bNHkxLdXFy6RkR2CY9UKq6bgcwLzRotY4y81fI+oZ4Dwn1iA139XRQqGStlKIxQEwXMCCGMEE1TNMY0ddMuKFQlY7bL6P0YWZpoGFcQEZMONwceAFDNbuc+/+Ibo9Hk4qL29PRw7AzrFBIfF+vn53Pq9Nns7ItT7p9A09Rff2/RaNRRkeEbNm1Xq1WTJ43dsXPv3SOHYYwYhjmXnDJs6MDDR04cPXbK0YjRZHz73Y8crc14/OGGDKaksCDp2GE31xun26A+8RF79icjhPrEh1fvrKg0HjicknOplKbpkNAgd08/zs5lXy44cTpLoZD2jQ+P79GpOpUGw1B3D4u12TiKrp1cQ6OW0zS16uMPPv35D5qGQACAW4O/J6Djomm6ns02ymS2fLh8dUuP4jqnz90i4/EtD9h+4KDzhuN89USbhIgIocqqqkOnTx05czrEP2BYQj9XjcbxrtiIQiR3KsxL/XCfTmO7BwW7K2V1P+NtARgbJficjNnD4MsINUMoSxBGsIYZgA7LbrefS04xGk1enu6DBl0JmGNiIl/774t/rN/Ic/w3Xy/NzrlcVVX13TefPf3sS6+/Ou9CSvrQIf0HD+q3e8/+BS/N/u33vwcP7vfglIl79x1a9sl7Q0dMsts5hBDHCeeSUxBCVmuDpslYLZZ5UyfZTZX3Txl447tx3UM1GjkiKPzqbO1zF3L37k/29vF++dW5w4YPVCqvFK4nBGVnXfxr/ebtW/ekZRZOGtun+nm1RMJMHl/HjGuVUjb+nl4bt25c/v5b8977sHE/QQA6JAiYQcfl5+fn7+/vKKeMMY6Li2vpETmBVCp5eOLolh7FNScSL/gFBqquhoi1GPX6ovz8mJiAm52eX6DFAh3g07iiGs0pv7goOT2D3DwIoyhMROLj6dUlMjIqJFQuuzb17spU6CaO3+QSZkp8yPN3xXTyVNfzmLdZEIREjHmMTDQuZXC6hDpLU4UYNVcxaowRah23CgAALUGlUq756WvH659+/r16f0pK+kefLA8K8g8LC8UY84Lg5+crk8m2bN319FPTe8X3fOf9jwlCHMd/+vkKhJEoisu/+m7qQ/eplEqtXYcQcnN1+efPnxo+km8/WXQx/cL0BwfXmo9dLTz02sLmxHOX9uxPHjN+1LyXZkml0pqHYYwiIju98trcsePvfvuNJb/9eWTalIEKhfSG9q4TEeY7IKHzz8s/HTlxcrf4Pg0fNgAdEwTMoONSKpU///zz/PnzKyoqZs6cOXp0K4ozbxtD092iI1p6FNdkXswLCgp09/aq811taZnVqI+MuGmKTp7DmGejQjs12QDvFMdzyekZN+6nKUoQRccy5pjwcBd1HbcMmmFOg4dK+vKo2Ef6hcnYOn/bCxhbKKSjcQWFKzE2IiQ0WUBJELJRyEjhSgppKaoKI0tzP+0lCAJmAMCN7ByHEDKbLaIoLly8rLi4dNrDk0vLylf/9OuGP39Kz8g6cvSkn5+PKAqCIAqCyPM8IYQQcnu/UXRa7dqVX8T3CPP2rPtuck0FRdp/D56f/MD4F+fPquewrt2il69YMnvWy5t3nnlgYv9bTiPq2ysiJT1/5Yfvf7luU6MGD0AHBAEzaMOkUqlUKjWZTI7N/Pz8xrYwfPjwM2fOiKLIso0uzZqXl1dzU3OTh6igQ6EoShRFpVwRFRraNSLSy8OjnoOlNN2k0ZuHUvr+hPgpvUJveLBMKGSkqUsSKpmhcihUjpEZUwIi7b4oNE0wDVOyAeiwOI77euWPRpNRo1ZrNOpa71ZUVP6+7p9ln7xvNlvyCwqtVqteb9i2Y++evQduuX7GaDItWvIZQigsNGTqw5PrP3jPpr9tFnOvnre+F0wI2b0vOapzxJwXnqreabdzu3fu1+mqMEKdYyLje3V37Pf39339rfkvz38nLbMgJuqmU7ccKArH9+i0d+8ObXmZu2fdN7UBAA4QMIM2TK1W+/j4aLVax+bevXu3bdt27733NqoRmqZvY/VyUVHRsmXLqjcpigoPD6/neNCOiYhQmBKJKJNKo8MjYjqF+Xo16OJDxtJUk83JlkuYuSO63BAtEwoZWTpRRh+iUS7GNeZCd4AwkiAGkUbfGgMAtBtWq+3goaNGo8nLy2PkiKGOnbv3HDx0+ITj9ZKPl//6299SqSQr+5Ioigih/1u+qqKiEiFUUlw6ZsI0QRC+WrEaIWSz2UeNeUin0ztO5DjuwMFjGKGS4rKpD08WBKGspLi0IF9bXmo1mxFCUplcKpPJlUqVxuX4vt2eHuqbTcau6VJeeVm5/o13X615ofLR4i9279zneI0x/mDJG4MGJzg2+ybE90mIP3km+5YBM0IoNNhLFIR92zbFdI8zGQ0Wk9FmtXIcR1OUUq3x9PH1DQzSuLo1XVZIANoKCJhBG0bT9NixY1NTUx2bVqt10qRJvXv37tu37/z584ODg53eo91u//rrr/fs2XP8+PGysrLq/aGhobGxsU7vDrQJEoaJDO0UHRYW6OtHNebCQillKAo3Ra4rjNE93QKeGBBxfbQsslSGnN7IUhnNkmGrFWIJgoAZgI5LrVat//1KXszqNcw2m81mu3b38HLudbPVysoqHC8EUSwv1yKETCazY095eUX1YW6urls3rj1x6EDikYMvTpucfzGHiALDslK5XK5QKpQqlVotkUoZViKKQtKxw1arfdvuJKmEkUpZuUyiVsm8vVxcNIpaA87IKgwM8o+Lv+4CIynxfPVrQsjZxPPVATNCaPyE0W+/8aGuyuzqcl1rgiCWaw3lFQaz2Wax2m123pGubNPan9KSzhBR5HjOajabDHqzyWS1mO1WK8/zcqWqU1R0TFzv/neNDO8c3eCfNADtCgTMoG2bO3fut99+W1VV5di02+1Hjhw5cuTI9u3bT58+rVDU/u65Q2+//fZHH3104/6XX365Vh4O0EGEBYVEh4XT1O0sR1bLWClDWTnnx67+Loq5w2OU0prBoSCj9yvovzE2Or27toIgOXzrgVq2btm5dOlXv/72rY+Pt2PPxZzLy5evykjPNlss7y98fdCghPpbuMPuQLtB03T/oXf1H3rXLY+cV3Jf6vHddw/tylxdDsbxgt5gKSrRqVWymk+ei0t0CQP61zr97tHDfl2z3vGaZZlhwwfVfLdnXDeEcFFJZc2AuaLSaLNxaqUsJiqAunojtay0PDW9YPJjM8dPfbTxHxeADgQuHUDbFhwcvGLFikceecQxdapaWlpaRkZGz549ndiXKIpbtmy5cf+UKVNmzpzpxI5AGyK/gxslKhkrlzBVFs6J40EIYYwmx4d29XOrsY/ImW1yeiNGTu6rbRGJipD2UD0ONKmFC5d6eLj/vu57pbKOArkt7sD+I+++e+W+LUVRao26a5fOjz32cFTn8Jsdo3FRx3aNeWzGw+Hh1xbNFheXrFu38dTJxNKycoZmvH08Y2O7jB8/uuYx7Q/P86t/XGs0mtRqlUQicWLLJrN52ecrEEKhocGTJ42t/+BOUdFHd23OvXQ5LPJKkk6WoT3cVDceaTRa/fx9au2c9eyj2grtjm17GYZ5/a2XunbrXPNdF1eNQiEzGq+rbnVj4xzHpaVdRAh1gufGANwKBMygzZs6dSpN07Nnz66ouDY5ytXVNSgoyLkdURTVpUuX8+evTYWiafrpp59etmwZw8BfJdBoKimrkrAIWZzbrJdaNjkupMZkbCKljsqpjh4tI4RE4oIQ1dKjAK3LmLGjxowdVb1ZpTdcupQ7fvzoJoqWa3V32956a8FdwwfzPJ+VdfHjj754cd5r3377eWCg/43HcByfkZH50ZIvXpj76qpvPwsI8EcIHTly4oOFn8bERM6b/1zn6AiMcFpqxppf1s2d8+rWbb/fpM/2wGy2bNy8w2g0+3h7jrl3pGOnI1kjwzA8z9d/OkVhiqJ4Xqixh0IIiaJos9k2bt6BEO4cFX5jwMzz3OXsrEuZ6Xk5WcX5uSmJp+2cuPNApuxEPs1QMplErZK7uig83NQ+3i4atbz6RJEQx+plzs798/e2CZPukUolFEW9/tb8s0kXht41cPjIwY4jc7Iv5eYWDrtrAEKIpmmxRpYyUSTlWkNpWVWlzlSlNxtNVruN43jeYrEhhH/+cplvYIh/cEhweFRY52hvP39YtAxALXCVD9qDBx98cMiQId99992WLVvy8/Pd3NyWLFniUW+C4tuzbNkyk8mUlJSk0WgGDRr05JNPJiQkwFcLuD0KCeOhkmaV3frIRukT6hnufe1hAo1KFOx6iJYRpkTi2dKDAK2dvkqPEJJKnfnssekwDBMdHfnc7Kf++8o7W7fsmvXM4zcew7JM164xzz8/87XX3t+yedesZx7Pzy98//1P4uJiFy160xHvIYTi4rv3jIv93//ac7SMENJo1Jv/+QUhRAj535o/EEKDByZ4+3jJZVKKopPOnvfx8dLrDRRFYYTyC4vcXF0D/H3tdvv+g8eGDunv4e5mtVo1Gk12zsX8giJ3N1d/P9/k86l5+YXubm77dv9Tsy+b1Xrm6KHj+/ecPX4kO/WCi7tHUGiYf2iYf1BIbO9+Vou5ICslppPCP8A3MDjolhcShYXFX/7ft94yfsCIERQrMZXkWYyGqsLL1opiVu1mN1T++u3qzHytI2CuhaKwt6emuoQVx3GZ6RnFxbozqebJM2Z1jetdXJCXfOr49vW/5V3MxhTuEte714DBCcPujuraDa5wAEAQMIN2w9fX980333zzzTc5jqNpuvoiwLkCAgI2b95st9tZloVvEXCHFBLaVyO/9XGNQWE8NMpPIbm6ehnzMnobhSqd20tbRAgjEFg12oYdPnz8rTcX11pUnHjm3H/+89abb/5n+IghCKGysooff1h74sSZqiq9h4f73aOGPfroQ+zVIuS///7PNyt/WLfuh3XrN+zauU+vN+za/VfNRcVLP/ly69ZdCKGlS79auvQrNzfXl1+Z+/prC999979Dhl6LQ06dSnrl5XfeeOOlESOHNnaQtdYwHz168o3XP3AcJpVJQ0OCJk0aO/qe4Y36yQQF+SGEymokoLpRcEgAQqi0rBwh9Nuvf9lt9tmzn6r1RYkxfvzxhxvVddtV/Q1OURTP80ajYLVaI8JDu3WN5jg+K+eSh7ubr69PWKfg3LwCOychRPTy9CguLu3fr9e+A0dDggM7hYYIgtClS+fk86k1W+Y57vCenedOHS8rKgwMCe3eO2HSI08EhISy7HV3YXwDgmaNH55fYpKwpTarNaRTJ1bC2jler7dwHK9Wy2vl0A4M8vfy8vzjzx3+cl4mYXYeTa0ymA+dOD9sz9ZAb9e84srDJy+MHju61sckCGkrjTYbp5RLVWoZTVEGvf7yxUs2qy0rzxAQGvafRUsV10+mMBoMl7MystMubPn951+rqoLDIgaMGBUd28NpP3oA2iAImEF7cxsVlRvLuQufQIfF0lSYV+1CoHdII2N6BrlXb9KoWEqdcW4XbRRBUhFBwNyG9evX28PDfdvWXTVj0W3bdqvVykGD+yOEiovLnp+9wN/P94NFb4SEBKamZCxZ8vnly3nvvfdqzXZWfvNj7949fvzp6/37D9fqYsHLcx58aNKMx59fsOB5x8RpURR9fX02bNhaM2DeuGGrSqUcPKSOR3m3HGQt/fv32fvvBoQQIaSyUrdjx95PPlmuUCkGD+rX8J9MXm4BQsjHu75qdo5jvL08EUInTpz28/MNCrp12aH2RxCENWvXG40mlepKlHjqzFk/Px+ttlLgBUEQTp5K0hsMVqvN3c2VEHLw8DGbzU4IEQRx89ZdFos1+UJqVZUhMzNHqVRYrNa9+w5VVuoQQmaL+asVqwkhDBYfeeShoffcYhlzr4GDZ736zsrF7xCCCDEkXShSqxXBIf5+Pm4e7qob78jTNP3K6y+8+dqiOR/+JpeylXrzvWNHplzIeP2LfzxcVRU6Y0ho8IynptY6CyPk4aYSBLGswpCVU1hUXGY0WmQSqlJvtwvsktW/Km5YeqBSq7vG9eoa18uxSQgpLS6qKC/38IQZOqDjgtVcAADQMiiMo3w011d+ulO+Lgr/6syoRJRQiR05LXZNRFSLxP3Wx4HWiqbp0aOHHz9+uqJC69hjMpkOHDw6cuQwiYRFCH333f84jlu0+I3OnSNkMllcfPcXXnzm4IGjKSnpNdvx9/cdPXqEWq0cN+7Wa4kpipow8Z7ExOTcq6WGysu1R46cHDlyqERSx83ZWw7yZjDG7u5uU6feHxfXffOmHQ34eSCEEM/zaWkZK75erVYrx467+2bHpKSkf/31aplMNmbs3aIoVlRU+vh00ODHaDKt+WXdmrXr/96w1bHHZDJnZV3UanVVeoPRZM4vKAoNCQrw9zObLSWl5eXlWl8fb6PRFBTobzSaeJ6vqKjkOK6svOLS5bySkrLS0nKO4xFCFottzdr1v/z657FT51RqTT1jEEUx+dSJLz94++jeXV3i+1wqMNo5ISxQ6e2KRWsFZzXWSmJarW9C3E9rvnpw2v2VevPTzz726hsvrlq9rGd8dwEzC/4795vvl7m41H0Hluc53lrFiPoATzbEX1lQajFaqc494r/5aOGvq74qysutZ7QYYx8/f4iWQQcHT5gBAKDFRPq4qGRsldnurAb9XRUq2ZVf7BjbWJzirJbbOoEEiKISwUKKtuzeMSPXrl2/Y8feadOmIIT27D5gt9nvHXMlUDx65ESvXj00Ltdilfj4Hgihs2fPd+lyLY3wgAF9G9np3T/+sHbjxu1z5sxECG3atF0UxTFj6o5ObznIWkRRXLdu457d+/LyC23WK6WAAwL8bjmqhQuXLly41PHa3d3t/5Z/5OfnW+cxGGO1Rh3bLebNN/8TGOgvCB2zBvsVLhrNzm3rHK8da5hroSj84JSJhUXFBr1Ro1GbLRaWYQYN6Gsymyb53MvQtEwuW7zk/64dj0g4a4liTTHW3MO71mOpvJ7lWrk52et/XLVj/W9+waH3PfbkjBcXqNSaH79Y+uX7b5gulMeEuagQys/NLSzId3Vzc3N3V6lrB8B+/j5Pzpy2/9/D+/Ye7tW7Z0W5Ni01c8y4u8eOr+MPGMdxel2VtqLCaDA49hSXWzIu6V08fZf+b12Pvv3yLuZs+X3Nk2OGuXt6TZj+xLiHpytVTp70BED7AAEzAAC0mABXRYCL3IkBs7daLmGuVE6isIGmipzVctuGaY5EIAw1pdq2gAC/Hj26bdu6xxGLbt22KzIqLCKiE0LIarVaLNbDh0+MHHGf42BCCCEEIaSvMtRsxNOzcRMNXDTqYXcN2rF979MzH2VYZuuWXRGRYRGRYbcxyButWvXTX39unv/Sc/369XZx0VAU9fZbi7Oycm45KkcGbLvNfvpM0oeLP//6y+8+XPK2I51yrWNqnUjTtIeHW0lJ+a0/eTtVf/4RQtC+A0dompZK2PIKrVQqsdnsefmFri6a8xfSw8NDq3T66oO9afvbbhlxUp0Ei+ibx/iNi+hnv6Dj65i5UHD50leL3t63ZcPISVM+/21DTPdrNS9nvLCgZ7+B782ZeSI5zc9LEeqvksuQtrxCW15BUdSNNzgwxm+9u+C1VxY+O/MlhFBcr+5Pzpx2Y4+lRcXnRV31prbKlp1n0Bu5kZMeeH3pl26engihoE5hz7769tMLXt+7deOvK79Ysfjtx+YumPbsXJncyck1AGjrIGAGAIAW4yJnYwPdU4qqnNWgq0JCVyezwVqMTM5quU0TRQVPIlt6FMAJ7h1z95IPP0s+l6JUKjLSs1+c94xjv1QqlUglQ4cMeO31+fW3wDa+CuCkSWN27vh3z579SqWyokI7/ZEHbm+QN9qx498hQwfce7W+EUKoqKi04QOTSCX9+/edN+/ZDz74dP36jQ89dF9Dzurbt9fWrbvy8wtrlaECCCFRFHft3n+zdy/UmN6vwML7bmm9ZFeCUoKQWJRu/nCqfNKL0ulvVx8mCML/li/b/PuaidMff/nDz9zqqt/Rs2//3w8l/rri8+8/XXT0bKmnm8zfW+HhIhFFEdWoDlUtMips7R+rMtKz5HJ5WHhInbcAeIFHCHG8WFJhLSgxG81cROfIJUuW97+r9rNommHunjD57gmTMy4kr//hm8dGDVqwaGnfIXfV92MCoIOBNcwAANBiWJoaFOHjxGnCNH2tMYz1GHfo6ZfVBBIgiLUnrIK2aNjQAUqlcuu2XVu37ZZI2BEjruSpxhj379/n1Kkkg8H5N4mio6M6d47YsHHbhg1ba3ba2EHWiWWurW3Oyb6Uk3OpscMbPmJITEzUmp/X6Q0NSljw0MP3SaSSFV//UGutLCHkpx9/bWzvHVZ3Vh8v0yGEyjm60CViSYGbTUT6bqNtvtfm/+sqtd9/9nFIZOd1h848NuelOqNlB4lE8viLr2w6nfrcSy+yUuXZNO3B06UXsnQiQeeTU8+dTbFenbF/9Xi2W2xMeERorWi5tLR8964Ddrtdq7OdSdUePF2SeVkfERX+0coVvx06e2O0XFNU19hXP/7i8183nDx8cMOvP99sKTUAHRA8YQYAgBaDMe7XyctLIyvVW53eOEVMCNXxdKLDwZRd7EkQTDJsDyRSyYiRQ3bs2Ctl2SFDBlTnOkYIPfvsjDnP//f1V9+f9czj4ZGdbFZbTs6lTRu2P/Log/XMoG6giZPGfPzRFwihESOHqtW1Ews3fJC1DBzQd8/eAyOGD+7WPSYzI2flyh969OhaXFzS2OE9+dT0lxe889vaP+ssxVxLUFDAW28t+OCDT//7ynvTH3mgc+cIhFBaasaaX9alpmQ8PqN2pmVQpwjW6AhVf5f1vrvg+GM+MrsmwPPpxYz82n9uhVI1a8FrDW/Txcv/6beWPfriayd3/73rr9/OnE4mxHrowLFDB47RNO0f4BcY5O/j4+nq5qpUKiQsSxCy2WwGg1FbUVlUVHLpYm6l9soTb1GkIzr53ffA4NEPPBIefxfNSuvvmhBSVFS8c9dumVzuFfzFdgsAACAASURBVNG1SKvNzsoOjwhvoiKdALQtEDADAEBL8ndTDAz3+TvxsvObxrzz22yDBNGDE2NbehTAacaOGbVxwzab1VYrk5aPj/c3q5at+fmPxYs/q6jQurhqwsJCx4+/Jyw89M47HX7X4JVfr9YbjGNqTJ++jUHWMnvOUzRNfbjkc4vFGtMlasGCOWvWrLuNgLlXr55xcbF//b35/vvHezRgkfbAgQmrV3+xft3GZZ9+VVpaxjKst69XbGyX52c/1diu264J40YPvD4DnMFgLCsrDw0NpijKaDSVlpaFhATRNG02mYtLSoODAhmWsVgsRUUlgYH+sgO/oM0LCUIPmY/beo5QTHxBkX9O7nfdBOnbK0Ip03gNnjxr0H0zDSU5eaknk44eTD2bWFhYVlpelXQ6yWKtI+cFhbFKJfdwV3cOjwoJCerWO6F7wmDv8DiZpr5iYw6EELPZvHPXHp7nJ0ycQDP0ut/XjRo9KjEx8diJk+PGjnF1dal/4TcA7R4mda2OAMDpCCH+/v7FxcWOzREjRuzevbtlh9RqVVZWurtfu+KZM2fO8uXLW3A8d+Lvbf9GxnRxv0mBUG1pWWZqyuDBMTc7PTW1APNsTFh7Xn1KCNlxoXDGjwd5wQnz354fHvP22J40hREiMnqXkoEJltgijDZzU9p9xq8DZ47FRAd4etVXzwbcNlEUH3roKZZhf1n7DQQPLeuW3wsSGa12uZ1I9a9/trzz3sdHDm5Rq1Tbtu955bX3/931l6enx95/D7340htbN64NCgo4euzkrOcW/LXuh6C8E0Vrl9KRvRScXkrTkue+YFQutfKuOYso8BZdsUVXbDOUm/VavU5rMZl4nkMIS6RSpUqtcfOQqd1lGi+Fm79U7Y4aXA+A5/njx09mZmUPu2uoj48PQqi4uPjR6Y/K5fKHHn5o+Ijhe3bvDfD3GzlyOMuyd/In31Blt1tvukQoNSeTMFxMzE1rgx88mHrLa4n77oV116CpwBNmAABoSRjj/uHe3fxdk/K0LT2WdkhEnjZhULuPlkFTS05OqSjXzpz5CETLHVFd/82pPmM9JQraPUAa1ZMQwjQ+mVzDUTSj9AhUegQ6sU1RFHMuXjx48Ej3HrEPPfxgrXctFsuPP/y4bdu2p2c97evru/KbbwcPGtijR3eYoQ06JvhzDwAALUwjY2cOjqLgQtzpMG3lhwgE0n2BO2IymX7+3x9qtXL8hDEtPRbQhMI6hfSK7y6TyhBCoSFBPXt0ValUCKHgoIDusV3c3FwRQgEB/rHdYrw8PSQqtXrgBHl0PE3TTRotOx0hRKvVrv/z7+ycS1MeuD+mSwxCBCFCrv6TEMe/UHFRycL3Pli54pshQ4YUl5Su/GZVfn4BTE0FHVBb+hsOAADtEsZoXGzQT0eyTl7quMVRmwIndLYJgxGCx8vg9i18f+n+/YcDA/3ffueVW6b7Am1azx7dfvz+ygKomJion3/82vE6IrzTL/9b4XgdHBSw9ueV1ae0rRkHhBCb3X7w4GFdVdXQu4ap1aor+6sPqPH/asnnzs2dM3fU6FEPPfzQ7j17WYaZOHG8UqlsW58dgDsBATNoGRaLJScnp6VH0UpVVTmtKi9oK1Qy9pXRsU/975DewrX0WNoJkXiY+ftEBGt6wR156+0Fb6EFLT0KAO6UIAgXLqScO38hIaFvQOBNVwsjVEftZ0EQt23dfmD/gWnTp8X1iv/u+x+6de0ybNjQtvVoHYDbBn/QQcs4evRodHR0S48CgFZkSJTvjAGRK/el2wUonnynCFGYhId5Et7w5DcAANAuiaJYVFx88NCR0NDQ+yZPwgjfXsFBk8n87arvtmzeMuvZZ6Ry2WeffzF2zD3R0dGwsBm0exAwg5ZBCOE4eJIGwDU0hV8c0TWzVL/jfL4Ia8TuACEKkzDVzscjJ80YFEUxt7DI38dbwrJOaRAA0FhFxRVKpVyjVrT0QNoSQojRaDxw8AhF0/fcM7ohZa4IQvWvUi4oKHznrXfi4no+/czT586n/Pvv/gceuN/LywtmaIN2DAJmAABoLVzk7MeTe1vswoGMYhESq9wOLBIPEz/dLva482iZIFRYUpJ+MSctJ9tmtz/9wMMQMAPQUtIz8s4mZ/v4uLu5uvi5+7T0cNoAjuNOn0ksKCzq1y/B1c0NoYY9V27YV09iYtKc518YM+beSfdN/P2P9d5enhMnTpBKpRA2g3YJAmYAwP+zd9/xTZR/HMCfu+w03XsvaClQVsseLQgyRRBRZCgOBH8qgoALUURRUFGGyBBBGQqypey9V2nZo0AH3TOd2Xf3+yMYSpumKbRNm37e8vJ1uXvuue+16V2+uWdAA+LpIF06uusn2y7uuZbG4EFzTXCcQMu2VehGMORph8XOlcvvJN6/ee9emVLB49FMbUyRDQBPi6Kyswuyc+S3SfL9lNQWQcHN/P3xNVZlLMsmJSXHxV9p2brlgLZtCCFmJst6VaXMFPXYJpZhdv0bc/TI0XGvjQtu3vynnxf16tmjW7euaKEN1gcJM1hGQEDAyy+/bOkoGiiVSrVo0SJLRwEW424nXvJKlw5+d5cevZVXqrZ0OI0AR8RaJkTNPqNlwzjy5J+ei8tK76ekXE9IyCuU0zyaZVhCCLJlgAaCoihWP98RIQ8yMx5kZhw8c8rP0ys0MCgkIAADUOlxHHcx9pJKrRkwqP+T5q7GM+YKibT+ZWlp6bKly3x8fSZOmpgvl69bt2HcuDHImcHK4OIClhEcHDxv3jxLR9FAyeVyJMxNnEwkeCeqRXSI5+rTCXuvp+WXaRrW1Jccn7P4YFqUgCW2LOemZZpruXCG9eSI8MmG+FKq1feSk2/cS8jKzaUomuVYQgiLPBmgAdNfEjmOe5CRkZKRfuTcmWA//9DAIH9v7yY+k5xCocjOyXumb2/CEcIRQv2X/1IPJ1nmuIcbaIqq3IL60RRT3KN+LYZl/Y1I/6jZsIaiSFpq2qyZs8a+OlYgEGRmZnl7e9X5eQLUIyTMAAANEZ9Hh/s4zhsROSm6xfE7WWcTc5LySktUWo7jquokxnGcg6T6MV2eEkdECmakjgus6wNVHQFLCOGIlCM2HBFz3BPmyWqN5m5K8q3799OzMima5liOI4TjqsyTL1y7UrnxZ6CPr7e7ke6UiampGTnZldfXXfn07ByVVtEqLMDL09lI+eTMzMx8I/UHeKI8yje68uXpv+HS6nR3khNvJ94Xi0StQppFtmvh4+Vh6W/1LKNAXujq6sI9NrfywwWO4xiG0el0arVaLBbz+Twej1f5+mnYt/z3tJWXKxfbE7N3xsfTU1JSkDCDlUHCDADQcIn4vFB3+xA3+3FdghUaRqHVsWyVCTMhxFYs4NF1/SmRZjh3HRtUx0epc/mFhZm5OTn5+f999qvmGX56dlbldoaujk5GC8uLilIy0iuvr7vypYoyjVbt5+NGjCUYcnlpSpqRhNzF2R7lUb7RlTeKYzmaolRqdXpWtnuGo4uTo0QsMnNfa8JxbBX3CI5lWY1Gk5WZuTsmZsy4sRKJVCSiaJpXYf8adXguT6vT0jTFsqyJL3YBGiMkzAAADR1FEYmQLxHynUkD+fxnDZ+EvNzcvNzcnunaPS0z48a9e/ceJDM6htA0xxp/yDy8b3+ZjblT2kS0bh3RurX5wTx9+RNx58JaeLu42hkv3755RPvmNagf5VG+AZevgEfzGJaxt7VtGdwsNDDI3d3J1r7O29o0OizL6XQ6pVJ54sSJmzdvnjxxsmevXjweTyCgKOrRV4GcueNkG9OQeg4B1CIkzAAAUEMcSzim9qulKEKoes7GaYry8/L28/LWMd0fZGTevHf3fuoDjuOI/j8AaKh4PB7DMBKxuEVgUPOAQKOdF5qwxy5fHEdYltFoNHdu305LS1WrVf/u3NGyZUuBQEDzaB5dO8+DuafItQEaMiTM0JgwDHP//n2WZQkhQqEwKMhUo1CO44qLi5VKpUAgsLW1FQpr8H2zVqstLi4mhNR0RwCrRxGtmH9UyF2p9Zo5TqRi+7CcuS0waxefxw/y9Q3y9dWPAXbr/t2M3FyKov4bIwcAGgSKogjHCQSCFsHBLQKDvNzrsK9ymoK5UKBLKmNLdJyUR/ylvCFeQht+TQ/IkeJkkn+FlKURnYLwJMTGizi1IfbNnn66+CqOVyFdJizLarW60pKSixcvaDQarVanKCvbHRPzypgxAoGAFtLlI3nyKx6ulGClkDBDYyKXyyMjI0tKSgghYWFh169fNzp1QUZGxvLly2NiYh48eKBSqfh8vkwmCw4O7tOnz/jx4/39/auqv6ys7J9//tm6devly5dLS0s5jpPJZOHh4cOHDx81apS9vX1VO7Is+8EHH2RkZBBCKIqaO3duaGio0ZLTp09PSkrSL69du9bGxqZGPwGABkAnpOProl6W2Go0kSyxTMJsIBGJwkNDw0NDSxVldxKTbt67m1cot2xIAEAIYVmWz+e5uTh6urj36NCx7uYu0rJkQ4pqWaIqtlBXvoeGiCYJjg7dD2S+EWL3VgtbqaC6ABgVufcPubeRlNw3stXGlwS/RJqPIYI6+CTw2BhdHMMwGo069lJsSXEJwzAsy+gY3Zkzpzt27tSqVWsej8ejeNRTt+7hyH/jcgNYFyTMYG22bt06ceLE/PzHxtssKipKT08/ceJETk7O0qVLje64Z8+eqVOnJiQklF9ZXFyckZGxf//++fPnf//99yNGjKiq3dKBAwcM+zIMs23bNqMljxw5Eh//MNlYtWoVEmYAA4rjHs2A0gDIpDb6rsLy4qI7iYk8fpOeqwbAsjw8nAd5uQQFeN69m0XpBHWXLV/I1755qfR6iZFeJ50d+XF56iuF2g8u5C+4Xrisu8sgv6pv4llnycXPSVlalQXKUsnVBSRhHYn8kvj0rY3YjWNZVqvVZmVl3bxxQ8fo9INyMQyjVqu3bdnq7+8vEAjEtJiiKUJIFU1qOMOEUuRhJ+eHhSiqXD8aNMYBK4WJxcGq7N69e8yYMRWyZQOpVDp16lSjm1auXDl8+PAK2XJ5SUlJo0aNWrBggTlh7Nq169ChQ+aUBICGz9HOvku79hJRAxlxDaApahHiG9LMh1/H31vtz9T0OlFkNFsmhPR1Ex7KUOqXHyiY5w5lz42TG88ROY4krDWVLRuocsip98i1JXX0ZSHLsjpGp1Kpzp45o9FoGB2jT5g5lmMYJikp8czp00qlUqfTcY9NRfXYP5blPGy0YS5ahmEYhpHx1T18tb38tS5ijU6n4zi2cjNwAGuChBmsR0lJyeTJk9Vqtf5leHj4mjVrrl27dufOnVOnTs2aNevDDz9s1qxZ5R337t377rvvajQa/cs+ffps2rTp7t27SUlJMTExQ4cO1T8rZhjmo48+2rx5c7WRMAzz8ccfGyoEAHPhAQUAWMiOXF2QHa+Hc8Xp1g36ugkMCTMhhOXI5/Hyb+KMddmgKNJ9IXHvYd6ROXLjF3J1SU0DNlmjfrxrjmEZjVpz5/bt9PR0rUar02nVKlWZQsGwDMMwWq12d0xMbm6uWq1mWEY/0iHHVfzHsuzzYeycZymtVtvcSbtxDH9qL/r97vRfo/lRAfpH1g9LIm0Gq4Qm2WA9Dh48mJiYqF/u2bNnTEyMnd3DGVZCQkK6d+9utJlRYWHh22+/rdPpCCEURX355Zeff/45j/fwO+yAgICBAwcuXrx4+vTpDMNwHPfee+91797dy8vLdDCXL19es2bNxIkTa+30AJqChtQkGwCajqslzCu3lP4i+t8I2//FlhzO01Yo4MCnXAUkobji+u3JZR+3dRDyKnXC4olIz1/IiUkk55xZEdz8lTiHE+/eT3gCFXFE/3hZqysuLj5//pxapS4pKcnPzysqKiqUyzUajUgkkkgkhYWFu2N2jR33qkAgoKmqHqRxOh2j0bIsyz3bjGQXqket19A83vxBvF4B1PFk7r++y/jKE6wTnjCD9Th//rxh+ccffzRkywZGOxWvWbMmLe1ho6nnn39+1qxZhmxZj6bpyZMnjxkzRv8yJydnxYoV1QbDcdzs2bMLCwtrdAoATR4+bgFAfWM5MiFBrWLJHSX73HXlr5G2fV0rPmeOchGcyFRWuEK1cxQeGOhpJFvW40tIr2XEtZN5UXAk9kuiU9Q4eiM1cfr6WI7TarVxly5lZmYmJSclJycVFRUxDKNvj61QKORyeXFx8dkzZ5ISE3U6HctxHKfvxlwB0TE6jUZLCLmbyzpLdAuGUC+2Zpec0n5xkOgHoMB8AmDFkDCD9ZDLHzaLomm6VatW5uyi0+kM2a9QKPz666+NjiNC0/Ts2bMlEon+5Zo1a8rKyqqtPCsra968eWaFDmC1KI7IGM5HxwUxnCtHqmzrSAjGVgUAy/g3T3fhv37LCUp2yHXl0gjbvq4CWz71cXPJmSj71AGOv0XI7IW0m/jRV+rtHIUHB3q6SEx2q+ZLSa/lxDOatJ5M+u8gw86SAbtI2xlE7GKksDKb3Nv09Kejbxmtb5Kt0+ni4i6lPnigKCtjOU7ff5kjD5tQcxynVqkLCgpu3rzJsmyFJ8SP0mXC6XSMVqulKGpPAn/RKY5PmHFtdb8O1Y0OV+sn+wSwYkiYwXp4eHjoF1iWvXr1qjm7JCYm3rlzR78cGRlpIs0OCAjo1auXfjk1NfX69etVleTz+WKxWL+8ZMmSe/fumRMJgPXhOKGKjS7WTinWTCvWTi3RzijTvqZjA0hVrf7weAIALGFlxmNjjtz9L2e+8ozDvDY2XV0EPjY8VzE9Ikh27QWfrq4iQkhbc7JlPYENiVpBWr9LHMOI2Ik4hJCwt8iAXcS5nZHCSdtr5Yz0F1OKEB6fN2bs2H7P9pdIpDyapmmK0g9sTdM0j8fj8Xz9/D6YOrVHz540TZOH42Q/TJVZlvWSKn1tFAzDMoxOrdGyLBvhoU6Rc1P3icdsFh65qxvaXElxunKpNYAVQsIM1iM6OtrQ6Hry5Mm5ubnV7nL69GnDclRUVFVTRhFCKIqKjo42umMFEolkypQp+mWFQvHZZ5/hy1dogjhOqGBGKHSjdWwwSxw4TsZwrmq2WykzUcu2qHq3egwRAICQMoY7WlhxWOxUNcsSEiirmA+7SXh7+3uOD5aZmy1XRexEei4jIidCCCEUsQ0izceRnivyo/4u0dXadZCiKD5fkJ2V7ePjM+l/77Rp21YgEPD5fB6Pz+PxbG1thw1/YfwbryfcuUPTNI/Powj1sDE3IYQQjuNeaF78VptCW7rMU6rOLmYIoXr4KN7pUOIrU1EcQ1hdiVLLcuSxAbYBrA4SZrAePXv2fOaZZ/TLsbGxPXr02LdvH8MYnxxC78aNG4bltm3bmq6/fIHyO1b2zjvvhIaG6pe3b99+/Phx0zUDWBuK0nCRKrYPx1UYWpJiWA+FbiTL2VaxY93HBgBQzpUSVlUpzXvVTdDCxviHZHsRvSbazfVpsmU9sROJ+JJ0/EYz+PDJ7ru+cJzRJauTx0V2b77uaWv+D0VRfB6vZatWmZmZ169di4qOHjN2nKeXl0Ao6Ny5y3uTJ9M0vWHdutbh4S6urjyap59nudyQ11TMXbG9QL2wX4G/rXrzTQmfz99w3aZExczpWbC4X14LJ9Xv8VJC8R/uVVtxAzQwGCUbrIdAIPjjjz8GDBigby+dkJAwZMiQHj16fPLJJ3379uXzjbzbCwoKDMuGFt1V8fT0NLpjZTY2NnPnzh05cqS++9Ann3xy8uRJoVBYs/MBeFoW+/TCcWI104tUzJYf0nE+WraNiFe5mQaFVtkAUM9S1EZagQ10ro9PyDke/SfeUR27zBQyj2arSlHXymWQI4QQiqJpWiAU9ujZ89+dO86eOevl5TV6zBi5vDA/P2/H9u2lpaUdO3Zq3yFCIBBQNE2R/zpAE/3e1L1im6lHhM5ibYFaoOEENM3L10hmnnR3EWsENJerFDCUgKbph7ugTTZYKTxhBqvi7e196NCh8jMnHz9+fNCgQdHR0SdPnqx8JTeME0YIcXBwMF15+QLldzRq2LBhhibcFy9e3LBhg9knAVA7KKrWHlPUFMfZMFzVU69xPB1nZEZ0QhFSdbcIAIC6oDTWEM1FUB/XIgXD7cjXFTKPfThRMrWRdf7XTJqiaT6f7+TsFBHZkaKo1NQHx48dO3XixL87dhQVFjk5OT0/fJhYLOLz+TStb49d/gkzoWkeQ4uy1TIdJaJpHiGEomgeX1igtclWyzjew5UPd9EfGMDqIGEGa+Pu7r5jx45Nmza1aPGwnyTHcadPn+7Tp8/s2bMrdCcuP4OU6cbbFQpUmHqqMh6P9+OPP+qLcRz3xRdfFBUV1ehEAJ4OxXFiSx2bI/xKjbHLo6ocLhvPJwCgftk8fj/3F1FveQj8xPWRMKcbe5gsq2qSKrNx5dJWiqJ4PJ5QKAoLC/Pz9yOEqFTq1NQHLMfx+byRL73s5OgkEol5PFrfJcZYw+qHw4RVXFVpJZJlsFZImMEKURQ1cuTIK1eurFq1KjAwUL9Sp9PNmTPnyy+/LF/S0dHRsFztnMnlCzg5OVUbRocOHcaPH69fTktL++GHH8wLH6B2MJybpS7yFKWgqeKqt7M8KsfIao4jBCPkAUC9ChTTtjxqsBN/UbDoVqQ4KSTlN+ZPv/sr6+HQ/+YZaQcUJKnl6zZFUXw+XyQWd+vew8bGRp/j0jQdFR0d1jJMIpXy+Tyq3OQFxuZhNg8yZrBSSJjBagmFwjfffPPKlStTp041PBCeP39++RmnXFweTYSYmppqusK0tDTDsrOzszkxzJ4929CQ++eff05OTjYvdoBawBAvlnOsvlwdoEmZgK5yajealAmoK8a3URhZAwDqVYQdL6d9WYxs3+TUT1scjKIOvkCu/USuLyH5Vc4faaY8JTNgb+Ztucbo1mQl+2umtsJKmpCOtrWfMNM0LRAIHOztu/XoIRAK+XyBv7//gEGDbWxkAoGAqmqqv5pCvgxWCgkzWDlbW9sFCxZ8++23+l7NWq127dq1hq3t27c3LMfHx5uuqnyB8jua4OPjM336dP2yQqGYOXMmRsSAesOxdlo2zEIHZyS8gzw6vfIGitKJeEf4tJHvp1hKxnJ2dR8bAMAjPIqI42aTC5+QBzFEnf9wLacjp/5HCm5WLM2Z2womX8U8uy9zf4ay777MuFx1ha23ixm1jutlV7F7Vydbnrf4qT+cP/ykUe7zBkV4PJ5QJAoKCm7durXMVjZ23KsO9vYikYjm0f+NHcHpW2RzT/oPwFohYQbrR1HU1KlTDWNc37z56P7XrVs3w9zLhw4dMtGNmWXZQ4cOGSrs1q2bmUefPHlys2YPxzfatGnTvXv3aho/wJPhiEDN9uCIxCJHp6k8GX+FgL5JEcPTFZam5BJ6l4S/32jTax0bwJFqxt4DAKh9zUYZWanMJodeIuc/I2mHSf51knGCXJpL9gwiJSnV1pevYvrtzYwv0BBC0hVMl5iM+ZflKWXMmTztjnT1xEulHQ4XDjxVtCBIOMjxsWY1//OqYnwHs+nnUuY4jjM0riYc4QhFUTw+TywWd+vRY8zYsYGBgWKJhMfjPV7eMHDXk/wTCAQsy2HoRrA+aPwGTYJAIPDy8srIyCCElJSUGNZ7eXl17NjxwoULhJDbt2+fPn26V69eRmu4du3a+fPn9cthYWEhISFmHtrW1vbrr79+5ZVXCCEMw5SWlj7NiQDUiI4LUrNdxPQxSzSV4/hUqi1/mZaE6tgAjhPxqDw+ncAnaYQY6bbHcRIN09nkUGEAAHXDqxdxiSR5sRXXs1qStJUkbX1s5dHXSJ91ROZbVWV5KubZ/7JlPS3L0RT1zS3FqpRHj5qTFNygU0V7etjTSSSmQEcIaWNDv+LxtAmznZ2t/JqckHJX/f8WaIoWCoU8Hq9d+w40TdM8mqbpRwW4x0uXw3EPZzAwLBhDvfDi8NQHD6J6dqeQNIN1wRNmaExycnLKysr0yxKJ5OGF3gxKpfLBgwf6ZT8/P8N6mqbfe+89/TLDMB999JFaXbHdFCFEq9VOmzZNp3v4KX/ixIkikcj8sF988cWoqCjzywPUFo4TKHXP6Vh/SwVAUaVC6pKUt82G/7eYd4BPJRPjk11RGjZCy1mqATkANHEU6fQ14UvNKqvIJEfHkzIjXU4IIRwhIw5ml8+W9Z7xkhzOqdhjOUnBDjpV9EOAcLATX0SR30PF/KfONGUymUQkvH/vfuVN+s7MfAFfIBDw+Xz9jFBGTsFYW+sKCxX+BQUHLVzyU9v2bYrk8vKfsgCsAxJmaHCSk5MnTJhw/vx5rfaxW4tKpZo3b55hXih//4o5QHp6+r///qtUKivXuWTJkpych6PyDhkypPymkSNHtmvXTr98/vz5119/vbj4sdF9S0tLJ02adOTIEf3L0NDQ1157rUZnxOfz582bx+fj0RlYAMs5ljHjGdaz4vwf9Yoz+Yib0nHBSmaIBefBAoCmzi6IdPnB3HEHy9LIkddIWWblLRQh09vYC+jHrrduIloq5CUrjXRFSVKwA08X/Rgg3BMuiazUpfkJ8Hi8Xj27M1rNoQOH5HJ5xfAoiqZomqapqp4Cc6RGzbDt7O0+nDHl+wXz4uMupac8mDTp7Wrn3QRodPAJHhoWhmGmTZu2bdu21atXBwQEdOvWLSwsTCaTpaam7ty5s3wH4BEjRlTYd//+/W+99ZaXl1ffvn179OjRvHlzoVCYkpKyc+fOLVu26MuEh4e/8MIL5fcSi8W///57dHS0vqn233//HRsbO378+Hbt2nEcFx8fv3bt2rt37+oLi0Si33//3d7evqbn1blz59GjR5cfbwyg3uhY/1Jugo1gLZ9KaXjDmFI6NrCMGcdw7paOBACaNp++pPsicm4G0SmqL1yWSo69SQbsIDxhhS3P+dts6+M25nhusfZhhtzbU3I0V1vVxTdbJglfQAAAIABJREFUxd0q1g33qUHLNdOEQmFkRIfQ0JAzZ84xHOnYKVJodrM4jpg7fBePxxv2wvPjXhtz+uSpA3v2jh09ytXVFdkyWCUkzNCwnD59+t9//yWEsCybmJiYmJhotFivXr1GjhxZYeXx48c5jktPT//zzz///PPPynu5urquX7++cmvqDh06bN26ddSoUQUFBYSQu3fvzpw5s/LuMpls/fr13bt3f4Lzoijqm2++2bp1q6FJOUB90nGBJdp3pfztQjq23ChcFsfTsO3KdC+znKulIwEAIMSnL+m3hVz8nOTFVVPSNph0/Lpytqw3xN/m4lDBxFN5x7JVhJC+3pK9ldpj63Vy4K+MkLV1qOUP5Dwez97O7tl+z2RmZR0/cszT26tVeCuKomvrO9OIjhGTp7xXkJ+39Z/NQwYPCg0N4fP56LoM1gpNsqFh6dGjx86dO6Ojo6vqn0xR1NChQ7dv3y4UVrxLDR061MvLy0TNJ0+ebNOmjdGt/fr1O3ny5MCBA6vaPTo6+sSJE88//7wZJ2Gcr6+vYYopgPrHci6lutdLdW/pOD+LNs8uH89rpdq3kS0DQANiH0ye+Yv0XE48ehK60hBcFI+4dCCd55OB/xK3CBPVhDgIjwzxOvCsx3A/abSn5FjeYwmzmCYD3ATbu9ie7eNQ69nyw0gpis/n+3h7Dx/2nL2tbM+uPWmpadU3sjaMrV0FTy/PufO+mTZjypGDBymWnTplcsuWYQKBANkyWDE8YYaGhabpQYMGDRo0KDU1dd++fWfOnLlz545cLhcKhZ6enu3atRs+fHjnzp2N7jtixIjBgwcfOnTo8OHDt27dys/PZxjGycmpTZs2Q4cOjYqKMn01b9my5e7du+Pi4rZv3x4bG5udnc1xnJubW4cOHYYNG9apUyfTY4xFRUUFBwcTQqRSaeVkXm/atGk3btwwPGQWCJ52MEyAmuH4Gqajlmkt5F0S847zSVVDcNUlisew7mqmu5rpyRLb+j46AEC1KIp49ybevYm2lBTcJGVpRFdGeGIi9SKOLYnY0dxqCOnnK+3nK2U4sq+7XZKCLdVxUh7lL6XD7fkyQX1kmBRFCYXC8NatmgUHnzt3/sb1G127dbWzM3HtrfIRtEQiGTd+7JDnBh06cLCkqGDi22/JZDK0wYamAAkzNFC+vr4TJkyYMGECIYRhGP3QjtXuJRaLhwwZYhjWi+O4Gn3lSVFUREREREQE+e8bVjMH4qZpeuXKldUWs7W13bx5s/nxANQFjkjUTHcNE8GnU4TUJQF9i6ZzKGK8uWDt4TOck45trmEjtFwIx0kbwlNuAABTBDLi3omQTk9ZDY8iHZ0FHZ1rJaYnQdO0VCqJju5VUCA/dvyEWCrt1KWz0bFIDaNhl0dR1LMD+r49acKtmzf3xux+fuhzXl6ePB4PT5WhiUDCDI3AE39/+TSXcoqqcghJgMaP4ohEy7bQcs0pWsmn0vn0fT6VxKOyaFJIUSqjUyXXEI/jRCxxZDg3Heuv45oxnDfH2XAEDSsAAOobRVE8Hs/FxXnY888lp6Ts2RXTPDQ0rKXRyfwey5jDWoZ98OFkPp/eGxMTHdVr6OCB6K4MTQ0SZgCAJozicZxMy4VqmeYUraOIiiLFPCqfpvJpqoCm5DRVQhElRVSE6CiiIxxLKEIISyiKcIQQmqN4hONxRECIiOUkHGfHcnYs5cyyTiznzBI7jhNzRIjnyQAAFkdRlEAgCA4K8vP1jb0Ut2Pb9q7durl7PDZJgeEJs7Oz08T/vd2pc+ShAwcD/P3+985EkUhkZss7AGuChBksIzc3t6btpZsOw5TRAPWHojlOyBEhIXYM50MIIYQjFENxukf/JwwhDCEsIRyhKMJRhNAcoQnhEY7PER6h+BzHI4SH9BgAoMGiaVokEnXp3Cm8dasjR49djovvGdVLKpUYCggE/JGjRr4y5uXzZ8+dP3Nm1EsjHR0d0F0ZmiwkzFB/ys/ndPXq1aioKD8/PwvG0zBxHHfmzJnyayrPgwVQLyjC8TnCJxzhSKWBYIyOC9PQ5ngGAIAq8Hg8W1vbIYMHZWdnHzxwwNXdvWPnTo5Oji+PfmnY8KE5OdkH9uzt/2y/gAB/dFeGJg4JM9QTiqK6du2akpJiWHPy5EkLxtNY6H9ulo4CAAAArI1+6ikvL6/Rr7x869btrZs2+wb4d+nS8fTJkx3at5vw1huYLwqAIGGG+jRr1qx9+/YVFhZaOpDGpHfv3oZBvwEAAABq18Opp8Jbh4aGpKamMQwT3bM7uisDGOAvAepPy5Yt9+zZExgYaOlAGgeKooYNG7Zp0yY0yQYAAIA6RdO0WCxu1iw4NDREIpEgWwYwwB8D1KuuXbvGxsb+/PPP7du3l0gk1e/Q9FAU5ejoOGTIkB07dmzZssXFxcXSEQEAAECTgDk1ASpDk2yob05OTlOmTJkyZYqlAwEAAABro1Ex+SqlpaMAAOuBJ8wAAAAAAAAARiBhBgAAAAAAADACCTMAAAAAAACAEUiYAQAAAAAAAIxAwgwAAAAAAABgBBLmRumP9RvadOxcWFhYVYFtO3a26dg5IzOzfg5XR/vq1e65AMGPFBqt3ft39x4SnZWTZelAAMA6FRUXTfmkFmbxqHCxwrULoFFDwgxNyN//bG7TsXN2To7FKxz64kvf/fCj4eXVa9cnTf7AaEkTm2pUDwAAAFiH7THbew+Jzs3PtXQgAE0CEmZo6F4Y9vzVi+e9PD0tHUitSXnwIDklpXdUL0vVY30/UgAAgKdxPylx1tzPX3vntSvXL49+a/QvK5fk5efVVuWD+w8+GnPMw82jtioEgPqEhBmgvh09fkImk0V26HD56tWJ771/KT5ev760tHT5qt8//nwWIcTEphrVAwAAAKZlZKa//9G7djK7hd8tbNOq7fyv5nl6eG3eudnScQFAg8C3dADw5DRa7bwfF+zZt1+t0XTp1PGjD6d6e3lVVfh2QsLS5SvjLl9Wq9X+fr4vjxjx0osjyhfIys5evur3M2fPFcjlPt5ew4YOHfPySwKBoHJVGZlZ7039UKNRL134s7+fnzn76hjm5yW/7NgVo1QqO0VGzPr0E3c3N/2m4ydPvf/hNP2yWCwODgx85aWRQ4cMNuy7bcfO2XO/3ffvDv0T0T/Wb/hp0eIj+/as++tvoxVWZcGixX+u30AI6Tf4Of2alUuXdOnUiRCSnZPz64qVp86clRcWurm6Dhk0cOKbbxjiLyws/GX5ipOnzxQUFLi7u0f17DHhjdcd7O2rqrCq8oZIjh4/0bN7Nz6f365Nmy8++3TDxk3xl69kZWdP/2zmsOeGvP3G64QQE5tqVI9RFX6kpgM2/c554l8HVCsnL2ft339evHRRXlTo5eE5sN+gF4a+IOA/fFveS7y3ev3qazevqtUaX2/v5wcOGzr4ecO+m7ZtWr562dZ12zbv2Lz30F6VStW+TbsP35vm6uyqL1BUXLR6/e/nL56XF8pdXd26deo65uVx9rZ2hJBfVi75d++uA9sPGGo7e+HsZ3M+XTx/SXircEPlW/7c+vfWvw4dPchx3IB+Aye+PolhdMtXLz98/LBGq+nVLerDd6cKhSJDJbn5uX+sX3P+0vmi4iIXJ5d+fZ4dN2qc4XQqMxzln53/HDxyoLik+NDOw0bLbP5zy99b/jp87JBaq41o1+HdCe95uqP1BADUwJETRzQazZT/TVEolRRF+Xr7+Xr7VbuX6at0ebv37/5xyQ9/r95oeMhs+pJo+hq+bPWyf7ZtIoS89NpIffkfv/kxol2k0SCrOpBWq3l/xvv58vxVi1fZ2zsQQjQa9f+mvVNWpli5eJWtTFZtkABNB54wN2ILFi1uFRa2Z8e2P1auSM/IGD9hYlFxsdGStxMSXn1zgkaj3rDm90N7YoYPHfrtDz/+tHiJoUB6RsbL4167eev2/G++Pn5w/8/fzy8oKIiNi69c1bXrN8aMf93ezm79mtX6bNmcfX9ZtrxZcPDubVtWr1h2J+Hu57PnGDZF9exx9eL5qxfPX7lwbs+Obf2e6fPF198cPnbM9LmbqLAq0z6Y/OmM6YSQg7t36Y+oz5YzMrNGjXstMSl58U8/nj5yaM6sz3fuiin/ePbTL2ZfvBS36MfvTx09vHzJIi9Pzx27YkxUWFV5PblcfuXaNUM7aoqiygdZ/qWJTTWqp1omAq72naP3BL8OMC0zO/PtD96+cy/h8xmzdvy1Y87MOfJC+ZVrV/Rb7yXee2/Ge1qt5tcFv25eu2Vgv8GLVixavnp5hUpWr/s90D9ww8oNC+ctvJ94f95P8wybvl0w9/LVK998/s2uf2J+mPO9u5vHvoN7axThb2t/axnWasPvf382/fMdMTs2bv170fLFrVq02vDbX199MufYqWN//r3WUDgrJ3viB2+npKbM/eLbXRt3ffTBR/sO7v3mh6+rPcqyNcsC/QP+XL5uyjtTqyyzellos9ANq/5ePH9xVnbmBx9NLi4tqdG5AEATp1KpWJYtLSszfxfTV2nTzLwkVnUNf+eNdyZP+oAQ8s+fm4/GHDsac6yqbNnEgQQC4ezP5mjU6jnff82yLCHkp6U/P0hLm/3ZV/ps+Ymv2wDWBwlzIxbg5/fc4EEymSysRej3c+fm5OZu+Huj0ZJLfl0mEAgWzJ8X4O/vYG8/9pVRI4Y9v3bDXxmZDwds/GnxErVatXzxovbt2tpIpYEBAR9Ofr9r504V6tl/6NAbEyd169pl5dIlhieQ5uzr4+Pz3KCBMpmsdcuW48eNPX/xYlp6eoXKKYpycXZ+47VXO0VGbtm2w/S5m1OhmRYtXarRapf89GOrsDCJRNKpY+RnH804dOTo1WvX9QViL116JjqqRWioSCj08fYeM+rl8WPHmKjQdPljJ0/RNN2jWzdCyOWrV2d/822f6KhPZ0wPDQ358du5iUnJn37xpelNNarHHCYCrvado1eLvw7QW7F6uUaj/uGrH8JbhUslUj8f/0lvTIps//Aj0aq1vwkE/NmffuXr7Wdva/fi8y8O7j94845/snKyy1fi6en1bJ9nbWxsWjRv8fKIUXFXLmVmZeg3Xb56uWfXHs2CmwsFQk8PrxFDR7z8wss1itDf169Pzz42UpvOkZ17du+1btN6Dzf3PlHP2NjYdIzoGNW91+4Duw2Ff/tzpVannfvFt6HNQsViSfu2HT54Z8qJ0ydu3r5p+ijent4DnhloK5MNGTCkqjJ+3r7PPtPfxsameXDzWR99mVeQt23nlhqdCwA0cd06d6co6sNPp+47tE+n0+oTSNNMX6VNM/OSaOIabibTB/Jwc/902sz4q3FrNqzZvT9m/+F97014L7RZaI2CBGgKkDA3YtG9Ho32FBQYEODvfz42tnIxjuMuXIzt0qmjzMbGsLLfM31Ylo29dEn/8tSZs106dXJycjRxuFV//PnxzFlvvT5+7uwvyze3NmffXt27G5abBwcTQgwJFcuyf6zf8NKYcZ16RrXp2LlNx87nLlxITUs1UZvpCmvq+MmTHSM6ODg4GNZ07tiREBIbF6d/GRLSfMv2HZu2bMnMMmtCCNPljx4/3ikyQv+7aNemzcqlSyI7dNBvkslk70x4a/43X5veVKN6niZgc945erX46wC985cuRLSLKP+2NOA4Lv5KfETbCBvpo99LVPcolmWvXHusZUeXyK6G5SD/QEJIxn8ftoKDgmP27dq5Z0d27mM5tvk6RXQxLPt5+6pUys6R5db4+hcVFSqUCv3LsxfOtAtvZ2/3qGNCh7YdCCFXrl82fZRunbtVG0m3zo/efv6+/r7efnFX48w7CQAAQghp2aLlN5/P5fF5y1cvu3H7xvOjh879ca7p7NTEVbpaZl4STVzDa+tAXTp2GT1yzIZ/1i9atqhf72eHDhpa0yABmgL0YW7EnJ2dHnvp5JRfUFC5mEqlUms0Ls7O5VfqX8oLCwkhSqVSqVS6ubqaPty/u/c4OzmV711s/r6uLo+ObiOzIYSUlJTqX/685JcNGzfN+vSTXj26Ozo40DQ9ZcZHt+/ceeIKa0SpVCoUyqPHT7Tr/PC2xHEcx3GEkMKiIv2aBfO+W/jL0oVLls6d/4O3l9czvaPfen18+T7JFZgor1arz56/MGPK0878VFv16FUVcLXvHIPa+nWAnkqlVKmULk4uRreq1SqNVuPk+Nifv5OjMyGk6L83rZ6L06MyUhsbQoihweHsT79a+cfKlWtWLvx1oae7Z89uPUe/NFbfh9kYrvKqxyqX2hBCyocklUgJIWWKMqlEqlIplUrl6XOnnxna52F1//2VVdWLpNxRjP8QynN0cKzwUl4or3YvAIDyunbq2rVT1wdpKZ/Nmdmhbfv9h/bHX4tbvfQPO5lt5cKmr9KmmX9JNHENr8UDDew78O8tf2l12ldefOUJggRoCpAwN2L5+QXlM9X8ggKjWZxYLBYJhRVyaf1LRwcHfQGxWJyTW81sfiuWLP5o5uevvjlh5dIlgQEBhsrN2ddEl9p/d+/p90yf4UOfM6xJT6/+C9Qa9dE1QSwWi0Sifn36fDtndlVlPNzd5309h2GYhLv3Tpw6teqPP2/eur16xbInKH/2/AW1Wh1daSKoNuGtly9eZLQ2o5ueoB4Tqgq42neOQW39OkBPJBKLROK8AuMzmohEYqFAWCEnlBcWEELsK1wBqv69uLm4fT79c4ZhEpMTz144s2HzX3fuJiyct5AQIrORabUarU5rGNklN89YJJUqr+ptIBKJhUJRVPeoz6Z9VlU8VeHzq79JyQvlLs4u5V/a21WV+QMAmGJv5+Di5PLhu9Pat+0wZ95Xl6/E9+puZO5G01dp02pwSXy6e6s5B9JqNV/Nn63/unPez9/98sMvAoGwZkECNAFokt2IHTt50rCclJyc8uBB545GOs9QFNUxMvLchQsKhdKw8uCRozRNR0ZE6Av06tH9/IWLBQWmHst4erivXbXS0dFx/NuTbt2+Y6jcnH1NEwqEhuWEu/cS7t174qpMk0gkhBCNRmNYQ1FUVM8eZ8+fLy6uZpQgHo8X1iJ04ltvDh7QP+7yZf33rJUrNF3+6PHjrcLCqn0gX63aqqe8ygFX+86BOkJRVNeOXeIuxxU+/iTfsLV9m/aXLscqlY9+L8fPnKBpum14+xodiMfjNQ9u/uorr/WL7nvt5lX9u9TLw4sQkpKSbCh29uKZJzsRQ8DdOnWNjb9YUlon7Q5Onz9tWH6QlpKWkapvNwgA8MS8PbwJISKRyOhW01dp02rlkigWiwkhWmMfP2p0oMUrFielJH35yewvPv7yftL9X377pRaDBLAaSJgbsZQHD2L27i0tLb19587HM2e5ODuPHmV82J7335mkVqmnffJpyoMHRcXFf236Z+v2HWNfGeXl+XB6g6nvvycUid754IP4y1cUCmVySspPi5ecPX+hQj2Ojo6rVywLDPB/c9I7hll/zdy3Kr179dx/6NCZs+eUSmVc/OWvvv02skPNPvSbr1lwECHkxKnTWq3WsPLDye/TNP3ulKlx8ZfLFIr8goJzFy58+NEn+mbhhUVFE/733tHjJ3JyczUazbXrN85duBAZ0UH/MK1yhSbKsyx7/NSp3pUeC9dUTeu5nZDQpmPn+Qt+MrrV9AlW+86BOvL26xMFQuFHX864duOaUqlMTX+wfPXy2PiHgxS8+epbarVm9rwv09JTi0tLtu3atntfzIvPv+jh5m5O5UUlxdNmTjt97nRefp5Wq7l159aly7Ftw9vpf+k9u/Wyt7X7dfWynLwceaF89frVEon0KU9n4huTaJr+dPbH125cVSgV8kL5pcuxX377xb37d5+yZkJIWkbawaMHysrK7t2/+/X3Xzs5Og0fOqL63QAA/rN6/epVa1fdvX9XoSjjOO7u/btLViz28fZt27pNVbuYvkqb9vSXxED/QELI2YvntLpHn2fuJd7rPST6l5WPZrIwfaADRw7E7IuZ9MY7rcNah7cMf3v8xH/3/Hv42KHaChLAaqBJdiP24eT3V65eM//HnzRabafIyAXzv6uqY21Yi9C1v69aumLFK6+9rlar/Xx9P5724cvlZtP19vLauPaPZSt/m/7pZ0XFxb4+PsOeG2I0cZXZ2KxYsnjaJ59Oev+DBfO+69Wju/n7GjXjw6k8Hm/m7K8USmV461azZ878bfWa9IyaDWthptYtW056683Va9f+8PNClmX10yZ7eXpuWr925e+rP/tydk5urqOjQ0iz5iNfGB7SvDkhxMHefsIbr2/8Z/Pc+d8XFRe7u7k+27fvhNfHm6iwqvJXrl0rKJD3jop6yrOorXr0TJ9gte8cqCOe7p4rFq74c8MfX82fXVxS4u3pNbDvwLbhbfVbmwc3/+XHpavX/z7pw0katcbby/u9t99/ftDzpus0sLe1G/vy2B0x2xcu+7m4pMTVxSWqR++xL43Vb5VIJF9/Pnfpb7+MfWuMi7PLmJfGhoWEHT1x5GlOx8PNY+Wi39ZtXPvtgm/zCvLs7e2DA4KfGzA0KDD4aarVm/T6pHX/rPtlxRKNTte+TfuvPv2q6s7YAABGjHj+xb0Hdv/8608P0h4olco538+JbBcx9uVxYrGkql1MX6VNe/pLYovmLV575bW/t/7166qlLMtWNQ+ziQMlpST9tPSn6B7RI/77hvGl4S/duHX9x18WNAtu7u/rX6fXbYDGhdK3wQOAuvbT4iUHDx/Zu3O7xevZtmPn7Lnf7vt3Zz08KN6+92jzsJZObsZbjxfk5N69dbNnz7Cqdr99O53T8lsGhdRZgNCIbdq2afnqZTv+2ll+HNemieO4k/Hnw1r6uDgbGaAIwJrU6X2hQF4wZ/4c/YAOUG9uJiZQAl2LFt5VFTh58la1nyWGD+xdZwFCU4cm2QD15OjxE0/fHrtW6ilTKAghJgb6bjj4PFrH6CwdBUBDp2MZQgifh3s6WL86vS/QFP6ILEDH6Ph8nqWjAKgSmmQD1JNdWzc3hHqKi0uOnTjRLDhYKq2ypVnDIZIICwpqPKQKQFOjHwFOIhFWWxKgsavT+wLmfLAIpVrl6PokM1oD1A8kzGA97t2//8Ko0UY39e3T+6f58+o5ngboyLHjH38+KzSk+dzZX1o6FrPIZGK1RqPWakQCZAIAVSpWlPL5PJFIYOlAAOpcnd4X7O0d0B67nqm1GrVGY2MjtnQgAFVCwgzWo1lw8NWL5y0dRYPWJzrq4qkTlo6iBuztpDRNFxTKPV3NGv8ZmpSXX3j55ReMTw3Q1OQXFjg6yiwdBUB9wH3ByuQXyWmadrB72ukYAOoOumoAQMNF05Srq21mfo6lA4HHHDh18sCpk9WXg3qhVKmKSkvc3DDcFzQJuC9Ymay8bFdXW4pGa3houJAwA0CD5unpWKooyysssHQg8IhWp9PqMBhbQ5GSlSoWC/GEGZoO3BesRl5hQalC4enpaOlAAExBwgwADZqtrcTNzS4xPYXlWEvHAtDgFJeW5BTkBwe7URitCJoM3BesA8exSRkp7m4OtraNYBRSaMqQMANAQxcY6KbVah9kZlg6EICGheXYu2lJjo4yJye0x4amBfcFK5CSmaHRaAMCXSwdCEA1kDADQEMnFAoCg9xSs9Nz0QAPoJw7yYlqjbpZMwx9BE0O7guNXW5hQWp2emCQm1CI4f2hoUPCDACNgKeno6en453keyWKUkvHAtAgpGSm5Rfmh4V5i8WYdA2aItwXGq8SRemd5Hv636ClYwGoHhJmALAYikcTQjiWM6dwUJCbg4P06t1bBcWFdRwXQIPGcVxiekpKZlpwMw8HBxtLhwNgMbgvNEYFxYVX795ycJAGBbmZU55lOEIIzUPOAhaDNx8AWAyfzyeEaLSMOYUpigoL83F2lt24fyc9N6uOQwNooBhGdyMxISMnq0ULLw8PB0uHA2BJuC80Oum5WTfu33F2loWF+Zg5VKFWx5D/PjAAWATefABgMRIbKSFEUaYWicy6FtE0FRrqJbURJian5BUWNPMOsJFK6zhGgAYkuyA3Kf0BR3Hhbf3sbPHmB8B9odEoUyjupScXl5b4B7j4+tRgoC9FmZoQIrbBrxUsBgkzAFgMny8QSyWFRWWOTjVoVurr4+JoL7uXmB1355qbo4uXm4etFK1SwZqxHJtfKE/LzixVlnl6OPgFuAr4PEsHBdCA4L7QkJUoyjJysnLkeTJbSbu2ATJbcY12LywsE0slfD7GBgOLQcIMAJbk4Oycl5sTGGhWRyYDma24XVv/nJzitNS8+Nu5IqHI0dZeKpEIeHx0c6oHaq2GEJJbmG/pQKwcwzBqjaZUWVZYUsSynJOTrH2LABubmn3WBGgicF9oUFiG1ep0CpVSXlKk1qhtbEQhIV5ubnY1rYfjuLz8EkeXmn1IAKhdSJgBwJJcPTyyUtMKCkqdnGQ13dfNzc7Nza6kVJmfV1paUlaQU6DTMax5Q4jB0yguKyGE3Eq8a+lArByPRwsEfBuZKCDQzdnJ1syeCwBNGe4LDQRNU3w+z0YqcnO3dXbxtJVJnqweubxMpdK4eHrUbngANYK7LwBYklRq4+DsnJSc4+hoY+b4HxXYyiRPfCeGJ1O8v5gQ0rNnmKUDAQAwAvcF68BxXFJyjoOzsxQN7MGi0EYFACwsIDhYpdRmZsotHQgAAAA0FJmZcqVS6x8UZOlAoKlDwgwAFiaSSDy8fVJS8hRKjaVjAQAAAMtTKDUpKXme3j5iDHsOloaEGQAszzvAXyy1uX79gda8OZkBAADAWml1zM0bqWKJxNvfz9KxACBhBoAGgKbpkNatCKFv3kxjGOTMAAAATRTDMDdvpLEcFRIeTvOqn0IPQ7pBXUPCDAB1iM/nMaxZCbBAIAwJD1eptJevpKjV2roODAAAABoatVp7+UqKSqUNCQ8XCITm7MIwDJ+PYYyhDiFhBoA6JBKJNGq1mYWlUpvioKwiAAAgAElEQVRWHSIIxY+PTy4oKK3TwAAAAKBBKSgojY9PJhS/VYcI80fG1mrUIpFZqTXAk8H3MQBQh+xtbcpKS8wvLxSJWrZrn5SQcONGqpOzLCjQXSLBXRAAAMCaKZWaxKTsgvxSZze3wJAQnhktsQ3KSkvsbTHvFNQhJMwAUIdcnRyvJ9znWJaizW3PwuPxmoWFuXt5Jt+9G3cp0clZ5uZu72hvQ/PQIgYAAMB6sAwrLyrLyS4qyC8VSyUt27W1tXeoUQ0cyxYXFvqFBtdRhAAECTMA1ClPd5ert+7K8/Kd3FxrtKOtvUPriMj83NycjPRbN9MpQsRSkUjI5yFtbgBKipWEkFu30i0dCAAANEoMw6rVOpVSzREis7MNbNHC2dWVoqia1iPPy2cZ1tPNpS6CBNBDwgwAdUgiFnm4OmempdU0YSaEUBTl4ubm4uam1WiKC4sUZaVajQZjaDcEHEUTQlhKZOlAAACgUeKLeBJbodRGZudgLxA+ed+rzLQ0D1dniRj3I6hDSJgBoG61DA06cupiXna2i7v7k9UgEAqd3VydSY1TbqgjiQ/SCCHNW7a0dCAAANB05WVnl5WWdGobaelAwMqhcSMA1C07mU2gr1dqYiLD6CwdCwAAAFgDhtGlJiYG+nrZ28osHQtYOSTMAFDnwkICKYrcu3Wb4zhLxwIAAACNG8dx927dpigSFhJo6VjA+iFhBoA6JxQIuka0KSksTE1MtHQsAAAA0Lg9SEoskcu7dGgtFAgsHQtYPyTMAFAfHO1tO4SHZqalpSUnWzoWAAAAaKzSkpOzUtM6tGnh5GBv6VigScCgXwBQT3w83XU65sqNBJVSGRQaSps9MzMAAAAAy7KJd+7Ic3Pbtw718XzCkUQBagoJMwDUnwBfLxup5Hz89Zvx8f7Nmtna47thAAAAqF5JUVHKvXsatapbx7auzo6WDgeaEDzhAYB65ers2LtbpI1YePPy5fu3bqkUSktHBAAAAA2XSqG8f+vWzcuXbcTC3t0ikS1DPcMTZgCobzZSSfeObTNz8q7eunfl4gU7B3tHZxeZnZ1YIuHx+RRFWTpAAAAAsBiO4xidTqVUlBaXyPPziguLpFJJl4hwTzcXS4cGTRGFWV4AwFI4jsvOzU/NyM7OK9BqMUtzo5H4II0QEuTnY+lAAADAmgkFAjcXR18vD3dXJ3yfDpaCJ8wAYDEURXm4uXi4uRBCFEpVmUKp1eo4gm/xGrrC4hJCSKf2rSwdCAAAWCGKUAIBXyoR20gllo4FAAkzADQMUolYKhFbOgowi0QsIoR4e7hZOhAAAACAuoVBvwAAAAAAAACMQMIMAAAAAAAAYAQSZgAAAAAAAAAjkDADAAAAAAAAGIGEGQAAAAAAAMAIJMwAAAAAAAAARiBhBgAAAAAAADACCTMAAAAAAACAEUiYAQAAAAAAAIxAwgwAAAAAAABgBBJmAAAAAAAAACOQMAMAAAAAAAAYgYQZAAAAAAAAwAgkzAAAAAAAAABGIGEGAAAAAAAAMAIJMwAAAAAAAIARSJgBAAAAAAAAjEDCDAAAAAAAAGAEEmYAAAAAAAAAI5AwAwAAAAAAABiBhBkAAAAAAADACCTMAAAAAAAAAEYgYQYAAAAAAAAwAgkzAAAAAAAAgBFImAEAAAAAAACMQMIMAAAAAAAAYAQSZgAAAAAAAAAjkDADAAAAAAAAGIGEGQAAAAAAAMAIJMwAAAAAAAAARiBhBgAAAAAAADACCTMAAAAAAACAEUiYAQAAAAAAAIxAwgwAAAAAAABgBBJmAAAAAAAAACOQMAMAAAAAAAAYgYQZAAAAAAAAwAgkzAAAAAAAAABGIGEGAAAAAAAAMAIJMwAAAAAAAIARSJgBAAAAAAAAjEDCDAAAAAAAAGAEEmYAAAAAAAAAI5AwAwAAAAAAABiBhBkAAAAAAADACCTMAAAAAAAAAEbwLR0AAAAAAIA1yMzMPHTo0K1btzIyMhQKhaXDqZmAgIAZM2a4urpaOhCAhgUJMwAAAADAU7l58+ZXX321e/fusrIyS8fy5I4ePbp79243NzdLBwLQgKBJNgAAAADAE2JZdvHixR07dvznn38adbZMCImNjR00aFBeXp6lAwFoQJAwAwAAAAA8oenTp0+ZMqXRNcCuyqVLl/r375+bm2vpQAAaCjTJBgAAAAB4Er/++uvChQs5jtO/pCiqZ8+egwcPDg4Olkgklo3NTEVFRaNHjy6/Ji4ubsCAAXv37kXbbACChBkAAAAA4AmkpKR8/PHHhmzZx8dn1apV/fr1o+nG1ITT6MPkuLi4IUOG7Nq1y93dvf5DAmhQGtPfMwAAAABAAzF37tzS0lL9speX1+HDh/v379+4smUTLl68OGTIkOzsbEsHAmBhVvInDQAAAABQb4qLi7dv365fpihq0aJFISEhlg3p6Xl5eQ0fPtzwMjY2dvDgwejPDE0cEmYAAAAAgJo5f/68YTTpVq1aDRs2zLLx1AqhUPjXX3+VP5dLly4NHDgQ42ZDU4aEGQAAAACgZhISEgzLzz77LJ9vJQMDicXijRs3vvDCC4Y1+nGz0TYbmiwkzAAAAAAANZOZmWlY9vPzs2AktU4kEq1fv37EiBGGNfoxwJAzQ9OEhBkAAAAAoGZUKpVhWSQSWTCSuiCRSNauXVs+Z46NjX3uueeQM0MThIQZAAAAAAAeI5VK161bV75t9sWLFzEGGDRBSJgBAAAAAKAiiURSeQywAQMGYAwwaFKQMAMAAAAAgBEikWjjxo3l55qKi4sbMGBATk6OBaMCqE9ImAEAAAAAwDiRSLRhw4by/ZkvXbo0ePDgrKwsC0YFUG+QMAMAAAAAQJUwBhg0ZUiYAQAAAADAFKlUunbt2vJts2NjY4cMGYIxwMDqIWEGAAAAAIBqSKXSCmOAxcbGYgwwsHpImAEAAAAAmiixWExRlH5ZpVJxHGe6cOUxwPr3748xwMCKIWEGAAAAAGiipFKpg4ODfrmkpCQ/P990ef0YYOXnZ46Lixs8eDD6M4O14ls6AAAAAACAusWybHJy8pEjR5KTk+Vy+dNXeObMGcPyxo0br1279vR11hGRSOTl5dW1a9cOHTpIJJIKW2maDgkJOX/+PCGkrKzs6NGjI0eONF2hRCJZt24dTdNbtmzRr9H3Z46JiXF3d6+LUwCwIMp0uwsAAIAKNu7cTwgZ9Xx/SwcCAGCWa9euzZw5c//+/RqNxtKxWFJISMjMmTPHjBnD4/HKr//mm29mzZqlX27fvv25c+eEQmG1tSkUinHjxm3bts2wJiIiYu/eva6urrUbNoBloUk2AAAAAFitjRs3du3addeuXU08WyaEJCQkjB8//tVXX1UqleXXv/LKK2KxWL8cHx8/ffp0lmWrrU0qlW7YsKH8GGCXLl3CGGBgfZAwAwAAAIB1iomJefXVV8vKyiwdSEPBcdxff/01YcIEhmEMK4ODgydOnGh4uWTJktGjR6elpVVbm34MsAr9mTEGGFgZNMkGAICaQZNsAGgU8vLy2rZtm5GRoX/J5/P79evXr18/JycnywZWz9Rq9ZUrVzZt2mQY0IuiqHXr1o0ZM8ZQRi6X9+nT5/Lly4Y1dnZ2AwYM6NSpk4uLi2EYbaOUSuXs2bOzsrIMayIjI3ft2uXh4VHbpwJgAUiYAQCgZpAwA0Cj8PXXX3/xxRf6ZZlMtm7duqFDh9J0E21fmZqa+tJLL507d07/MiwsLD4+XiQSGQokJCQMGjTo/v37tXK4Hj16HD582Jy+0AANXBO9ZAAAAACAFWNZdvPmzYaX33333bBhw5pstkwI8fX13bhxo+Hp+u3bt69cuVK+QEhIyIkTJ3r37m36ebKZzpw5k5iY+PT1AFhc071qAAAAAIC1ys3NNSRsDg4Or7/+umXjaQj8/f1HjBihX+Y47sKFCxUKeHl5HTx48K+//goPD3/KtJnjOJ1O9zQ1ADQQmIcZAAAAAKyNXC5XqVT65aCgIKlUWrmMSqXKycnx8fEx58lzYWGhSqUq3y9Xo9GkpKSYkxY6OTmVn6BYrVZnZmb6+vpWmN6pquOWlZV5e3tXWM8wTHp6uru7e/lm1dVq3bq1YdnQu7s8Ho83atSoUaNGJSQknDhxIi0tLTc31/wunNu2bcvOzjY/HoCGDwkzAAAAAFgbnU5nmBtJIBBULnDnzp3Bgwenpqb2799/y5Ytpnvbbt++/c0331QqlZ999pl+yuL09PQBAwbcvn3bnGRSJBJ9/vnnn376KSEkJSVlwIAB9+/f79GjR0xMjNFM3mDfvn1jx44tLS199913FyxYYFivUqkGDx586tSp4ODgvXv3+vv7VxuDIRLDslqtNlEyJCQkJCTEzGoN4uPjkTCDlUGTbAAAAABoclauXHn//n2NRrNr166zZ8+aLvzdd9/pH1nPnTtXoVAQQtavX3/9+nWdTseYQaFQzJs3T//E+48//rh9+7ZWqz169Oi8efNMHLSwsHDSpEn5+flqtXrhwoW5ubmGTQcOHDhy5IhGo7l169Yff/xRCz8OAKgCEmYAAAAAaHLy8vIMy4b5lqpiKKBWq0tLSwkhNZ0zydnZWf8Qu6CgwLDyp59+unPnTlW7fPvttykpKfpllmWLioqeLHgAeBpokg0AAAAAUDOjR49OSkrat2+fVqvVrykrKzNkv7a2ts2bNzcU9vT0/OKLLyr3lC4rK5sxY8aOHTsqb7p58+aiRYvqLHwAMBcSZgAAAACAmhEIBLNnz549e7Zhzblz57p27apf/n97dx4mVXUgfPhWQ0Mjzb7J0jQxLEJcEgM0i45mjLghsqnEYIIhC4KSgAujMcaEOAY1IjqOo0EcmRCjQKSJbAIugEow4cuT6CcaEHFBEAWaAE03dNf3x32+mg4e2+pmqaZ537/OvVV178En8eHnPXWqd+/ey5YtS+c6zzzzzLx584YOHVrxZFlZ2fjx40tLSw/ffIFqsiQbAAAqk/420dW48qRJk3bt2lXx5OzZs5977rkjdEegSgQzAABkzPr16+++++7U4fbt22+++eYjl+hAlQhmAADIpKlTp65bty4e33nnne+8805GpwP8L8EMAACVSSQSR/T6e/bsuf7666Mo+utf//rggw8e0XsBVSKYAQCgMkdogfTgwYNT+2MvXLhwzpw5EyZMKC4ujs+ccsop3bp1OxL3BdJnl2wAAI5rDz300OLFiyt5Q8XfPT6MBg4cmEwmCwsL48Orr756z5498TiRSEydOvWGG244EvcF0ieYAQA4rqX5E1CHXSKRuOuuu55//vl4l+zdu3enXrr88su//vWvZ2RWQEWWZAMAQGZ07do1/vZyRU2aNJkyZUpG5gMcRDADAEDGTJw48YwzzkgdZmVlTZ48OT8/P4NTAlIsyQYA4Lg2ceLE3r17V/KG8ePHf/TRR0fo7rm5uStWrHj++ef37NmTSCQ6d+5csZ+BzBLMAAAc1/r37z906NBK3nDzzTcf0Qk0bNhw4MCBR/QWQPUIZgAAqMyR/h3mQ7Fp06ZFixYFX2rVqtXpp5+enZ19lKcEtYlgBgCAyhyh32E+LObPnz9//vzgS4lE4lvf+tZjjz1Wk4MfajibfgEAcNypU6dOcPy5b87KCv/9Oc0LVvu+VfpgLJlMPvXUU0fu29dwPBDMAAAcd/r27RsPGjRo8OUvfznNN3fv3r1Zs2bB93Tt2rVFixYHvf/T+vTpEz/vzc7O7tWrV5r37dChQ15eXup8r1690lxo3b59+8+aMJAOS7IBAKhtPncR8qhRo/bv37927dorr7zyc3/Dadq0afn5+Tt27PjRj370WU93mzRpsnjx4kceeaRz587XXXfdZ11q2LBhv/71r19++eVhw4b16NGj8vveeeedrVq12rp167hx4+rW/d+/t/fo0WPevHlPPvnk3r17K/l4q1atxo8fX69evdSZimvLrdOGdAhmAABqm4YNG2ZnZ5eWlkZRtH379vLy8oNCNzs7e+zYsWlerVmzZpMnT/7ct/Xs2bNnz56Vv6dOnTqjR48ePXp0Ovdt1KjRT3/60+BLF1100UUXXZTORSratm1baty8efOqfhyOQ5ZkAwBQ27Rs2bJRo0bxeMOGDW+++WZm51MTlJWVLVmyJHV40kknZXAycKwQzAAA1Da5ublnnXVWPC4vL58wYUJJSUlmp5Rxjz/++CuvvBKPTzjhhLPPPjuz84FjgmAGAKAWGjt2bGoZ9rPPPnvBBResWbOmvLw8s7PKiC1bttx6661jxoxJ/fGHDx9+4oknZnZWcEzwHWYAAGqhc889d/jw4U8++WR8+MILL/Tr16958+ZNmzY9rva72rdv39atWys+YG/ZsuXPfvaz4+ofAlSbYAYAoBbKysp66KGHNm7cuGbNmvhMWVnZtm3bKm58dRxq2LDhrFmzOnXqlOmJwLHBkmwAAGqnZs2aPfvssyNGjKj4m0zHs65duz777LMDBgzI9ETgmOHfHQAA1FpNmjR54oknxo4dO3369CVLlnz88ccVf4u42pLJZOo6iUSihi9vrl+/fkFBwYgRI6666qoTTjgh09OBY4lgBgCgljvrrLPiTbN37969c+fOQ7/gL37xi4cffjge33HHHVddddWhX/MIqV+/fosWLbKyLCyF6hDMAAAcL3Jzc3Nzcw/LdVLjZs2adejQ4dCvCdRA/lMTAAAABHjCDABAjbbwuVXZdeqe1qNLm1YtMj0X4PgimAEAqNGKdu3+v29ueHH1n1s2b/KVU7qf1qNLsyaNMz0p4LggmAEAqOniDak/3l60fNWapStWt2ze9IxTu59x6sm5De35DBxBghkAgGNGeXl5FEWf7ChaunL10hWrO7Rtc1r3zqd/qdsJDXIyPTWgFhLMAAAcY5LJZPzQ+f0Pt76/Zevi518+qVPead27fKnbSfWyszM9O6D2EMwAVNlr69bfum59pmcBHDcSn/lKXM5lUfLvb2/6+9ubnllW74xTuw/4lz7Z2f6WCxwG/lUCQNX063n6Kd2+mOlZAMeRl179y3ubt37Wq4lEIoqirKys7p07nf6lrl1Oyq9bp85RnB1QmwlmAKqmY/sTMz0F4Pjyt3Xro+jgYE5EUSIrkSyPOrRrc8YpJ5/WvUv9+vUyMj2gFhPMAAAcS7KyssrLy9u0bvHVU7uf2r2LjbKBI0cwAwBwDMiqk1VeVt66RbOvnNr9tO5dmjTOzfSMgNpPMAMAUNM1bdzoK6d0O61H11YtmmV6LsBxRDADAFCjDfz6WY1yG2Z6FseYZDIZ/f8d0YBqy8r0BAAAoDJquarefvvtiy++uG/fvgsWLMj0XODY5gkzAADUKtdee+2iRYuiKBo1atTGjRtzc33fG6rJE2YAAKg9tmzZsnTp0nhcXFxcWlqa2fnAMU0wAwBA7fH0008fOHAgHvfs2bN58+aZnQ8c0wQzAADURLt3777jjjuuu+66devWpfmRZDI5d+7c1OHw4cNT55944onvf//7hYWFh3+iUHv5DjMAANQ4RUVFgwYNWrFiRRRFhYWFGzZsyM7O/txPbd68edWqVfG4QYMGl1xySTxesmTJyJEjy8vLp0+ffs8990yYMMEG2pAOT5gBAKBmKSoquuSSS+JajqLovffe27FjRzofLCwsLCkpiccFBQX5+fnx+LXXXisvL4+iKJlM3njjjffee2/8u1NA5QQzAADUIDt37rz00ktXrlyZOjNkyJDWrVt/7geTyeScOXNSh6n12PEVWrVqFY/Ly8snTZqkmSEdghkAAGqKHTt2DBky5MUXX0ydGTBgwOOPP57OZ99///3Vq1fH45ycnNR67CiKvvjFL86bN69ly5bxYVlZmWaGdAhmAACoEXbu3Dl06NAXXnghdea8886bPXt2o0aN0vn4ggULiouL43GfPn3y8vIqvtqvX7/58+enNs2Om3nq1KmHZ+pQSwlmAADIvKKioksvvfSgWp47d27jxo3TvMJTTz2VGl922WWf3tarb9++CxcubNasWXxYVlZ2ww03eM4MlRDMAACQYQft8hVF0YABA37/+9+n+Ww5iqJ33303tR47Ozt78ODBwbcVFBQsXLiwRYsW8aE9wKByghkAADLp07t8xc+Wc3Nz079IxfXY/fv3b9u27We9s0+fPvPnz099n9keYFAJwQwAABnz6V2+qlHLURTNnj07NR4+fHjlP7Pcr1+/wsLC1HNme4DBZxHMAACQGTt37hwyZEjF7y0PGDBgzpw56a/Ejn3wwQcvv/xyPK5bt+6QIUM+9yPBPcA0MxxEMAMAQAbEu3wd9Gx5zpw56e/ylTJ//vySkpJ43L9//3bt2qXzqX79+h20B9iNN944depUzQwpghkAAI62oqKigQMHVtzl67zzzqvSLl8VVVyPfdlll6X/wXgPsNRzZnuAwUEEMwAAHFU7duwYNGjQqlWrUmfiWq7q95ZjW7ZsSW0YlpOTM2jQoCp9vE+fPn/4wx/sAQZBghkAAI6eeJevg35Bqhq7fKU8/fTTBw4ciMd9+vTJy8ur6hX69es3b948e4DBpwlmAAA4Snbv3j106NCDvrc8e/bs6q3EjqIomUzOnTs3dTh8+PDqXad///6f3gPsgQceqN7VoNYQzAAAcJTMmDGj4p7Y8S9IVWOXr5TNmzenlnY3aNDgkksuqfal+vXrt2DBgop7gE2aNGnr1q3VviDUAoIZAACOkj179lQ8zMvLy8nJOZQLVtwfu6CgoGPHjodytdatW1es9wMHDqQuDscnwQwAAEfJ6NGjTz755NThY489Nm7cuP3791fvaslkcs6cOanDaq/Hjm3YsOH888/ftGlTfJhIJMaPH3+IBQ7HOsEMAABHSevWrRctWpRq5mQyOX369Go383vvvffKK6/E45ycnENZj71+/foLL7xw/fr18WEikRg7duyUKVOqfUGoHQQzAAAcPZ06dVq8eHHXrl3jw7iZx44dW1ZWVtVLLViwoLi4OB5Xb3/s2IYNGy688MK///3v8WFcy/fdd1/dunWrd0GoNQQzAAAcVfn5+cuWLevcuXN8GDfzmDFjUr8OlabZs2enxsOHD08kEtWYzMaNGwcMGJB6thxF0dixY6dNm6aWIRLMAABw9OXl5S1fvrxbt26pM9OnT7/mmmvSX5v97rvvrl69Oh7Xq1dv8ODB1ZjG22+/fe6557799tupM9dee+20adPq1KlTjatB7SOYAQAgAzp27Lh48eLu3bunzjz66KPjxo0rLS1N5+MV12P379+/Xbt2VZ3A+vXrzz///I0bN8aHiURi3Lhx9913n1qGFMEMAACZ0alTp4ULF1ZvD7CK67GHDRtW1fXYGzZsuOiiiyru8nXNNdeoZTiIYAYAgIyJ9wBLrc2Om/maa66pfA+wDz74ILU/dp06dYYOHVqlm27YsOGCCy44aJcv31uGTxPMAACQSfn5+UuXLu3SpUvqzKOPPlr5HmDz58/ft29fPD7zzDPbtm2b/u3s8gXpE8wAAJBheXl5y5YtO2gPsDFjxnzW2uyK67Evu+yy9G+0cePGg3b5GjdunF2+4LMIZgAAyLyOHTsuWbKk4h5gM2bMGDt27Kf3ANuyZcvKlSvjcU5OzqBBg9K8xYYNGwYMGHDQLl9qGSohmAEAoEbIz89fuHBhqpmTyWS8b/ZBz5mffvrp1GrtgoKCvLy8dC6+fv36Cy+8sOIuX2PHjrXLF1ROMAMAQE3RqVOnRYsWVdwD7NFHH73hhhtSb0gmk3PmzEkdprkee9u2bRdffHHFXb7iPbF9bxkqJ5gBAKAGOWgPsGQy+cADD2zfvj0+/PDDD1966aV43KBBg4EDB6ZzzVmzZr311lupQ7t8QZoEMwAA1Cx5eXnLly9P/T5z06ZNTzjhhHhcWFhYUlISjwsKCvLz89O5YNu2bVM/1HzttdeqZUiT/58AAECNk5eXt3Tp0ltuuWXLli2TJk3KycmJqrseO4qioUOH3n777cuXLx84cODEiRN9bxnSJJgBAKAm6tChw8yZMyueef/991955ZV4nJOTk+Z67CiKsrOzb7vttttuu+0wTxFqO0uyAQDg2LB8+fLi4uJ43KdPnzT3xwaqTTADAMCxIfVrUlEUXX755amvJQNHiGAGAIBjw4gRIwYPHty4cePBgwd/+9vfzvR0oPbzHWYAADg25Obmzp07t7i4uEGDBllZHn3BESeYAQDgmJGVldWwYcNMzwKOF/67FAAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAFVT8TeQy8vLMziTmiOZTFb8R+Fnoqkd/O8YAACqpnXr1qnxRx99lMGZ1Bzl5eWffPJJPK5fv37jxo0zOx84LAQzAABUTV5eXmr88ssvZ3AmNccHH3zwzjvvxOOGDRu2aNEio9OBw0MwAwBA1fTv3z8nJycer1q16vXXX8/sfGqC6dOnl5WVxeOCgoIGDRpkdj5wWAhmAAComnbt2vXt2zceFxcX//CHP9y3b19mp5RZa9eunTZtWupw2LBhGZwMHEaCGQAAqiYrK+vWW29NJBLx4fLly0eOHLl79+7MzipTXn311SFDhuzatSs+7Nat2xVXXJHZKcHhkkgmk5meAwAAHGOSyeSVV175u9/9LnUmLy/vxhtvvOCCCzp06FC/fv0Mzu3oKCoqeuONN2bOnPnYY4+VlpbGJ+vWrTt37txBgwZldm5wuAhmAACojn/84x/nnHPO2rVrK57Mzs6uV6/e8fCjSgcOHCgpKTnoV7UmT5784x//OPXsHY51ghkAAKpp69atI0eOXLZsWaYnknn16tWbPHny9ddfX6dOnUzPBQ6b2v+fvgAA4Ahp06bN/Pnzp0yZ0rJly0zPJWMSiUTv3r0XLVp00003qWVqGU+YAQDgUH388ceFhYWFhYVvvPHG5s2b9+7dm+kZHVmJRKJ58+bt21M0rqkAAAsgSURBVLc/88wzBw8e/LWvfa1u3bqZnhQcfoIZAAAAAizJBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABDg19IAADh+7d1b3Ofscyp5w00TJ4z8xohqXPmJp2bfefc9Sxf8oU3r1pW8beny567/t5vjcVZWVpMmTU4/9ZQx3/1uj+4nV+Omh1Ga84faTTADAHD8OuGEBn999Y+pw5tuuXXx0qWvvrSyfr16R3Mad93xiwsGnHfgwIF1b731k59NHvX9H8ye9T/5HTsezTkAn2ZJNgAA1Ah169Y9pUePGyf8aN++fb8vnJ/p6QCeMAMAwGfb+tFH//nwI6tefmXHzp2tW7UaeNGFPxj9nezs7PjVnTt3/sd/PbzypZe3b9/epk2bs88683vfubppkya/mnb/47+ZFUXReRdfEr/zkQcf6NO7dzp3zO+YF983zTn8929m3Tvt/mULn5nx+MyFi5eUlJb26d3rpokT2rdrl7rCurfeevC/Hln7l7+UlJTkd8y7Ytiwy4cPS70aX2H5wgUzf/vbZxYu2llUNPIbI6o9f6hNBDMAAIRt/nDLN0dd3aF9+/vvveekTp3+9trrP779Z29v3HjvlF/Gb7j5tts3f/jhtHvu+sIXvrBt27YXV66a94dnRo385vU/HN+ubdvqfQf4nU2boihqe+KJac4h9qtp95/Zt++1Y37w3vsf/OTnPx/1vR/MeWJWk8aNoyha99Zb3xr9va+cftqsxx5t2rTpMwsX/fvd97y/efPE8df90xXuv79vQe/C2U89u3z58CGDqz1/qE0syQYAgLBpDz5Yun//A/fe86Xu3Rs0aNC7V89bbrpx2XPP//Vvr8Vv+NOf/3zuOWef3K1b/Xr1OrRv/80RV4wa+c1q3+7AgQOvvf76PVOnNW7caNjgS9OcQ6xTx46XXHxRbm5u95O73XXHHR9t2zbrid/FLz3wnw9lZ2f/asovO+XnN23SZOQ3RgwbfOnMWb/d/OGWilfI69Dh0oEDGzduNHzI4Gr/EaCWEcwAABD24sqVvb56RtOmTVNnCnr1iqLoT2vXxoddu3aZ8/S8J+fM+XDLlvAl0nPTj289rVfBGX37XznqO0W7dj0+/dcd2rdPcw6xc/7lX1Ljk77QqVN+/h//9KcoipLJ5JpX/9Snd6/chg1Tbzjv3H8tLy//05///M9XOOtQ/ghQK1mSDQAAAcXFxXv3Fj//4oovF/SNzySTyWQyGUXRzqKi+Myvfnnnff/x4H0PPHjHlLvbt2t37tfO+e7Vo5o2aVLVe8W7ZJeUlKxes+aWn/7srl/d+5/T7qtTp046c4i1aNH8nw6bN/9k+/Yoivbt21dSWtqyRYuKr8aHO3burHiydatWVZ021HqCGQAAAnJycurXr3/ev/7rv//89s96z4lt2vxy8s/Lysre+vv6FatWTf/vx//vG+tmPPxQ9e5Yv379s88669ZJN0269Sf/89snRl01Mp05xD75ZHvF4v1k+/a423NycurXqxfHc8VXoyhqVuGpdRRF2XWlARzMkmwAAAhIJBJnn3XmK3/8465d/6j8nXXq1Ol+crcffHf0xRecv/Yvf4mfADdo0CCKotLS0qre98LzB5x6ypcemfFY0a5d6c/hhZUrU+ON77yz6d13C3r1jP8UvXr2XL1mzd69xak3LH3u+aysrJ5f/WolF6z2/KE2EcwAABA2cfx1WVlZ4340Ye3/+cuevXs/2b599Zo1E2/6t3VvvhlF0c6iou+Nvfb5F1d8tG1baWnp3157ffWaNT2/ekYikYiiqPMXT4qiaMWql/bv31/V+153zZjdu3fPeHzm584hZdO77z6zaNHu3bvXvfnmpB//pGWLFleOuCJ1tZJ9Jdf/282b3n23aNeu3z751Nyn5438xoh2bU+sZA6HMn+oNay7AACAsHZt2z75m5mPPDrjlp/e/tG2bc2aNe3auctlQ4d07dIliqKmTZp87ztX/+6p2XdMuato1642rVsN+PrXv3f1qPizp/ToMea7o2fMnHn31PvKy8ur9DvGfXr37t3zq7998qmRI0ZUPoeUieOve2TGY1Puubd0//7ePXv+asqdqa9Sdz+528xHpz/48MPf+PbVJSUlHfPyJl0/8YoKv8McdCjzh1ojEa8YAQAAjkX//ZtZ9067f8XSJU3/+TvJwKGzJBsAAAACBDMAAAAECGYAAAAI8B1mAAAACPCEGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAGCGQAAAAIEMwAAAAQIZgAAAAgQzAAAABAgmAEAACBAMAMAAECAYAYAAIAAwQwAAAABghkAAAACBDMAAAAECGYAAAAIEMwAAAAQIJgBAAAgQDADAABAgGAGAACAAMEMAAAAAYIZAAAAAgQzAAAABAhmAAAACBDMAAAAECCYAQAAIEAwAwAAQIBgBgAAgADBDAAAAAH/D3KavLMirOn0AAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "consume_rlp" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Consume Engine\n", + "\n", + "A Python re-write in EEST of the Hive Golang `ethereum/consensus` simulator. The simulator mocks a consensus client and sends blocks from blockchain fixtures to the client via the Engine API.\n", + "\n", + "- Test format: `blockchain_test_engine` JSON fixture\n", + "- Where: Hive test environment\n", + "- Type: System test of fully instantiated client\n", + "- Aim: \"Interop\" testing; tests client block consumption via the Engine API.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: node 'e29b75cbf1d0467ea480c3300c4b4c5d', graph '%3' size too small for label\n", + "Warning: node '395a1c40a0a840b9bf35194136518375', graph '%3' size too small for label\n", + "Warning: Orthogonal edges do not currently handle edge labels. Try using xlabels.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLwAAAOmCAIAAABuVxseAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd3wU1d7H8TNbk90UEhLSE2oICV1AxGvvzxXsAhZQr6AgCHbFQlEsgF6lSJEqFkAUBewdUFRK6AQwAQIJCSHJpuxuts7zx3rXGDKbDZBsAp/3iz/IzOyZ35nA7H53zpyRZFkWAAAAAADURhXoAgAAAAAATRehEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQJEm0AUAOKe5XO7CE8WFRSWm8gqLpcrhdMqyHOiiAAAIMEmStBqNwRDUIiw0JjoyJqqlWs3FHgSMxOczAAHhcDr3Zx8+eCTf6XSFhIYZw0ODg4LVGq0kBboyAAACTZaFy+mwVlnNZRWVFeUajbpNUnxquxSthks+CABCI4DGJstybl7B7n05blmOTUyMjo3V6nSBLgoAgCbKYbcXFRQUHD2qkqSMjm2TE2IlvmFF4yI0AmhUDofzj227i4pLY+LjE1u3VvONKQAAfnA5nUcPHSrMz49uGdGne4ZWyxsoGg+hEUDjMVusGzfvsDtdHTpnGENCA10OAADNjLmy4sCu3TqN+oJeXY2G4ECXg3MFoRFAIzFbrD9v3KLVB6V2ztDq9IEuBwCAZslht+3ftdthq7rkgvPIjWgchEYAjcHhcP68cYusUnfq1k2lVge6HAAAmjG3y7V3+3bhdl16wXmMU0UjIDQCaHCyLP+6aXtZpSWjZ4/q1xitFutN112u9KqU1m3nLnn/zFay+pOVb7/1eo2FQcHBn371w5nd0Sn78N1Fyz9Y2nTqAQA0TQ67bffWzLAQw4W9uzEvDhoa30wAaHC5eQVFJaYaiVEIEWwI/urnjd4fB9/477SMjPGTp5zyjhbPn7v6k5WffPGt783eWfphUnLrU97LGeRnwQAA1KDV6Tt0zti9NTM3ryAlMS7Q5eAsx0NCATQsp9O5Z39ObEICM9/4Y/CQe7nMCADwhzEkNCYhfte+HIfDGehacJbjSiOAhrUv+7DLLSekpNT3hYdyshfPn7Nz+3aH3dauQ8f7HhjRpVsPz6qi44UL5s7asXWrtcqSnNzm5oGDL7n8yjkz/vvpyhVCiGsvuUAI0TIq+v2PV/u/uyqrddSwe41G4xuz5noeBLJl0x/PPTF25JjH+t90i+96PGuXLnxn5/ZtTocjLSPj3uEjO3RME0JMeXHCkSOHZ8xb5N3yyTEPGUOM4ydPqbXgGsNTt23dvHTh/AP7s7RqTefuPe4f8ZD3Guk7b8/44Zuv5i55/82pr2zdvMloDLlt8F033np7fY8zAKD5SkxpXVx4fH/O4YyO7QJdC85mXGkE0IBcLvfBI/mxiYn1fR5jTvaBsSOHBQUHz3xn0fufrOl1ft9nHhtzYF+WZ+3kCc+ZSkpfnzln+adfjn7syY2/rCstLXlw9COD7r7HYAz56ueNX/28sV6JUQgRFBz8zPiJ2dkHliyYJ4QwlZZOmzyxzwUXehKj73r+3L9vzIj7hRDTZs55b9Wa2+64+/PPPqlzj3UWvG3r5nGPjenQsePiZR/PeGex3WZ7dOQDxwsLvBvIQp4z/c2bbxv8wcerb7z19jkz/rt398569RoA0KypNZrYxMRDR465XO5A14KzGaERQAMqPFHsdLqiY2Pr+8IFs2e2ahXzxLjxcfEJoaFhdw69r1N65w/eXSiEcDmd+/bsvvzqa+MSEnV6ffvUjk8/PykiItL/xofdPfjaSy7w/nnh6cc8y9t16Pif4SM/+vC9zC2bpr48UVKrHnv62TrrEUK8M3tGy6jocRMnJ6e0NgQbepzXe+yT4+rb5ZMtnj83pU3bB0c/EhnZMj4x8ZkJL9od9o8+fM+7gam09LKrr+ncrbvBGHLb4Lti4+K//fLz098vAKAZiY6NdTidhSeKA10IzmYMTwXQgAqLSkJCw7Q6Xb1e5XQ4tmVuvenWgepqD+fo0r3H2lUfCyHUGk1iUsqy95bo9fpefc4/hVslfUyEc+NtA7du/uOFpx93OhyvvDE9LLxFnfU47PZd27fdMvAO9Rl9lIjdbt+/d8/td9ztXRIWFp7RucuOzEzvEpVK1bNXH++PSSkphQXHzmANAICmT6vThYSGFRaVxMdEB7oWnLUIjQAaUGlZhTE8vL6vqqiscDmdK5e9v3LZPx654Z1SfPzLr86bNX3qy5PcLldqp/Sbbhl4yRVXnpGCJUm64urrNv2+sV371O49e/lTT6W50uVyRUS29HMXfj7oqLKywu12t/jnFdSIiJaHcnK8P4aFh1dPqgaDsYDQCADnHmNYqKm8PNBV4GxGaATQgKzWqsiYeo9NNRpDVCrVnff8586h99W6QWJSyqRXX7dVVe3auePLNatemfR8sMHQ54J+p12vKCkpnjPzv+1TO2Yf2P/pyhWeeWV81xNiDFGr1aUltY8LCg4xWi3W6kuKi0+EhIbUWUlISKhKpTKZSqsvNJlKQsP+DuGS4MFcAAARHBxcXFgY6CpwNuOeRgANyOF01ncKHCGETqfr2r3nxg3r3G5ft/Xrg4LO691n3ITJWp0ua+9uIURQUJDT6TjlamVZfv3lSRqN9pU3pt9428AFc2cdzP6zznq0Ol3nbt03rPvJ5XKdvDYuLv748YIq61+5Mf/o0YL8PO9aHwXrdLrUTumbNv7qXVJRUb57184u3XvUuj0A4Jyl1micTp66gQZEaATQgGRZPrWrYcNHPZx3NPe1F8fnHj5kt9mOHjm86qPl896eLoQ4Xlgw/pknMrdsKi8vs1gtX675zOlwdOtxnhAiKaW13WbbnrnVd9pU8smKDzO3bH7yufGhoWH/GT4yOaXNqxNfsNtsvusRQgwbMbr4RNHL4589knvIYrVs27r5zamveFZdesVVLpdr0TuzzZUVh3KyF86b1a5DqnePvgsect/wgzl/zp35ZmlpybH8vFcnPq9Wa24bfNcpdA0AcBaThOTnvQ/AqWF4KoCmqG27DtPnLnxv0YInHh5ptZhjYuP7XNDv1tvvEEK0ion994CbVi57/0BWlsvpTGrT5tlJL3fr0VMIccGFF13zf9e/+PzTlRUVPp7TOOzuwTWWfLBqbWnxiUXvzLn9ziFdu/cUQmi02mfGT3zo/nvmznpr9KNP+qhHCNE+teN/3563ZP68MQ8OE0J0ysi4d9gIz6qo6FbPvPDiwnmzvljzWcdO6WOfeHr6tCne/fouuGev3i9NffO9RfOH3n6TRq3p0qPHG2/Pjan/VLQAAACng68lADSgVV/+2KFTemQr5nMDAKChlBwvOrB3z03XXRboQnDWYngqAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoEgT6AIAoG6y222xmB12p9vlDHQtAACcASq1RqvTGgwGScVVHDR1hEYATZfL6SwqKCwtLqooK5dlOdDlAABwhkmSFBoeFtEyOjo2Rq3hkzmaKP5pAmiK3C5X/pEjx44elYQcFRUalxoXEhqs12nUar6OBQCcDVwut83urKywmkzmo4dyjhw6GJeYGJ+UpFKrA10aUBOhEUCTU3LiRG72n06HMyWlZVxsBEERAHD2UatVhmCdIVjXqlV4u3buYwWluYePnigsSG7XPjIqKtDVAf9AaATQtBw5eDA/NzcmpkWb1tFaHecoAMDZT61WJSa0jIkOP3io6MDu3fHJyUlt2gS6KOBvfCAD0FS4Xe7sfXtLi0tSU+NjYsIDXQ4AAI1Kq9OkpsaFhxsO/Hm0ympp17GTirE2aBr4hwigSZBlOXvf3opSU9cuSSRGAMA5KyYmvGuXpIpSU/a+vUwChyaCK40AmoSjhw6ZThRndE4KCzPUWLVq1eczps9bvGRWcnKid2FRUfHA2++7f9jdd9xxqxDivaUrPvjg4y++XH5GirFaq/79fwOV1rZunbxw0YwzsiMvTx9rLAwKCjrNHp3Zw9LEzZjxzrH8gpdfeb7WtY8/9oJOp1Va66c5cxZ9+81PH3+y5HQa8WqI3071bi5b9skPP6yfM+d1FbP5A81NWJghPSNxx87cvEOHEhmniiaA0Agg8EpOnMjPzU1NjW/RwhjoWoQQIjg46IcfP/P+eMvNQ9PTO7740rhTbnDBgvc+XfXFmrUf+N6sRjCGhz9H7/Dho6s/+3L27GmNVlXTd9ON//5oxWdff/3DddddGehaANRbWFhwh/ax+/fnGkJDmRcHAce3jwACzO1y5Wb/GRPT4nRGpd519+3nyPW0ejl3DsuK5avSOnZo36FtoAuph4b+7eiD9FdffdnyZasabhcAGlRMTHhMTIvc7D/dLlega8G5jiuNAAIs/8gRp8PRunXy6TTiHen3008bJk2cOn/+W23btfaufeqpiSXFpe/Mf1MIcTDn8IIF7+3Ysdtut3do327YA0O6ds2o1758tHD8+Il585Zsy9xptVpTUpJuu/2Gyy67aObM+Z98vEYIcfllNwghoqIiV3y0qF579IyKXLRoxrRpMzdv3h4SYhg06Oabb+kvhPDd3+oDID2NvDP/zTdefzszc8c111z+8JgHtm7dvnjRh/sPZGvVmq7dOj/w4FDvpU4fO/Wunb/gralTZmzbtis2JvqRR0d26Zr+22+b581dkp9/LCMj7Zlxj0ZFRfpz3Hzsy5+jZ7VW/fDj+uHDh1ZfuO7nXxcufL+goLBduzaPPDKixkt8dNxT6uJFH+zYsdvhcKZndLz//iGpHdud/Hv55usfp02bOWTIwLvuvt2fDtY4+N7fjmesdY3Ge/XpMeW1Cb6brbObV1x5yfLlq3bs2F3ff+QAmog2baI3b8rJP3IksXXrQNeCcxpXGgEEksvpPHb0aHJKlO4MPV2jX7/zjUbjt9/+5F1SWmraumX7VVddKoTIzj740ENPBgUHzZ33xoqVi3uf3/OJx1/Yvy/b//Z9tzBp4hRTadn0Ga+sWrX0kUdG/vLLH6WlplGj7r/zrtuMRuMPP372w4+f1TcxeshCnjlz/m233fjRyoU339J/5sz5u/dk1dnfkxuZPn3ewIE3fbb6fU9ifPKJCakd23/wwbw5896w2+0Pj3qqsLCozp16186ZvWjI0IHLVyzs3KXTc8+9tHXr9vXrNk6ZOnHBwhnHjxdPf2uOn8fNx778OXo7tu+2Vdm6dEn3Ltm+fdfEiVMuvqTfihULn3hy9MKF75vNZu9a3x0/sD9n5ENPCCHenP7qio8XDRx00+rVX56802XLPpk6dcbYRx70JEZ/Olj94FdvKjq6pad3nj8TX3xGkqSU5MQ6m/XdTSFE27YpRoNh0+9bT64fQLOg1WqSUloeO3rU5XQGuhac0wiNAAKpqKBQEnJcbESdW94z9KHLL7vB++fkKzMeOp32kksv/P77n91ut2fJD9+vl2X5iisvFkLMm7s4JibqmWfGxsXFhoWGDBkysFOnjkuX1mOIoI8WnE7n3r37r7zqkvj4OJ1e1yG17XPPPRYR0cL/xmv0cdwzL3pXmUrLrrzyki5d041G46BBN8fGxnz95fd19rcGU2nZVVdd2qVrukajEUIsXPB+6zbJo0bdHxkZkZAQ99wLj9scjuXLPqlzp961V19zWVpaamio8f77766stPz3jdljHxkRFRWZkBB36239f/11kzfD1Hnkfe/Lt337/xRCtG6d5F2yeNGH6elp9913Z1h4WOvWyQ+N+s/+/X/nN98dnzN3UVTLli9MeDIlJdEQHHzeed0ff2JU9d3Jsjxr1vzFiz+cOOnp//u/q/zvYPWDr+RgzuFXX/5veqeOw4ffU2ezvrsphFCpVK3bpOzNOuDnkQTQBMXFRkhCLiosDHQhOKcRGgEEUmlxUVRUqNqP51AtXjKr+tWY5SsWKm159dWXnjhRkpm5w/PjN9/+0LNXt5YtIx0OZ2bmrr59e6vVau/G3bp33rVzj5/V+m5Bo9EkJSW8/97KH39cX1lpVm7G3z5Wn+pTpVKd16u798eU1omFhcd99/fk9iVJ6tO7p+fvdrsjK+tA3769vWvDw0K7dO60bdsuf3bqWdujR1fP38PCw8JCQ1JT22u1fyWixMR4t9t9vPCEqOu4+bMv30pLTEaDwRvGZFnes3ff+ef39G6QkBCfkBDnT8cddseO7bsvvviC6qVW53K7X3rp9W++/mHa1En9+vXxLPSng9UPvpKy8opnn50cEmKc+OLTWq3Gd7O+u/l378JDS0pKfe8XQFOmVquiokJLTxTVvSnQYLinEUDAuN3uyrLyuNSaH3NPU5cu6TExrb799qfzzut++PDRA/tzxj37qBCisrLS6XQuX75q+fJ/TA0iSZKfLdfZwosvjZv99sJXX3nT5XKnpXW45Zb+l11+0ZnokwgLD62eHAzBhoKCv751VurvyUJDjFqd1tsXt9sdGfGPyYciIlrk5Bz2Z6eetdWf5RBsCIqI/PuyanBwsBDCbLYI/4687335JgtZVGuqvKLSYXe0+Oc13hb/66nvjleazS6XKzJS8dJ3ldW68ddNXbtldEpP9S70p4PVD36tXC7XpAmvlZSWTn/rVU8Bvpv13U0vnvEGnAVatAgp2p8vu90ST9BBgBAaAQSM1WJxy3JISPCZbVaSpKuuvvTjlasfGTviu29+DA4OuuhffYUQRqNRpVINGTpoyBDFZzD6VmcLSUkJL7/yvK3KtmPn3rVrv3rxxWnBhuC+fXudemf+RxKKyVapvydTVxsYGRISolKpSk1l1TcwmUxhYaH+7LTOtdX5c+T9b+1kkZERZrPZ6XR6LjaGhYZoddqyGl0rLQsxGkVdHQ8xGtVqtY9Lc0ajcfyEJ595etKkSVNfeOEJT9D1p4Nqn6NShRCzZs7PzNz57LOPeifd8d2s7256lZdX+MjAAJqFkJAgtyxbrRaDMSTQteAcxdcVAALGYbcLIfRBZ/7bq6uvvsxqrVq3fuN33/988SX99EF6IYROp+3evcsvv/zmvf2vvvxsQR+k7927+/jxT2p12r179wshgoP0Dqfj1Hbqj1r765tOp01L6/D7b5u9S8orKnfuzOrWrfMZL+80j3ydR69janshxMGcXM+PkiR1Skv9/Y8t3g3y8vLz8wu8xfjouFan7dotY926jS7lCe67ds147bUJmzdlvjhxqtPpPP0OCiG++PybTz/9YvDgW6648hLvQt/N+u6mhyzLhw7lpqV1OLWqADQRer1GCGG3NeD7COAboRFAwHgePKVugME2iYnxnTqlvjNvSWFhUfV5REeMvPfokfzJL71x+PBRu81+5EjexyvXzJ6teHvkyXy0UFhY9Oy4yVu2bCsrr7BYrWvXfuN0OLt37yKESEpJstvsmZk7TzlU+KbUX9/uufeOnJzDs2bNLy01HTtWMPnFqRqNeuCgmxuiwtM58nUevS7d0nV63c6du71Lht4zePeurMWLPigvKz98+OjbsxZ1qPYIR98df/CBe08UF0+aMCU396jFat26dfu0abNq7LFzl05Tpk7YvHnbpIlTPLnxdDp4MOfwW2/N7XP+ef+5/64aq3w367ubQoicnENms7l3nx7+lAGgyfLc+e92MYEqAobhqQACpyHvtrrq6sumvzU3KirSE9s82rVrM3vO60sWLxs7dpzVYomNjel7Qa/bb7vR/2Z9tBATE91/wDXLV3x6IOtPp9OV0jpp/MSnevToIoS4sF+f6667csL4VyoqzD6e03jP0IdqLFn58WI/xxbW2l/fevXq/upr45csXjZ40P0ataZb987TZ74WGxvt58vr5XSOfJ1HzxAcfMXlF3///TrvYyR79Ojy/AuPL1r4wYfLPmnbJuWRR0bOm7fEu73vjndIbTtz5msLF3zw0MgnhRCdMlKH/WfIyVVlZHSaMm3iU09MmDhhygvjnzydDublFzgczj9+33LlFTf9XWSfHlNem+C7Wd/dFEJ8/926xMR4HtIInCW4RRmBI8ncIw+gwaz68scOndIjW9WeQ0qOFx3Yu+eiizo1clU4+xw+fPT+/zz89tvTOqS2rXvrc4PdZr/jjuH3/edO73NBADRf69fvrfP99KbrLmvkqnDuYHgqAKDZS0lJHHDDdQsXvRfoQpqQVZ9+HhnZ4tprrwh0IQCAZo/hqQCAs8Ho0cMCXULTMnDgTQMH3lT3dgAA1IUrjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARYRGAAAAAIAiQiMAAAAAQBGhEQAAAACgiNAIAAAAAFBEaAQAAAAAKCI0AgAAAAAUERoBAAAAAIoIjQAAAAAARZpAFwAAp8tsriqvqLKYbU6n0+0OdDXAGaJWq3Q6jdGobxFu0Op4v0a9cW4MLLVaUqvVBqM+LDTIaAwKdDnAaeFNCEBz5XA4jx0zFRaYqmwOtVptDDZo1Bq1xAAKnCUcDmdluTnvaLEsRFhocGxcRHR0qCRJga4LTR3nxibC4XBbXY7CwjKXyxWk18bEtoiLa6HV8tkbzRL/cAE0P25ZPpZXmpt7QpJUsS2joyJahhqMgS4KaBBut8tUUV5YcuLA/vwjR3Xt28WGhxsCXRSaKM6NTVOFxXyitDg/ryjvaElyclRcQoSKb3/Q3BAaATQzZnNV1t78KpsjKSY+KSZOpVIHuiKgAalU6sjwiMjwCGtVVXbeoR07DkdHhXfoGKtWceEI/8C5sckKNRhDDcaUuIQjhccOHc4vKDCldYpnwCqaF95yADQnJSUV27cd1mmCevTo1/MAACAASURBVKV3S4lL5FMRzh3BQUGd26V1bp9mMlm2bztsszkDXRGaEM6NTZ9KpU6JS+yV3k2n0W/fdrikpCLQFQH1QGgE0GwcO1a6Z09edGRU5/ZpQTp9oMsBAiAyrEWPtM7CLW3bdtBssQW6HDQJnBubkSCdvnP7TtGRUXv25B07VhrocgB/ERoBNA8lJRXZ2YUpsQmpyW25GwTnsiCdvntqRrAuePeuIw4H1xvPdZwbmx2VJKUmt02JTcjOLuR6I5oLQiOAZsBssWVlHYuJjE6OSzz91mYvnH3zXTedfjuBUlxSfHn/y3bu2RnoQuq2dNm71916XaCrOAup1Zr0dh1Vkmr3riNuF89SOHf5PjeuWrvqsusvrfGnSf2XbNBTxN59eye9OvHWobdcfeNVA++5/fHnHv/h5++dTmeN/QbqNJUclxgb1Sprb77ZXNX4ewfqi9AIoKlzy3LWnrxQg7F9cptTePmCpQuuH/jvM15VAP2ycUN4eHhGWkagC6np7DvUPpypzp5yO1q1JqNdmrXKkZtbfPploDny89y4ZM6SH9f+5P3z5covG63CGhrzFLFq7apRTzzUokWL11964/OPPp8+dUb3Lt1ee/O13zb91kB7PIXetUtsHWoMydqb75blBqoKOFMIjQCauvy80iqbIzWlHSOvPDb8vuHC8y9UNYfJM+8eNCSAn1DPegZ9cOu4pLz8EqvVHuhaEABnwbmxgU4Ru7N2z5w3466Bdz/84JiUpBStVhcTHXPXwLvffPUto6HmE2sCeJpSSVLH1u2rbI5jedzciKaOR24AaNIcDueR3BNJMfG+Z3fIOXRwwdJ3duzeYbfZO7TrMPze4V0zugkhZs6b8fHqj4UQl11/qRAiqmXUR0tWel5SVl42bcbUzZlbQozGQbcMvmXALXW2JoSYvXD2tz98M3/GgtdnTsvckXnN5deMGTHWx/aTp03OPXp47pvzvI2PfXpsSIjxpecme1tbMHPhlLde27Zze2x0zKOjHu2S0fW3Tb/NXTQn/1h+RqeMcY89G9Uyyvtys8W8bce2Sc++6LvUqirr8DEPGA2GGVNnajQaIcSmrZueGv/kww+OufHfN/ruo2ft4vcX7ti13eF0pqelDxs6PLV9qu/u1Hqoly5794OVH3o/kG3dvmXx+4v3/blfq9F07dztwfseSE5MqX5gF729WOmXUsPxE8fnLpq7bUemtcqakphy2823X37R5d523nlr/pTpr23ftaNFWPgtN9x62423+fPL9dHxGpT+XflovNaCa21HqWu1iouKOXaiMCfneEbGGRi5jWbEz3OjkrP7FLHs4w8NBsOdt99ZY3mnjp1O3rhGDXWe/2utwcd7jW96rS4pJj4391irmDCtlo/laLqawRfVAM5l+fmlkqRKionzsU32weyHHh8ZFBQ87815Hy39uPd5fR5/9vH9f+4XQowaPvqugXcbjUbPuCzvu7gs5JnzZt5+4+0rl6y8ZcAtM+fN2J21u87WvK+dPuetQTcPWv3hmjEjxta5vW+ykGcvmD108NAViz/qnNH52RfHbd2+Zf2v66a+OG3hrEXHTxS9NefN6tv/vuk3jVZzXveevksNCgp+4cnnsw9mL3xvoRDCZDK98sbLfXtf4Pk46LvmA9kHRj42Qgjx1pQZH727ctAtg1Z/8VmdHVE61F5bt2954vknUtunfrjgw7lvzrPb7aMfH1VYVFj9UCj9Uk428dUJJpNpxpQZn77/6aOjHvvlt19KTaXedqbPfeuu2+9euWTl3YPunrtozudfr/WsOlMdr7WzvhuvteBa2/HRtZNJktQmIaWkpIKZVM81/pwbfTi7TxGZ2zO7pHfRaXX1PSz+nP9rraHO3vmQFBMnSapjx0z1rRZoTIRGAE3a8cKy2JbRvp85NnfRnJjoVuMeHRcXGx8WEjp08NBOHdPfXbbEx0tMJtOVl13ZJaOr0WgcdMvguJi4r7770s/WTCbTVZdd3SWjq+fr+VPYe41Krrni6rTUTqEhIfcPGVZpNr8x642xDz0S1TIqIT7hthtv/fX3X81ms3f7DRs39OnZR6vV1bnr9u06DLtn+LKPP9yybfPL/52sUqueGvuUP32cvXB2VMuo8U9PSElKMQQbzuve6/GHn/CzOz4sWLqgTUrrUcNHR0ZEJsQnPP/UCzaHY9nKD6sfCqVfSg1Op3Pvvr1XXnZlfFyCTqfv0K7D8088H9EiwtvO1Zdf0yWjS0hIyL+vuf7aK65d9MEil8vV0B330bjvgv3vWq0iw1oE6fXHC/nEeW7x59zoMfTBodUnwnlm4tOe5WfrKcJsNpst5uio6FOowZ/zv5+nKf+pVOrYltGFBfwXRpNGaATQdJnNVVU2R1RESx/bOJyOzB2ZfXtfoFb//eGpe9fuu3b7mlxUpVL16t7L+2NyUnLh8UI/W5Mkqc95vU9n7zUq6dG1p+fv4WHhYSGhHdt11Gq0niWJ8Ylut7uw6Lh3d39s/eNfF/zLz13fesOtfXr2eWbiuM1bN497dFx4WHidL3Q47Dt2bb+438XV154+u8OetT+rb+9+3iXhoWFd0jtv27mt+qGo9ZdyMo1Gk5SQ/P6K939Y/0NlZWWNtZIk9enVx/vj+b37FhcXFxQWNGjHfTfuu2D/u6YkqkXL4mJz3dvhbOHPudGrxkQ4r4x/1bvqbD1FCCFE/e/z9OekWr8a/BYVEVllczCNKpoyBk8DaLrKy61qtTrUYPSxTWVlpdPpXP7JsuWfLKu+XPL5iSEsLKz6xwJjsPHY8WN+thZqDNH+b9TTKexd/ucseWFhYdWntAkODo6I+PuyUnCQQQhhNv8VHrZu32qz2/r2usDPXUuSdPXlV/++5ff2bdv37HaePzVXms0ulysyIlKpft/dUVJZWel2u2tcMYtoEZlzKMf7o9IvZU/WnoceH+ld/uPan4QQLz3/4tvz33719VdcbldaatqtA2697OK/bvwzGo3e1C2EaBHeQghxoqTIYDCcWsdrLeDkDvr+dfgouAb/t/y7jyHhRwvzHU6XVnMmP8ejyfLn3OiPs+MUUYPRaDQajEX/+67Nf/6cVP2sob5CDSFqtbq8ospoDDr91oCGQGgE0HRZLHZjULDvbYxGo0qlGjJ46NDBQ/1vWRK1hzp/WlNrNP5vbzAarNZ/fHlcXFocGhpSZyW12rBxfbfO3UNCQvwstaS0ZMY7Mzq06/Bnzp8fr/7YM2GD7xeGGI1qtbqktOTUuqMkJCREpVKZyv4x/spUVhoWGub9UelQpKeln5zTkhKSXxn/qs1WtWP3zrVfr5k0ZVJwsKFv775CCLPZ7HA6vLnRs9OoyOhT7nitBdRQ56/DR8GnvOXfezcECyGqLDZtWM2ZIXFW8ufc6I+z4xRxsh7demzbuc3usNfrtkZ/Tqr1OmPXizEo2MqdyWjCGJ4KoOlyOp3VLxnVSqfVde/S45ffNrjdtT/iPEivdzicfu6xztbqu318TFxhUWFVldXzY15+3rGCfD+LqUGW5Y1/bPSMTfVn17Isv/rfV7Rq7bTJb9x6w61zF83NPphT5wu1Wl3Xzt3W/brOcxNgvbrj41DrtLq01LTfNm30LimvrNi5Z1e3zt396rwCvT6od8/e45+aoNXq9u7f61koy/KmLZu82/y++beWkS1jY2JPp+Mnq9FZP//lnFyw0kGrtWtKdBqNEMLu9KtynAX8OTfW6Sw+RQy6ZbDFYvngow9qLM/avzdz+1alV9X3/F9Dvd5rTqbRaJ38F0YTRmgE0HS53UIl1X2aGnn/yKP5RydPfenwkcN2u+1IXu7Kz1bOXvC2Z21yUordbsvckenn5wDfrdV3+8svucLtdr2z5J3KysqcQwfnLZnbvm17f8o42Z59e4pLii/se6Gfu/5o1Yot27Y8+8SzYSGhw+4ZnpKc8tKUSXa7rc4XjrhvxIniExNfnZB79LDFatm6fcu0GVP96Y7vQ33vnfflHMqZ9c7MUlPpsYL8l6ZM0mjUg24dfAqHorCocNykcVu2bS6rKLdYLWu/Wut0Orp3+evDZXh4i69/+Grnnp1ms/nzbz7/+vuvhw6+xzOi7JQ7frKTO+ujcR8F12jHd9eUSJJKCCG7eD74ucLPc6NvZ/EpIiMt46Fho5Yue3fmvBm5Rw87nI7jJ46/v+K9MU+NMVssPl5Y3/N/dfV9r6lBLalc/BdGE8bwVADNXrs27eb8d86S95eMeXqM1WKJjYnr26fv7TcO9Ky98PwL/++q/xv/8vMVlZX+PDvLd2v13T66ZfTzT7wwb8ncNV+tTUtNe+Lhx1+f8capdXPDxg0d23eMbvn3lIA+dv1n9oH5786/47Y7Pd/TazXaF558ftjDw2fNn/XIyEd919yhXYdZ02YtWLpg5GMjhRDpaenDhgz3pzu+D3WvHr1emzhlyQeLB907UKPRdOvSbcbUmbGtYk7hUMRExwy4bsDyVcv379/ndLlSklMmPDOxR9cenrUqSRo1fPTUt6Zs37UjPDRs2JBh/a/rX+cR893xk53cWR+N+yj45HZ8dA04BUMfrDnY8uOln5SUFJ/FpwghxM39b07rkPbRpyseHfdoWXlZRHhEclLKk2Oe9D3Su77n/+rq+14DNC+SnzcoA8ApWPXljx06pUe2qn3q85LjRQf27rnoolqetuyxd2+e5NR2atuhwQpsToY8MOTqy6+6a+DdgS6kSfM8ffuT91YFupDGtm7rb53SEqKiw+reFM0f58azz96cA7LG0alTgtIG69fvrfP99KbrLmuwAnGu40ojADQP7859N9AlAACAcxH3NAIAAAAAFBEaAQBnjxH3jTgHx6YCANCgCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWERgAAAACAIkIjAAAAAEARoREAAAAAoIjQCAAAAABQRGgEAAAAACgiNAIAAAAAFBEaAQAAAACKCI0AAAAAAEWaQBeAc1FWVtYnn3ySlZVVVVUV6FrOjKCgoB49etx1113R0dGBrgUAcK7TaFXBBj7jNS1Wi9PpcAe6CuAUcUJBo3I6nZMnT54yZYrFYgl0LWfY0qVLX3/99Y8++uiCCy4IdC0AgHOaSi3pgtSBrgL/YLO5hCPQRQCniuGpaFSvvvrqxIkTz77E6JGXl3f99df/8ssvgS4EAAAAOGMIjWg82dnZkydPlmU50IU0oJKSkgEDBmzYsCHQhQAAAABnBsNT0Xjefffd6jcx6vV6g8EQwHrOlPLycpfL5f2xpKSkf//+a9as+de//hXAqgAAAIAzgtCIxvPzzz97/67X67du3ZqSkhLAes6U9PT03Nzc6ktMJtOAAQM+++yziy66KFBVAWeW2y3LQsiyLIQkhBBCliRJJUmSFODCAMA3u92u0+kCXQXQvBEa0UhkWc7Pz/f+2LFjx/T09ADWcwZVVlaevLC0tHTAgAFr16698MILG78k4BS43LLF7ii1OIorq05U2ooqrcWVNpPFUV5lN9ucVQ6nw+V2uWW3LIQQKkloNWqdWjLotGHB2rAgbcuQoOiQoOjQoOgQfURIUKheo1VzBwRwttldXDzxjz8sTudTPXtelJAQ6HL8cvDwkY4d2gW6CqB5IzSi8VQPV+fCoylMJpNnnCq5EU1WlcN5zGQ9UFSxK68kq6Ds0InKE5VVlVWOKqfb6ZJdstst130bsudyo0olaVSSXqMy6LWRBl1SpLFjTHjXpMi02PCEcINRr+GiJNDcybL88Lp1ORUVQoiRP//80003tQwODnRRdav11PNnds5PP6/ft/9AeXmFRqMODQ1NTEpp175jeFhIZIuwVtGRES3COGsBXoRGNJ6zewocj4iIiOq3OJaWlvbv33/16tXc34gmxepwZh+v2PBn4YY/j+/NNxVVVlU5XO5T/R/qyZVul+x0iSqHq8zqOGay7M43fb07T6/RtDTq2rcK69eu1cWpsR1jwkODSI9Ac+WS5fz/zX9e6XQeKi9vHqHxn+ec7JyDE158ed26DSqVpFKpZdmt1eoiWkZbKr9Sa/RpXXoFG0OFLLdJSbp1wBWdUtsGqmygSSE0AmdS3759BwwYMHr0aKfT6VnizY3c34iAk2XZZHX8+ufxVZmHfjtYVFRR5XI34Fc5siyqHM48kzPPZFl/oHDe+n09EiNv6JF8eVp8q9BgkiPQ7GhUqqsTE1cfPiyE6BIZ2TUqKtAV+aX6N2LrN/x6z3+Gl5YUy7Isu11ut2wwGOITEvJzc4zGEJfD8du6r1LaprXt2CX7YO6U6YvO79Xt1gFXRkW2CGD9QFNAaATOsAceeECW5TFjxjgcfz3E12Qy3XDDDVxvRGBVOZzrDxx/Z/2+33KKLHZnI+/dLcvFlbbvso6tO1DYOSHingvbX98lOSxY28hlADhNb1x8ce4XX+wqKVl61VVatTrQ5filRVjYwUNHnE5H1r59zz4/ocxUKoSsUas0ep1bFi2jooQQUdGtJEmy2WxGQ/CRg/tMJUWduvYJMoT+snHzjt37b/r35Vdccr6K77pwDiM0AmeYJEkPPvigEOLhhx+ucb2ReXEQKAVl1je+3fXRlsMVVfbAVmJ3ubfmFu/KK1297cjz/+7eKT6cz2FAM6KWJL1arZKkIE3z+AxpNls2/rFlwcLFhw8ftNvskkpKadPeZquqMJW63C69WqPX66uqqvT6IEkSer2+ymoNCw8PCwvbs31jStv0VvHJ5eXl7320Zu/+g0MH9Q8PCwl0h4DAYGo74Mzz5MYZM2aoq30L65kXZ8OGDQEsDOem7OPl9y5ev+iXAwFPjF52l/u7vfmD5v+0ZscRZ0MOkQXQQJrLlz1GoyEkxGAxV1jMlQ6HzeV0lpwojGzZKjomJjgo2GAwWCwWrVYrSUJ2u90up06vs1VZi08U6nRBpSfyCo7st5afKC7I/e67bx5+/LlKs9npdLpcrnNhmgaguubxLRHQ7HhyoyzLo0ePrj4vzoABA5hPFY3pSKl56KL1WQVlgS6kFsdMloc//L3M4rijT1uNurl8BAXQnMiyLLvl8PAwm83hcrvcLkt0dNTxgrz4+LgyU6lOp7VYLDqtNjw83Gq1WquqXC6XRq22OxyV5SVVFs2endtkt0un17tcbp1ef39lyYX/+lewwRAcFNS6dcqFfXsHun9AI+FKI9CARowYMWPGDE21MTyecapcb0TjKLc6Hl3xR9NMjB5mm+P5z7Z+uu3wKc/dCqCR+fl/NaukZOy6dWPXrdtfWtqwBfkky7LDYa+sNKs1aqfDYbVabVVVJcUnSoqLtRqNRqPRajVhYaGXX35pTEysWqPXanWSSqXRaGRZdjkdDqfLJUtCUkuSpNFoLObKKktFlcWcnNy6RXgLt9sdwK4BjYkrjUDD8tzfWH1eHM/1xs8++4z5VNGg3LK8YvPBdfsLal0rSVKkQdeuVWhYkK6ooir7REVllaORK/Qw2xyvfLEjNSa8a2JEQAoAUD9+fMVjd7mGfvfd8aoqIcSm48d/uvlmrSowFyqcTte+ffvz8vJUkuRwuvTBhiq7Xa/X22xVKklyu12SpJKEpNfpgw3BarXKKUuyLLvdbrVarVGrU1NTExISd+7YZjZXCtm1b19WiamsfWrG7gNHLJWV3bt1HvvQf3iMEM4FhEagYSnNizNgwADmxUGDKjHb3vs9u9aHahj1mkG92wztl5oUYdCoJZvTva+gbPbPWV/vynO4AvDFeW5p5ds/Zb1xe2+DjncloBmoMyRtLiz0JEYhRL7Fknn8eJ/Y2IauqlY6nTY/Py8v/1hoiMFgMKhVKq1GrdFohCwktcpaVeV2y6aysrWff2GzO6xWqyRkIYQkJKfTYTAY1VqdzW6zWi1arSY4KKhFRMuWUTFx8Ql7dmwqLyu1WSs2X9Cr93ndA9I1oDHx9gw0OG9uHDVqlHcoi8lkGjBgwOrVq8mNaCC78037C8pPXm7QaR6/uvOwizoGaf+aqClYK85vE90hJvwlw7YP/shxNnpulGXxQ1b+1tzif7WPaeRdA6gvzxdRSrnxhNX6Rmbmiuzs6gvv/PbbwR06PNK9e0RQUEOXV4Msy99+/6PBYNBodBqtRq1Wq1UqrU6n0+l1er3D4dTrg/RBQVqNNkSjidVoNBqVkGWX02EylZaVV4aHRxzMznK7XXq9XhbCGBKalJwSrFf1v/7/du/edfRoXub2XYRGnAsIjUBjkCRpxIgRQojq8+KUlJT079+f5zeiIciyyCoos//vH1t1V3WKv6dfB29i9Io06MZemb79SMn2oyWNUuM/lFpsX+3K69euFU/gAJopm8u1ZM+embt2VTgc/WJijlRWHjGbH+/WrWNExNTMzKX79685dGhM1653pqU15lDVBYvf0+mNiclGjUbjcjnVao0kqYyhYXp9cFCwIdgQGtIi2mAMNYaEGUNCQgxBWndFuanYZCrdnrnFbLUJIZeXlakkSaNRhxiN4WGhbdu2ubBPj/PP7717956l7y0tL6/luzng7MNEOEDjGTFixMyZM5kXB41AFnK5tZYHbARp1Tf1TAkN0tb6qqSIkGs7JwQktcmy2HSoqMwamPsqAfjvryHv1c4UshDfHD587erVr2RmRur1sy+++MXzz8+zWHpFR4/s1u3K5OS1/fs/f955shATN2++fs2a9Xl5jVZt7pGjVqvFbrNVWa0ul0ur1anVKkkIp8PucrmcLqfsdkqScLkcssupUck6rVqt0dmqbCZTqdvlslotf91aIssajUan1RiCghIT44UQcXFxkRGRbh4ahHMDVxqBRvXAAw+43e6xY8d658XxjlPleiPOLLWqlvDXwqBrFx2m9BJJEl0SIrUqlT0QdzYeM1lPVFojDLrG3zWAeqk+9cvekpLJmzf/UlAQotU+2b37fenpeo1m+rZtblm+IzXVs51WpbovI+OGtm1fz8xckZ099Pvvr0hIeLZXr9bh4Q1dqsPhqCgvU6vVbrdbFqK0pEQlqdQajUqtCg4KttntIaFharVGCEmjUet1WkOQTlKrzRXl5WUmm93ldrtcbrfKLblcLpfL5XA4rFaz5x3carU4nHJUVGRDdwFoCgiNQKPyjFOVJKnGvDj9+/dfs2YNuRFnUK0T+qmE5PuJiBqNSqVSiUCERpvTVVHlbPz9Aqif/82eWmy1vrFt24o//3QLcWvbtk/07NnKYPCs+v7oUb1KdUViYvXXtQwOfrlfvztSU1/cvPm7vLz1x44NTUsb1bVrqK4Bvyrq3KnD8cJjkkqlUql1Om2QXidJkkqlEkJy2iwlJaXh4WFqtVoIoVKpVP8bNyu73VU2m1YXZLfbZVl2ulwOh91sNpeaTIcOHfr1tz+CgoJ++nl9hcWWFhPXcMUDTQehEWhsnnlxJEkaNWqU9/5Gz/XGNWvWMC8OGlSFzXnMZOnQSvFi48GiCkdtd0I2BklwQyPQxB0qL8+zWBxu97QtW5ZnZ5fZ7b2io5/r1atbdLR3m3KbbU9pac/o6DC9/uQWOkdFLbvmmrUHD766deu8PXs+zckZkpaWVVoartON7tYt5n+x80y58MJ+ndJSVSrVnj1ZNrfL5XRptFpJErIsnC5XaEQri9kk3G5ZyJIQarXa5fprMKrL7UpIjna5HGqNxmm32R3qyspKk8m0f/9+m93x/XffWaz2Nmnd46IUT6fA2YTQCASAJze63e6HH37Ymxs9z+FgPlWcEZLCg8MqbY4vd+X1ax+jqW3warnV8fXuvFqf0tEIPM/PDsiuAfhDluUHf/zxmMUihJi3d69OpXqkS5dhnTsHa/9xm/TukhKnLPdq1UqpHUmS+rdte0VS0pxdu+bv2TNt2zbP8gNlZcuvvfbM1tw6JWXLpt9OnChO79ZLklRqtUqr1UVExagklU6rCQ1vodMHmUwma1WV2+VSq1V6rVpy282VFcXFxTZblUajNRjDTFWFTodDJYkyU6larQkJj9Trg0IjooyGkF49Op/ZgoGmidAIBMzIkSNVKtXo0aO941RLSkquv/761atXX3TRRYGtDWcrWZZXbjnYr12r67sm1siVTpe86NcDv2YfD1RtAJo4u8uVXW2yULvb/d+dO2ft3t02LKxvTMzliYnnx8bq1OqjlZVCiM6RddzsZ9BqH+3Ro1NExMh16zxL9paUuGW5IUYcFBUVeR62IUmS2+UsKz7eKjZerdFEtgjr0L6dLAtZdov/jVBVq1WS2/HlN9/nHjkqZJdGrTGGRthtZo1WFxXV0uVy5h852L1nn+TkhLsHX69ryLG1QNNBaAQC6YEHHpBlecyYMdXnxbnhhhuYFwenT+Faoyi12J/+ZHNRZdXNPVNaBOuEELIsCsut76zft2DDAbszQGNTATR5eo3m0vj47/LyhBDxBsP5MTFVTuehiors8vIsk2nxvn2Rev0NrVsPTk398KqrWof5NW7zuMXi/ftF8fENNEb9eFGRWqUSQsiyLIRwOOwFx47GxCbKspBlIUlCqjbQweVyq1Wayy7517ff/3SipEyn12u0uqi45Asu6Ddv+suyLMuyrGrEp4YATQGhEQgkzzhVT26sPi/OgAED/p+9+w6MomgbAD6ze72l994TIJRQQu9SpYpSRVRELIAoYsWOYkNfESkiWBBFwQKB0KWGadtJHAAAIABJREFUTkILpJPeL8n1uy3z/nEQQhoJXEh7fh/v55bZ2blA7u7ZmXkmJiamb9++zds80IoRVM9Xr0KNcdk/F34+mdLN18lBJi6oMJ7LLMlW65nmyH8DAGhFVg0aND4mJt9g+HfsWGep1HpQzzDnCgv3ZWfvycralJT0U3LyQA+P5zt1cpfL668tU6P58uJFKU2bOK6To+PnTTY7w2QyEXLHwHuWYQrysj093asdt+I4Qgsl9nZ26go9QkgoEstVDteuXed5nqKouh7JAdCGQdAIgI3V+vFTP2tenAULFlSd3zhu3DiY3wjuS73/FM0sdyW3/EpuOUVhWGcMANBAEoFAIRSKaboyYkQIyYXCQd7eg7y93+nVK/bGjZ+uXz+cl3ckL2+Ah8eSbt0inZ1rrUpjNs8/fFjLMB/27Pn+uXNuUqlMWPsSsvevT+/eQqHQYrEghBFGCCGMEMexSdcSlQqFt7c3xpgQbE2QgzHSGwzJ168VFBYxFpNRZ/TwDSktzBOJReXlFY6ODk3USABaMggaAbCluLi4nj173tu1IpHIaDRW7qrV6vHjx+/Zs+eeKwTtXAOfhUPECACwFTFNTwwK6uToWGIyrbp06Wh+/vGCgskBAVVX47DSWSxzDx26Xl4+IyTk0ZCQ98+dq290xH1TqZQDB/Tbt/8gpihMEEKIYIwIYhhLctL1oqLC8IgOMqmUIIwIn5OTnZmRzvE8piiBQEjTAm1FGUFIIBCUlKohaATtEwSNANhSRUXF+fPnbVWbWq2eMWPGhQsXlEqlreoEAAAA7gdBqJ7wjifkkT17HgkM3Dxy5LHc3BXnz29LT9+fk/NW9+5TgoOtD7PUJtPcgwfjS0vH+Pq+Hx3N8zyqt06beHjs6L37DxKexxhT1i5FhDieJwiVl5WdOX0qKCjYwcE+Oem6VqvFCPEEYUxRtMD6ojDGYqFQIqllEREA2gMIGkHbUVJSEhcXl56e7uzsPHnyZJmt13qyOnz48IULF5ydnXv37h0SEtLUExtSU1P37dv3yCOPNOldQJsEs24AAA8ez/NGls3W6TBCA728+np4bElK+iIhYenJk3uzslYPGpSl0837778bWu0Ef//P+/cXUJT5gQx4GDF8mFgkMlsshBCeIIwxwoi/NZGb57jk5CSaQpXRK0GYoiiaojhCMEJCAS0QClRKRdO3FICWCIJG0BZoNJoPPvjghx9+KC8vtx759ddfd+zYIbT17Ii1a9e++OKL1pmHIpFo2LBhX375pW1vUdOlS5cgaAQAANBC1B/gMTzPV3loJaCo2RERw318Pr9wYXJQ0P7s7DdPndIxzPMdO74SFVU1V2pTP+Wyt7frHd3ryLHjCCGCCCIEI8zzHLbemyBkXXcD3+xJxRQlFArlFM0TLBAIpBIxx5oZhm3iZgLQQkHQCFq9oqKiMWPGVBsUumfPnuTk5I4dO9rwRjzPr1+/vjJXjcViiY2NPXXqFMY4PDzchjdSqVRnzpyp3K2oqLBh5aD9gH5GAEATqWcgA4+QdVGKqgc9FYqP+vT54MyZP9PSZALB1/37jwsIePCjIcJCQ44eP4GrvDvyPJHJZTQtwAgxDGMw6K3nxFKpXOlACGEYluN5ClMCmqoo02Xl5Lq41J7XB4C2DYJG0LoxDDNz5sya0wiFQqGqYStENRzG2N7evtrBsrIyJyenHTt2hISE2OpGZWVljlXWRK4MUwFoDKIQC73sZdjWwSNBRGNitSaLbasFALQa9WZmpjDGGPN3ljmRl/fWqVOZOl0He/uV/fvvycp68sCBVYMGKUWiyjIPIIL09fXGGGNr0HsrZjXoDZGdu2KMtDp9RmoSIkgkFimV9tb+UqFQICCkMkzOzsnr3q1L07cUgBYHgkbQuv31118HDhyodlAikXz00Uc+Pj62vRfG+PPPP588eXJWVlbV46WlpW+++eaff/5p29sBcD8wxjOiAx/r6W/zmjmOfLr38prD121eMwCgVag/EY4AYwohM39zrmC+Xv/JuXMxmZk0xs917PhS1648IUnl5Ufy86fv3fvT8OFOUimxDg5t+o5HP99qXwwwT/jMrExHJ+egoGCjhRdLpBzHquwdEbbGxhhXNowQkViiNxhrqReAdgCCRtC6bdq0qeru+PHjX3755c6dOzs4NElG7O7duyclJaWkpPz777/Lly83mUzW47Gxsbm5uV5eXk1xUwDujZCmhDRl82o5mtCQYgcAUAeaosQ0bWAYPcOsv3Jlw7VrBpbt7Oj4Ye/enW8t2Lhq0KB3T536NSXl8f37fxs5UkzTD6ZtPt7elW9e1g1CEEb4ypXL9g6OYqnS3tGZZSwYU4gQ68THm6UJQgjJlap+vWERLNBOQdAIWjGDwXDx4sXK3fDw8N9++62JkqZWkkgkkZGRkZGRWq32s88+sx7U6/UXL16EoBEAmyJ3y7iBYeYmAA9e/b+WFMZKkajcYrmuVn9z+bK7VPpujx6PhIRUfdhEY/xh794IoV9TUp4/fHjd4MHogfwye3t7WYfOYoQlEqnZbEaIIIwJIVevXu3Ze4CDo0tpccEdA3AJQbdecmhwkL+fjQcxAdBaQNAIWjG9Xq/T6Sp3o6OjmzpirGro0KGVQSNCqKCg4IHdGrRbDMdbWN7C8VTzrafBEcLcSlLflFi58A+MNHWdxoQQJOKRI0t8ON6XI04IPaDOCgBAre8/BKGUsjK5UOgskWRqtR5y+evdus2OiJAKavm2iTF+v3fvIqNxf07O/6o8/21SCoXC0cGhpLSURzzP82KJBJnNLMsSgrRaDSFEKJYIhAKGYSuDxapdjcMG938w7QSgBYKgEbRiPM9Xzc8mFj/QJXer3Q7S1YAmwvGkQGO8klsWn61OKago1BqNFpaiqOYKGgkieeWGpr4LRrwQX6Rx0V0LEiLkaXuGj7DwfVkSQIiNF9oBAFSVUlZWYDDoGSa+qKibqytByMAwiWr18by8/dnZ18vLP+3Tx10mu6JWy4XCZyMj66mKxvjzfv3GxsRsTEriCcnW6SrMZrum/CjHGPv4eJWUliJCzGaTVKaQKew4jjUadCzD6HVahVKJbq68YY0YcdVOx6iu9b0cANo2CBoBAKCFsrDctYKKv+IzDybmZZbqTSxbb87C9olgbKFREU0Xi6h4Cx9t5EbwBBLiA9AkeELm/fdfscmEEJq2b5+7VGriOLXZbH1vktD0CB+fDo6OSWVlBKEsrTbybhGgnVj8ateuL504gRC6Wla29MSJdUOHNulL8Pb2vhB/CWHE8zzLMpRAJJWrKIoyGfQVFWWMWW8yGjBFY4RQlYiRIIQQYRimSdsGQEsGQSMAALQ4hKDsMv2mEyl/ns8o1BghVmwAQmGNhD4goNL0zHSWBMF0RwBszsAwWXq9ddvC83lGo7dMFmJv39HRsYera293d+sSGpdKShBCKeXlkc53f4JTZjZXbl8oLm6aht+GEeIJTyFMMGYsZolUhjEWimUULdBp1LxFQtFC66hUUm1pEYKMJnNd1QLQ5kHQCAAihDTfBDEAquN4cjy1cPmuiwnZah7ixcYhApyuFK7VsU8zXBjCtk8eC0B7phCJ+ru7H83Pt+7yhHR3dV0aFeV6Z0KBCEdHhNDl0tLJwcH11Jap0Xxy7ty+nJzKI0O9vZug1bcZjCaNVkcI4QnBGHOEcCxLUxQhRGVvL5fJrNm1bs1kxFVz/hBELBZYnxa0XxA0gvaLZdnNmzevXbtWp9MNHz582bJlTk5Ozd0o0N5xPPnrwo33diYUamA1sHtE4VKFYIMWvcjy/tDfCIBtrR0y5N/0dIbnA1WqrxIStqen783OfqFTpyc7dKhcOSPCwUFK02eL6pyTrLNYvrt8eeP162aO6+fm9nSHDpfVameJZEq9Qeb902r1aRlZ1jcFnhBMiMloUNk7SsUipUJ28/Hx7dQ3BCFECDKbTXqdxsfbMzQ4sEmbB0BLBkEjaL/ee++95cuXW7evXr165MiR48ePy+Xy5m0VaOf+js9846/z5UZ4nn1fKKyWCzZpmUU8gSdBANiSVCCYFhpq3e7j4bEzPf3T+PhP4+O3pqa+1b37MF9fjJBYIOjm7Hy6qKjIYKjWCckT8nda2ufx8YVGo79S+UZU1EN+fhihIT4PYikLN1cnNxfHGxnpNwNChBjGUpSfRVNUSQFFCwQ0LRAIBLRAIKAFFE2bjEa9XsuxrKuLy6qvP4dvCKA9g6E7oJ3KyMj48ssvqx5JSEhYv359c7UHAITQkeSCt/6BiNE2BDhbJvgbI5iDBEBToTCeEBS0f8KEFzt1KjAYnjl8+Mn9+1PLyxFCw318OEL2ZGZWLR9fVDRl9+4lcXEGln29W7c948eP8PN7wIMB5syeSdG3s0/TNEVRFEKI53nGYjEZDTqtprxMXVJSWFSQp6ko41hWIpGsX/etNyzFDNo36GkE7VRycrLJZKp28NKlS83SGAAQQnkVhjf+Ol+qgyDHZkT4rIXuYuF6wCBVAJqOXCh8JSrqsZCQFefPx2ZljYmJeTw0dFpIiJCitiQnzwoPpzAu0Os/u3Dh3xs3MELTgoNf7tbNRSptltY+MnmiVqd77c13EM8jhGiarvbuQO74D6Io6ovPPunWteuDbCQALRAEjaB1q7pOY6OS2Xh6etI0XW1xRZ/GDI+pdjsCCUvAfeB48lns5dSiOteyB/cAY4uU3sdyoTyya+62ANDG+SiVqwcPPpWf/+G5cxuvX9+RkWEnFCZVVLx09GiQnd2GxEQdy/Z2dX27Z8+OzZ0+YM7sWRqN5qOPP6coTFX7KL/5n9sf6ItfWjDu4TEPtH0AtEgwPBW0YlqttmpvoXMDUntX6tChw+TJk6secXNzmzdvXsNrqJY1p7S0tOHXAlDN6Yzi7fGZkCvV5gTohpC+iBD8YAF4EHp7eOwYO3Z5dDRBqMRsRgjtzMz8+tIlR4lkzcCBW0aObPaI0Wrhi8+/tOA5+lbmHqsaESNe8MJzC1547sE2DYAWCoJG0Irt37+f5/nKXV9f34ZfS9P0+vXr58+fL5FIKIqKjo7evXu3d2OSfXt5eVX9vNm7d2/DrwWgKqOF/fZQotHCNndD2iLMiqmTGOubux0AtBc0Rc0IC9s4dOjtIxjvHDt2lL9/i1rd6o3XX/Xz9eY4jif8rRU2kEwqHTli+MovVvj4+T/99FNLXnmpRbUZgGYEw1NBa1VQULBixYrKXYFAMGTIkEbVYG9vv2bNmq+++spsNtvZNXr0mp2dXXR0dFxcnHX32LFj27ZtmzJlSmPrAeBCVunRlMLmbkVL0CT9gQIqU4AzGBLZFJUDAGoV4egYolKlaDQIoWFeXiqxuLlbVF1FhaaouJggxHM8Rnz/fn2fmD1r0MD+MpkMIXQlMfmNpYubu40AtCAQNIJWKSEhYc6cOVlZWZVH+vbtGxQUdA9VSSQSiURyDxdSFDVz5szKoJHn+Tlz5uj1+hkzZgiFwnuoELRPFpb783ymieHuXrStoyiKomz/UB8jk4hKYLgOCNN3Lw1aj9279n3xxerffv/ezc21udsCqhPS9NZRo3ZkZMgEgvGBLXF5w0uXLwuFIpFQPH7cmCefeDwsLLTq2aVLFsFHOQBVQdAIWg2z2bxly5ZTp05dvXr13LlzZvPtJJMCgeDjjz+2Zs1+kJ566qnVq1cnJiZad/V6/ZNPPrl8+fJevXqFhYXNmTOnUZl1QPuUrzH9dz2vuVvRIggpLBE0xW8xEVLJFNbwyKEJKge1O3ok7r33Pq15/Iknpj0xZ/qDb899+u+/Yx9+8IVKqfhj248i0R2xRNVXSlGUyk4Z2TFi9pxpQUEBlWeXLVsyZOiAZmh3s3KQSJ6IiLB5tYSQstKS4vw8TXmZyWSiKEoqkzs4Obt6eskViobX06ljh4DA4JcXPT986OCaZ6X39DQZgDYMgkbQaixevHjNmjU1j2OMlyxZ0rdv3wffJIlEsn79+tGjR2u1WusRQkhKSkpKSgpCaOPGjQkJCfcw8BW0K6fTi/IrjM3dihZBKREqJKKmqJnCpTSVy/MQND5oTRosjRk7YszYEU1UeTW7dx1wdnYsKVEfOxo3bPigmgWsr5Rh2OTklE9XfLNwwevrv//Ky8vzwTSvzbOYzedOHD19+OClsydTE6/qKspqlsEU5eLhFR7ZtVvf/n2GjgjtGFn/dERHR8en58yK7tWjyVoNQJsCQSNoHTiO27JlS62nJk2a9NFHHzXXVPV+/fp9//3306dPr7nkxo0bN44fPz527NhmaRhoFSwcfzi5AJKmWrnbyVSSyk8lHmObLVmJkVGA0xjUyVYVgnaloKDwwoWLr7zyfGzsoV279tUaNFoJhYKOHSNeeGHuG298sCtm/7xnn3iQ7WyTrsaf//OHtQd3bNdpKuxUsiB/t2F9g11dVPYquVwmFgoFhBCzhdHqTOpyXUFheWbq+TWHYv/3zms+gcEPT589+Ym5zq5udVU+eeI4yHMDQANB0AhaB5qmfX19L1++XPPU4cOHr1y50qVLlwffKoSQwWDYuHFjrYs0UhTVqISuoB1S68wJWermbkVL0dHTXiK8+amEsQEjU/3lG0VApSOeRQQ+9VqKrVv/Wbd207btP277c0fsnoMmk6lb18jFLz/v4nJ7SYaLF6+sX/dTWlqGvb3dlCkT/Py8X3vt/ZVfLe/atROqMaexIRUWF5f+uGnLmTMXKio0Tk6OD40Y/PjjU4XCu/yriInZL5fLhg0bJBKLP/n4q9zcfC8vj3rK+/p5IYSKikvu5+cDLp07veqDt88dPeTooBjQKySqc4Cnu6M1xOM4nuN5nieEEIyRXC5xcVaFUB7WsyzLJaXln09I++HzD3744uNJT8x95tW3nFxqmfgKESMADQdLboBWY/369Z06dao5MV2tVk+aNEmjaZ5V0V977bV9+/ZVO4gxdnV1/eSTTyIjIWEjqE9mqS633NDcrWgRZCJB3yDXyq9wFC7DmLFh/TQuoojWhhUCm9j4w6/+AX6bN6/56qvlaWkZn674X+Wp69eTl776rour848/rV63bqXRaNy5c8/9VFhQUDz/2ZezMnM+Wv7Wjp2/Ll26YO+egx999EX9FfI8v3fvwREjh4ol4kGD+qnsVLt37a//kuysXISQq0sjlg5uz/Kys47s3R13aH9F2c0naDqN5v2Fz84Z0T8vOf7pWcM+eH3qmOHdVCpZSZkmt0CdkV2UmVuck1+aV6jOLyrLKyzLLSjNyi25kVOYnV9SVFKhN5pDAt1nTx20/K3pIwZ33PHL+kk9Irb9uMH6ePfimVPvLXjm8Yf6zZswYsOXKyrKaxnpCgCoCZ65glajd+/e58+fLysrS05O3rBhw5YtW1j25rp2GRkZH3/8cdUVOB6M8+fPr127tuqRqKgo6wRLJycnRWNm5IP2KamwwmCxZWjUegW7KLv6ON7aIwKcgwhf3wWNRCEdhct4AtMaH6gPP/ziww/viMoq+wmtPLzcR4wYjBAKDw+ZOnXSt99uyM8v8PBwRwht3LRFpVK99ebLQpEQIfT47KlvvfnRXe9YT4UbNvzMMMzyj99S2akQQt2iOi9c9Oyytz9OTEzq0CGsrgpPnTpXWqKeMGE0QkgoFIwd81Bs7IGnnp5ZbV14K5Zlk5PTvvtuo0QiGTP2oQb8hNq14oL8jxY/d2xPjDWcE4rF42fMGTx2woolL5bmZz82oXe/6HCD0VxQXGYy3/19khDEMBzDcDqDCSEkFNAKuWTE4M4D+0T8FXNm+UvPHtu7i2UscQf2+Ph4RXbpoNPqf/jiw63fr171x87wzl2b/NUC0MpB0AhaE5FI5Obm5ubmNmDAgAEDBjz33HOVceOmTZveeustpVL5INuzevXqygYghCZNmrR582brEk8A3BXL8dcLymE+I0JIQFOTu/u7KCvTFfICKtnWNzFTVAniWmLq/zbsrolw+kTfTkMSEOCHEMrLK/DwcCeEXEq4MnhIf2GVVKV9+/U6efJs/Xesq0KE0Mm4M927d7FGjFZRUV0QQhcvXqknaNwVsy8qqouPj5d19+Fxo37//a+4k2cH9O9dtZg1PMYYK1XKyE4Rb7/9ird3q8yCU1xcsu/AkRnTJmOM1eryXbv3zZwxhaKoigrNPztiZ82YQtO0Tq/ftm3nzBmP3M+iFJqK8qfHDjFWqN94e3GPXl0tFsuhA8e2bP51+6Z13p5Ory2aKBTSOfklPH+Pb5EMy5VV6Msr9HKZZPrkvpEdfH/ZGmsyMwtemvfIow9bB6aWlKjfXPrRS9Mnbj99pVGZVwFohyBoBK3V3Llzjx49+ssvv1h3i4qKjhw58vDDDzeqEo1Gs2bNmuLi4tmzZ3fu3LlR15pMpp07d1buurm5bdiwASJG0HBmlsso0TV3K1qEzl4OE7v5UbcGp1JIL8Aptr0FxhyNimxbJ7h/Tk63+35lchlCSK8zIIRMJrPFwjjY35F92t7+7smo667QZDSaTpw4M3zYJOtZQoi1g0tTUee45dIS9enT53meHzpkQtXju2L2VQsa28yiGsfjzqz47JsJ40YpFPIzZy989uXq0aOHOzs5Xoi/9MXK74YNGeDt7Xn58rUvv17Tv390cFDAPd/o+8+XqwvzNvz4taenu/VIZOcIxmKJCPWa/kg/ncGsN9pgrAFBSGcw6Y0mX2+nxc89/O0Pe3bt3DdqzFCFQo4QcnZ2/ODj12dNnb/zt5+nPfP8/d8OgDYMgkbQis2bN68yaEQIJSYmNipoZFl28uTJBw8eRAh9//33Z86cCQur82FzTYWFhSUlt/McPProo46OjvWUB6AaI8MXamyZ66WVcpSJFj/U0cuu8oELEVCpNC619X14ilIjzta1gvtTVyYSiUQsEgnLyiuqHiy/c7dRFYrFYpFYNGhg3zfeXNzw5sXGHnByctj6x8aqBxMSrix5ZVlRUYmraxuctWgNpAkildvIeoTcPouqnr1Xe7dvfXj8iMqIsbi49O03PvFws58wtqdGZ+NViAhBFVqDUEA/+8Tw1Rv2fvT+yk8+e9v6T8Xd3bVjZHj8qRMQNAJQP0iEA1qxwMBAsVhcuZuTk9Ooy/Pz8w8fPmzd1mg0u3fvbtTleXl3LMgeHh7eqMsB0Bot5QabrSrRSslEgsUjOg2L8Kz8qo+RRUyfQMiWExqtKFRu23mSoOlgjDt37XT+/EWGuT0F4GTcXcam1l9hnz49z51L0Gr1DbyEELJ794GevbpXO96pU7hUIomNPXDPjWk5SA0RYSHPz39SJBQSQoKDAp6f/6RUKiWE+Pv7PD//SZVKSQjx9vJ8fv6Tjg72NS9v4H0Zi6W0qNA6ftjq8xXfMhbTmBHdWPb2o52ycn1ZeUP/vmriOD6/sDw5Ld9aCcNymMKTx0WfPHFmV8ztbEYikYixWO75LgC0E9DTCFoxmqYFAoHZfPNrd+VGAxkMBo67/eGk1TYus2K124lETbIoOWjDdGZWb2bvXq7tUkmFSx6KfKpfiIiufIJJBFSqkEpsitthpMeYI/C0tJV46skZixa+seKTr+c9O1siFsfE7KOp+/q7mz9/zosvvPbm6x/Me/aJoJAAs8mcnn5j5797Zj3+WHBILZNdz5+/WFBQGN0rqtpxgUAQFdV5T+yBxx9/jLq/JjW7HTv3bPrpt5rH9+471Khtq48/fKue2aFVCYRChZ1dYWGxdff0yfOnT557eFR3mfT2J2lqesGO2HOEoHGju4cG1bfGSU1mC3vqbMqlq5lmM4MQCg5ynzimJ0KIEOLhbh8e6vX92l+GDR8olUoMBmPi1aSZL45rVP0AtEMQNAIAwL1LybyRnp0V5h/k6+nR2K+PWjNjYttpxxeFsZ+T4r1xXUd29BLcjhgRxnopHWvbFRqr3NSAEItQ41J3mCzmlIwb19PTJo8cSVO1JMwE9aiZPXXIkAHL3lnSkGvDw0M//ez979f/NHv28w72dlOmTBgxauix46eEonv86uLm5rpu/crNv/zx8cdflZaq7exVgYH+48aNCgzyr7X8rl37KIqK6l7LdPdevbsfO37q3Nn4XtHV+yGb1IH/zivk0rBQm60AXF6hSUvPtFVtJlNDH91ijAeOfDhmx64pj41TKOS/bfnL1cUuPOSO1EHHTl63ZsE5dvJ6o4JGdbnurx2nKzTGkCCPsBAPBzu5nZ28aoF+0WEbN/8Xu/vghImjvvpiDcvxE2c92fD6AWifIGgEAIB7Z2Es11JTr6WmikSi8MCgsIBATze3Bi4XrTUxDNvu5thhjJzkkkd7+D8/OMLDTnrnSVZCHxJS15rs5gzCHGrYADqGZdKysq6lpWXl5xHrV1fIc9sYAwf1PfTfv/UUmDp14tSpE6seCQsLrnZJ166dVn/3eeXuP//sRgg5Od5MdTNm7IgxY0c0qkJHR4eFi55duOjZhryEd99dWtepsWNHjL116/pf6V1/Do2iLtNeTbxx6uw1hULq5erh4+alkLfW7GvPvfHu0T07X1607OlnZiVcuPzQ4DuWNbZY2FL1zeE/ZWU6k5mRiBv0uMdiYbf9c0qjNYrFQprGUonI1aV6/iQHe7mfj/Nff+zcvXN/enrWh2t/dPfytsmLAqANg6ARAADuC8YUT3izxXIlOeni9WsyqSTMPzDEP8DLza3+Cw0Wtl2FIXKxoIOH/djO3uO7+Pk6ymucJ2L6lJSObYrZjFYYsRgx9f/MeUJy8vOupqamZt7gOA5RFOHbaW9wC3TsaJybm4u7+11+s9o26z9gnc6Yos9ISs/wcHEOCwgMDwySSiR3ubKF8fT1W/vPvjfmzlz68rsIocCAO/5a+TunRzZ84Q2W5WQysbOjkiB0I6v4WlJu3+iwvr1CqxULCnQ/ePhy1z4DNn23ObJHr/t4HQC0FxA0AgCAbXA8jxAyGE2Xkq7HX0u0V6kiAoPCAwPtVbWvE2Bzvpo0AAAgAElEQVRiOL6ZVmkU0ZRSIrSTiWQigZDCdSWcvE8YI4lQ4KqU+DrKO3k5dPKy93GQiwWC2u7GiekTcvrPJhqYeqtBPEK1TyIlhOQVFSXfyLiWlmq2WDCFifVLKkSMzWr58pUTxo8ODPavKK/Yvj0mPv7ya68vbO5GtRTWd4+C4uKC0pIjZ057e3h0CAoJ9vMT3cfaiQ9YRJdu2+Iuvjlv9sl9OxTyO4JeiVioUko1WiNCSCGXVJ3riBCq0BjSbxQVl2qMRgtNUyql1NvT0c/HhaYpmUw867Gba5+wLL/30MW400mBfq7ubvZVa3BzsUMIvfrJyg5dq89ZBQDUCoJGAACwMWv0WK7RnLp48WRCvIOdXcfgkA5BIXLZHaMxWe6BRowYI1eltKe/c98gt0hve087mUIiFAsoXPcqBTa4KUI0TdEY01Sdt6BQhUSwR0IfwcjGefarIzwm1ccDl5aXp9zIuJycrDPoaZq2Jsci97qeOLCtEQ8N3rhxc1pahtnCBAb4LXtnyZAhbWEtRBsiCCGeIIRy8gtyCgr2xx339fTsGBwSEVLnCooWC/P1N+t0Or2dndLZ2cl6MDDAL6pbpIeH27nzF9PSMqY8Mp6mqb/+3qVSKUNDgv7duUepVEyeOHbvvkMPDR+MMRIIBJcuJw4e1O9E3JmTp85ZK9Hpde+896m1tjlPTGtI+wvzchNOnXCwrzn0APWMCj545DJCqGdUUOXB0jLd0ROJ6TeKaJr28/dxdPZgLExaZu6Z86kymbhXVFBUl4DK6eUCAfXQ4EizmaHo6hPOVUopTVPrP/voy1/+oGn4MgzA3cHvCWi/aJquZ7eV0huMn6zaePdyD9D5S3fJhHnXAnuOHrNdc2yvnoiLEB4hVFZRcfz8ubgL5/08vQZH97ZXqaxn+UYkqL9fgS7KaT0Dxnb28XWUS2rv62sGGOtE+JJEcFCAM9GDWEKRIHx7amLSjYyT8RfKKm4v/Vc1nXJN3/zyU82DowYMjAgKrnl8z7Gj19JSH3D585cSRw7vGRFWS5aUvQfOXkvKqnm8hZfv2SuqZ6+oyvIXE4suJm5vRe23eXl7e0XNg1bE+n+EZObk3MjJOXgyrndU5JB+PWp+tFkslkuXE3U6vYuzY//+N4PGiIiQN15b9Me2HSzDrvvui7T0zIqKig3rvnpm/stvvv7S1cSkQQP7DOjf+8DBI0tefv73rX8PGND7sSkTDh0+vvLz9wcNm2ixMAghhuEuXU5ECJlMDRoyYDIaX5o+0aIve2RKv5pnu3X2V6mkiKCgWyNXL13NOnTksqub66uvLxg8tJ/81nxOQlBaasZf22L27D54PSVv4tielf2WIpFg8rhaRp8q5JJxo7rv2L1j1QfLXnr/k4a0FoB2DoJG0H55eHh4enpal1vEGHfr1q25W2QDYrFo2oSRzd2K287EX/Xw9lbcCpOq0Wk0+Tk5ERFedV2ek6vGHO3l1rhk6w9STkH+5aRkUneOFIrChCduzi4dQkJC/fyrzju6OSy0ieNGqUgwJcrvhSERAc7Kerr7HgiCEI8xi5GexkUCnCSiLtJUHkYParFKjBG6/RMI8w9wVNldT0+/npaqMxpoiub4+oLG0QMH1UyQ6+7iUmvhrhERgT4+NY83Xflr6SleXo5enrUvN9+lc1Cgfy2/R25ujlC+FZU/G59ca3krjDEihKbpYD//yPCQyI4BtaZ0Vijkm3/6zrr90y9bK48nJiZ9+vkqHx/PwEB/jDHLcR4e7hKJZNfu/c88PbN7VNd3P/iMIMQw7Jdfr0EY8Ty/avWG6VMnKeRytaUcIeRgb/fP9lqerdTl+8+XZyRdnfnYgGpjUysF+d+e6Bh/6cbBI5fHjBvx0svzqi7RjBDCGAWHBCx9Y8HYcQ+989aK37fHzZjSTyYT16jvDsGB7n2jw35Z9eXwCZM7RfVseLMBaJ8gaATtl1wu/+WXXxYvXlxaWjp37tyRI1tQrHXPBDTdKbyWfonmkpKR7ePj7eha+xdfdVGxSacJCa4zbR3LYMwKQ/3rHGfV7BiWuZxUy9c4mqI4nrdOa4wICrJT1hI2P4C+bSeF+NURkbN6B0qEtb7bcxgbKVRO41IKl2GsQ4hrsrCSIGSmkI7CZRRSU1QFRsYHnZCUoKpBI0LIxdHRxdFxQI8eRaWliakp19LTTGYzReFas26E+Pk3fDyCu7OLu3Pt/+ybqHyButDPx02lrD2Xpruro7tr7fEJlG9F5eMv1dIdjdHNacm+np5hAYEhfn5CoVAkoRu7CJCFYRBCBoOR5/kPP15ZUFA0Y9rkouKSjT/99u/2n5KSU+NOnvXwcON5juN4juNZliWEEELQPb1rlKvVW9Z+E9Ul0NW59qeKVeXmq/87dmXyo+MWLZ5XT7GOncJXrVnx/LxXY/ZdeHRCn7sOqejVPTgxKWftJx98++fORjUegHYIgkbQionFYrFYrNfrrbs5OTmNrWHo0KEXLlzgeV7Y+MwB2dnZVXdVdXSmgXaFoiie5+VSWai/f8fgEBcnp3oKi2m6STv+nOTiD8ZHTenuX6ODkVBIR1M3RNRlAZVOoRKMDJjiEGnzSV9ogulaA1VXJydXJ6eBvaLzi4qupaVeS09jWdb6t/nAGwlAg2CMEUaER+7WBKpBwVLxXfrWrBiG+W7tjzq9TqVUqlTKamdLS8u2/vnPys8/MBiMObl5JpNJo9HG7j108NDRu46n1+n1y1d8hRAK9PebPm1y/YUP7vzbbDR073r3Z4KEkAOHL4eGBb+48OnKgxYLc2DfkfLyCoxQWERI5XKanp7uby5b/Orid6+n5EaE1jmMxYqicFSXgEOH9qpLih0b89QGgHYIgkbQiimVSjc3N7Vabd09dOhQbGzs6NGjG1UJTdP3MJsxPz9/5cqVlbsURQUFBdVTHrRhPCIUpnjCS8Ti8KDgiIDAuoYUViMR0lSTjU+VigQLhnWoETESCumEdLyEPk6jLIyrjAttB5lfCBIgUt/jIQpjLzc3Lze3wdHR6dnZ19LSMnNzeHJzstgDaycA9cMYE0KUcnlUh45hAYEyqfTu11RhMpmPHT+p0+ldXJyGDxtkPXjg4LHjJ85Yt1d8tuq33/8Wi0WpaTesz03+t2p9aWkZQqiwoGjM+Bkcx61esxEhZDZbRoyZWl6usV7IMMzRY6cwQoUFxdOnTeY4rriwoCg3R11SZDIYEEJiiVQskUjlcoXK7vThA85OyroGplZ1I7ukuETz1nuvV/2w/vTjbw7sO1z5A/loxVv9B0Rbd3tFR/WMjjp7Ie2uQSNCyN/Xhee4w7E7Izp30+u0Rr3ObDIxDENTlFypcnZzd/f2Udk7NF22MABaCwgaQStG0/TYsWOvXbu5FLjJZJo4cWKPHj169eq1ePFiX99asgvcJ4vF8t133x08ePD06dPFxcWVx/39/SMjI+u5ELRhIoEgxD8gPDDQ292DaswXC7lYQFG4KfK/YIxGdfJ6sm/wnREjL6SSpfQOIZX8QLLOtEBCgho0pkBAC0L9A0L9A8wWS0rmjWtpaXmFBU3dOADuCmNsb6/oEO5HY5FcqIgIDLmHSpRKxbatN/OlVc5pNJvNZvPtp0iZWXeM3CkuLrVucDxfUqJGCOn1BuuRkpLSymIO9va7d2w5c/xofNyxRTMm52SkE54TCIViqVQqk8vkCoVSKRKLBUIRz3MJp06YTJbYAwlikUAsFkolIqVC4upiZ6eqPsQ6OTXP28ezW9QdH7IJ8VcqtwkhF+OvVAaNCKFx40e+89Yn5RUGe7s7auM4vkStLSnVGgxmo8litrDWFD47t/x0PeEC4XmGZUwGg16rMej1JqPBYjKxLCuVKwJCwyO69egzZHhQWHiDf9IAtCkQNILWbcGCBd9//33FrfyHFoslLi4uLi5uz54958+fl8lqn95zz955551PP/205vFXX31V3LBxQaCNCfTxCw8Moql7mZ6olAjFAsrE2D5+87STLRgaIRdXDZA4CX1ERv+Nsc7mt2stCJI29lNPLBJ1CgntFBJqMBobO0MMAJsbM6KXXC5FCF27llvHmqPNjKbpPoOG9Bk05K4lXyqcdO30gYcGdRTcmh7CsJxGa8wvLFcqJFV7IAsKy6P79ql2+UMjB/+2eZt1WygUDB7av+rZrt06IYTzC8uqBo2lZTqzmVHKJRGhXtStB2rFRSXXknInz547bvrjjX+5ALQjEDSC1s3X13fNmjWzZs2qNvXo+vXrycnJXbt2teG9eJ7ftWtXzeNTpkyZO3euDW8EWpEGTiKqlUIilIoEFUbGhu1BCGGMJkf5d/RwqHKMSAWxUnoHRja+V+vCEwUh95h9qLEjAAFoCtaI8T6xLLvxxy06nV6pVIhEovuvsJLeYFj59RqEkL+/7+SJY+svHBAafnJ/TNaNzMCQm8nbhALayaGWNUV0OpOHp1u1g/PmP64uVe+NPSQQCN5c9nLHTmFVz9rZq2QyiU53x8ofNStnGOb69QyEUAD0HwJwNxA0glZv+vTpNE0///zzpaW3B8nY29v71Ja//n5QFNWhQ4crV24PiaFp+plnnlm5cqVAAL9KoNEUYqFCJES2XtHeRSmZ3M2vysBUIqZOSqn2HjEihHhihxD0FoL2zmAw7ojZq9MZ3Fydx4webj1oTfskEAhY9i49mBSFKYpiWa7KEQohxPO82WzeEbMXIRwWGlQzaGRZJjMt9UZKUnZ6akFOVmL8eQvD7zuaIjmTQwsoiUSkVEjt7WRODko3VzuV8nZ4zBNinc3IWJh//o4dP3GUWCyiKOrNZYsvJlwdNKTf0OEDrCXT025kZeUNHtIXIUTTNF8lcw/PkxK1tqi4oqxcX6Ex6PQmi5lhWNZoNCOEf/l2pbu3n6evn29QaGBYuKuHJ0xiBKAa+KYL2oLHHnts4MCBGzZs2LVrV05OjoODw4oVK5zqTVx5b1auXKnX6xMSElQqVf/+/Z966qno6Gj4aAH3RiYSOCnEqcV3L9koPf2dg1xvP1CnUaFMuA0iRoQpntS+hiEA7YpKpYz551eEECHk581/IIQG9It2dXORSsQURSdcvOLm5qLRaCmKwgjl5OU72Nt7ebpbLJYjx04NGtjHydHBZDKpVKq09Iyc3HxHB3tPD/fLV65l5+Q5OjgcPvBP1XuZTaYLJ4+fPnLw4um4tGtX7RydfPwDPf0DPX38Inv0NhkNuamJEQEyTy93b1+fu36Y5uUVfPu/710lbN9hwyihSF+YbdRpK/IyTaUFQqWDRVv22/cbU3LU1qCxGorCrs6qyuU9GIZJSUouKCi/cM0wec68jt16FORmXz53es+237Mz0jCFO3Tr0b3vgOjBD4V27ASf8gAgCBpBm+Hu7v7222+//fbbDMPQdKPXp2ogLy+vmJgYi8UiFArhUwTcJ5mIdlfZeNAjhfGgUA+Z6NZsRsxK6FgKldn2Lq0RIQKOuDZ3KwBoQSo/xSiKYllWp+NMJlNwkH+njuEMw6am33BydHB3dwsM8M3KzrUwIkJ4F2engoKiPr27Hz560s/XO8Dfj+O4Dh3CLl+5VrVmlmFOHNx36dzp4vw8bz//zj2iJ8560svPXyi8YzSsu5fPvHFDcwr1ImGR2WTyCwgQioQWhtVojAzDKpXSarlVvX08XVyc/9i+11PKSkSCfSevVWgNx89cGXxwt7erfXZB2YmzV0eOrb7kMkFIXaYzmxm5VKxQSmiK0mo0mRk3zCZzarbWyz/wleVfyOTyqpfotNrM1OS061d3bf3lt4oK38DgvsNGhEd2sdmPHoBWCIJG0Nbcw4qLjWXbSSCg3RLSVKBL9UXS7pNKIujqc3tNcBoViKkLtr1FK0WQmEcQNAKAOI7bvGWbTqdXKG5GSucuXPTwcFOryziW4zju7LkEjVZrMpkdHewJIcdOnDKbLYQQjuNjdu83Gk2Xr16rqNCmpKTL5TKjyXTo8PGysnKEkMFoWL1mIyFEgPlZs6YOGnWXaY3d+w2Y9/q7az9+lxBEiDbhar5SKfP18/Rwc3ByVNR8MkvT9NI3F779xvIXP/ldKhaWaQyjxw5PvJr85jf/ONkrSst1fv6+c56eXu0qjJCTg4Lj+OJSbWp6Xn5BsU5nlIioMo3FwglXbPytWsSIEFIolR27de/Yrbt1lxBSVJBfWlLi5AyjFUD7BUEjAAA0DwrjUDcVTWGOt9kagO52Ms/KbIGEF9Hx7TldalWEV/LE8e7lAGjrdHr95l//1OkNbm4ukyaMQQjp9YbU1IzKAnqDsXNkhFarLy1Va7Q6hFBIcGBKarqPt2d2Th4hpLS0jBBSXFJaXGW9DYSQ0WjevGUbQigsNGj+c8/U0wae569eOHdkT8y540c6RPVMvHDWw0UaEajEGPGmUsYk5BXiWpdQ7hXd7afNq3fvOvDzpt+fmT971uxHTSbzG0s/vJGRteS1BcNHDBKLa3+qy7IMa6oQ8BovZ6FJRV1IVPNIGN41at2nH/YdNmLw6HEePnUu04UxdvPwrO9nCkA7AEEjAAA0mxA3O4VEWGGw2KpCT3uZQnLzjR1jsxAn2qrm1o4jXjwvRzCoHLR7dirVvtg/rdvWOY3VUBR+bMqEvPwCrUanUikNRqNQIOjft5feoJ/oNlpA0xKp5OMV/7tdHpEgoTFUqI8wZZ3Yvw2LpfVM38hKT9v24/q923738PWfNPupOYuWKJSqH7/54tsP3tJfLYkItFMglJOVlZebY+/g4ODoqFBWH47h4en21NwZR/47cfjQie49upaWqK9fSxnz8ENjxz1U83YMw2jKK9SlpTqt1nqkoMSYfENj5+z+xc9/dunVOzsjfdfWzU+NGezo7DJ+5pMPT5spV9h4AAgAbQMEjQAA0Gy87GVedlIbBo2uSqlIcPPxPIW1NJVvq5pbN0wzJBjhe1xvA4A2pv45+YSgw0fjaJoWi4QlpWqxWGQ2W7Jz8uztVFeuJgUF+VeUayoLu9KWdxySu4nLRZhH62azO5bT87+ho0bUrDY388bq5e8c3vXv8IlTvv7934jOt9fEmrNwSdfe/d5/ce6Zy9c9XGT+ngqpBKlLStUlpRRFcVz1xWwxxsveW/LG0g/nz30ZIdSte+en5s6oecei/IIrfHnlrrrCnJat1eiY4RMfffOLbx2cnRFCPgGB819/55klbx7aveO3td+s+fid2QuWzJi/QAKr7ABwJwgaAQCg2dhJhZHejon5Fbaq0F4moiuTW2A1Rnpb1dyq8byMJSHN3QoAWgee5/cfOFLX2auJSZXbMsx94HC9u+RmYEYQ4vOTDJ9Ml05cJJ75TmUxjuN+XrUyZuvmCTOfePWTrxxqy23etVefrcfjf1vz9Q9fLj95scjZQeLpKnOyE/E8j0gtA/hDQgO3/LE+OSlVKpUGBvnVGgazHIsQYli+sNSUW2jQGZjgsJAVK1b1GVK9T5IWCB4aP/mh8ZOTr17etmnd7BH9lyz/otfAIfX9mABoZyBoBACAZiOkqf7Bbn+czbDVpEaavv3NCWMNxtWf0LdPHPHiePfmbgUAbU1noSZKUo4QKmFoi3PAT4mlL3uUaTqNpNzDxLfKlJep//hhXXBExz+PX6Bqm6ZYSSQSPbFo6cQZs/5Y+8U/WzZfvF4qFFBO9mKeoCuXr126mBgaFiSRiKuUF3aKjKhZT1FRyaWLiRaLRV2O1BWWco0ZY9y5c9j0+YuGPfIELRTXvKRSaMfI1z/7piAv7+9fNubn5oybOrOJkrED0OpA0AgAAM0GY9w7wMVFJSnSmGxeOUX0CNksxU4rhikL35UgGGwGgI0FC3XWx1RbJT0eyj09201iUXk5P/OxQHo7H6lMrpi35I2G12nn4vnMspWPL3rj7IG/9//1+4XzlwkxHT966vjRUzRNe3p5ePt4urk52zvYy+UykVBIEDKbzVqtTl1alp9feCMjq0x9s+eT5+ngAI9Jjw4Y+eisoKgh9YeLCCFCSH5+wb79ByRSqUtwx3y1Oi01LSg4COJGABAEjQAA0Lw8HWT9gtz+js+0fdWYtX2drRDHOzF8ZHO3AoCWaPzDI/v17VX1iFarKy4u8ff3pShKp9MXFRX7+fnQNG3QGwoKi3x9vAVCgdFozM8v9Pb2lBz9FcV8SBCaajht7jpMNmGhLOeS1OOOwaL3tkiVROUyYPK8/pPmagvTs6+dTTh57NrF+Ly84qKSioTzCUZTLfPAKYwVCqmTozIsKNTPz6dTj+jO0QNcg7pJVC53vR0hxGAw7Nt/kGXZ8RPG0wL6z61/jhg5Ij4+/tSZsw+PHWNvbweLM4N2DoJGAABoTiKaeiTKf+elbJbjbVoxgW5GhBBC2MJ353g3yJsKQE0ODvYODvZVj/z1z6533/8s7tgupUIRu+fg0jc++G//X87OTof+O/7K0vd279ji4+N18tTZV5a+99efmzxDO+S7d6dDussYjR1Ni7r1FwwYa8PgCmNK5R7c0T2445DpPMcaywuM5QVmbYlBo9aUq416PcsyCGGRWCxXKFUOThKlo0TlInPwFCsdUYN/51mWPX36bEpq2uAhg9zc3BBCBQUFP276cevvW6dOmzp02NBt2//28vQYPnyoUCiE0BG0WxA0AgBAc8IY9wly7eRpn5Ctbu62tEE8cjZz/SFvKgD3q7ZYieo51lkkox29xKFdCSECQRN+q6RogdzJW+7kbcM6eZ5Pz8g4diyuc5fIqdMeq3bWaDT+uOnH2NjYZ+Y94+7uvnbd9wP69+vSpTOMVgXtE/y7BwCAZqaSCOcOCKXgAbbNYdrEDuQIpMABoKECA/y6R3WWiCUIIX8/n65dOioUCoSQr49X58gO1m5JLy/PyE4RLs5OIoVS2W+8NDyKpukmjRhtjhCiVqu3bf87Lf3GlEcfiegQYR2dQW79f0Ks/0EF+YUfvv/R2jXrBg4cWFBYtHbd+pycXFJbQlcA2rbW9BsOAABtEsbo4Uifn+JSz94oae62tCkMF2bmBiAE3YwANFTXLp1+/GGVdTsiIvSXH7+zbgcHBfz68xrrtq+P15Zf1lZe0rpGbBJCzBbLsWMnyisqBg0ZrFQqbh6vLFDlf5UuX7q04MUFI0aOmDpt6oGDh4QCwYQJ4+Ryeet67QDcDwgaQfMwGo3p6enN3YoWqqLCZqv2gdZCIREuHRn59M/HNUamudvSRvDEycBO4pGquRsCAGgpOI67ejXx0pWr0dG9vLy96ilZsyuR4/jY3XuOHjk6Y+aMbt2jNvywqVPHDoMHD2pdXawA3DP4hw6ax8mTJ8PDw5u7FQC0IAND3ef0DVl7OMnCweKK94sQmZ6bxpKghifDAAC0YTzP5xcUHDse5+/vP2nyRIzwvWUK0+sN36/fsCtm17z5z4qlkq++/mbsmFHh4eEw0RG0eRA0guZBCGEY6FEB4DaawouGdUwp0uy9ksPDfJn7QIhMz023sFEIRo4B0O4RQnQ63dFjcRRNjxo1siFLgBCE6p+1mJub9+6yd7t16/rMs89cupL4339HHn30ERcXFxitCtowCBoBAKClsJMKP5vcw2jhjiYX8JBo4V5gnjjp2ZkWvgtEjAAAhmHOX4jPzcvv3Tva3sEBNXAlooa9/cbHJ7z4wsIxY0ZPnDRh6x/bXF2cJ0wYLxaLIXQEbRJ0pgMAQAviYS9bPaPP2M7eNAVfOxqHEKGF666xvGLhu8KoVADaOZ7n09LS//k3RmlnN2r0SHsH+1ur1zbkD6rMnlrtT7VTPMft3BGzaMFLKju7oJCQlV/978SJOJ637aK7ALQI0NMImoe/v//UqVObuxUtlMlk+t///tfcrQDNxk0lWTW9d5Rvyur/rpXozM3dnFaAIAnDhZr5YQwfQZCwuZsDAGhmhJCz586bzJZRY0be62zD2jsbq/VBWnd1Ot2a1Wu8fbyfnf9saVnZL7/8+vjjM2GWI2hjIGgEzSMoKGjFihXN3YoWqqysDILGdk4hFj43KHxwqMfGE8mxV3JK9ZaWtSwYEZBm78rDQh4peeLKcCEMieR4D4JE0MEIAEAIGQyGwqKSYcOH3Ow4xLdiQHxzEUZCbp6gMK45mvT28hvk9jj3ym3rmzHGdxzBGOVk5yx7a9ms2bOEQmF+foGXl2eTv04AHiAIGgEAoCUS0FSkt8OKR3rMHxx+JKngZHpRRolOa2IIIXVNmCGE2EvvnuPhPhEkNnCPsiSgqW9Udwt4hBBBMoLkBEkIgVgRAHAHdVm5i4vz7UdtVTYIIRzHsSxrNpslEolAQNM0XfM9pPLaqs/ram7XLLY7JvbV15ZkZmZC0AjaGAgaAQCg5RIL6DA3u1BXu8d7BxksnIFheb7OoBEhpJQIm34yJMURN5YPbOK7AADAPSKEr+N9kvA8b7FYCvLzd8XEzHx8llQqE4sxRdHVrm9gxpyaGJahKMzzfD0P+ABojSBoBACAlg5jJBUJpCKBExI3d1us4JsQAKD14XnCsqzRaDx69GhiYuKxo8cGDBxI07RQiDG+PQWRNDR/am1a0kwCAGwIgkYAAACNRHhEONtXizFCGCJSAICN3BHAEYJ4nrNYLEnXr+fkZJvNph3//tOhQwehUEjRFE3Zpl+Q3Ee8CUBLBkEjaE04jktLS7MmsxaJRIGB9Q2QI4RoNBqj0SgUCpVKZUPW863EMIxGo0EINfZCANo8jBiJ4D8RuWjzmgkRm/ihPHGyec0AgHuWY+DOqNkMPa9liYxGfjL6YU+RXNDYAIsgzQ1UehHpcxBrQLQUyT2RY2dkF9xES6pWH2BKEM/zDMPqtNqzZ89YLBaGYQ16/a6YmOkzZwqFQkpEVW3Jveceg5ARtFEQNILWpKysrEePHlqtFiEUERFx5cqVWlNa5+XlrV27NiYmJisry2QyCQQChUIRFBQ0dOjQOXPm+Pn51VW/Xq//448/tm/fnpCQoNPpCCEKhSIyMnLSpCWhUGkAACAASURBVEnTpk2zs7Or60Ke5xctWpSXl4cQwhgvX748LCys1pJLlizJyMiwbv/8889yubxRPwEAWgBWRMU3Rb08UlosPXgEQSMAzY/h0a+ZpjXppnPlbNVlB8UUSnaw77cv/6lQ1dxwpUx4t4UlOBNK/QOl/o60abWclfugoMdQyEwkbIJPwzvy1hCO4ywW87nz57QaLcdxPM+xHBsXd6JndK+OHTvRNE1jGt/3SAeCbuVrBaBtgaARtDXbt29/9tlnS0tLqx6sqKjIzc09evRoUVHR6tWra71w9+7dixcvTk5OrnpQo9Hk5eXt3bv3008//eyzzx555JG6xq/s27ev8lqO4/76669aSx46dCg+/uYX7g0bNkDQCEAlTMjtzPgAgOZzppR5+rzuiraWUejRDoILJeaL5cyiM6VfXilf0895jG/dH2QFJ9HZt5E+p84C+mx06UuU/Avq8S7yHm6LtteO53mGYQoKChKvXmU51pqohuM4s9n817btfn5+QqFQQkkwhRFCN5fkqI5ULraBbk56vFkI4yrj6mF0KmijYOFR0Kbs2rVr5syZ1SLGSjKZbPHixbWeWr9+/aRJk6pFjFVlZGRMmzbtyy+/bEgzdu7ceeDAgYaUBAAAAFqUvfmWgUcrao0YEULDXUUH8ozW7SwDN+5A4fILZbXHSYSg5J/rixgrmYrQ8RfR5VVN9NCI53mWY00m08m4OIvFwrGcNWgkPOE4LiMjPe7ECaPRyLIsuWOZjjv+8DxxlzMRzgzHcRzHKQTm/j7MQD/GWWJhWZYQvuaQWADaEggaQduh1WoXLlxoNputu5GRkZs2bbp8+XJSUtLx48eXLVv28ssvBwcH17wwNjb2hRdesFgs1t2hQ4du3bo1JSUlIyMjJiZm/Pjx1j5DjuOWLl36559/3rUlHMe99tprlRUCABoKHtID0Kz+KWYDVXR/J2FdBYa7CiuDRoQQT9Db8WUfXSirpSjGqN/XyK1/w+5M0NVv0aVVjW1wvTVa86ASjucsZkvS9eu5ubmMhWFZxmwy6Q0Gjuc4jmMYZldMTHFxsdls5niOWEeYkup/eJ6fEMF/MAIzDBPiyPw+U7B4ILWgH7VlhmCQv7Xr8mZJCB1BmwTDU0HbsX///vT0dOv2gAEDYmJiVCqVdTc0NLRfv361DjcpLy+fN28ey7IIIYzxu++++/bbb9P0zSWb/P39R48e/c033yxZsoTjOELIiy++2K9fP0/Puyzam5CQsGnTpmeffdZmLw+A9gCGpwLQfC5puenXjH5iakd35fPntAdLmGoF7AXYRYiSNdWP/31D/1oXexFdY1IGLUYDvkVH56OiUw1qQeJ3yCkSeQ25xxdQHUHWbkaG1Wg0p0+fMpvMWq22tLSkoqKivKzMYrGIxWKpVFpeXr4rZuesx2cLhUIK19WhQliWszA8z5MRwaiw3Dxts4Wi6U/H0AP98ZEb5NZcRnj0Bdom6GkEbcfp06crt7/44ovKiLFSrZMMN23alJNzc/DMhAkTli1bVhkxWlEUtXDhwpkzZ1p3i4qK1q1bd9fGEELee++98vLyRr0EANo9+LoFQPPgCXom2WziUZKRH3fF+F0P5XCX6v2Ng5yFR/ON1X5LuzqI9o32qCVitBJI0cA1yKVXw1pB0Ll3EWtodOtrqYlY6+MJYRjmwvnz+fn5GTcybtzIqKio4DjOOjbVYDCUlZVpNJqTcXEZ6eksy/KEEGKd1lgNYjnWYmEQQinFvJOU/fJhPKUTv+o4885+ZJ2UXcdkSADaAggaQdtRVnZzeAxFUR07dmzIJSzLVkaAIpHoww8/rDUdK0VR7733nlQqte5u2rRJr9fftfKCgoIVK1Y0qOkAtFmYIAVHvFkSyBEXguoc84YQ5BsEoDntKGHP3JrHmGzkH75iXN1dOdxFqBTg10KkcYPsskc5fN9dYSeiXCW3H612dRDtH+3hLKXrqBUhhJBAhgauRR6DUaeFaOQ/aOJJNGon6vIqkjjXUthYiFK33v/LsY4StQ5PZVn2woXz2VlZBr2eJ8Q6n5Ggm8NJCSFmk1mtVicmJvI8X62n8HbIiAjLcgzDYIx3Jwv+d5wIEPd4F/a78eyMSLN1MTAA2jAIGkHb4e7ubt3gef7SpUsNuSQ9PT0pKcm63aNHj3pCTX9//4EDB1q3s7Ozr1y5UldJgUAgkUis26tWrUpNTW1ISwBoewgRmfjBGuYljeUVDbNYy7yqZ55geX9U1+gveEQPQPNZn3fHPPyUW3HjxWH2KzrL+zgLveW0i4R6JFBxebJ3HxcxQqhLQyJGK6EcDVqHOr2AHCKQxBHZh6KIuWjUTuTUtZbCGX/b5BVZ31AwQrSAnjlr1kMjRkqlMpqiKApja8JTiqJomqZpH1/fRYsX9x8wgKIodDN/6s1wked5T5nRR27gOJ7jWLOF4Xm+u7s5s4ws3iOZ+afoUAo7PsSICVslvASgDYKgEbQdgwcPrhyAunDhwuLi4rtecuLEicrtQYP+z959h0VxrXEAPjPbl6X3JioCYleKIiLYG3ZNrIkpRpNrjDWJ0STGbuwlMRpjYu+KvYvYRcDeFUVApHe2sTv3jzWbFdhlqQvL733y3GfKOWe+2Suz8+2cOSdY23QahBCKokJCQkqsWIRAIJg0aZJquaCg4IcffsAPkFAHMQy3QDG4oHBEodJdSSwYRqRgbKXK9nmKcXJlY+3VqjFEAPhXvoIJzyo6XGq8VKkkpIGoaE5oJ2Cd6OE4xl2kb8aoDd+KBK0jPCtCCCEUMW1IPEaToPXpwTtzCyvtWkBRFJvNSX6b7OLiMv6rL1u0bMnhcNhsNovFZrFYpqamAwYOGvPpJ0+fPKFpmsVmUYR617GVEEIIwzCDPHI+b5FlSuc7CqXJOQpCqA4uBV+2yXUVSShGQZSFuWK5kiHvDbwKYHSQNILxCAoK6tKli2o5KiqqQ4cOJ0+eVChKHjRc5cGDB+rlli1b6m5fs4BmxeK+/PJLLy8v1fLBgwcjIiJ0twxgbChKxvhKlJ0Zpshwa5RC6VBQOFTJmGqpWPWxAUAxd3KVkmKpzkd2nMYmJd8omvPov0PsbCuSMarwrYjPz8RvnqzPuUuBR36ynN7urb/DTeWJ9MKKtvwviqLYLFaTpk2TkpLu37sXHBIyctRoRycnDpfTtm27CRMn0jS9fevWZs2b29jasmiWah5GjaFQqaPP+OYc6cpuGW6m0r0PBWw2e/t9k1yJYk5QxupuaY2tJH/dEhKK/a5WZcUNUMNg9FQwHhwO559//unZs6eq7+jTp09DQ0M7dOjw/fffd+3alc0u4V97RkaGelndu1UbR0fHEisWZ2JiMn/+/KFDh6pepfj+++8vXbrE5XLLdj4AFWWwuxeG4UsVHUnRjPGdQsZFrmzBYxV/XE+hhyqAQcRJS+gR08u6Ou4SUxx6jHsiuXBbkaX4byaPOGmlXAoYQgihKJqmOVxuh6Cgw4fCrl295uTkNGLkyMzMrPT0tLCDB/Py8vz8/Fu38eFwOBRNU+TfFyKJqjb1PMdk8nmuNV+eIeXIGA5Ns9JlgpmX7G34Mg7NpIo5CopD0/S7KuifCkYKTxrBqDg7O589e1ZzZsWIiIjevXuHhIRcunSp+JVcPXYOIcTCwkJ345oFNCuWaMCAAerurDdv3ty+fbveJwFQOSiq0n6qLyuGMVEw2qelYViFTAkzphKKEO1dxAGg6ohL6pRjw6mOv8cCBROWXpileO8LWqyojMzr3y6jFE2z2WwraysfXz+KouLjX0dcuHD54sXDYWHZWdlWVlb9Bw7g83lsNpumVX1TNZ80EppmKWheslRUSPFomkUIoSiaxeZmyE2SpSKG9W7juyqqAwMYHSSNYGzs7e3DwsJ2797duPG796YYhrly5Urnzp1nz55d5PVCzdk1dHdkLVKgyLQcxbFYrKVLl6qKMQzz008/ZWdnl+lEACqGYhi+oY7NEHaxjqmaKK3DqOI3egBDMHn/O82NR33uwKnHr46kMbGkh4oibRN46I3RSN0oimKxWFwuz9vbu55bPUKIRCKNj3+tZBg2mzX0gw+tLK14PD6LRau6yJfUyfTd0DlFNxXbiIQRjBWSRjBCFEUNHTr0zp07GzdubNCggWpjYWHhnDlzfv75Z82SlpaW6uVS51TULGBlZVVqGG3atBkzZoxqOSEhYcmSJfqFD1A5FIydoS7yFFVAUzna9ytZVEoJmxmGEIwaBWAADfi0KYvqY8Ve5c575Mt/6Rn3p2JzvRcbquHQh9NK6BPRUFDJ1y6KothsNo/Pbx/YwcTERJXn0TQdHBLi3cRbIBSy2SxKY2DnkuZp1A+yRjBSSBrBaHG53M8+++zOnTuTJ09WPxhcvHix5mwcNjb/TRIVHx+vu8GEhAT1srW1tT4xzJ49W92pdcWKFa9evdIvdoBKoCBOSsay9HJVgCb5HFrrtDc0yedQd0reR+FNewAD8DFjpbTOPyo6OTF+RuMzwdSZQeTecnJ/DUnXOr+UntLEip4nkh5nykrc+0qs/D1JXmQjTYifaeUnjTRNczgcC3Pz9h06cLhcNpvj5ubWs3cfExMRh8OhtE0FVFbIGcFIIWkEI2dqarps2bIFCxao3nKUy+VbtmxR723durV6+datW7qb0iygWVEHFxeXadOmqZYLCgpmzpyJN+Sh2jBKM7nS20AHVwhYZ1h0YvEdFFXIY51n0yX8RqOkRErGrOpjA4CiWBThx8wmkd+T10eJNP3dVqaQXP6KZDwsWprRt0dAukTR/WTSqTfirieTYlKlRfY+zlFIC5mOZkVf9/A3ZTnzK3yD+u7bVuM7lyIsFovL4zVs6N6sWTORqWjU6I8szM15PB7Nov99n5pR9U5lyvsfgLFC0gjGj6KoyZMnq8c+ffjwv++/9u3bq+dmPHv2rI7XGpVK5dmzZ9UNtm/fXs+jT5w4sVGjd2N+7N69+/nz52WNH6B8GMKRKjswRGCQo9NUmoi9nkM/pIj6CYOSpjIF9BEB+1SJ3VALlfUZUsp4VABQVRoNK2GjOJmc/YDc+IEknCPp98mbiyR6Pjnem+TGldpeukTR7UTSrQwZISSxQNHu6JvFtzPj8hVX0+RhidJx0XltzmX1upy9rCG3t+V7XQy+ctLyzrPeVHMtMgzDqDuaEoYwhKIoFpvF5/Pbd+gwctSoBg0a8AUCFov1fnn1YDbl+Y/D4SiVDIb0AuODjkBQJ3A4HCcnpzdv3hBCcnNz1dudnJz8/PwiIyMJIY8fP75y5UrHjh1LbOHevXs3btxQLXt7e3t6eup5aFNT07lz5w4fPpwQolAo8vLyKnIiAGVSyDSUKtvx6QuG6DLFsKl4U/Y6OfEqVNZnGB6LSmPTT9kkgZASXmFiGIFM0Vbn8DkAUJWcOhIbX5IWVXS7Uk5e7icv97+3Mfxj0nkrEblqayxNouj+b8aoIlcyNEXNe1SwMe6/R44vC5jel7OPdzCnX5KjGYWEkBYm9HCHiiaNZmammfcyCdG48v27QFM0l8tlsVitWrehaZpm0TRN/1eAeb+0BoZ5N7qzeqEk1KAhA+Nfvw4OCqSQOIJxwZNGqE1SUlLy8/NVywKB4N2FXg9isfj169eq5Xr16qm30zQ9YcIE1bJCofj222+l0qL9Zwghcrl86tSphYXv7nTHjRvH4/H0D3vIkCHBwcH6lweoLAzDERf2LVS6GSoAisrjUtFC1gET9k4+6zSbekVKngiEkil95IyhOtMCACGEIv5zCVuoV9mCJBI+huSX0AWdEMIQMvhMsmbGqNLFSXAupegbjC8LlL0vZy+pz+1jxeZR5C8vPrvC2ZZIJBLwuC+evyi+S/VyI5vD5nA4bDZbNVtGCadQUr/TIgtF/mvo3nDlmuUtW7fIzszUvNMAMA5IGqHGefXq1dixY2/cuCGXv/fVIpFIFi1apJ4zw82t6H1wYmLi4cOHxWIxKWbNmjUpKe9GawwNDdXcNXTo0FatWqmWb9y48cknn+TkvDfqY15e3vjx48+fP69a9fLy+vjjj8t0Rmw2e9GiRWw2HqGAASgZy3zFGIXSsei48NWK0fmokypk3MWKUAPOEQIAhBBi1pC0W6LveFT5CeT8xyQ/qfgeipBpLcw59HvXHDseLeSyXolL6Jr+skDZ60r20vrc480FvsVecSwHFovVMShQIZedPX22+LzKFEXRFE3TNKXtaSBDytQl1czcbMr0Sb8uW3QrJjox7vX48V+UOi8XQK2Du1ioWRQKxdSpUw8cOLBp06b69eu3b9/e29tbJBLFx8cfOnRI84XAwYMHF6l76tSpzz//3MnJqWvXrh06dPDw8OByuXFxcYcOHdq3b5+qTPPmzQcNGqRZi8/n//XXXyEhIapuqzt37oyKihozZkyrVq0Yhrl169aWLVuePXumKszj8f766y9zc/Oynlfbtm1HjBihOQYPQLUpVLrlMWNNOFvYVFzNG9qPKlQ2yFeMVjD2ho4EAAhx6UoCV5Hr00lhQemF8+PJhc9IzzDC4hbZ09fN5EBnu5ERqTnyd1liJ0dBeKpc2wUoWcI8yikc6FKGXjy6cblcX582Xl6eV69eVzDEz9+Xq3cXIUbvKWNZLNaAQf1HfzzyyqXLp4+fGDVimK2tLTJGMEpIGqFmuXLlyuHDhwkhSqUyNjY2Nja2xGIdO3YcOnRokY0REREMwyQmJm7evHnz5s3Fa9na2m7btq14z9I2bdrs379/2LBhGRkZhJBnz57NnDmzeHWRSLRt27bAwMBynBdFUfPmzdu/f7+6ey1AdSpkGuTK/ydkH+TSURoj0xgcS6ZslV/4oZKxNXQkAPAvl66k2z5ycxZJiymlpKk78ZtbPGNUCXUzudmPM+5y2oVkCSGkq7PgRLG+qSr+FuwNPqKWFpV8U8pisczNzLp365L09m3E+QuOzk5NmzelKLqyfjvz8fOZOGlCRnra/j17Q/v09vLyZLPZeJURjBW6p0LN0qFDh0OHDoWEhGh7X5GiqH79+h08eJDLLfot1a9fPycnJx0tX7p0qUWLFiXu7dat26VLl3r16qWtekhIyMWLF/v376/HSZTM1dVVPf0GQPVTMjZ5hZ/kFX5eyNQzaFdVzXg+zpN/gYwRoMYxdydddpCgP4hDEKGLDUtDsYhNG9J2Mel1mNj56GjG04J7PtTpdHeHgfWEIY6CC2nvJY18mvS04xxsZ3qts0WlZ4zvIqUoNpvt4uw8cEBfc1PR8SPHE+ITSu9wqh5zVQtHJ8f5i+ZNnT7p/JkzlFI5edLEJk28ORwOMkYwYnjSCDULTdO9e/fu3bt3fHz8yZMnr169+uTJk8zMTC6X6+jo2KpVq4EDB7Zt27bEuoMHD+7Tp8/Zs2fPnTv36NGj9PR0hUJhZWXVokWLfv36BQcH676aN2nS5NixYzExMQcPHoyKikpOTmYYxs7Ork2bNgMGDPD399c97k5wcLC7uzshRCgUFk9oVaZOnfrgwQP1w0YOp6IDxAGUDcOWKfzkimZcVjSfFcEm2oalqUoUS6G0lyoCpYogJTGt7qMDgJ4oijh3Is6diDyPZDwk+QmkMJ+w+EToRCybEL6lvs0Q0s1V2M1VqGDIyUCzlwXKvEJGyKLchHRzc7aIUx1ZFkVRXC63ebOmjdzdr1+/8eD+g4D2AWZmOq4/Wh9FCgSC0WNGhfbtffb0mdzsjHFffC4SidAfFeoCJI1QQ7m6uo4dO3bs2LGEEIVCoRrurNRafD4/NDRUPdQNwzBl+tmPoigfHx8fHx/y76+Meg7QStP0hg0bSi1mamq6d+9e/eMBqAoMEUgVgTKFD5uO41LRHPoRTadQpORuY5WHrWCsCpUeMqWPnPFkGGFNeNoJAKXjiIi9PyH+FWyGRRE/a46fdaXEVB40TQuFgpCQjhkZmRciLvKFQv92bUsco049SqomiqK69+z6xfixjx4+PHH0WP9+fZ2cHFksFp4uQh2BpBFqgXL/hleRSzlFaR1WDaD2oxgikCsbyxkPihazqUQ2/YJNvWRRb2mSRVGSEqdSLCMWw/CUxFLB2BUq3QqZRgrGmWFMGIIH7ABgGBRFsVgsGxvrAf37voqLO37kqIeXl3eTEif7eS9r9G7i/c2UiWw2feLo0ZDgjv369MLri1DXIGkEAKjDKBbDiOSMl1zhQdGFFJFQJIdFpdNUOk1l0FQmTeVSREwRCSGFFCkkjJJQhBAloSjCEEJohmIRhsUQDiE8JSNgGDMlY6akrJVKKyVjrSRmDMNnCBfPFQGghqAoisPhuDdsWM/VNSo6JuzAwYD27e0d3hvAWf2k0draatxXX/i39T17+kx9t3pffTmOx+PpP000gNFA0giGkZqaWta+o3WHekpJgOpD0QzDZQiXEDMF40IIIYQhlIJiCv/7X6IgREGIkhCGUBRhKEJohtCEsAjDZgiLUGyGYRHCQooIADUcTdM8Hq9dW//mzZqeD79wO+ZWUHBHoVCgLsDhsIcOGzp85Ic3rl2/cfXqsA+GWlpa4PVFqLOQNEL10Zzr4u7du8HBwfXq1TNgPDUTwzBXr17V3FJ8jhCAakERhs0QNmH+nelaU4njRNS0OSABAHRisVimpqahfXonJyefOX3a1t7er62/pZXlhyM+GDCwX0pK8unjJ3p071a/vhteX4Q6DkkjVBOKogICAuLi4tRbLl26ZMB4agvV52boKAAAAIyTaloOJyenEcM/fPTo8f7de13ru7Vr53fl0qU2rVuN/fxTzKUBQJA0QnX68ccfT548mZWVZehAapNOnTqpB4MFAACAqvBuWo7mzby8POPjExQKRUhQIF5fBFDDXwJUnyZNmhw/frxBgwaGDqR2oChqwIABu3fvRvdUAACAakDTNJ/Pb9TI3cvLUyAQIGMEUMMfA1SrgICAqKioFStWtG7dWiAQlF6h7qEoytLSMjQ0NCwsbN++fTY2NoaOCAAAoA7BnFsAxaF7KlQ3KyurSZMmTZo0ydCBAAAAGCeZRJEuERs6CgAwHnjSCAAAAAAAAFohaQQAAAAAAACtkDQCAAAAAACAVkgaAQAAAAAAQCskjQAAAAAAAKAVkkYAAKjFjp061ik05G3KW0MHAmAksnOyJ31fCSOcF/nbxJ8qQK2GpLF2+2fb9hZ+bbOysrQVOBB2qIVf2zdJSdVzuCqqq1K551KX4ZMEAIDa7uDRg51CQ1LTUw0dCECdgKQR6qKde/a28GubnJJSYxuspfoN+WDhkqWGjgLqlj49+oQfveBg52DoQABqvRcvY3+cP+vjLz++c//2iM9HrN2wJi09rbIax58qQK2GpBFqjUED+t+9ecPJ0dHQgdR6VfRJxr1+/SourlNwx8ptFgAAqsGbpMSvv/2fmchs5cKVLZq2XPzLIkcHp72H9ho6LgCoEdiGDgAAjER4xEWRSOTbpo2hA6lZUtJStuzcfDP6ZmZ2lpODY69uvQf1G8Rhc1R7n8c+37Rt072Hd6VSmauzc/9eA/r16a+uu/vA7j82rdu/9cDesL0nzp6QSCStW7SaMmGqrbWtqkB2TvambX/duHkjMyvT1tauvX/AyA9Hm5uaEULWblhz+MSR0wdPq1u7FnnthzkzVi9e07xpc3Xj+zbv37l/x9nwMwzD9OzWa9wn4xWKwj82/XEu4pxMLuvYPnjK/yZzuTx1I6npqf9s+/tG9I3snGwbK5tunbuPHjZafTol0l2l1HMkhNy5f3v93+tfxL6wMLcYMmCom6vbdz9/u2LhylbNWxFCjp06tnTNkp2bdqmeYOjTYDnOAsDonb94XiaTTfpqUoFYTFGUq3M9V+d6pdbSfYnTVORPlVTs4rBu07o9B3YTQj74eKiq/NJ5S31a+ZYYpLYDyeWyr6d/nZ6ZvnH1RnNzC0KITCb9auqX+fkFG1ZvNBWJSg0SoO7Ak0ZjIJPLFy1d1rFr97YdQ76ZNj3xzRsdhR8/ffr1lGmBnbv6BgYNHj5iz779RQq8TU6ePX9B99B+voFBAz748J9t2+VyeYlNvUl6O2jYiNBBg+Nev9azbqFCsWLN2uDuPf2DgidMnqLZnzPi0uUWfm1V//kHBQ//aMzho8c06xZ5E0/1kmRaerq2BrVZtmq1qgtltz59VYe7Hhmp2pWckvLz3HldevVpExDYs9+AtX+s14w/Kytr3qLFPfr29wsMCh00ZMmKlVnZ2Toa1Fa+VLrD0OfEo2JiRn7yqV9gUPfQflt37Lxy7VoLv7Y3o2PK/UnqDkklPOJiUGB7Nhs/Rf0nKTnpi2++ePL86azpP4btCJszc05mVuade3dUe5/HPp8wfYJcLvt92e97t+zr1a3PqvWr/tj0R5FGNm39q4Fbg+0btq9ctPJF7ItFyxepdy1YNv/23TvzZs07sufokjm/2ts5nDxzokwR/rnlzybeTbf/tfOHabPCjobt2r9z1R+rmzZuuv3PHb98P+fC5Qubd25RF36bkjzumy/i4uPm/7TgyK4j337z7ckzJ+YtmaujfT2r6DjHx08fTZ813c7G7p8/Nm9YtUEsLjhy8nCp56WjwXKcBUBdIJFIlEplXn6+/lV0X+J0q+DF4ctPv5w4/htCyJ7Ne8OPXgg/ekFbxqjjQBwOd/YPc2RS6Zxf5yqVSkLI8t9WvE5ImP3DL6qMEZcLADUkjcZg2arVTb29j4cd+GfD+sQ3b8aMHZedk1NiycdPn3702ViZTLr977/OHj86sF+/BUuWLl+9Rl0g8c2bD0d//PDR48Xz5kacObXi18UZGRlRMbeKN3Xv/oORYz4xNzPb9vcmt3r19Ky7dt0fjdzdjx3Yt2n9uidPn82aPUe9Kziow92bN+7evHEn8vrxsAPdunT+ae68cxcu6D53HQ1qM/WbiTOmTyOEnDl2RHXEdv7+hJA3SW+Hjf449uWr1cuXXjl/ds6Psw4dOfrdrB/VHV89ewAAIABJREFUFWf8NPtmdMyqpb9eDj/3x5pVTo6OYUeO6mhQW3ndSg2j1BO//+DBuAkTHeztw/bu3r11c0FBwd4DB0s9ro4G9QkpMzPzzr176JtaxPpNf8hk0iW/LGnetLlQIKzn4jb+0/G+rd/d2Wzc8ieHw5494xdX53rmpmZD+g/p06PP3rA9b1OSNRtxdHTq3rm7iYlJY4/GHw4eFnMnOuntux+Gbt+9HRTQoZG7B5fDdXRwGtxv8IeDPixThG6u9ToHdTYRmrT1bRsU2HHr7m0Odvadg7uYmJj4+fgFB3Y8dvq/327+3LxBXiif/9MCr0ZefL6gdcs233w56eKViw8fP9TWvp5VdJzjpu2bzMzMZk6b6WjvaG5u8dHwjxUKRannpaPBcpwFQF3Qvm0gRVFTZkw+efZkYaFclUTppvsSp1vFLw560n0gBzv7GVNn3rob8/f2v4+dOnrq3MkJYyd4NfIqU5AAdQGSRmNQv169vn16i0Qi78Zev86fn5Kaun3nrhJLrvl9HYfDWbZ4UX03Nwtz81HDhw0e0H/L9h1vkt4Ngb189RqpVPLH6lWtW7U0EQob1K8/ZeLXAW39i7Rz6uzZT8eNbx/QbsNvayzMzfWv6+Li0rd3L5FI1KxJkzGjR924eTMhMbFI4xRF2Vhbf/rxR/6+vvsOhOk+d30a1NOq336TyeVrli9t6u0tEAj8/Xx/+Hb62fPhd+/dVxWIio7uEhLc2MuLx+W6ODuPHPbhmFEjdTRY1vJ6hlHqia9dv8HC3HzhnF+cnZwsLS3Hff6ZPjfZOhrUJ6QLly7TNN2hfftSD1Sn3IiO9GnlY2FhUXwXwzC37tzyaeljIjRRbwwODFYqlXfuvfdTSzvfAPVyQ7cGhJA3/94zuTd0P3ryyKHjYcmp7+WZ+vP3aaderufsKpGI2/pqbHF1y87OKhAXqFavRV5t1byVuZm5ukCblm0IIXfu39bWvp5VtJ0jwzB37t7xae3L4XDVBQLbBpZ6Xjo+tHKcBUBd0KRxk3mz5rPYrD82rXvw+EH/Ef3mL52vO0PTcYkrVQUvDpV4oHZ+7UYMHbl9z7ZV61Z169S9X+9+ZQ0SoC5ARzJjENLxv8c7DRvUr+/mdiMq6qtxXxQpxjBM5M2ojkEdRCb/3aR269J574GDUdHR/UL7EEIuX70W0NbfyspSx+E2/rN5285dX479fNznn2lu16dux8D/7vY83N0JIQmJiS7OzoQQpVK5ZcfO4ydOvnr9WiKRqMrUc3XReeq6GiyriEuX2vn7a375tfXzI4RExcS0aN6MEOLp6bHvYJi9vV3HDh0cHUof/62s5fUMQ0XbiTMMEx0d071bVy73v5vskI5BEZcu6z6ujk9Sn5DCIyL8fX00/2mBRCKWSMQ2VjYl7pVKJTK5zMrSSnOjlaU1IST7/W7MNlb/lRGamBBC1P3HZs/4ZcM/Gzb8vWHl7ysd7R2D2geN+GCU6p3GkjDFN73XuNCEEKIZklAgJITkF+QLBUKJRCwWi69cv9KlX+d3zTEMwzCEEG1dG/Svou0cJRKJTC6zNH/vltTCXNdFprQGy3wWAHVHgH9AgH/A64S4H+bMbNOy9amzp27di9n02z9mItPihXVf4nSr+MWhcg/Uq2uvnft2yAvlw4cML0eQAHUBkkZjYG393n2ntZVVekZG8WISiUQqk9lYW2tuVK1mZmURQsRisVgstrO1LV5X0+Fjx62trFRJppqedW1t/ju6iciEEJKbm6daXbFm7fZdu3+c8X3HDoGWFhY0TU+a/u3jJ0/K3WCZiMXiggJxeMTFVm3f/aip/m5Qv4i4bNHClWt/W7nmt/mLlzg7OXXpFPL5J2PUD1qLK2t5PcPQfeJisUQqk1lbvndXXSQzKZH2BksPSSqVXrsROX3SN6UepU7h8fg8Hj8to+QB63k8PpfDzczK1NyYmZVBCDEv8o+EorQdws7Gbta0WQqFIvZV7LXIq9v37njy7OnKRSsJISITkVwukxfK1QM2pKaVFEmxxikth+Px+FwuLzgw+IepP2iLp/xVtByUz+dzOdzM7Pfmd83KziyxsD4NluMsAOoaczMLGyubKf+b2rplmzmLfrl951bHwBJePdB9idOt4heHSjyQXC77ZfFs1RflohUL1y5Zq+ragMsFgCYkjcYgPT1DM1tLz8goMTPh8/k8LrdIPqlatbSwUBXg8/kpqaXMk7t+zepvZ8766LOxG35b06B+fXXj+tTVdj9KCDl87Hi3Lp0H9uur3pKYWHoXFB0Nlgmfz+fxeN06d14wZ7a2Mg729ovmzlEoFE+fPb94+fLGfzY/fPR40/p1lVVezzBUtJ24QMDncbnpme/dVWdklvAjgp4N6hPStRuRUqk0BC80vo+iqAC/dpHRkVlZWcW7b1EU1bpF6+jbUWKxWCAQqDZGXL1I03TL5q3LdCAWi+Xh7uHh7pGSmnLi7AmGYSiKcnJwIoTExb1q5O6hKnbt5tUKnk57/4CoWzdz8/JUQ0RURZXiLbRs0TL6dpRm9ns1svwnUvGQAOoOZwdnQgiPxytxr+5LnG6V8pfI5/MJIXKZrIIHWr1+9cu4lysWrmQYZvKMSWv/XDv5qymVFSSA0cA7jcbgwqVL6uWXr17FvX7d1q+E19ApivLz9b0eGVlQIFZvPHM+nKZpXx8fVYGOHQJvRN7MyND1Q76jg/2WjRssLS3HfDH+0eMn6sb1qasbV+O1pafPnj99/rzcTemmukeXaXzTUBQVHNTh2o0bOTm5uuuyWCzvxl7jPv+sT88eMbdvq565FW9Qd3lt9A9DRws+Pm2uR0Zqjm5aat/UCoYUHhHR1Nu71OfMddAXn4zjcLnf/jz93oN7YrE4PvH1H5v+iLoVpdr72UefS6Wy2Yt+TkiMz8nLPXDkwLGTR4f0H+JgZ69P49m5OVNnTr1y/UpaeppcLnv05FH07aiWzVup8v+g9h3NTc1+37QuJS0lMytz07ZNAoGwgqcz7tPxNE3PmP3dvQd3C8QFmVmZ0bejfl7w0/MXzyqxShGfjvw0Jztn0bKFb1PeZmdnbdu9lUWzqvksAOqCTds2bdyy8dmLZwUF+QzDPHvxbM361S7Ori2btdBWRfclTreK/yU2cGtACLl287q88L/vu+exzzuFhqzd8N8If7oPdPr86aMnj47/9Mtm3s2aN2n+xZhxh48fPnfhbGUFCWA0kDQag7jXr4+eOJGXl/f4yZPvZv5oY209YljJIyh+/eV4qUQ69fsZca9fZ+fk7Ni9Z//BsFHDhzk5vnvjbvLXE7g83pfffHPr9p2CAvGruLjlq9dcuxFZpB1LS8tN69c1qO/22fgvo2/dKlNdbTp1DDp19uzVa9fFYnHMrdu/LFjg26Zsz1v018i9ISHk4uUrmpnVlIlf0zT9v0mTY27dzi8oSM/IuB4ZOeXb71VdZLOys8d+NSE84mJKaqpMJrt3/8H1yEhfnzaqG/TiDeour4PuMPQxYdwXWVnZM3/+5U1SUmZm5p+b/q7gTbbukJRKZcTlyxg3tUSO9o7rV65v1KDRL4tn9x/R/6f5P1lZWLZs3lK118PdY+3S32iaHj9l/JBRg46cODzhi6/Hf/qlno2bm5qN+nDU6fOnvpwyPvTDvvOXzQvu0GnOjHfD3goEgrmz5hfk54/6fOT/pn5lb2vfLaRbBU/Hwc5hw6o/Pdw9Fixb0H94v7HffL7n4J5unbo3bOBeiVWKaOzp/evcJUkpSR+N++iLb77g8fg9uvQkhHA45ZwnreIhARilwf2HiExMVvy+fOw3Y+8/ujfn1zmNGjZauXAlny/QVkX3JU63Srg4eDT+ePjHO/fv6DmoR6fQkOjbJSerOg70Mu7l8t+Wh3QIGdxvsKrwBwM/6Ni+49K1y+Li4yolSACjQel+7gE13D/bti9ftfrs8aMbNv196vQZmVzu7+v77ZRJri7vxo85EHZo9vwFJw+HOTk6qrY8evzkt/XrY27fkUql9VxdPxwy+MMhgzUzmaS3b9dt+PPKtevZOTmuLi4D+oaO+PAD1f2Z6nAXz5xSdUSRSqVTv59x42bUskULO3YILFNdQsiDR4+GfzRm2aKF3bp0JoTkFxQsX7X6/IWIArG4ebOm302Z8uemv+/ev3fy8KESz6XUBnX7ff2G/YcOpadnKJXKDb+tUU2SkZaevuGvTRcvX0lJTbW0tPBs5DF00MCQjkE0TRNCIqOid+3Ze/f+/eycHHs7284hIWM/GWNqaqqtQd3lddAdhj4nfjM6ZuXatU+ePrOytBw9YriLs/M306Zv3bSxZfPm5fskdYR0686djz//Yv/OHR6NSvgSPXgi3MO7iZVdyQ8hM1JSnz16GBTkre2jePw4kZGzmzT0LPVDg7oj7FjYqnUrd/y109He0dCx1BQMw1y6dcO7iYuNdelXGDACVXptzMjMmLN4jurtaKg2D2OfUpzCxo21juR36dKjUr9PB/bqVGUBQl2HpBHA+O3au2/Br0tOHDro7ORU6Y0vX73mzLnzJw6VPBVkBZPG58+SxPnKFh5NKidWMApTfpj8JunNrr93GzqQGkSuKLx2J6p583oWFhjBuE6o0mtjVlbW7EWzkTRWs7vPHgpErEaNtI61jqQRDAvdUwGM39nz5x0dHKoiYySEhEdcrLq+qTwBVyyVVFHjUFvMWzrv3oN7BeKCpLdv1m5Yc+vurTGjxhg6qJpFLBYTQgQCbqklwThU6bWxkgaYg7IRSyV8QTl73QNUA4yeCmCEvv/xpw8HD/b09MjMzNy+a3dkVPTcn3+somMd2b+3ilomhIhEfKlMJpXLeBzcDddd3Tt137Ttrxcvn0tl8oZuDX787qfOQaV3Qa9Tcgry2GwWj4c7zrqiSq+N5uYWeMxYzaRymVQmMzHhGzoQAK2QNIIRev7ixaBhI0rc1bVzp+WLF1VzPJqqJ7a+vXut/eOPJ8+eSaUyD3f3XxfM69mtooOgGIS5mZCm6YysTEdbvQYUBaPk7+Pv7+Nv6ChqtPSsDEtLTAlQh+DaaGTSszNpmrYwq+gY1wBVB0kjGKFG7u53b94wdBQlq57YAgMCAgMCqvoo1YCmKVtb06T0FNwY1SinL18ihHTvEGToQIAQQsQSSXZeblM3F0MHAtUH10Yj8zYt2dbWlKLRMxhqLrzTCAA1mqOjZV5BflpWhqEDgf/ICwvlhYWGjgLeiXsbz+dz8aSxrsG10WikZWXkFRQ4OloaOhAAXZA0AvznQNihFn5t3yQlGToQ+I+pqcDOziw2MU7JKA0dC0CNk5OXm5KR7u5uV+ocsGBkcG00DgyjfPkmzt7OwtRU63yYADUBkkao0e7euz9+4jdl3UUI6Tfkg4VLlupZGGq4Bg3s5HL566Q3hg4EoGZRMspnCS8tLUVWVpiesS7CtdEIxCW9kcnk9RvYGDoQgFIgaQQjFPf69au4uHLMAzFoQP+7N2+opryHmoPL5TRoaBefnJiKjlgAGp68ipXKpI0a4a22OgrXxtouNSsjPjmxQUM7LhdDH0NNh6QRaqLbd++Om/B19K1bqtW8vLw/Nv713awfde9SC4+4KBKJfNu00acw1AqOjpaOjpZPXj3PLcgzdCwANUJcUkJ6Vrq3tzOfjwlp6i5cG2uv3IK8J6+eq/4fNHQsAKVD0gg1UasWLX76Yca58AsLlyx98uTptB9m1nert3DOL7p3qYVHXAwKbM9ms/UprKnIO41ZWVnzFi3u0be/X2BQ6KAhS1aszMrOVhd+/PTp11OmBXbu6hsYNHj4iD379ms29c+27S382qalp69Ysza4e0//oOAJk6ckp6RU5sdU+1EsmhDCKBl9CjdsaGdhIbz77FFGTlYVxwVQozEME5sYF5eU4N7IwcLCxNDhgIHh2lgbZeRk3X32yMJC2LChnT7llQqGEEKzcN8OBoN/fFBDFRnUQXNVxy5CSGZm5p1799R9U3UX1m3GT7NvRsesWvrr5fBzf6xZ5eToGHbkqGrX46dPP/psrEwm3f73X2ePHx3Yr9+CJUuXr15TpIW16/5o5O5+7MC+TevXPXn6bNbsOfofvS5gs9mEEJlcoU9hiqK8vV2srUUPXjxJTH1bxaEB1FAKReGD2KdvUt42buzk4GBh6HDA8HBtrHUSU98+ePHE2lrk7e2i522JvFBB/v3SBDAIJI1QE92+e3f2vAWdQ4JnTJ/m5eW5dMH82JevZvz0s+5dKhcuXaZpukP79voU1i0qOrpLSHBjLy8el+vi7Dxy2IdjRo1U7Vrz+zoOh7Ns8aL6bm4W5uajhg8bPKD/lu073iS994Xt4uLSt3cvkUjUrEmTMaNH3bh5MyExsXI+I6MgMBESQgrypXqWp2nKy8vJrb5NbELcnWcP8wsKqjI6gBonOSP15sM7ueLc5i3r2dqaGzocqClwbawt8gsK7jx7GJsQ51bfxsvLidZ7YkbVFyXfRFiV0QHogl8soCZq1aLFht/WEELu3rtPCBGJRF+O/bzUXSrhERH+vj4iExN9Cuvm6emx72CYvb1dxw4dHB0c1NsZhom8GdUxqIPqKCrdunTee+BgVHR0v9A+6o0dAwPVyx7u7oSQhMREF2dn/WMwbmw2hy8UZGXnW1qVoYudq4uNpbnoeWxyzJN7dpY2TnYOpkL00ANjpmSU6VmZCclJeeJ8RweLevVtOWyWoYOCGgfXxpostyD/TcrblMw0kamgVcv6IlN+mapnZeXzhQI2G+PlgMEgaQSjIpVKr92InD6pcmbXWLZo4cq1v61c89v8xUucnZy6dAr5/JMxFubmEolEKpPZWFtrFlatZma990qJrc1/ZUxEJoSQ3FyMVfAeC2vrtNSUBg30eqlDTWTKb9XSLSUlJyE+7dbjVB6XZ2lqLhQIOCw2XvmoBlK5jBCSmpVu6ECMnEKhkMpkeeL8rNxspZKxshK1blzfxKRs95pQp+DaWKMoFUp5YWGBRJyZmy2VSU1MeJ6eTnZ2ZmVth2GYtPRcS5uyfVECVC4kjVCjtWje7I/Vq/Tfde1GpFQqDSk22YaOdnRwsLdfNHeOQqF4+uz5xcuXN/6z+eGjx5vWr+Pz+TwuNz3jvSHOVauWFu+9YoTptktl6+DwNj4hIyPPykpU1rp2dmZ2dma5eeL0tLy83PyMlIzCQoVSv2F1oCJy8nMJIY9inxk6ECPHYtEcDttExKvfwM7aypTHw1c26AXXxhqCpik2m2Ui5NnZm1rbOJqKBOVrJzMzXyKR2Tg6lF4UoMrgGwiMSnhERFNvbztb20psk8VieTf28m7slfT2bdiRowzDUBTl5+t7PTKyoEAsFL77DjhzPpymaV8fn0o8dF0gFJpYWFu/fJViaWlSvhzbVCQo9zcxlE/OqRxCSFCQt6EDAQCtcG00DgzDvHyVYmFtLURnYzAo9FUA46FUKiMuX+5U7DGjNo+fPm3h13bxsuUl7s3Kzh771YTwiIspqakymeze/QfXIyN9fdqoEpuvvxwvlUinfj8j7vXr7JycHbv37D8YNmr4MCf8EFh29d3dJWJ5UlKmoQMBAACoWZKSMsViuVvDhoYOBOo6PGkE43Hn3r2MjMxOwcGV0pqFufnYTz/ZtWfv/MW/Zufk2NvZdu/adewnY1R7vRt7bflr42/r1w//+BOpVFrP1fW7qVM+HDK4Ug5d1/AEAgdnl7i4RAtLkVCAacoBAAAIIaRALIuLS3N0duELMW4qGBiSRjAe4REXnZ2cPBq561m+safn3Zs3StrzrpOkv6+Pv6/W7qbejb3Wrij5KSUhZMyoker5OVSaentrORwQ5/puOdlZ9++/bt2qAYeDYSEBAKCukxcqHj6I5wsEzm71DB0LALqnghEJj7iof9/UEqnmtrIwx+xn1Y2mac9mTQmhHz5MUCgUhg4HAADAkBQKxcMHCUqG8mzenGaV/lsqhjmCqoYnjWA8juzfW5HqOTm5Fy5ebOTurh7bBiqOzWYplHolgRwO17N58yd37ty+E9esqSuPh9moAACgLpJK5fcfxBfKlV4tW3I4er21oVAo2Gzc1UMVwpNGAEIIOX8hokvvPlKZbP7snw0di1Hh8XgyqVTPwkKhSdM2PoRi37r1KiMDE1oCAECdk5GRd+vWK0Kxm7bx0X/EVLlMyuNhUACoQvhNAoAQQjqHBN+8fNHQURghc1OT/Lxc/ctzebwmrVq/fPr0wYN4K2tRwwb2AgyNAwAAdYBYLIt9mZyRnmdtZ9fA05OlR69Utfy8XHNTzMkBVQhJIwBUIVsry/tPXzBKJUXr26+BxWI18va2d3J89exZTHSslbXIzt7c0tyEZqFnBAAAGBulQpmZnZ+SnJ2RnscXCpq0amlqblGmFhilMicrq56XvgMBApQDkkYAqEKO9jZ3Hz3LTEu3srMtU0VTc4tmPr7pqakpbxIfPUykCOELeTwum4XUsQbIzRETQh49SjR0IAAAtZhCoZRKCyViKUOIyMy0QePG1ra2qumgyyQzLV2pUDra2VRFkAAqSBoBoAoJ+DwHW+ukhISyJo2EEIqibOzsbOzs5DJZTlZ2QX6eXCbD2Ko1AUPRhBAlxTN0IAAAtRibxxKYcoUmIjMLcw63/O9iJCUkONhaC/i4JkMVQtIIAFWriVfD85dvpiUn29jbl68FDpdrbWdrTcqcdkIViX2dQAjxaNLE0IEAANR1acnJ+Xm5/i19DR0IGDl09AKAqmUmMmng6hQfG6tQFBo6FgAAAOOhUBTGx8Y2cHUyNxUZOhYwckgaAaDKeXs2oCjy/NFjhsH8wwAAAJWAYZjnjx5TFPH2bGDoWMD4IWkEgCrH5XACfFrkZmXFx8YaOhYAAABj8PplbG5mZrs2zbgcjqFjAeOHpBEAqoOluWmb5l5JCQkJr14ZOhYAAIDaLeHVq7fxCW1aNLayMDd0LFAnYCAcAKgmLo72hYWKOw+eSsTihl5etN4zNwIAAICKUqmMffIkMzW1dTMvF8dyjjAHUFZIGgGg+tR3dTIRCm7cuv/w1i23Ro1MzfH7KAAAgL5ys7Pjnj+XSSXt/VraWlsaOhyoQ/BLPwBUK1try07tfU343Ie3b7949EhSIDZ0RAAAADWdpED84tGjh7dvm/C5ndr7ImOEaoYnjQBQ3UyEgkC/lkkpaXcfPb9zM9LMwtzS2kZkZsYXCFhsNkVRhg4QAADAwBiGURQWSsQFeTm5melpOVnZQqGgnU9zRzsbQ4cGdRGFEfABwFAYhklOTY9/k5ycliGXYxbHWiP2dQIhpGE9F0MHAgBg/Lgcjp2NpauTg72tFX5XBUPBk0YAMBiKohzsbBzsbAghBWJJfoFYLi9kCH7JqumycnIJIf6tmxo6EAAAo0URisNhCwV8E6HA0LEAIGkEgJpBKOALBXxDRwF6EfB5hBBnBztDBwIAAADVAQPhAAAAAAAAgFZIGgEAAAAAAEArJI0AAAAAAACgFZJGAAAAAAAA0ApJIwAAAAAAAGiFpBEAAAAAAAC0QtIIAAAAAAAAWiFpBAAAAAAAAK2QNAIAAAAAAIBWSBoBAAAAAABAKySNAAAAAAAAoBWSRgAAAAAAANAKSSMAAAAAAABohaQRAAAAAAAAtELSCAAAAAAAAFohaQQAAAAAAACtkDQCAAAAAACAVkgaAQAAAAAAQCskjQAAAAAAAKAVkkYAAAAAAADQCkkjAAAAAAAAaIWkEQAAAAAAALRC0ggAAAAAAABaIWkEAAAAAAAArZA0AgAAAAAAgFZIGgEAAAAAAEArJI0AAAAAAACgFZJGAAAAAAAA0ApJIwAAAAAAAGiFpBEAAAAAAAC0QtIIAAAAAAAAWiFpBAAAAAAAAK2QNAIAAAAAAIBWSBoBAAAAAABAKySNAAAAAAAAoBWSRgAAAAAAANAKSSMAAAAAAABohaQRAAAAAAAAtELSCAAAAAAAAFohaQQAAAAAAACtkDQCAAAAAACAVkgaAQAAAAAAQCskjQAAAAAAAKAVkkYAAAAAAADQCkkjAAAAAAAAaIWkEQAAAAAAALRiGzoAAAAAADAeSUlJZ8+effTo0Zs3bwoKCgwdTtnUr19/+vTptra2hg4EoGZB0ggAAAAAleDhw4e//PLLsWPH8vPzDR1L+YWHhx87dszOzs7QgQDUIOieCgAAAAAVolQqV69e7efnt2fPnlqdMRJCoqKievfunZaWZuhAAGoQJI0AAAAAUCHTpk2bNGlSreuMqk10dHSPHj1SU1MNHQhATYHuqQAAAABQfr///vvKlSsZhlGtUhQVFBTUp08fd3d3gUBg2Nj0lJ2dPWLECM0tMTExPXv2PHHiBPqpAhAkjQAAAABQbnFxcd999506Y3Rxcdm4cWO3bt1oujZ1ZyvxoWJMTExoaOiRI0fs7e2rPySAGqU2/T0DAAAAQI0yf/78vLw81bKTk9O5c+d69OhRuzJGHW7evBkaGpqcnGzoQAAMzEj+pAEAAACgmuXk5Bw8eFC1TFHUqlWrPD09DRtSxTk5OQ0cOFC9GhUV1adPH7zfCHUckkYAAAAAKI8bN26oRxlt2rTpgAEDDBtPpeByuTt27NA8l+jo6F69emE8VajLkDQCAAAAQHk8ffpUvdy9e3c220gGy+Dz+bt27Ro0aJB6i2o8VfRThToLSSMAAAAAlEdSUpJ6uV69egaMpNLxeLxt27YNHjxYvUU1Lg7yRqibkDQCAAAAQHlIJBL1Mo/HM2AkVUEgEGzZskUzb4yKiurbty/yRqiDkDQCAAAAAJRAKBRu3bpVs5/qzZs3MS4O1EFIGgEAAAAASiYQCIqPi9OzZ0+MiwN1CpJGAAAAAACteDzerl27NOfhiImJ6dmzZ0pKigGjAqhOSBoBAAAAAHTh8Xjbt2/XfL8xOjq6T58+b9++NWBUANUGSSMAAAAAQCkwLg7UZUgaAQAAAABKJxQKt2zZotlPNSpIrz0qAAAgAElEQVQqKjQ0FOPigNFD0ggAAAAAoBehUFhkXJyoqCiMiwNGD0kjAAAAANRpfD6foijVskQiYRhGd+Hi4+L06NED4+KAEUPSCAAAAAB1mlAotLCwUC3n5uamp6frLq8aF0dz/saYmJg+ffrg/UYwVmxDBwAAAAAA1UGpVL569er8+fOvXr3KzMyseINXr15VL+/atevevXsVb7OK8Hg8JyengICANm3aCASCIntpmvb09Lxx4wYhJD8/Pzw8fOjQobobFAgEW7dupWl63759qi2q9xuPHj1qb29fFacAYECU7ufvAAAARew6dIoQMqx/D0MHAgBlcO/evZkzZ546dUomkxk6FkPy9PScOXPmyJEjWSyW5vZ58+b9+OOPquXWrVtfv36dy+WW2lpBQcHo0aMPHDig3uLj43PixAlbW9vKDRvAsNA9FQAAAMDI7dq1KyAg4MiRI3U8YySEPH36dMyYMR999JFYLNbcPnz4cD6fr1q+devWtGnTlEplqa0JhcLt27drjosTHR3dq1cvjIsDRgZJIwAAAIAxO3r06EcffZSfn2/oQGoKhmF27NgxduxYhUKh3uju7j5u3Dj16po1a0aMGJGQkFBqa6pxcTTfb4yOjsa4OGBk0D0VAADKBt1TAWqRtLS0li1bvnnzRrXKZrO7devWrVs3KysrwwZWzaRS6Z07d3bv3q0e5IaiqK1bt44cOVJdJjMzs3Pnzrdv31ZvMTMz69mzp7+/v42NjXp41RKJxeLZs2e/fftWvcXX1/fIkSMODg6VfSoABoCkEQAAygZJI0AtMnfu3J9++km1LBKJtm7d2q9fP5quo33N4uPjP/jgg+vXr6tWvb29b926xePx1AWePn3au3fvFy9eVMrhOnTocO7cOX3ejQSo4eroJQMAAADA6CmVyr1796pXFy5cOGDAgDqbMRJCXF1dd+3apX7K+vjx4zt37mgW8PT0vHjxYqdOnXQ/V9TT1atXY2NjK94OgMHV3asGAAAAgHFLTU1VJy0WFhaffPKJYeOpCdzc3AYPHqxaZhgmMjKySAEnJ6czZ87s2LGjefPmFUwdGYYpLCysSAsANQTmaQQAAAAwTpmZmRKJRLXcsGFDoVBYvIxEIklJSXFxcdHnCWRWVpZEItF8T08mk8XFxemTGllZWWlOYCiVSpOSklxdXYtMfaHtuPn5+c7OzkW2KxSKxMREe3t7zS6mpWrWrJl6Wf22pyYWizVs2LBhw4Y9ffr04sWLCQkJqamp+r/SdeDAgeTkZP3jAaj5kDQCAAAAGKfCwkL1vBEcDqd4gSdPnvTp0yc+Pr5Hjx779u3T/fbdwYMHP/vsM7FY/MMPP6imNExMTOzZs+fjx4/1Sah4PN6sWbNmzJhBCImLi+vZs+eLFy86dOhw9OjRErNZtZMnT44aNSovL+9///vfsmXL1NslEkmfPn0uX77s7u5+4sQJNze3UmNQR6JelkqlOkp6enp6enrq2axaTEwMkkYwMuieCgAAAFBHbdiw4cWLFzKZ7MiRI9euXdNdeOHChapHl/Pnzy8oKCCEbNu27f79+4WFhQo9FBQULFq0SPXk859//nn8+LFcLg8PD1+0aJGOg2ZlZY0fPz49PV0qla5cuVJz/sPTp0+fP39eJpM9evTon3/+qYSPAwC0QNIIAAAAUEdp5mDquSi0UReQSqV5eXmEkLLOJ2Ftba16mJmRkaHeuHz58idPnmirsmDBgri4ONWyUqnMzs4uX/AAUBHongoAAAAA5TFixIiXL1+ePHlSLpertuTn56szQFNTUw8PD3VhR0fHn376qfibk/n5+dOnTw8LCyu+6+HDh6tWraqy8AFAX0gaAQAAAKA8OBzO7NmzZ8+erd5y/fr1gIAA1bK/v//Zs2f1aefo0aNhYWGDBg3S3KhQKCZOnCiTySovXgAoJ3RPBQAAAIDS6T98aDla/u6773JycjQ37t279/z581V0RAAoEySNAAAAAGBgz58/X7JkiXo1IyNjxowZVZemAkCZIGkEAAAAAMNbsWLF48ePVcsLFy589eqVQcMBgP8gaQQAAACA0lEUVaXt5+fnT506lRBy9+7d3377rUqPBQBlgqQRAAAAAEpXRZ1FBwwYoB439fjx4/v27Zs8ebJYLFZtadasmZeXV1UcFwD0h9FTAQAAAICsW7fu5MmTOgpozotYiUJDQxmGOXTokGr1k08+yc/PVy1TFLVixYpp06ZVxXEBQH9IGgEAAACA6Dk9RqWjKOrXX38NDw9XjZ6al5en3vXBBx907drVIFEBgCZ0TwUAAAAAQ/L09FS9zajJ3Nx88eLFBokHAIpA0ggAAAAABjZlypQ2bdqoV2manjt3rpubmwFDAgA1dE8FAAAAADJlyhR/f38dBSZOnJiSklJFRxeJRBcvXgwPD8/Pz6coqlGjRpo5JAAYFpJGAAAAACCBgYGDBg3SUWDGjBlVGoCJiUloaGiVHgIAygdJIwAAAACUrqrnaayIuLi4EydOlLjL1ta2ZcuWHA6nmkMCMCZIGgEAAACgdFU0T2OlOHz48OHDh0vcRVHURx999Pfff9fkpBeghsNAOAAAAAB1FIvFKnG51MI0XfI9pJ4NVspxS62owjDMnj17qu5tTIC6AEkjAAAAQB0VEBCgWhAIBK1atdKzsLe3t6WlZYllPD09ra2ti5Qvrl27dqrnfhwOx8/PT8/juri4uLq6qrf7+fnp2enU2dlZW8AAoA90TwUAAAAwTqV2yBwzZoxcLo+JiRkxYkSp81usWrXKzc0tMzNz0qRJ2p7ymZubnzx5csOGDY0aNfr666+1NTV48OA///zz6tWrgwcPbtKkie7jLly40NbWNjk5+X//+x+b/d+9a5MmTcLCwnbv3l1QUKCjuq2t7cSJE7lcrnqLZj9b9FkF0AeSRgAAAADjZGJiwuFwZDIZISQjI0OpVBZJ9jgczldffaVna5aWlnPnzi21mK+vr6+vr+4yLBbrs88+++yzz/Q5rqmp6c8//1zirt69e/fu3VufRjSlpqaql62srMpaHaAOQvdUAAAAAONkY2NjamqqWn7x4sWTJ08MG09NoFAoTp06pV5t2LChAYMBqC2QNAIAAAAYJ5FIFBQUpFpWKpWTJ0+WSqWGDcngNm/efO3aNdWyUCgMDg42bDwAtQKSRgAAAACj9dVXX6m7pJ4+fbpnz56RkZFKpdKwURnE27dvZ82aNX78ePXpDxkyxMHBwbBRAdQKeKcRAAAAwGh16dJlyJAhu3fvVq1euHChffv2VlZWFhYWdWoMGIlEkpycrPmg1cbG5pdffqlTHwJAuSFpBAAAADBaNE2vW7fu5cuXkZGRqi0KhSI1NVVzMJg6yMTEZPv27fXr1zd0IAC1A7qnAgAAABgzS0vL06dPDxs2THO+irrM09Pz9OnT3bt3N3QgALUGrh0AAAAARs7c3Hznzp1fffXVxo0bT506lZaWpjlXYbkxDKNuh6KoGt7Vk8fjtW3bdtiwYaNHjxYKhYYOB6A2QdIIAAAAUCcEBQWpBlPNy8vLysqqeIPz5s1bv369ann+/PmjR4+ueJtVhMfjWVtb0zQ62QGUB5JGAAAAgLpFJBKJRKJKaUe9bGlp6eLiUvE2AaAGws8tAAAAAAAAoBWeNAIAAADUAheuRhWIJS2aeLg42hs6FgCoW5A0AgAAANQCufkFkTH3rkbdsTAzbd3Mq0UTT1trS0MHBQB1ApJGAAAAgNqBpmmFUpmVk3vxekz41ShrS4uWTTxaNfOysjA3dGgAYMyQNAIAAADUMgqlkhCSnpl14Vr0+Ss3HeysfZp7N/f2EJlgJgkAqHxIGgEAAABqK6VSSQhJTkk/EX7l+LkrLs72bZo1btHEk8flGDo0ADAeSBoBAKDM7j9+Puvxc0NHAVDnsLRMM8gQwigZQkhC4tv4xLfHz19u4e3Rs1OggM+r3gABwDghaQQAgLJp79uymZe7oaMAqHOi7z6KjUvQtpeiKIoQQlEe9V1bNfPybtSAw8FtHgBUDlxNAACgbOo5Oxg6BIC66GX8mxKTRpqmGYZxdrRr6e3RoomniVBQ/bEBgHFD0ggAAABQ+9A0pVQyNlYWLbw9WjdvbGluZuiIAMBoIWkEAAAAqB2UDMNi0QqF0srCrHWzxi2aeFhbWhg6KAAwfkgaAQAAAGoHkYmgVVOvFt4ejva2ho4FAOoQJI0AAAAAtUBIgG9o1yDVeDegJ4ZhCCH40AAqqOSBmwEAAACgRjEVCZH8lElsbGyfPn0CAgKOHTtm6FgAajc8aQQAAAAAIzRhwoQTJ04QQsaMGfPy5UuRSGToiABqKzxpBAAAAABj8/bt2zNnzqiWxWKxTCYzbDwAtRqSRgAAAAAwNgcPHiwsLFQt+/r6WllZGTYegFoNSSMAAAAA1Fx5eXnz58//+uuvHz9+rGcVhmH279+vXh0yZIh6+86dO7/44otDhw5VfqAAxgvvNAIAAABADZWdnd2vX7+LFy8SQg4dOhQbG8tml377+ubNm8uXL6uWBQJB3759VcunTp0aNWqUUqncuHHj0qVLJ0+ejLGFAPSBJ40AAAAAUBNlZ2f37dtXlTESQuLj4zMzM/WpeOjQIalUqlpu27atm5ubavn+/ftKpZIQwjDM9OnTly9frpqTAwB0Q9IIAAAAADVOVlZW//79L126pN4ycOBAW1vbUisyDLNv3z71qrpvapEWlErld999h7wRQB9IGgEAAACgZsnMzBw4cGBERIR6S/fu3Tdv3qxP3YSEhOvXr6uW+Xy+um8qIcTd3T0sLMzGxka1qlAokDcC6ANJIwAAAADUIFlZWYMGDbpw4YJ6S7du3fbu3WtqaqpP9WPHjonFYtVyu3btXF1dNfe2b9/+8OHD6sFUVXnjihUrKid0ACOFpBEAAAAAaors7Oz+/fsXyRj3799vZmamZwt79uxRLw8dOrT4UDcBAQHHjx+3tLRUrSoUimnTpuF5I4AOSBoBAAAAoEYoMvINIaR79+4HDhzQ8xkjIeT169fqvqkcDmfAgAElFmvbtu3x48etra1VqxgXB0A3JI0AAAAAYHjFR75RPWMUiUT6N6LZNzUwMNDR0VFbyXbt2h0+fFj9fiPGxQHQAUkjAAAAABhY8ZFvypExEkL27t2rXh4yZIjuaRjbt29/6NAh9fNGjIsD8P/27j26qupA4PDNA0jEAhUFCdwEOypgbTtTgfCyaq08FGl4qKjMiK8RAmrFAq1aa2VsxSeR2laHR6XiizAIysOB1FEQEZVxtToqghQURChIEAkJgTt/nLXuiuhOwwW5EL/vr3NObvbZuHQtf5x99wkRjQAApNO2bdv69+9f83uMPXv2LC0trfuq1Mj69euXLl0aHWdnZ/fv3/8f/sqX7oujG2EfohEAgLSJdr7Z5xljaWlp3Xe+SZozZ05lZWV03L1797y8vLr8Vrdu3fbZF2f06NH333+/boQk0QgAQHqUl5f37du35s4355xzzn7tfFNTzbWpF1xwQd1/MdoXJ/m80b44sA/RCABAGnzyySf9+vVbsmRJ8kpUjPv7PcbIxo0bk5vo5OTk9OvXb79+vUuXLs8884x9ceBLiUYAAA61aOebfd6ukcLON0mzZs2qrq6Ojrt06RKPx/d3hG7duj399NP2xYEvEo0AABxSO3bsGDBgwD7fY5wxY0Zqq1JjsVgikZg5c2bydNCgQamN07179y/uizNx4sTURoN6QzQCAHBITZkypeZeqdHbNVLY+SZpw4YNyWWuubm5559/fspDdevWbe7cuTX3xRk7duzHH3+c8oBQD4hGAAAOqc8++6zmaTwez8nJOZABa+6bWlhYmJ+ffyCjtWjRombBVldXJweHryfRCADAIXXllVe2b98+eTp16tQRI0bs3r07tdESiURpaWnyNOW1qZHVq1f36tVr7dq10WlGRsZ11113gBUKRzrRCADAIdWiRYv58+cnuzGRSEyaNCnlbvzggw9efvnl6DgnJ+dA1qauWrWqT58+q1atik4zMjKKi4vHjx+f8oBQP4hGAAAOtbZt2y5YsODkk0+OTqNuLC4u3rNnz/4ONXfu3IqKiug4tX1TI6tXr+7Tp897770XnUbFOGHChOzs7NQGhHpDNAIAkAYFBQWLFi068cQTo9OoG4cNG5Z8c0YdzZgxI3k8aNCgjIyMFCazZs2anj17Jp8xxmKx4uLikpISxQgx0QgAQLrE4/GysrJ27dolr0yaNGn48OF1X6e6bt26ZcuWRccNGzYsKipKYRrvv//+2Wef/f777yevjBw5sqSkJCsrK4XRoP4RjQAApE1+fv6CBQs6dOiQvDJ58uQRI0ZUVVXV5ddrrk3t3r17Xl7e/k5g1apVvXr1WrNmTXSakZExYsSICRMmKEZIEo0AAKRT27Zt582bl9q+ODXXpg4cOHB/16auXr363HPPrbnzzfDhwxUj7EM0AgCQZtG+OMl1qlE3Dh8+vPZ9cdavX5/cNzUrK2vAgAH7ddPVq1f37t17n51vfI8Rvkg0AgCQfgUFBQsXLjzppJOSVyZPnlz7vjhz5szZtWtXdNyjR49WrVrV/XZ2voG6E40AABwW4vH4okWL9tkXZ9iwYaF1qjXXpl5wwQV1v9GaNWv22flmxIgRdr6BENEIAMDhIj8//7nnnqu5L86UKVOKi4u/uC/Oxo0bFy9eHB3n5OT069evjrdYvXp1z54999n5RjFCLUQjAACHkYKCgnnz5iW7MZFIRPup7vO8cdasWcmVq4WFhfF4vC6Dr1q1qk+fPjV3vikuLrbzDdRONAIAcHhp27bt/Pnza+6LM3ny5J/+9KfJDyQSidLS0uRpHdembt68+bzzzqu58020V6rvMULtRCMAAIedffbFSSQSEydO3Lp1a3S6YcOGl156KTrOzc3t27dvXcacPn36ypUrk6d2voE6Eo0AAByO4vF4WVlZ8v2NzZo1O+qoo6Lj2bNnV1ZWRseFhYUFBQV1GbBVq1bJFzmOHDlSMUId+e8EAIDDVDweX7hw4U033bRx48axY8fm5OTEUl2bGovFBgwYcNttt5WVlfXt23fUqFG+xwh1JBoBADh8tWnTZtq0aTWvfPjhh8uWLYuOc3Jy6rg2NRaLNWjQ4NZbb7311lsP8hShvrM8FQCAI0lZWVlFRUV03KVLlzrumwqkTDQCAHAkSb5pIxaLXXjhhcmvKQJfEdEIAMCRZPDgwUVFRU2aNCkqKrrsssvSPR2o/3ynEQCAI8nRRx89c+bMioqK3NzczEyPQOArJxoBADjCZGZmNm7cON2zgK8LfzcDAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAKmo+Y7EvXv3pnEmh49EIlHzH4XXSFI/+PcYAIBUtGjRInm8adOmNM7k8LF3794tW7ZEx40aNWrSpEl65wMHhWgEACAV8Xg8ebx06dI0zuTwsX79+rVr10bHjRs3bt68eXrnAweFaAQAIBXdu3fPycmJjpcsWfLWW2+ldz6Hg0mTJu3Zsyc6LiwszM3NTe984KAQjQAApCIvL69r167RcUVFxfXXX79r1670Tim9VqxYUVJSkjwdOHBgGicDB5FoBAAgFZmZmbfccktGRkZ0WlZWNmTIkB07dqR3Vuny6quv9u/ff/v27dFpu3btLrroovROCQ6WjEQike45AABwREokEpdccskTTzyRvBKPx0ePHt27d+82bdo0atQojXM7NMrLy99+++1p06ZNnTq1qqoqupidnT1z5sx+/fqld25wsIhGAABS9+mnn5555pkrVqyoebFBgwYNGzb8Orxworq6urKycp83jowbN+7mm29OPoOFI51oBADggHz88cdDhgxZtGhRuieSfg0bNhw3btyNN96YlZWV7rnAQVP///oHAICvVMuWLefMmTN+/Phjjz023XNJm4yMjM6dO8+fP3/MmDGKkXrGk0YAAA6Ov//977Nnz549e/bbb7+9YcOGnTt3pntGX62MjIxjjjmmdevWPXr0KCoqOuuss7Kzs9M9KTj4RCMAAABBlqcCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAgb5IBAPi627mzossZZ9bygTGjbhhy8eAURn78qRm/ufuehXOfadmiRS0fW1j25xt/9vPoODMzs2nTpt/7zqnDrrrqlA7tU7jpQVTH+UP9JhoBAL7ujjoq9y+vvpI8HXPTLQsWLnz1pcWNGjY8lNO4647/6N3znOrq6ndWrvzFr8YN/fdrZkz/U0F+/qGcA/BFlqcCAHAYyc7OPvWUU0bf8JNdu3b91+w56Z4O4EkjAAD/yMebNv3uoYeXLH35k23bWhx3XN9z+1xz5RUNGjSIfrpt27bf/uGhxS8t3bp1a8uWLc84vcfVV1zerGnTe0seeOTR6bFY7Jzzzo8++fCDE7t07lyXOxbkx6P71nEOf3x0+n0lDyya9+yUR6bNW/BcZVVVl86dxoy6oXVeXnKEd1aufPAPD694443KysqC/PhFAwdeOGhg8qfRCGXz5k577LFn583fVl4+5OLBKc8f6hPRCABAbTZ8tPHSoZe3ad36gfvu+Vbbtn99862bb/vV+2vW3Df+zugDP7/1tg0ffVRyz10nnHDC5s2bX1i85Olnnh065NIbr78ur1Wr1L4T+Le1a2OxWKvjj6/jHCL3ljzQo2vXkcOu+eDD9b+4/fahV19T+vj0pk2axGKxd1au/Lcrr/6X7313+tTJzZo1e3be/F/ffc+HGzaMuu7az43wwANdCzvPnvHUf5eVDepflPL8oT6xPBUAgNqUPPhg1e7dE++759sdOuTm5nbu1PGmMaMX/fn5v/z1zegDr73++tlnntG+XbtGDRu2ad360sEXDR1yacq3q66ufvOtt+65v6RJk28MLPpxHecQaZuff/555x599NEd2re76447Nm3ePP3xJ6IfTfzd7xs0aHDv+DvbFhQ0a9p0yMWDBxb9eNr0xzZ8tLHmCPE2bX7ct2+TJt8Y1L8o5T8C1DOiEQCA2ryweHGn077frFmz5JXCTp1isdhrK1ZEpyeffFLprKefLC39aOPGLx+ibsbcfMt3OxV+v2v3S4ZeUb59+yOT/rNN69Z1nEPkzB/8IHn8rRPati0oeOW112KxWCKRWP7qa106dzq6cePkB845+4d79+597fXXPz/C6QfyR4B6yfJUAACCKioqdu6seP6FF/+5sGt0JZFIJBKJWCy2rbw8unLvnb+Z8NsHJ0x88I7xd7fOyzv7rDOvunxos6ZN9/de0e6plZWVy5Yvv+mXv7rr3vt+VzIhKyurLnOING9+zOdOjzlmy9atsVhs165dlVVVxzZvXvOn0ekn27bVvNjiuOP2d9pQ74lGAACCcnJyGjVqdM4Pf/jr228Lfeb4li3vHHf7nj17Vr636sUlSyb98ZH/e/udKQ/9PrU7NmrU6IzTT79l7Jixt/ziT489PvRfh9RlDpEtW7bWrL4tW7dG7ZqTk9OoYcMoIGv+NBaLfbPG08tYLNYg2/8ew74sTwUAICgjI+OM03u8/Mor27d/Wvsns7KyOrRvd81VV57Xu9eKN96IngTm5ubGYrGqqqr9vW+fXj2/c+q3H54ytXz79rrP4X8WL04er/nb39auW1fYqWP0p+jUseOy5ct37qxIfmDhn5/PzMzseNpptQyY8vyhPhGNAADUZtR112ZmZo74yQ0r/veNz3bu3LJ167Lly0eN+dk7774bi8W2lZdfXTzy+Rde3LR5c1VV1V/ffGvZ8uUdT/t+RkZGLBY78Z++FYvFXlzy0u7du/f3vtcOH7Zjx44pj0z7h3NIWrtu3bPz5+/YseOdd98de/Mvjm3e/JLBFyVHq9xVeePPfr523bry7dsfe/KpmbOeHnLx4LxWx9cyhwOZP9Qbnr8DAFCbvFatnnx02sOTp9z0y9s2bd78zW82O/nEky4Y0P/kk06KxWLNmja9+orLn3hqxh3j7yrfvr1li+N6/uhHV18+NPrdU085ZdhVV06ZNu3u+yfs3bt3v95z2KVz584dT3vsyaeGDB5c+xySRl137cNTpo6/576q3bs7d+x47/jfJL9a2aF9u2mTJz340EMXX3Z5ZWVlfjw+9sZRF9V4T+OXOpD5Q72REa0cAACAI9cfH51+X8kDLy58rtnnv6MIHDjLUwEAAAgSjQAAAASJRgAAAIJ8pxEAAIAgTxoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABAjTsqgAAAJdSURBVIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQJBoBAAAIEo0AAAAEiUYAAACCRCMAAABBohEAAIAg0QgAAECQaAQAACBINAIAABAkGgEAAAgSjQAAAASJRgAAAIJEIwAAAEGiEQAAgCDRCAAAQJBoBAAAIEg0AgAAECQaAQAACBKNAAAABIlGAAAAgkQjAAAAQaIRAACAINEIAABAkGgEAAAgSDQCAAAQ9P/O9ijhAs72MwAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "consume_engine" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Execute\n", + "\n", + "An EEST pytest-based test tool that executes tests by sending transactions defined by state tests to a client running on a live network, e.g., devnets.\n", + "\n", + "- Test format: `state_test` (direct from the Python native format; no `t8n` or JSON involved)\n", + "- Live network mode:\n", + " - Where: Any PC with access to a execution client running on a live network.\n", + " - Type: Production(-like) test of fully instantiated client on a live network.\n", + "- Hive mode:\n", + " - Hive test environment.\n", + " - Type: System test of fully instantiated client (Hive-mode).\n", + "- Aim: Test client block building and RPC endpoint\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Warning: Orthogonal edges do not currently handle edge labels. Try using xlabels.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNAAAAONCAYAAABHhZ1CAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdd5iddZ3/4ffMnOklpIcQCC2BEEqooq7rgmvBXXZBpFlw3RVUQEUFC4qoSBEQEYJA6KuidBTWtr/VtaICSYCEnkBCgPSemWTmzJzfH2g0m/AwKTCE3Pd1eV3mzHOe8znfmYSZ1zylqlKpVAIAAAAArFN1Xw8AAAAAAK9mAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAKlvh4AXmu6u3syZ/6CzJm3MIuXLkt7+8p0lcupVCp9PRoAAPAaU1VVldpSKU1NDdmqrTVDBw/I0EEDU1PjeBnYlKoqfqqHTaKrXM7j02bkqWeeS7ncnZbWtjT3a01jQ2NqSrWpqurrCQEAgNeaSiXpLnelY2VHVixZluXLlqZUqskO2w7P6J1GprbkuBnYFAQ02EiVSiUzn52dqY9NT0+lkmEjRmTwsGGpravr69EAAIAtTFdnZ+bNnp3Zs2aluqoqY3fZMdttMyxVfqMPG0VAg43Q1VXOnyZPzbwFizJ0+PCM2H771PgNDwAA0Me6y+XMevrpzHnuuQwe2D8HjBub2lo/q8CGEtBgA61o78g99z2YznJ3Ru0+Ns0trX09EgAAwBpWLF+WJ6ZMTV2pJq/fb880NzX29UiwWRLQYAOsaO/Ir+65P7X1DRm9+9jU1tX39UgAAADr1NW5Ko9PmZquVSvz5tfvK6LBBhDQYD11dZXzq3vuT6W6JmP22ivVNTV9PRIAAEChnu7uPPLAA0lPd/7h9fs6nRPWk4AG66FSqeT39z6QJcvbM3afvdc68qyjvSOHH3LwS+5n5PY75sobvvdyjbmWH91+a779rW+s82MNjY2586e/eMVm2ZS+/5/X5aYbv7PZzg8AAK+krs5VmTpxUtpamvLG/fdyYwFYD5IzrIeZz87OvIWL1xnPkqSxqTE//dU9azx27GH/lF3Hjs2ZZ5+/SWe5/uor86Pbb83tP/7vXj/nqu98P9tut/0mneOVsCHvFQAAWFNtXX1G7T42UydOysxnZ2fkiK37eiTYbFT39QCwuSiXy3n48ekZts02bhjwKnHscR909BkAAKyH5pbWDN1meKY8Nj1dXeW+Hgc2G45Ag156bNqMdPdUss3IkRu9r6enT8v1V1+Rhx54IF2dq7LTqF3y7x/+aPbYa+/V28ybOyfXXHlZHpw4MR0r27PddjvkXUcfmzcf/I+54tJv5s5bb06SvOPNr0+SDBw0ON+77UcbPNPKjo6cfPwH09zcnIsuuzI1pRf+ebj/3j/li6edkhM/8ekcevgRvZ7/L9t959qr8tADk1Pu6squY8fmgyecmFG77JokOf+sL+eZZ2bk0gnXrfG8z3zipDS3NOfMs88vfK/rOoVz8sT78p1rr84Tjz+a2ppSdh+3dz700ZPWOPLuqm9fml/8/Ke58obv5eILzs3E++5Nc3NLjjz2fTns3Udt8BoCAMDmYMTI7bNgztw8Pn1Gxu6yU1+PA5sFR6BBL3R39+SpZ57LsBEjVoelDTV92hM55cTj09DYmPFXXZfv3X5X9nvdgfn8pz+RJx57dPV2Z3/5i1m8cFG+Mf6K3HTnT/KxT38m9/zu11m0aGE+8rFP5pj3/1uamlvy01/dk5/+6p6NimfJC9dC+/yZX8m0aU/khmsmJEkWL1qUC8/+Sg54/RtXx7Pezv/k44/lEx/9UJLkwvFX5Lt33JUj3/P+/NcPb1+vudbnvU6eeF9O//QnMmqXXXL9D27LpVddn85Vq/KpEz+cuXNmr7FtJZVcccnFedeRx+bG236Uw959VK649Jt5ZOpD6zUfAABsbmpKpQwbMSJPP/N8urt7+noc2CwIaNALc+YvSLncncHDhm30vq65fHyGDBma004/M1sP3yatrW157wf+PWN22z03/ue1SZLucjmPPTw1B7/tHdl6mxGpq6/PzqN3yefO+Gr69x+wwa99/PuPzTve/Po1/velz3169cd3GrVL/uOEE3PL97+bSfffmwvO+Uqqaqrz6c99Yb3mT5KrLr80AwcNzulfOTvbjdw+TY1N2Xvf/XPKZ07f4PlfyvVXX5mRO+yYj3zskxkwYGCGjxiRz3/5rHR2deaW7393jW0XL1qUg9729uy+17g0/fnos2FbD89//+S/Xrb5AADg1WLwsGHpKpczZ/6Cvh4FNgtO4YRemDNvYVpa21JbV7dR+yl3dWXypIk5/N1Hp6amZo2P7TFu79x9x21JXviN0IhtR+YH370h9fX12e+A122S66715iYChx15dCbe96d86XOnptzVlXMvuiRt/bZar/m7Ojsz5YHJOeLo96y13culs7Mzjz/ycI56z/vXeLytrV/G7r5HHpw0aY3Hq6urs89+B6zx2LYjR2bO7Odf9lkBAKCv1dbVpaW1LXPmLczwoYP7ehx41RPQoBcWLVmW5n79Nno/y5YvS3e5nFt/8L3c+oPvrfXxv72N9JnnnJcJl12SC875anq6uzN6zG45/Iij8+a3/ONGz1Gkqqoqb3nbIbn3j/dkp51HZ9w++633/MtXLE93d3f6Dxi4QTNUKpX1fs7y5cvS09OTrdZxhF7//gPz9PTpazzW1q/fWnGvqak5swU0AAC2EM1trVm8dGlfjwGbBQENeqGjY2UGDN340zebm1tSXV2d9/7bf+S9H/j3wm1HbDsyXz3vG1m1cmWmPPRgfnLXHTn3q2eksakpB7z+DRs9y4tZuHBBrhj/zew8epdMe+Lx3HnrzasvrN/b+VuaW1JTU5NFC4sPB29saU5He8dajy9YMD8trS3rNXdLS2uqq6uzePGitT62ePHCtLatGUCrUrXWdgAAsCVpbGzMgjlz+noM2Cy4Bhr0Qle5vNE3D0iSurq67Dlun9zz21+np6d3F+usb2jIvvsfkNO/fHZq6+ry6CNTkyQNDQ0pl7s2eqa/ValU8o1zvppSqTbnXnRJDjvy6Fxz5WV5atqT6zV/bV1ddt9rXH776/9Nd3f3i2639dbDM3fu7Kzs+GtEe27WrMx+7tk1tuvNe62rq8voMbvl3nt+v8bjy5YtzdQpD2WPcXu/yDMBAGDLVFMqpVwu9/UYsFkQ0KAXKpXKJjti6YSTP55nZ83M1886MzNnPJ3OVasy65kZueOWmzLh25ckSebOmZ0zP39aJt1/b5YuXZL2jvb85K4fptzVlb323jdJsu3I7dO5alUemDSx1zHupdx+8/cz6f778pkvnpnW1rb8xwknZruRO+S8r3wpnatW9Xr+JDn+ox/Lgvnzcs6ZX8gzM59Oe0d7Jk+8LxdfcO7qbf7hLW9Nd3d3rrvq8qxYvixPT5+Waydclp1GjV5jrt6+1+P+/YQ8Nf3JXDn+4ixatDDPP/dszvvKGampKeXIY9+3SdYIAABeK6pStUGXT4EtkVM44RW2406jcsmV1+a7112T0z5+YjraV2TosOE54PVvyLuPek+SZMjQYfmnfzk8t/7ge3ni0UfTXS5n2x12yBe+ek722nufJMnr3/imvP2d/5yzzvhcli9bloGDBud7t/2o8LWPf/+x63z8xjvuzqIF83PdVVfkqPcelz3HvfAapdrafP7Mr+SkD/1brrzsW/nYpz7Tq/mTZOfRu+Sb356QG66ekE985PgkyZixY/PB4z+6eptBg4fk8186K9dOuCw/vuuH2WXMbjnltM/lkgvPX2O+3r7XffbbP1+74OJ897qr84GjDk+pppQ99t47F337ygzdBHdQBQAAYMtUVZGb4SXd8ZNfZtSY3TJgiLvTAAAArw0L587LE488nMMPOaivR4FXPadwAgAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAqU+noAIKn09KS9fUW6Osvp6S739TgAm4mqlGpLqauvT0NjY18PAwDAa5iABn2ku1zOvNlzsmjBvCxbsjSVSqWvRwLYbNWUarLVgAEZNGRo+g0YkKqqqr4eCQCA1xABDV5hPd3dee6ZZ/L8rFmpSiWDBrVm69Fbp6W1MfV1pdTUOLMaoDcqlUq6yz1pX9mZZUs7snDh8jw2ZUrqGxoycued03/gwL4eEQCA1wgBDV5BC+fPz8xpT6bcVc7IkQOz9bD+ghnABqqqqkqptiZttY1pa23MNtsMyMqVnZkxY34enzIl/fr3zw6jRqXe6Z0AAGwkP7nDK+SZp57KE1OnZqt+jdl/vx0zYpuB4hnAJtbQUJdddhmevfbaPuWujjw08f4sXby4r8cCAGAz56d3eJn1dPfkiYen5vlZszJ69PCMHr11ausc/Anwcmpra8y4vbbPgP4teezBBzP3+ef7eiQAADZjfoqHl1GlUsm0xx7JskWLs+ce26atramvRwLYYlRXV2XXXYdnxozaPPX446mpqcnAIUP6eiwAADZDAhq8jGY9/XQWz1+Qsbu/fPHsiiuuy3///H9z2+03vCz7f7VbsGBhjjry3/OtS87N7ruP6etxXhbf/c7NufHG2/Ljn9zU16PAZmnkyMHp7unJ9MceS31DfVra+vX1SAAvqaenJ8uWLs2KZcuyqqMj3d3luGn7lqWmpia1dXVpam5J21b9UltX19cjwRZNQIOXycL58/PczJkZPXp4ttqqeaP3d801382dd/w4d9194yaY7rXjd7/9Y/pt1Zbddtulr0fZaD7HG+7lXjufm83fDtsPSUd7Vx6fOjV77r9/SqXavh4JYJ2WL1uauc8+lwXz56enuzv19bVpbKxLTak61anq6/F4BZU7e7JiWVdmP/NMKkla2lozZPg2GTh4cKqqfC3AK01Ag5dBT3d3Zk57MkOHbpWhQx3p8HL63e/+kDe84XWprn7tXtLxfe8/Ku97/1F9PQZs1qqqqrLrrlvnvvumZ9ZTT2f7UaP6eiSANXR1rsrMadMzf+7ctLQ0ZscdBmfAgNbU1/uRbUvX092TxUtWZM6cpXnq0Ufz/MwZ2X7UqLT226qvR4Mtin+N4WXw3DPPpNzVle23365X2z81fUauuea7efDBqens7MyonXfK8R8+LnvuOTZJMn781bn9truSJAcf9K9JkkGDBuTmW65bvY+lS5bmwgvH5777HkhLS1OOOeZdedcRh67X6yR/PSX0qqsvzkXf+HYmTXowb3/7wfn4Jz7cq+efc/ZFmfnMrFxxxUVrvPYnT/lCWlqac9bXTl/jda6+5lu54PxLM3nylAwbOjif/NSJ2WPP3fKHP9yXCVfekOeeez5jx+6az5/+qQwaNGCNfa5ob8/kyVPyla9+vtfvceXKlfnwCZ9Kc3NTLrn0vJRKL/wzeO+9k/O5z345H/v4CTnssHf2er3+st31192YBx+cmq6ucnYbu0s+9KHjMnqXnXq9JkWf43Wdwjlx4gO5/rrv5/EnpqW2ppQ999o9H/7IB7LddiPW+lxed92lL/m1sS5z587PhAk3ZPKkh9LR0ZGRI7fNkUf9aw466E1r7H/ChG/m/AsuzYMPTs1W/dpyxBH/kncf+S9rrdGmWMt1eam/H7157aL3WrT/l1ojXl1qamqy/fZD8sQTz2fI8K3T1NzS1yMBJEnmPvdcZk6fntramozZbUQGDWzt65F4Famuqc6AAa0ZMKA1HR2dmf7UnDw8+YEMHDIkO4wenZqamr4eEbYIr91DNqCPdJfLeX7WrGw3clDqenG3zWnTnspJJ30mDY0NuXLCRbn51uuz/+v2yWmnfimPPzYtSXLyyR/Ke993ZJqbm/OLX/4wv/jlD9eIZ5VUMn781TnyyMNyy63X5l1HHJrx46/O1IcfXa/X+dv9XXLJhBx99OH54Y++l49/4sPr9fzeqqSSKy6/Lsd94OjcdPO12X2PMfniF7+WiRMfyG9+fU/Ov+AruebaSzN37oJc8q0r1nr+H++5L6VSKfvus1ev32NDQ0POOOPUTJv2VK679oXT8RYvWpLzzv1mDjxw/9XxrLfv94nHp+fEk05Lklx8yXm5+bbrcvQxh+dHP/rJeq3FS32O/9bEiQ/kM6d9OaN32Tk33jghV0y4KJ2dnfn4yZ/NnDnz1lrjl/raeDFf/cr5WbxoSS659Nzcccd38slPnpjf/e5PWbRo8Rr7v/SSCXn/+47KLbdcl/e9/6hceeX1+a//+vnqbV7utSxau96+dtF7Ldp/b9aIV5ehQ/ulpbkhs556uq9HAUilUsmMJ5/MU088kW226Z99991RPKNQY2Ndxu62bcaO3TZLFy3Mw5MnpXPVqr4eC7YIAhpsYvNmz0lVKtl6WP9ebT/hyuszdOigfP7zp2TrrYelrbUlxx13dMaM2SXf+U7vLhq/eNGS/OM/vjl77Llbmpubc8wx78qwYUPzs5/8zwa9zuJFS/LWt/5D9thzt9VHaG2KOdc199veflB23XV0Wlub86EPvT/Ll7fnmxddnlM++dEMGjQg22yzdd595KH5/e/vzYoVK9Z4/m9/+8fsf8A+qa2rXa8Zdx61Y44//gP5wQ9uz/33T845530z1TXV+exnP7be63XFlddl0MCB+dKXP5ORI0ekqbEx++47LqeedvIGrUlvXHvN97L9Dtvl5JM/lAED+mebbbbOF790alZ1deWmH9y+xra9+dpYl3K5nEceeTz/+NY3Z/jwrVNXX5dRo3fMF7/46fTv/9fTBRYvWpK3vv2g7L7HmLS0NOef/ultefvbD871138/3d3dSfp2LXvz2r19rxu6Rrz6jBgxIIsXLvQDB9CnKj09eXzKlMyd/XzGjBmRkSMHp7rada3onQEDWrL33tsnlXKmTrw/7e0rXvI5wMYR0GATW7RgXgYNak1NzUv/9erqKmfSpCk58MD91zr0eq9xu2fKQw/36jWrq6uz737j1nhs5PYjMmfO3A16naqqqhyw/z6bfM51zb333nuu/nNbv7a0tbZk9OidU1v716P3RowYnp6ensydM3+Nme7908T83d8duEEzHvHuQ7P/Afvk9NO/lvvvnZzPf/6UtPVrW699dXV25cEHpubv//71r9ih852dXXn00Sdy4IH7r/F4v7bW7LH7mEyePGWNx1/qa+PFlEqlbLvtNvned2/NL3/5myxfvu5vyqqqqnLAAfuu8djrXr9fFsxfmNmz5/bpWvb2tXv7Xv+vDX0efW/AwNZUV1dl0YIFfT0KsAV76vHHs2zJkuy553YZNMhRZ6y/+vrajNtrZBoaavP4Qw+lq6uzr0eC1zTXQINNqKenJ8uXLM3Wo7fu1fbLly9PuVzOTTfdkZtuumOtj/f27jpt/VrXCgRNjU2ZPXvOBr1Oa0vz6qO6NtWclXXcd72tX+taF/9vbGpI/wFrHr3T2NiYJFmxon31Y5MmPpBVnZ058MD9NmjGqqqqvO2t/5A//fH+7LzzDtnnz6eBrs++lq9Yke7u7gwY0LujDf+vda3JS1m+fHl6enoyoP/aN6fo33+rTJ8+Y43HXupr4+GHH8vJJ31mjY//4pc/TJKc9bXTc/m3r815516c7u6e7LrrqBxxxKE56OC/Xt+rublpjdiZJP23emG2+fMXpKmpcZOtZdGs67I+XxO9ea/rsqHPo29VV1dlq62as3TxogwdPryvxwG2QM/NnJn5c+dmt91GpLWlcZ3b3HHHf+XSSyas82MNDQ1rXBt1c7Kua7u+Uh555PHccvMP89CUh7N0ydL0779Vtt12RA455C35+ze/IaVSaa35+nLe3qipqcluY0fkgclP5/GHHsqYvcal2jXR4GUhoMEm1NHenp5KJS0v8o3Q/9Xc3Jzq6uoc94FjctxxR2/w61a9xC3N1/d1akpr/tOwPs9vam5KR/vKtR5fsGBRWlvXvGD3S81d5Le//UP22mv3tLQ0r/eMSbJw4aKMv+zqjBq9Y5584qncfttdqy+s39t9tTQ3p6amJgsXLip8rfVZk5fS0tKS6urqLFq8ZK2PLV68OG1ta/4G+6XWeLfddnnRCLXtttvknHPPyKqVq/LgQ4/k7rt/mrPOujCNTY2rw+WKFe3p6iqvEdH+MtugQQM36VoWzbou6/M10Zv3uimfR99raWnInHnL+3oMYAu0YtmyzHr66ey445AMGPDS3wdcf8Nla9wkaHNxzTXfzZ13/Dh33X1jX4+S5IUgedn4q/Ov/3pILrzwrAzfemgWLlqc//ff/5vzz78kdfX1+bu/e90rPtemWKfaUk12G7ttHpj8dJ6dMTPb7rjDJpwQ+AuncMIm1NX5wmHT9Q29a9N1dbUZN26P/O53f0hPT0/hto0N9ekqd23QXOvzOhv7/K23Hpo5c+dl5cq/BqNnn30+zz8/e71f98VUKpXcc899eePffJOzPjNWKpV8/byLU1sq5YILz8oR7z40V064IdOnPb1e+6qtq82ee43Nr399z+rrfa1Lb9ekN5/jurra7LrrqPzxD/et8fjSZcvz0EOPZq+9di98/oaob6jP/vuPy5lnfia1dbV55JHHV3+sUqnk3nsnrrH9H/9wfwYOHJBhw4Zs8rV8Metauw35un+x9/pSn5uiNeLVqb6+lK5VTnUBXnkzpk1La2tjhg8f8NIbvwa97/1HveJHc019+NFcNv7qvPd9R+ZjHz8hI0eOSG1dbYYOHZz3vu/IfPPic9LctO5fgPfFvBuiqbEuI0cOyvPPzsrK9vaXfgKw3gQ02IR6/vyDf0117/9qffTED2bWM8/l7K9dlBkzZqVzVWeeeebZ3HbrXbn88mtXb7ftyG3TuaozkyY9tEERrLevs7HPP/jgv09Pd0+uuuo7Wb58RZ6aPiMTJtyQnUdtut+EPfzIY1mwYGHe+MY1f0vY2xlvufmHuf/+B3P6Fz6VttaWHH/8BzJy5Lb52lkXpvPPP1D3dl8f+fAHM3/Bgnz1y+dn5sxZae/oyMSJD+TCCy9b7zXp7ef43z74nhPbBGIAACAASURBVEyfPiOXXXZ1Fi1anOefn52zz7ogpVJNjj7mXRu1tn8xZ868fOH0s3P//ZOzZOmytHd05O67f55yVznjxu2xert+W/XLz372i0yZ8khWrFiRH//4v/Pzn/0ix33gmNWnjm7KtXwxL7Z2vXnt3rzXde2/t2vEq1N1dfUGxVqAjTF/7twsX7o0O+80bJPsb+XKlfnAcSfmxI+emnK5vPrxe++dnLccfFjuvPPHqx97avqMfPELZ+dfDn1P3vH2d+djJ302Dz44da19PjV9Rs4849wc/q/vyz+/85h85rQz17hz9TlnX5SPfORTaz3vk6d8IWd88ZwkyfjxV+d7370lK1asyMEH/WsOPuhfc9SRH0zywimR7zxkzSPDJ058IB//2OfyjnccmUP/6dh84fSzM3PmrDW2ueKK63LEuz6QpUuW5ktnnJN3HnJ0jjryg7n9trtecp1u+v7taWpqzHvfe+Q6Pz5mzOjsvc+e6/zYuubtzVr2Zt6iddoQW2/dP42NtZkxffoG7wN4cU7hhE1p/S9plZ122iGXX/GN3HD9D3LKKaeno709w4YNzYGv3y9HHXnY6u3e+IYDcsgh/5gvn3luli1bkUGDBuTmW67b5K+zsc8fPHhgzjjj1EyYcEPuvvtn2XXXUTn11JNz0Te+vX4LU+B3v/ljdtll5wwePHC9Z3zyiem55prv5Nj3HLH6aK3a2lLOOOPUnHDCJ/Ptb1+TUz750V6/31Gjd8z48V/PtdfcmJNOfOH6XGPGjs7x/3Hceq9Jbz/H++03Lud9/czccP0PcuwxH0qpppS9xu2eS8Z/PcOGDd4kazx06OAc+i9vz00335knHn0y5XJ3Rm6/bc78ymez995/jUPVVVU5+eTjc+EFl+SBBx9Ov7bWfOhD78+hh7599Tabci1fzIutXW9euzfv9cX235s14tXJfe6AvvD8jBkZPLgtzS31m2R/DQ0NOeOMU3PSSaflumtvzPEnHJfFi5bkvHO/mQMP3D+HHfbOJMm0aU/lYyd/Lm944wG5csJFaW5pyZ13/FdOO/VLufTS8zN6l52SJE88Pj0f/8TncsB+e+fiS87L4CED88jDj+VHP/rJet0V++STP5TGxoZenZo4ceID+cxpX85hh/9TvvyVz6ajY2Uu/uYV+fjJn82VV12coUP/+r1NJZWMH391jjzysHz2c5/IXXf9LOPHX51dxozK2N12fdHXmDTxoey519jU/c01fjdUb9eyN/Ouzzr1RlVVVXbYfkimTn0m7e0r0tTUvNH7BP6qqrIhV7GGLcwdP/llRo3ZLQOGFMeJhXPn5YlHHs6b3jTmFZpsy/SB407M2952UN77vnX/FpFXxhVXXJf//vn/5rbbb+jrUWC9zZ+3NI88+mxe9+Y39/UowBZixdKlmTJpUvYet0NaWhtecvuimwgceOB+OefcM1b/+dZbfpTLL78251/w5dx08515avqMXHP1t1bfYfyznzkzc+fOz9XXXLLGzYVO+cTpaW1tyVlfOz1J8ulPn5G5c+bn+hvGv+hdsc85+6LMfGZWrrjiojUe/+QpX0hLS/Pqfb3Ytb3+70X5Tz7pM1m5alWuvvpbq7dZsnRZjjn6P3LIO96Sj3/iw0le+L7j5pvuzHnnfSkHvO6vdwB/z7EnZL/99sqnPn3SOuddsWJFDv3n9+Rf/uUdOeWTH13nNkXz/d8/93Ytezvvy3GtuHvvnZb+g4Zku512eslt//Lzy+GHHLTJXh9eqxyBBmx2bvjPTXc0GwDAK2HhgoWpr6/tVTz7W725icAR7z40990/Oaef/rWUu8q54MKvrI5nXV3lTJo0JUcccehaUWyvcbvnR38+zbOrsysPPjA1Rx112IvGs02ts7Mrjz76RI459og1Hu/X1po9dh+TyZOnrPF4dXV19t1v3BqPjdx+RObMmfvSL9bLu9sX6e1abpJ5N8KgQa2Zv3BBrwIa0HsCGgAAwMts+dIl2Wqrl+eUuqqqqrztrf+QP/3x/uy88w7ZZ5+9/vq6y5enXC7nppvuyE033bHO5ybJ8hUr0t3dnQED+m/QDBtyYtPy5cvT09OTAf37rfWx/v23yvTpM9Z4rK1f61rhqqmxKbNnz3nR12hubk5zU1PmzZ2/3vOta97erOXGzLspbNWvObNmLUi53JVSaeNPWwVeIKABsEE+8pEP5iMf2fAL3QLAlqSjvT2D+m9YnHopCxcuyvjLrs6o0TvmySeeyu233ZV3HXFokhcCUnV1dY77wDE57rijX3QfLc3NqampycKFiwpfq6m5KR3tK9d6fMGCRWltbVmvuVtaWlJdXZ1Fi5es9bHFixenra11jceqNvAKlnvvs0cmT56Szs6ujboOWm/X8i82dN6N1dT8wjX2Vq5oT0u/teMksGHchRMAAOBlVi6XU1u36Y9fqFQq+fp5F6e2VMoFF56VI959aK6ccEOmT3s6SVJXV5tx4/bI7373h8K7fNfW1WbPvcbm17++p/AuxVtvPTRz5s7LypV/jWjPPvt8nn9+9hrbNTbUp6vcVTh7XV1tdt11VP74h/vWeHzpsuV56KFHV9/waWMdfey70t7eke9//7Z1fvzRRx/PpIkPvuR+eruW66M367S+6mpfOOqt62/uzApsPAENAADgZVbp6Un1y3BA0i03/zD33/9gTv/Cp9LW2pLjj/9ARo7cNl8768J0rupMknz0xA9m1jPP5eyvXZQZM2alc1Vnnnnm2dx26125/PJrV+/rIx/+YOYvWJCvfvn8zJw5K+0dHZk48YFceOFlq7c5+OC/T093T6666jtZvnxFnpo+IxMm3JCdR+2wxlzbjtw2nas6M2nSQ4Wx6d8++J5Mnz4jl112dRYtWpznn5+ds8+6IKVSTY4+5l2bZI3G7rZrTjrpP/Kd/7wp48dfnZkzZ6Wrq5y5c+fnxu/dklM+cXpWtHf0al+9Xcve6u06rY+qP3+hVbo3zf6AFziFEwAA4FXq3z6w7rtL3nrb9Vm4YFGuueY7OfY9R6w+Wqu2tpQzzjg1J5zwyXz729fklE9+NDvttEMuv+IbueH6H+SUU05PR3t7hg0bmgNfv1+OOvKw1fscNXrHjB//9Vx7zY056cTPJEnGjB2d4//juNXbDB48MGeccWomTLghd9/9s+y666iceurJuegba97k6Y1vOCCHHPKP+fKZ52bZshUZNGhAbr7lurXex377jct5Xz8zN1z/gxx7zIdSqillr3G755LxX8+wYYM3ev3+4vB3/XN22XVUbrnlh/n0p87IkiVL079/v2y33bY57bSP5cAD933pnSS9Xsve6u06AX2vqrIhV3uELcwdP/llRo3ZLQOGFP9H/C+3gX7Tm8a8QpMBsCHmz1uaRx59Nq9785v7ehRgC/HHX/0qY3bdJoMGt/X1KGwBfvObR9br55fDDznoFZoMNl9O4QQAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFBDQAAAAAKCCgAQAAAEABAQ0AAAAACghoAAAAAFBAQAMAAACAAgIaAAAAABQQ0AAAAACggIAGAAAAAAUENAAAAAAoIKABAAAAQAEBDQAAAAAKCGgAAAAAUEBAAwAAAIACAhoAAAAAFBDQAAAAAKCAgAYAAAAABQQ0AAAAACggoAEAAABAAQENAAAAAAoIaAAAAABQQEADAAAAgAICGgAAAAAUENAAAAAAoICABgAAAAAFSn09AAAAAH/VWNucUk1tX4/Bq9CylYv7egTYYgloAAAAryKlmtrUlxr6egxehZb19QCwBXMKJwAAAAAUENAAAAAAoICABgAAAAAFBDQAAAC2OJ2dnX09ArAZEdAAAADI9x59NG+9884c/z//k3kdHX09zsvuqRnP9PUIwGbEXTgBAAC2cFMXLMgZf/pTKkmeXLo0ld//Ple/5S19PdbLqupFHi+Xy/njn+7LPX/4Y2Y+MyurVq1KQ319+m21VXYePSbDtxmRtpbGDBk8KIMHbpXmpsZXdG6gbwhoAAAAW7hZy5en8jd/nrpwYZ/N8oqpWjuh3f3jn+W88y/MzJkzUyrVpqqqKpVKJbV1dRk6dFhuufW2DBq6bXbedc9UktSWSjlw/71y+DsPyoD+/V759wC8YgQ0AACALdx+Q4ZkSGNj5v751M1jR43q44lefpVKZY3/f9Y5X8+l47+d7nJXKpWe9HR3J0kGDR6S+trqzJj+RFpaWjP3uacz57mZGbPnfhk0dER+8/v7cv/kqfnnt705b/2HA1Nb68dseC1yDTQAAIAt3MDGxtz69rcnSQ4aPjwfGzeujyd6+fX09GT2nHmZ/MBDOe+Cb+ba625Id1dnqpLUlmrT3NycxqambLXVVqmpLmXg4CGpb2hIqaYmtTXJlEn35PEp9yWpSnv7ynz/trtz1jeuypPTXVsNXoukcQAAANJUW5skaSyVXvT6YK8V05+akd/89p5cdc21aV+xIuVyV5qbmzN02PAsmDc3nZ0r09PTk9bm5nR2dqa6ujo1lapUVVWnobEx7e3tGTBgYHq6OzNl4m8zeuy+aWxuyxNPTsv546/PYYcclHe85Q2prnbMCrxW+NsMAADAFmXwoIFZunRJqtOTzlUd6WhfkSRZMG9Ott9pl7S0tKShoSEN9fVZtXLl6hDW09Odnu7u1NXVZsXypVm+dHHq6uryzLQpWTxvZjrbF+eZ6Y/kqmtvyKWXX5uurq6Uy+X09PSsccoosPlxBBoAAABbVODp7OxKY0NDmhqbMqvjuZS7OtPQ2Znu7q60r1iW5qbmlMvl1JRqUlVdnfq6urS1tWbxkqXp6upKepKa6pp0dHSku7ucVStXZupDk5IkdXV16alUMvne3+b5WU9nx51HpVRTk9a2tuy/3z7ZfrsRffzugQ3hCDQAAABWq1rH3SmL3P7kkzn+F7/Ieffdl/aurpdpqk2rp6cn3d3dWbpseWpqatLZ1ZXFSxanXC5n9vOzsnLVytTX1aW73J3WluYMHDggb3vrW9PS0pZSbX1qaqpTVVWV2trSn48w605nV3eqqkvpqbwQ0crlrqxa1ZFlSxalqro62++wY2r/fJossPlxBBoAAAAb5HfPPZdTf//7VJL8vyQru7vz5de9rq/HekmrOlflt7/7fRob6rJs6bJU19SmkppUV9ekKkm5XE5tbW26ujrT0NCQ6urqNLc0p7a2lKqq6qSqKpVKJT09PaktldLY2Jj+AwdnxDbb5J7f/zbd5a40NDTkf/7nlxkybHjG7L5PfnPPxFQqlfzb+47Mm//uwL5eAmA9CWgAAADkLydw9vb4s55KJT+dMSN/e+Lnb557Lss6O9NaV7eJp9u0hg0dkocempIFCxeksanxhZsE1NSkrraUmpqaJC8cidfesTK1dfWZO3debrn19ixf3p6VK1elurqSVL1w2mt3d3eaW9sycODgPPnk46muqkpjY2PqamvTf+DgjNxh5yTdee7pR9LZ2Zkf3FzKAfuNS2NDQ98uArBeBDSgT/T0VFLJX6618Zdv0yqpqqpKdVVV1vPMAQAAXkH3z5mTr913XyYvWLDG49OXLctb7rwznx43Lu8eNSo1r9Jv6iZNmpwFixanrq4+9XW1KZVKL0S0Uil1dfWpra1LQ0NDauub0q9f/5RKpZRqa9Pab1BKtaWUqqvS09Odcrkrc2bPzqrOcqqrq7Ng3rwkSXVVdeobGtPU1Jztd9gxKa/ImEP/Offdd1+WL12YKVMfyf777t3HqwCsDwEN2KS6eypp7yxn8Ypy5i9dlfnLOzN/2arMX9aZJSvKWdrRlRWryuno6k65XEl3TyU9f35udZLaUnVqS1VpqiulramUfo21GdBSlyFt9RncVp9BrXXp31KX1oaa1Na4jCMAwCvp2eXLc/799+fumTNTqqrKYdtvnx89/XSGNDbmq697XaYtWZLLpkzJ5/7wh3z3scdyxv7754Bhw/p67LVccPHl2XHHndNT6UlNTU0qPT2pKZVSU1NKa7+tUirVpaGpJU3N/dI2YEjqGxrS2tY/TY2NaW2qTU/HwixatCBLlyzOnDlzU11Tk+XLl6a7pzt1tbUplWrS1taWwYMHZtsRw/P2g9+YYcOG5c47f5jf3fOHzF+wuK+XAFhPAhqwUVZ2dmf2kpV5/PnlefjZZXn02eV5et6KzFvWmeUdXVlVrqSruzvdPS8c5r8+N3eqqqpKVZLq6qRUU5X6muo0N5TSv7ku2w1qyi7DWrLnyLbsMrw1w/s3pLm+Zr0vegsAwAv+chfOdX031d7VlQlTp+aqhx9OR7mcg4YPzxf22y8/nTkzPUk+PHZs3rrddnlrksN33DHnT5yYO59+Osf8/Of555Ej89l99802LS2v5Nt5UZVKJU/PmJGVHR0plWrS0129Op5VV1cnlUq6ujpT111Od3c5lZ7upFJJT3dXqlKf2upKempLqaquybJlS9PR0Z6q6lJWrFiRnp6e1a9TW6pJY2NDWpsaMnjw4FRVVWX77UfmwYempNzd3YcrAGwIAQ1Ybx2d3Zk2Z0V+99iC/PaxhXl41tLMX7YqK7t60rMJb39eqbxwmmdPd1LurmRlerKko5znFq3M1FlL89OqpL62JgNbarPz0Ja8YfTAvGnMwOyydUtaG0piGgDAhvib76F6KpXcNX16zp80Kc+1t2dUv375wr775s0jRqSS5Ie/+lUaampy+E47rX7O0ObmfONNb8r7dtklX7333tw1Y0b+36xZOWG33XLC7run6VVwJ8rOVSuzZMmilEql9HS/EL1KpVKq/nIttLr6pCqprq5JQ2NTqqtLqapKamtr01hfm/qG+nSXu7N86eKsWrky3T2V1NfXpqfnhRsLvHB6Zzmdq1alY2VHuru7UyqVsmz5ipTqmtJQ7/pnsLkR0IBeqVQqWdxezu8fX5g77n02f3xyUeYtXZXunk0XzNZ/pheOgHt2YXeeXbgyv3l0QSb8ojbjRvbLYfttnYPGDs6QtgbXUwO2GLfedGOu/valuflHP0lbv636epyXxX1/+kO+eNonc/63vp09x7l+0Obup3f/KBdfcG5uuOn2DB22dV+Ps8X7vzcRmDR3bs66775Mmj8/W9XV5cz99st7d901tdUvXEZj1tKleWLJkhy8zTbpV1+/1v72HjIkt73znbnjySdz/uTJ+dZDD+WWadP+P3vnHR5Vmfbh+0xPMsmk90ILvUuRJlUsWACxd8RVd9f2qWvDxq5lV1fXhg27WAApKoqFoiA19N4hhBQS0ibJ9HO+P0KGlKkhJAHe+7pw5rznLc87J075nafwWN++jGvbFlULfUmTJIl2GSks2r0TSVKh0ajR63RotdrqfLwqiSpJwqDXc7y4hKioSPeNWbVa7Y6SUBQFRZGx2hxotDocDieyLON0OrHZ7JjNZgoLCzlw8DBr164jJSWFteuyUDShREdHtcjeBQJB4xECmkAg8IvV7mL57uN8sOQQa/YWU2VvnS7nsqJw3Gxn8bZClu8qonuqidtGpDOuTyIRIS1/p1MgEAiagu/mzmH66//lizkLiI2Lb2lzWgUrli3lX8884T5WqVSER5jo0q0bN956B5mdOjebLZYqCxMuGRVQ37v+/gATrr72NFvU8oi/2TOHVXl5AOwqKeHB5cv57tAhVMDNHTvyQO/eRNerGrm6oAAFGJac7HVOlSRxVWYmYzMyeGvLFj7ZtYv7Vqzg8927GZaczLbjx+kXH8/kbt2ateDApZdcxOHsbCrMFeQcPYrscuFwOtFotCgooCgoSISZYqmoKAOqxTKVpEJSSciu6rBOSQKVRk9kdAw2q/WE5xnY7XbKysowhISxc+cusg8dwOVyUGVx0mvABWS2S2+2vQoEgqZBCGgCgcAn+aVWXvtxH7NX52K2OlranICxOxU2HCpl2xdlfLc+n6njO9ElNbzF7nQKBAKB4PTz+NP/ZPjoMbicTvbt28OrLz7Pw/fdw/QZn5KS1jw/VkNCQ1j0+6o6bS8+9xS/L/mN7379HZ1O1yx2nClcfNkVXHzZFS1thgDYXVzMw6uq/3b3lJWxp6yMlNBQnh84kKEpKahVDYs3bSkqAqBfvH9hNFyn4/F+/bguM5N/ZWWx9OhR1p2oWPlLTg56tZpbunRpwh35Zsodk5lyx2Q++uQzHnviGdRqNSqVitAwIxGR0YCEVqMhPjEJi9VKebkZu92GoijotBo0koIKJ/n5+SiKC4fDhUqtQacPwWGz4HA4kCQoKysh+/BBOnTqjtOlkNKmI+3TE4iICG+2vQoEgqZBCGgCgcAr+wsquffjzWQdKKHlAjVPDbtT4betx9ieU86/runKpX0S0aiEiCYQCARnM2qNhk6du/KXv9/Pkw/fz6KF33PH3X9rabMEglbN7tJSXPVy2R6tquK2pUsJ12rpHh3NsKQkRqelkRkVhQQcqajAoFbTITLwkPG2JhMfjh7Nvb//zg+HD7vbtxUXN9VWgqKwsAiNtrp4gARYLZWoVCpi4hJQSRLpKYlERppQFAVZUZCoDuNUSRI6rZqiwgIW/ryYkpISJGTCjCaqJAnZ5SQiwoQxNBRrVQXHjx0ls3M3enVrw8TLx7bIXgUCwakhBDSBQOCRI8ct3PbOenblmlvalCYhr8TKfZ9sobTKyQ2DU9GohYgmEAhaF0WFx/j8ow9Yt2Y1ZWWlxMbGMWrsxdx4y+1oTiTc/mD6m3z7zZcA3DTpSvfYF199gz7n9XcfO10uPnz3bX75aSFWq4Veffpy30OPBh0+V15Wyqcfvs+61asoLSkmNj6BgYOHcP3NtxERYQrKdjiZo+3LeT8wb9bXfu3bvmUzM959m/17d2OKjGLi1deR1qZNwPanpKa67avNmpV/8szjD7uP9QYDGRltuWLiJMZcfKm7/eiRbO646VoeeeJpRl90CQAlJcVcP34cOr2eb3/4Be0Jj7KvP/+Ezz76gNnfLyLM6N+zxP1afPs93876iiW/LKK8vIyFS1YEbF+deQJ4TQO5nsGsDVB4rICZn37E+rVrKC0tISkpmbHjLmf8xKvRaLV+/2a95UDbv28Pn334Adu2bMZut5GSmsblV05k3PiJjd6/wDfnJyYSpdNRYrcDcF5cHOlGI6U2G3vLylhdUMCqggJe3rSJTpGRXNOhA/8ePJgNhYXo1eqg1lIUhUKLpU7bcB9hoKeTwqKi6giFE8WrACorylEUmdj4JBSq8+5KkoRaUrlz6yqAzeEiOjaekRcMZsnvK1EkFSpJQq3VER2fzMP3/43rrhqHLMvVedNEJIRAcEYjBDSBQNCAcouDh77YctaIZzVU2pw8PWsHoTo1EwckiXBOgUDQaijIz+eBu+8gMTmFZ1/8D+npbdi9cwcvvzCNI4cPMnXaiwDc+dd7SUhM8ptP6rMZ79G9d18+/nIWR45k88+pj/PKC//kpdfeDMqu//zrOQry83nm+ZdIy2jL8aJC1qz8k19+Wsika28IyvZg7duzeyePPXQfAwYO4h+ffklISCjfzZvDj9/NC9j+nCPZAMQnJNZpHzh4iDvMUlEUSkqK+W3Rj7z67+cJCQtjyLDhAKSkpROfkEjW2tVuAW3j+nXodDocdjvbtm52C5cbstaS2blLQOJZbT5450369h/AB59/zR/LlgRlX20CeU0DuZ7BrJ2fl8v9d08hNi6ex556jraZmRwvPMbPC39gy+ZN9O3XP+C/2drs37eH//vbXXTr3oPX3/2ACFMki39exNuv/5e8vFym3PP3Ru1f4Jv40FA+HT2aK376ibGpqUwfOdKdk0wB8isqWJGXx4+HD/Nnfj7TsrJ4ddMmrunQgT5xcSSGhQW81szdu1lz7BihajVVLhf39ujBuLZtT9POfGO1WFE8VJGvrDCfqKbZ40ROtNpnJWoaHE4XpshoDAYDFrsTSQJDSCiG0Ai2bdsKV41D5SH8VSAQnHmI/5MFAkEdZEVh1qqj/LHzuM9+kiQRbdTRv30UY3rE0yvDhNHQ+jX5SpuTF+fvZlv22SUOCgSCM5uPP5iO3eHguRf/Q8dOXTCEhNCr73n87YGHWfH7MnZt3xbUfIkpqYwZezGhYUY6de7KpOtuZNOGLPJyjwY1z5ZNGxgy7ALaZ3ZCp9ORlJzC+EnXuMWWxtoeiH2ff/gBxjAjjz49jaTkFCKjorhl8p3YbXa/drucTvbs3M4Hb72BMTzcZ44tSZKIjo7hmhtuplef8/jpu/l1zvft15+N69e5f2BvWLeWXn3Oo137TDasWwuAzWplx/Zt9O03wK9t9UlKSeXCi8dhDA/n0suvbHDen301BPKaBnI9g1l7xrtvYbdbef7l1+jWsxehIaGkpbdhyj1/p2+//h7nDIRPPngXjUbLk/98kdS0DCIiTEy4+louvuwK5s76ioL8/EbtX+Cf2JAQABJCQ+sk9JeAJKORqzMz+XjMGJZPmMADPXsSqtHw0a5djJo/n+fXraPEavW7xpr8fP6VlUWkTse9PXoA0DYi4rTsJxBGjLgAWZZRTmhkNf8ALFWVbN64nrLSUuQTFTdrHqsrcCoU5Bewdu1abDYr1spyHHYrWn0YBTkHyc3Na7F9CQSCpqf1/9oVCATNSnGFnZl/HsEle896FqZXc93gVG69IIPUmBA0KgmbU2ZPXgXv/HqAnzcfw+GSm9Hq4DhSXMU7vx3gvzf3IFQXXMiBQCAQnA7WrFxBn/P6E2Gqm0eod99+AGzZvJHO3boHPN/A8wfXOW7brj1Q7TGUlJwS8DxtO2Ty4/cLiI2PZ8CgIQ08uRpruz/7rjHqpwAAIABJREFUFEVh88b1XDBiVIOk+4OHDSdr7WqP9r447SlenPaU+zg6Oob/vv1egz3Lsszc2V+z9JefycnJxlbrR3/yibDPGvr0G8Cihd9zYN8e2md2YmPWOiZdewPHjxexYd1a7rj7b2zZvBGnw9Eo0ej8IUMbtAVjXw2BXPNArmcwa2etWU3ffv2JjIoKcLf+URSFzRvWM2DwEMJC63o0DRsxih+/m8/WTRtIqBdO2lR/84Jq/PnoJ4SFcXPnzlzToQOLc3J4Z9s2ZuzcyZz9+7mvZ09u7twZjQevq02Fhfxl6VJk4LWhQ6mw+xfETzcXjq5+n7HZ7KjceXIlt4hmrjCzPmsdaekZtG3XDrVKDRLYbDb27d1NYWEhLpeMSq1BqzMgqVRYqipAgtKyspbalkAgOA0IAU0gENRhe46ZPXkVXs+H6tQ8dFkmd45si0F38otRiE7NgPZRdEjsSXTYLr5cmYOzlYpoigJLthey4WApQzvFtLQ5AoHgHMdqsWCpsrBqxXIuHTnE3V7j3QBQHuSPsOiYuu9tIWGhAFSavb+/e2Lqc8/z0XvT+ejd6bz12iskJiUz+ILhXHfTrUREmBptuz/7rBYrdrudyKjoBmM9tdVQU4XTbrOxcf06/vP8NN574zX++Z/XUNfK0fThu28z/9tZ3PfQowwYNBiTKRKVSsW0qY+yf++eOnP2Oa8fkiSxft1aNDodx4sK6dO/P8XHi/n2my8pLSlhQ9ZaQkJD6Nqth7+XtAGxsXEN2oKxr4ZArrm/6xnM2laLBavFQowH+08Fm7X62kdHN/x8joquvvZlZaUNzjXV3/y5jvv2aQBpLrYUFXHvH3/w9vDhLB4/ns927eLtrVuZlpXFvAMHeGnQILrWui4r8/K4e9kyqpxOXh48mBGpqXx/4ED1cqdhL4FiMkUwbOhgfl28FFnmRK6ykzeSZVe1t1n24UMUFRXSpUtXLJYqDuzbi8PpdAdzqlRq1BotSBKyoqBWqTEGEdYqEAhaP0JAEwgEbhQFdueasTu9C19jesRz2/CMOuJZbaLDtDxwaXs2Z5ex+XDrvetWUmln0eYCBneMFrnQBAJBi6I3GNDp9Qy7YCSPTH2mSeZsqkTVcfEJPPrUc7hcLg7u38faVX/y9czP2Ld7N/95/e1G2+7PPkOIAZ1OR2lJw6p8ntrqo9PrGTh4KPc++Agv/fNp5s3+mknX3eg+/9vPPzFsxEguuvSyOuPyPYRbRZgiaZ/ZkfXr1qDT6YmOiaVN2/Ykp6Sh1WrZuH4dG9eto0evPqg1wX+11ngYE4x9NQRyzf1dz2DW1hsM6A0GjhcV+l03GPSG6mtf4vHalwBgMjWs+CiSszctgbyaFqeTCqeT41YrBo2Gv3TvzsT27Xlp/XrmHjjAhJ9+4om+fbm1a1dm793L1DVrUIBXBg9mfPv2p3sLQXH5uEv4dfFSFKrFf4mTCf9l2YVC9WtSWVnJ+vXrqHZUq/0qSajVKiRnteeaCjDotZhMweVEFAgErRuRA00gELhRUCi3OL2eN+hUTBiQTLifXGep0aFc3CshkJuXLYaiQNb+EsqqvO9XIBAImgNJkhg4eAgbstZSYfafn9FwIkeRoxlDn9RqNR06duKGWyczasxYtm3ZVP0jM0jbA0WSJHr27suGrHUN9rlqxR8BzzNizIV06tqNLz/7BLO5vM45raZuaOjB/fs4eGCfx3n69hvAjm1bWbl8GX1OhGnqdDq69+zFbz//yKGD++nbb2DAdgVCMPYFi7frGczakiQxYNBgNmVluYUtbwTzNytJEr36nMfGrHVYqupWaVz++1JUKhU9evf1O4+gcXhKpu8Nm8sF1P1BGRsSwitDh/LJqFFckp7OiNRUnl61ikdXrSJEo+HjUaPqiGc1q7X0V8YLx4xGU8tLVVEUFFkBRamuoAkgnbDzxDlFkd2VOyWVCoPeQFhYGOHGcKKio4mIMGG32VpmQwKB4LQgBDSBQFAHtcr7V5jIUB3t4/27oksSdE+LQKtu6a9DvskrtVJkFl9szjVkWcHpcOGwOcW/VvrP5XTVq3Z29jPl7r8jqVQ89ehDbNu8iSpLFSUlxWxcv45/PfU4+/fudvfNOFGpbs2qlTgdjtNmU3l5GY89eC+rVizneFEhDrud3Tu2s3H9Onr07uP2zgjG9mC4ZfIUys3l/Pv5ZynIz6OstIQvPvkQrU4b1Dy3TbmLqsoKZs383N02aMhQ/li2mPVr12C1WNi2eRP/e+UlevTq7XGOvv0H4LDb2bJpI+cNOCmU9R1wPuvXrgGgT//GJ82vT7D2BUKg1zOYte+4629o9Xqm/uNBtm/ZjKXKQs6Rw8x45y02ZK1z9wv2b/bWKXdht9l4/pknOHokG7O5nAXfzmbR9wsYf/W1JCQ2zN0maH5cJ8Q2T2/XF6Smck/37ty9bBmf791Lp8hI5l5yCUOSk5vXyACJiookPi4OSZJQSSpUkurE/xMSSBLG8HDCwyOIiIhAo9G4w9QVFIzhJqJj4oiOiSUmOprISBPh4UZ0Wi2HD2cjByFKCgSC1o0I4RQIBHXw5TWmkkCjDkx316pVJ0p2u5rGsNOA1SFjtgoPtHMFRVawVtmxVFhxOpyAFNSd9pakqUOTWvu+JUlCq9cQFhGCzhCcWHKmkpCYxFszPuGrzz7m5RemUVRUiCkyknbtOnDpFRNo2z7T3bdT567ceOtkZn31Oe+//TqyLPPiq2/Q57ymE3AAIiJMXH/L7Xw/dzZvvfYyZnM5sXFxDBsxmutvvrVRtgdDxy7deOGV//Hhe9OZcvN1mEyRjL/6Wi69YgIrlwfuhdbnvP706tOXBXNnM2HStUTHxvKXex9ApVbzygvTsFgtdOrSlQcfeZyvPv+EgvyGYZLduvdEp9fjsNvrvM41RQOiY2PJyGjbqH16Ilj7AiHQ6xnM2olJybz5/kd88fEMnn92KmZzOcnJqYy9dBw9awluwf7NdujYiVfffp/PPnqfe++6A7vdRkpKGnff+yCXjZ/YqP0LgiOQT52aKp31BSKHLDNj2zbe2LoVm8vF9R06cHf37kxdvZohSUn8pUcP9/xuD7QWDluQJIn09FQKjh0DSUKiJheaRIW5AqMxnPj4eABycnI4XnQMCQgzRqA3hCAroFarUKm0bu9cq92G1alQUlxCTIz33I0CgeDMQVJa+7dogaAVMO+npWR26Up0vO9EucXHCtm7cwfDhnVpJsuaFllReGPRfp6f59lbINyg5ZN7+nJBl1i/c81Ycoips3b4rObZ0sSE6/j63gH0bmNqaVMEpxlFUagoraKyzIJGo0Gv158QeOt+aff0Bb5+m7/jQPsEsnagfQKl5iPf10e/vz6e2uu3+Tv21aYoCi6XC6vVioJCVHzEaRHRigrL2bnrKAOHD2/yuQUCgcATa37/nS6dU4iNi/DbN9wQiV5jaAar6pJjNjNs3jxu69SJZwb6Dkv+8dAh/vbHH7wwcCDXd+oEwMrcXJ5bt449ZWXEGww8f/75jElPZ09JCXcsWUJOZSV3dO7Mk/37I0kSC/bv54E//+T1oUO5ol275tiiV+594CG+nbugjoAGEk6XE51Oz8iRowkNC6PoeCnZB3YRGmYkLNx0whNNqs4PwklR0FJpxhBq5L03XyYj3XP13MZQVJEfUL/ly3cG9ftlwiUjm8I8geCsRnigCQQCN/5+nFfYnPy0+RiDO8Wg8RHqWW5x8POWY61aPAOQkHyGrArOHuxWB5VlVej1BkJCQpBluY5QVHOXuYaa5/Uf67cFM8abqOZtHm/zeuvnDW9iVu12T8999fP3WLu/tz6SJNU5X3tfer0erVaL2Wym7LiZmKQoVOL/VYFAIGg2AvmMCT1RAKPK6WR/aSn/3rCB33JykCSJ6zp04NHzziNSrwegY1QUcy6+mJt/+40Pd+1CAp4YMKBVReunpaZW5zNTFCRVTcRFtYVOh4O1a9cwZNgIQsOMmKJi0On17vM1udDcKAp6QwhtM9JJT0tpvk0IBILTihDQBAJBwCiKwrdrchjSMZpxfRI8frlyuhQ+/j2blXuPt4CFAoFnLBVWQEKr1WK1WrHZbG7hDOqKWN7agjnfmL6BzFN/Tn8EK355ex5oWzDnfY2TJInQ0FAMBgOVlZU4bA70IXWTmgsEAoGg6QlG0DLpqt+XS202vtyzh19zcjg/Pp7HzzuPnnENvZ4SwsL4cuxYrv/5Z2bs2kWK0egW2FrDLZKM9LRqIUySUGs0qFQqHHYHNXnQKirMZGcfIS2jDdExcVS4C5Oc8ECDOl5oKrWGUSOGtnh4qkAgaDqEgCYQCOrg70O+pNLBY19t51i5jYkDkokMrQ6tUhQoKLMyY8khPlx6GLtDbg5zBYKAcNidqFQqZFnGZrNVV9Sq97deX1DzhC9ByxuB9g0mnDOQvjX7qe/xVbvNn92evMN8jQ10bn99a66TVludS8ZhdwoBrQk5dHA/d992k88+Q4ePYOq0F5vJIoFA0GoI4D3cIcusycsjPTwcgEKLhZGpqQxNSmJEWppPMSw2JISPx4xh/MKFvLBhAzd16NBEhp866Wlp1U8UBYfdTpgxHCQVyombbooC5WUlSFJbDKFGKszl1YKjQkMPNECtUjFi2KDm3YRAIDitCAFNIBCcRPFdRKCGgjIrT8/ewefLD9OnTSRRYTryS61kHSjlyHELDpcQzwSthxoPJ1muzq3lSRSq/ehvrkBFMH8EkjvNk32+Qjpr782fYNYYgex04WldWZZPhtq2phifs4A2bduz6PdVLW2GQCBohSzPzQVgc1ERZTYbJr0eRVEotFjYcOwYf+Tm8mtODsU2GysnTkQjSeRWVXFRRkbAa6Qajfx3yBBuX7KET/fuBWBbcTGXtWvXop5oabVCLRVFwW6zodHpiIiOp8pcisvpoKysFFmu/myVFRkJCcXtgVb38yo1JYm4OP95gwUCwZmDENAEAkFdAvzxbHPIbDtiZtsRMyqVhNzK850JBDXJ6aHxQldzhmEEupYn+7x5nQUqmnnyXAvmfFNQc7085UkTCAQCQdOzubCQp9auBWBDURHD587FpNdTbrdTZre7taGEkBBu69QJo05HrMHA4fJy75N6YXhqKhempvJLTg4A7+/YQbfo6BYtJBAfH49Op8VmdwDgcNjRaLVIgNEUg6WijKrKCux2KyWFuSiyAlKtXGmK+xmgYHc4mn8TAoHgtCIENIFAUIfGCARCPBO0dmpEGG+VH0+HMNaUcwbqhVa7f7ChlsGM8SdoeRPYghHbhHAmEAgEzcve0lJqxxCUORzIQHJoKAMTEugdG8vAhAR6xMaiOZFkv73JxJqCAirsdoy6wEPt7S4XVU5nnbYNhYUtKqDVpHpQTqR5kAGHw0GIBEgqQsIikJ02Co4eQqVSIanUdW481y0iAFaLtZl3IBAITjdCQBMIBALBWY8/Yagx+MtT5q0tmPONzZnmyeusKUM2/Y0LRmDzhxDRBAKBoHkYnJREhFZLeS3PKbUkcV1mJjd27ozWXZnyJF2iovgzP5+dJSX0T0jwu4YCLMnO5vn16zloNrvbVcCIlJatVll0vASn04WsKNWVOCUVDocdlQSoJFBpiIuJRKVSn/T4dvubSXUUNAWw2+3NvwmBQHBaEQKaQCCog6gUJDgXaGqvs6YW4Xz19ZT7zFPfYAoGNDVNUUxAvBcJBAJB85JsNPLduHH8kp1NmtFIqc3Gfzdv5rmsLL7au5ep/foxrJ7I1TcuDnbuZF1BgV8BbW9JCf/KyuKPvDx0KhVTunShX3w824qLGZSQwODk5NO5Pb9s2bEXlyzXZDNDUWQUp4LNZiEkTEu4MQyDvpaXndLgCbIsU1VVSVWFmYtuuKYZrRcIBM2BENAEAoFAcE5QP8G+P2RZxmKx4HQ664hXvsIp63uFBTvO37lAQzlrhz8G8ujtebBt/s4ZDAb0JxJSe8KTmCY80AQCgaD5yIiI4M7u3d3Hl7Zty5ubN/PZ7t3cungxY1JTeaJfP9pERAAwICEBtSTxR24uf+3Z0+OcpTYbb2zaxBd79+KUZcakpPBEv360NZkAgipAcDrp1bX9CfGsRkKr9jAzl5ViqTRTWqRCrVKh1mjQqDXVj5rqRxSorKzAYqlCkWUuGjuGB+//e4vuRyAQND1CQBMIBHUQPh8CARw7dowffviBrVu3UllZ6bGPPxEumBDPQOcMtE99GhMuGUjeskDmremjUqmIjo7mggsuYPTo0eiCyJUjEAgEgpYhQqfjyf79uT4zk+ezsvg1J4c/8vKY3Lkzf+3Rg5iQEHrHxLC+sJCCykoSwsLcY12yzDd79/Lqpk0ct9noZDIxtV8/hrZwqKY3YmNjufyyS/ju+5/cEpoEaNRqVJIEJ4rbuFwu7NjgRJ/6Bbh6dO/G/159GZWHkFeBQHBmIwQ0gUBQCwWjQUNKtAGpGaU0BYXyKhdmq6hWJDg9BJOQ3mw28/rrr7N27VqPVTt9hVD6C68MJhear/6BhHEGcs4TweQ28yS4eZtDURQOHjzIxo0bMZvNTJo0KSDbRDEBgUBwJuN0OtFozvyfXO0iI/lwzBh+z8nhX1lZvLN9O3MPHOAfffpwRdu2rC8q4uu9e7m/d28AVuXl8a+sLHaUlBCt1/PPAQO4rmNHd/GB1oharWb6m/+jsrKKxUt+B5QTxQIaflbViGv1xbPExARmvD+d0NDQ5jBZIBA0M2f+u7lAIGgyJEnihiGpXHN+894ZdMkK//5+D+/+erBZ1xUI6iNJEmvWrGHDhg04HA5kWa7+8uwn/5ivkEtfYZ2exgbS39cYT3vydRxMyKSvcE9Pz2sf1/yz2+3Mnj2bMWPGEBUV5XUtf7YIBALBmcDcWXMJCzfSsVPHs6Jq+fDUVAYnJfHZrl28uXUrD61cSSeTCQn4cOdOJGBPaSk/ZmejUamY3Lkz9/bqRaRe39KmB4ROp+PD96dz/U23sWr1WtRqlddbyvU/o0JDQ5nx/nQSExNPv6ECgaBFEAKaQCCog1atQqtu3jVdsoJGJAwXnEaCSWi/b98+t3imVqvdApovgcubqBVMXrRg569/vvaY+nvy1O7tNfLnZeZLNKv9r/4YRVFwOByo1WpKS0vJz8/3K6B5skEgEAjOJBxOJ4cPH+bw4WwkCUrKS+jVsz3pafGoW7E3li+0ajV3dOvG+HbteHXTJr7Ztw8FMDscvLZlCxIwMjmZJ/r1o31kZEubGzShoaF8/skMrrrmRnbv2dPgvFLrvzXPIk0m3pv+Bj1q5Y8TCARnH0JAEwgEgjoo1KlD7hMJkTXu7MNut9ep0ilJklcRzZNYFqjY5U9Aa+xxDZ6eexPRPIVfemvzJZz56lNTjKEmp5rDEVjIthDPBALBGU91oiwUBQ7nHONwdj5arYZ2bZPpmJlKm4zE6hxbZxgxISE8P2gQRo2G93fudLcPT0riwzFjWtCyUyciIoJX/vM84664CkWSqq+PJLm/+SUlJTFm9Cjat2/Hv195g3emv8mgQQNb2myBQHCaEQKaQHAW4nDJ2J0KdqeMSiUhBSwItQwuGeyuVmCj4iKM71Ap5gD6KiBpcRGJS0rBKaXgIgpoZvc9QcDUF4R8JfmvX7GzvoBW0x6IeBaoCBbM2EA81zw91n/u6XXx9xioeFbTJssysizXWTeQogS+rpFAIBCcqSiyDIDd4WTv/hx27ckmJERHp8x0OnZIJTkppoUtDJ5L2rTh4927ccgyEnBlu3YtbVKTsHv3XlQqFbJLxqHIhIWGcPWkCVx7zSR6dO+OSqVi+45dPP3kowwR4plAcE4gBDSB4CzAJSsUlNnYeqSMjYfK2JtXQUGZFavDVf3DvxVoU75QJIXcYmtLm4GEjM61HTVFgQ1QqkcpaJAx4ZAysan64ZQyUMTba6uivhBUX8zxJabVfh6saNaY9lMV3Gof195DsCGcgYZr+murPaen19afh1mwHmgup8zx4nKv59UaFTHRET7GuyguLvYxXk10dLQYL8aL8WJ8QONdsst7f1e1mGax2Nm6bT+btuzDZAqja6cM+vboSlKswevY1kTvuDjmXXIJK3Jz6Rkby6CkpJY2qUnYtHkLBoOBuLg4br7xOq67ZhKR9UJS27drQ7eunVvIQoFA0NyIX3gCwRmM3SGzM9fMvKxcFm8t5HBRFVaHq35BIMFpRUHCgZoi1MpxdK5t2FR9saqG48L7l2xB66EpvJwURfFarr6+d5i/dm8EOo+/0E1Pc9SIiPUfa87VjKsvZgXa5onTFZpZZq7ky9mLvZ6PjgrnlhvGej1fbi5n9jdzvJ6Piori+puuE+PFeDFejA9ovFodmGe660SBgbKySlat3cG69bsZObQ/wwb2PSPCO7vFxNAtpnm95xwOB4X5eRw/lk+l2YzDbker0xEWHk5MfCJxiUlotdpGz3/BBcPI2rCFeXNmEualqqbBcGaInAKBoGmQFJFcRCDwy7yflpLZpSvR8XE++xUfK2Tvzh0MG9bltNqjKJBTbOHjZYeZveYoBWVWIZo1gthwPbPuH0CP9GpvFElxEOn6d+AeaF6RcErpVKrH46ANIk9ay6IoCkcP5iM7FQwGA/KJ8BnwnIfsjTfeYMGCBbhcLtRqdZ1//jzBakS0YD3OfJ1rbFinp+e1913z2tR+nWoe/Xme1T/21S7LMi6XC4fDgd1ux+FwYLVaefXVV+nZs6fXtSSpOnS2vLycmIQoTDHhAV1vlyxTUWHxel4lqQgPD6GosJydu44ycPjwOudlWcZsrvA6Xq1SYQw3ej0vxovxYrwYX5vv5n+HudxfaggJSQXICikpcXTtnE6vLl0whZn8jDu3OH6sgJWLfyFrxe9s37CO7AN7cdhsXvtrdXrS2mfSrU8/+g0bweDRY4mNTwh4PVmW+eLLb7jlpuubwvwmo6giP6B+y5fvDOr3y4RLRjaFeQLBWY3wQBMIzjBcssKK3cd5Yd5uNh0uQxbKWStEQaMcJtz1KWbVjThoT/U3Y0Frob6HVSCeYP761Xhe1fZEq+295cvjzN/63jzPfLX580SrfezN88yT0Baoh5mvfQQ7Ppj+apUKU0RYUPPXRqVSYTJ5D/EU48V4MV6MD2a8ysfnf837aVSkka5dMujaKYOwsGqPJoNe32g7ziYcDge/fTeXeZ99yPoVy1BkmeTEKNpmxNPv0vOIjQ4nIjyUEIMOtVqFyyVjsdopN1dRVGzmaF4JG5Z+xw9ffYqkUtF3yHAm3DyZC8dfhVar87m2SqXi5hu9exwKBIJzDyGgCQRnEC5ZYe7aXJ77dhcFZS2fM0zgG5VSSrg8k3L1ZJykITzRWg5/+bhq2v0JZP6oLULJsuxeq8aDLdB5Al3fkyhXXzgLNBdabRHNlw3B5DPzFzpae+3GnBMIBIIzDZVKhSzLREYa6ZyZRudOaUSaAvOwPZdwuVzM/+JjZrz8PPk52XRom8h1EwbRs1sGEcYQoPrzweWScZ34vFWU6s+aiIgQkpOiUNe6oWWusLBlezZrNuzkyTtv4o3nHmfKw08y4abbUWu8/yRuijQPAoHg7EEIaALBGcS8dXk88fV2SqscLW2KIEBUSilG1zeUq6YgS1EtbY4gQE5VtKkJW3S5XCiKgkajQafTodFoGu2F5gtfIlrt4/qP9YsqBHpcf25v7bXDZf3ZL4QygUBw1iIBCmg1Gjp2SKVP7w7Expzb4ZmyLLNzyyaO5eYQHRtPtz7noTmRr2zX1s089/cp7N6ykT492jD56omkJkdjtzuxWO0UFJVitztxOl0+68yrVBJajQa9ToPBoOP8/pkMGdiJo3nFLFq8iRcevIfZH77Ls2/NoEuvPjgcDn6c/RVLf5hHUUE+CSmpjB1/DReOv8prnlOBQHBuIQQ0geAM4fedRUydJcSzMxGNcpQw5UcquBpF8h0uIGh5/HmqBTK+JudXQkICHTt2ZOXKlTgcDrdHWLAFBwLBk2gWSEGB+uGZNXsIdE1f4pm3/dT2CKy/Xv35hLAmEAjOZMKMYaRlpJGZ2YHDe/fQtXMKsTGNDxM9G1i9bDEv/N9fOXJgn7stLimF2x98FIDXpj5CXHQYD//tclJTYjBXWMjOLcLp9F7R1BOyrGCzO7DZHZSfyI1p0OuIiAhh8o0jGXVBd76cs4JbLxzMpMl388eiH8jLPkSvPt1pm5LEoUO7ePyO61kwcyyvfjEHQ4jnQgICgeDcQQhoAsEZQG6JlSe+3s5xs72lTRE0Ep28CZ26GzZ6IUI5m59gwzb9hTF6o3bC/JiYGP73v//RtWtXpk2bxvz58wMS0XytEUiuNF9CmrcwTl/hm41tb0qvMiGiCQSCM5UrJ17p/tTP3runRWxYvSYLRYFB5/cDIGv9JiwWK8OGng/Aps3bKCkpZeSIoQBs276LvLx8LhwzosltWbX0N+675jJ69erGIw+/RJu26eTl5vPt7B/4zz/uA+CCQV24/OJ+VFRaOJJ7qoWd6mK12bHa7BSXVBBpCuORe69g3sK1fPXuG0SYwpnxyeu079DG3X/d2o089fgLvPz4Qzz1v3ea1BaBQHDmIXxRBYJWjktW+M93e9iXX9nSpghOAQkHBvl3VIq/SlyC08XpFmFqe55FR0fz7rvvMmDAAIxGI8888wwTJ07E6XRit9txOp0BhzfW51Q91HxV5Qx0LX/tTflaC/FMIBCcybSGW2affj6LTz772n0888tvmfHRTPfxN7Pn8+77n7qP58z9nremf9TkdrhcTv71wN307tOdl197jl69u2EyhdO5SyYxsVFIEky4bACjR/SgoKiUSov3CpunbIssU1JWQd6xEsZd2JerrxyEubyCnxctqdOv/4A+3Hn3LSz4/COO5eWeNnsEAsGZgRDQBIJWzpp9JczNyhXVNs8CtEo2OraDz4wdgjMZRVGQZZnRo0fTu3dvd3tYWBj1nE39AAAgAElEQVRTp07lmmuuwel04nA43PnRvHGqBQ18jav92FTima8+vgoX+HsuEAgEglNDURSo/R6LQu3vItWnldoDTvRpWrZmrSP38EHuuPMm1OqTP0N/WbSMr774lotG9aZThyTMJ8ItmwOXS+bY8TK6dk7hykv68c2X81j0Y10RbdSYC3C5nGxZt6bZ7BIIBK0TEcIpELRiLDYXb/+8H4stuJwPgtaKC728Hpu6JwphLW3MOUX9nFv++jaGmrBMjUbDt99+S0pKCvfccw/aE0mRjUYj//jHP5AkiVmzZrnFq1PJe9ZYO0+l2mZTiFvBXAshpgkEAoF/fL1XXnbphXXeTy8eOwqL1eo+HjNqGCV9erqPRwwfQqdOHRp9k8cb+TlHAGjbLt3dVlRYzP/++w6dMpPp3jUNp+ukd7aiKOQXlBIdZUSv1wa9njcsVjvHCsux2R20TY9Hq1VTWWWjS+cUDh0p5PXX3qNvv57Ex8cCoNPpkCQJh0OkUhEIznWEgCYQtGI2HCrlj91Nm/tBUJvm/2GuUXLQytnYVV2afW1BXWrnP6ufC62xoo1arT7xJdvBW2+9hVqtZsqUKej1egAiIiJ4+OGHAZg1a5Z7nFarbVYRzd/+fOWMawmEiCYQCAT+efSJaezZs9/r+Q8/nlnn+NNaYZ0AM7+aU+f4m1nzG8wRGWni4xlvNMq+qNhqQaqgoJA2bdKqbfrgC1wuB2OG92jQf9Fvm9m+6wjhxhBuunYYYaH6Rq1bQ+Hxclas2sXBQ8fckR3jLupLl44pADgcLoYN7sLuvbnMeO8LnnjqAQDWZ21CURQ6du95SusLBIIzHyGgCQStFLtDZvaaXKz2xuVJEvhHpVKhbuZAdgkbOrZjVzqCpG7exc9hTrWyZqDUeKHpdDq3iCZJEpMnT8ZgMABgMpl46KGHAJg9e7Z7XH0RzVuBA3/n/FFfOPTVr7EEItB5uiaexgnxTCAQCALj6NF89h84fFrXiI2JbvTYXgMGYYqO4euZc3nsyfs5fryEXxYtZVD/DoSE1K1SfrzYzPZd1R5r5goLG7ccZOj5nRu99radR/h16Ra0GjX9+rYnIy2WsFADMdHGOv30Og39+7Zn8a/L+MvdN6MoCtPf+JD+w0fTvpO4+SkQnOsIAU0gaKXkl9tYtuNYS5txVqNVg17b3CKWgkY5gEqqQMbUzGuf2wQjxJyKaFMTIqnVanE6nbz11lsA3H777YSEhAAQGRnJww8/jKIozJkzxz1Go9GgVp/a36S/yqL1wzCD3WsgopuvNYIJ32xOrzyBQCAQnF4MISHc9+xL/PO+OwkJMWCKNCHLLnp0y2jQNze/tO5xXkmj1z2UXcjPizejKAqmiFBkWSEq0khEeIjH/j26pfPnmt28+Pzr7Nm1j1BTNM+9NaPR6wsEgrMHIaAJBK2U1XuLySs5fdWHBBBu0GI0NP/boFopRk2+ENBaEE/hmzVeUYF4TwWS4L8mnNPpdPL2228jSRK33XabW0QzmUw8+uijOJ1OFixYUCcfmkqlapT3madztUWt2sf1+zRFe+35g/FuO12ecAKBQCBoXUy8ZTIOu43Xn34US1UlKcnRhNbzPgNQlLoRGKdSTMtmd5IQZ8JoNGCx2tmw+SBbt2dz1ZUDSU6MatA/xKAjOTGKTRu3Mf6WKfz1iWeJiolt9PoCgeDsQQhoAkErxO5U+H1noai8eZpJjDQQUVtAk2QkyX7aU6NJWNEqB3FInU7vQgI3LVHhUZKkOjnR3n77baDaE60mnDM8PJypU6ficrn48ccfsdvtPgsLBOuV5Slc05vAVvO8KTz1ataV5VMPQRcCmkAgEJxdXDvlHkZfMZGrB/UiIc7osU9cbESd4/h6x1D9+ZCbX0L2kSJKSitxOF3odBpiooy0SY8jPq76RmWnDkl06pDkHldaVsns+av58ZeN3HHzSI+fq/FxJmStiSf/+9apbFUgEJxlCAFNIGiFFFfY2HSorKXNOOvplhqOQXcyXE5SLEiKtVnW1ijZgAsQedCaC2+eVKcjTLBmzhoRDagjok2ePNldWMBoNPLMM88gSVJAIponvHmZefKy8za+sV5gTS2iiTxoAoFAEBh79uxn5tffosgKgwf1r3Nu1MihREWayMhI44uZc0hLS2HkiCHk5uYz59vvGT1qGLl5BWzesp0e3buQnpbC4ewcOma2IyMjjY2bthIbE01qajJffTOPgoJC99xr1q7nx58WgwSXjxtL/359grZ91ZJfKSs5TnSPRI/nkxKiSEuJ4cjR42i1anr3aFPn/O69ufy5ZjfFJRUYw420aZNGVFQo5eVm1m48yB8rd5KYEMkFg7uQnlrXeyzSFMZFo3uxaeshr/ZFRxnZsHkb82d+wvgbbwt6fwKB4OxECGgCQSsku8jC0eLmEXLOVUJ1agZ1jKa2PqGSSpEkZ7MU51QrhaiUCmRJhHE2B8F6VnmbIxBBq36/+p5oNTnRpkyZglarBapFtKeffhqAH3/80T22dmGBQMIzPfWrLZ55E9Hqh116er38iWj+hC9Pz32d9yX4CQQCgQAKi4rYsnUHiqzQtm16nXNXXn4J7dqms/zPNaQkJ/L2Gy/x+cxZXHLxKFJTkjicncMdk2/kmuvv5MnHHuD7hb8QHx/L5NtuYNacBbz2yj9Z8ecaQkIMPHDvX3h86vPuuYuOF7Nl6w4kCfr26Un/+ob5YUvWWv5535106ZhMr+4N85/VMOHyAezem0tyYhTRUdWeak6ni0WLN7Nrz1EGDurH9TdOpFfvbqhUJ6tCORwO1qzewMzPZjNr3ir69WnP8CFd6nw2pqfGNhDWatOzWzq5+SU8/8A9tOnQid4DBwW5S4FAcDYiBDSBoBWyK89Mld3Z0mac1XRIDKN3Rm3xSkGj5IHSPFVPVVSholTkQWslBFKZMhjxrL6IVZPTrEZEe/PNN1EUhbvuusvtoVYjokmSxMKFC+sUFvCUEy0QQc+bmFa/j6fHmuenEuLpz7b663nrJ4Q0gUAgaMiQwQMZMnggUP1e+dviP+qcnzXnOz6fOZs7br8BSZIYMXwI4UYjgwb15/W3ZnDnHTfx4P13ER8fx9z5C7numvGsXbeBN9/+kIkTLuPjT74iJSWJ8VdeWmfecZdcyGWXjm2UzU6ng2f/dgfRkSFcNKqXz88xnVZDj64nhUGXLDNv4TryC8p56tmHGTN2uMdxWq2WocMGMmToAL75aj7vTf8Em93BRaN6BWynJEmMHdmT48V/8uzf72D2ys3um14CgeDcReW/i0AgaE6cLplduWbE78XTh0atYsKAFOIi9LVaZbTK/ma0woaa4mZc79ymKcICTyXMEU56oul0OhRF4c0332T69Om4XC53H6PRyFNPPcWVV16Jw+HAZrPhdDoDErFqt3t67unYm4gViKjVGBojhgnxTCAQCBqH3e4AoKKikqNH8/j7fY8x7V+vMHfuD9hsNj77Yha33HQNn8+cjcVSHfngcFTfwJVdLhxOJ7IsE8D9o4D5ac43HNy9gwtH9kStDu6n6PKVuziaV8KLLz/lVTyrjSRJXHfDBB55/F62bs/2GbLpCbVaxYUje5K9bzc/zv4qqLECgeDsRHigCQStDJtT5tCxqpY246ymZ1oE4/slo6rtIaRUoZEPNpsNEjIqpQiaPv2WwAf+8qAFIoI1ds0aj7IaEc3hcPDOO++gUqm466670GiqP5KNRiP/+Mc/kCSJ+fPnu8d680TztAdPuc9qh0R62m8wnmjBtAWDpzBOgUAgEHhm/4FDzJq9AFmRGdi/r9d+P/28hGuvGc8H771GVJSJ9z/4HIA5c3/gqgmXMWvOgqDWzVq/iV9+W4aExCUXj6ZP7x4Bj134zRekpsSQGB8Z1JrHi81s2HSAO+66hfP61fUky887xvLfV+FwOtFqNQwbPojExHj3+UvHjWHblp38+vMSOmUmE2JoWPXTGwlxJlJTYln4zRdcecMtQdksEAjOPoSAJhC0Mix2mYJyW0ubcdYSHablgXHtSYky1GpV0HAINSXNaImMmtJmXO/cplrYqXvsKyTSWw4ub6JOMGJP/Zxo06dPR61WM3nyZHS66i/1JpOJhx9+GID58+e7566dE61m3Zo5fe2hvnjmzePMXy40f55v3tqC8WgTHmcCgUAQGDk5ufyxfBWKohAXWzef11PPvoTjhAdaebmZa2/4Cx3at6G0tIy8/GMAVFVZ+Ms9D1NZWX3j9utZC9BoqtMKXH39nZSXm9mz9wB/rlxbZ+7c3HyWL18NQGZmO/r07oHVaiE/J4fCvKOUl5Zgt9lQazToDQYMIaGEhhkxmkxsWbuK83qkBr3XrI0HiImL4drrr6zTXlFRyV1T/o/SkpPFt774bDYzv3kPozHM3XbnXTfz2y/L2LLtMAP7ZQa1dpv0ONatW83BPbupMJdRVVGB1VKFzWrF5XSi0+sJj4wiPimZxJQ0DCEhQe9PIBCcGQgBTSBoZZgtDkoq7C1txllJqE7Ng+MyGd0toU44goQDg7wWaJ78ZzWolLLqnGuSiKZvTvx5OTUmxNCbqAaevda8Vee87bbbMBiqxd3IyMg6IlrNuNo5WLwVC6g55yknm7f9+fNAq/080JBYf30DzX8mRDWBQCBoyPALBjP8gsFA9fvl73+sdJ8rLzfX6etwONi5a2+DOQqOnayuabFY3M+Li6tvKjqdTmy2ujd2r7j8YkYMO58Vi39h69qlTPnkDYoK8tGo1Wh0OgwhIYSEhhEWHk6YMRyNRotGq8VSWYGlsoKDh49RZq5Cr9NiMGgJMeiINIWREG/CoG+YZ0xRFPYeyOeqa65skIfs0MEjdcQzgNKSMg4fOkK37p3dbVHRkQwZNpDtW7Z4FdCsNgcFhWWUllZisdqxWh3Y7A6KiyuwVlXy0WsvERpmxOlw4HQ6qKowU2E2Y6mqwmqpwmm343S5iElIJLNrd3r0O58hYy4iMirK43oCgeDMQwhoAkEro8LqotLm8t9REBQRIVoeGpfJ7cMz0GlqCxoKGuUgWmVPs9skUYWEjCLSUZ526nugeTrvr5JlIOMCtaV2gQBJkrDb7UyfPh1Jkrj11lvriGiPPPIIiqKwYMECj55o3oQ6bx5otfsG6onmrW8wudN8ze1rrBDPBAKBoPVhiopi3KRrGTfp2oDH2KxWfvj6C9KSwhk6pKe7XVHAarNTVlZFuUoi0hSKTnvyZ2pJaSVWq50+fXs2mLNjp/ZktEnj8KEj7raMNulkdmzfoG/vPj1YtngFTqeMRnPyu5fd4aS0rApFVoiPjSA9JbbOjdY/V20lN7+Ex//7FqGhYQ3mFQgE5w5CQBMIWhlmqxObo3k9oc5mVJJERmwoz0zqzEU949HUS1iroopQeQkSzR82K2EFyYl4K26d+POSOhXxrIbaOdHsdjvvvPMOALfccgshJ0JATCYTjz32GIqi8P3337vH1dyF9ySkBZP7rP5xMCKatz0G08dfXjqBQCAQeObw4SPMnb8QRVE4r2/gFSZPlY2btrLs9z8BibEXjqB7t85+xwDoDQaS0tuQczSfkuPFRMVEAyBJEGLQec1NVlFZXeAgKSm+wTmdTssr/5vG/X97gtyjeSQlJ/Dya8+i0zX0ZEtMSkBWFKosNiLCT4ZZ6rQa4mMjPK5dUlxMTk4hiWkZQjwTCATiV5tA0NowWx04XMID7VSRJIgx6pl0fjJ/vbA9SZH6hp0UFwb+RKs0DGloDiTFgYQL4V/TPASSz6y2aORNwPEVmulvbm/hnDUFBGoKCwDcfvvt7pxo4eHhPPnkkyiKwsKFC1Gr1ahUKve4xuY+87Sv+q9DzaOvvGhN5U0mvM0EAoEgcPbtP8T3P/yCrChuz2Woe7NEo1HjdPr/XlnzGaHTarE7HA3OazQanM7qCp2HDmXz3Q+/IFEtankT0CrMZg7s3snhvbs5evggBbk52G0WSooszPk+C51ej0ajJjRUT0R4CFGmMGJjIkiIN6HXnfyZKsvVnw3qE595hw8dYf/+Q4waPQyA+PhYnpn2CHfd8X88889HSUiIc49d8tty2ndoQ0abNHd+N1mue6PabndScKyMwuPllJRVYjZbqKyy4XS6sNtsVFTZiYy18ty9dxKfkkZKRlvaZHaiXafOGMM9C28CgeDsRAhoAkEro8rmQlEkELJKowjTq+maEsGlfRO48rxk0mK8JXJV0CvrCZEX09y5z2qQJCfgbJG1z1U8CWS+Qh0bMzd4D6f0NKYmnFOlUqFSqbBarSxfvpxJkyYRExPj7hsaGsrw4cNZtGgRrhMiuydxLBDxrDGeaL6eezv2Fa4ZqBeaENUEAoHAM6NHDWP0qGoRSVEUd7L/G6+/iqO5eSTExxIXF8vipStIiI/F5XThcDqx2x0cO1ZIamoy4eFG8vOPodfrqKioZOSIoWzduoP27dvw+/JVoEDHzHbo9Dq+/+EXACaMH8fECZc1sKfoWAGrl/5G1vJlbMlaTWFeHsnpGaS2aUdyRhsyu/agR7/zeeHBe4gI09Ahw0iHjh0wRZqC2veypX8y56u5nNchHmNiOrLTTuG+7QAc37cdR3oCKo2WivxsXv33m1x9w0Ruvf06r/PpdBrSUmNISz35mVteVs7e3XvZn+3CXOXknieew2a1knckm99/+o6Z0w+Ql32Y2MQkevQfSP9hIxg4YgxxCYlB7UUgEJxZCAFNIGhl2Bwyciv/wajTSBgNWiJDtYTq1WjVEhLNH24lSWDQqYmL0JMRE0K3tAi6p0WQFh2CXqvGu4OQC4OyjlD5+xYJ3TyJjCQEtGYh2DBEX3MEU4XTV36ymnZFUZBlGYfDgd1up2vXrjzzzDN1xDNFUVi9ejXTpk1DlmV0Op3XnG2+CgcEI5zVfu7NAy0QzzNfobCBCnZCRBMIBILAkSQJs7mC6KhIdu3ex+TbrifnyFF279lPly4dcTqdHC8uwRgWysGD2STEx7F02QqefuphVq5cS0iIgeLiUnr16EpkpIm01BRKSss8rlVyvIglCxewb8c27FYr7Tt35ZJrbuCvU6cRl5CA5KFQ0r4dW/nm/TdJjA3h4L59JCYnkZCUBEhYLDbKzRYklURUZFidXGg19O7Tg48+mMmsL2Zz0ZCu2O1OZs1ZAsA33/5Mot6OTqdh0Z/bMVdaPOZOg+rcZyWllSiyQnh4CKEhekChIC+f/NxcKqvs5BRUMemOv3LVrVMajFcUhaKCAg7u2cm+ndt596VpaHV6Mrt2Z+S4K4iOjWu4qEAgOKMRAppA0MpwuFrfD0VJgvgIA/3bRTK4Ywzd0yNIiTJgNGjQaVVI+A5nO622KaBWq1CrQK3yb4NKKSdEWYpBXlWdg6wlURRQXLSA9nhOcrpybfnzLvPVXiNG1RbPXn75Zdq3b1+n/+rVq3nwwQepqqrCYDA0KCLgL1TTXwXO2mvVfx6MuObp2B8irFMgEAgaR87RXL77/mcURaF3r27u9l9+W4ZarebQoSNYrFbWrttIuDGM0tIy1q3fhM1qIyYmmrJyMw57dbim0+XilVenI5/wcNbqdGg0ahRZISwsFHNFpXv+LVt3sOLPNdhtNrp1asuVN9zqTikQCPc/+wKb165i89b1tEkxsvvgLvSGA0RFRpCRkURCvMlrPjSAXr27MfHqy/li9vcsXL4Vq82BjIobbr6ab2ct4O8vfo1Br6WkvIqJV19Oz15dPc6j02pIiDNhsdopKCzj8OE8SkrKsVnthBjUHDpaQaeefXlw2ksex0uSRFxiInGJiQy4YKS73el0kpt9mDBjOPpaobUCgeDMRwhoAkErQ1Z8VwtsbtrFh3Hd4FQu7ZNIekwIBp+eXa0XFZVo5Z2EKMvRKDlAa8gzp3BGvphnIP7Es/piV6CeT8EKcJ7EM6fTic1mo3v37rz22mtkZGTU6b9ixQoeeeQRqqqq0Ov1aLVaVCpVnfk8iWj1z9fgzRvO07E/rzN/IZ3BeKp5e50EAoFA4JkdO3bzxZdzqj2Za+XPLSgobNA30hSBVqslNSWJzVt2YK6oRJIkOma24/DhHBLiYzlWeBw48R5dWeUeW3S8uM5ce/bs44sv5yABMXfdFrB4VlVZyaolv7Di159QFIX41LbsPbSf7plRxEcbADtOSwkOm/eCAjXc/+BfGDpsILO+ns/a1Rv49Ms3SU9PYdzlF3L7TX+nXaeO3HjzJM7r57+4gsNmxVlVQoTeTkSigWPFsG1vCckZ7UGSeOkf9zP0wksZPHosoWH+CwloNBrS2zWsAioQCM58hIAmELQyVJJUram0sIgWolczqX8yfx3bnrbxoQF5d7UOFEBGklxIchVqitAq+9Ep21GTj6TYW9rAkwiBoFnxldi+vqjlb6y/cM765zwJW7XFsx49evDqq6/WEc9kWeaPP/5g6tSpVFZW1hHPvOU78ySW+Qvf9LRHbx5lgYhogYplgXi7iRxoAoFA4J2xF47kwjEjgBPeyms3eO2bnp5KfFwMPbp34fyB/TCGhbJrzz7iYmPo3683Gemp5BzNIz4uln0HDjFv/o91xodKLvrpy0jS2pjYvyOTln0PKpXfmx2KorBq6W/M/XQG6/5YyrCLLuWKG2/jqf+98//snXd8FHX6x98zsy09gQQSEnrvXaqCIogFEcSfvXuKnvW8O/XUs3CWs1cOezkrJ9hFUEGKoHQERRCQToBASN9smfn9kWzYbHa2pAee9+sVd+Y73/LMrOzMfvYpFBUUcufVF7P02zlktYylY5sECvLzKcjPx2a306x5c5JTkk3nHjioL8nJSfy0bBUfz/qSieeMZ+6cBbhcLq68+iJ69+luOrakuIQjubnkHjpEaWlZOg+P12DrrgJ2Zxcx9JTT+Pfr7xKfmMSqpYv57N03mXbLdQw6cTSTL7+G4aeMlR96BOE4RAQ0QWhklBcIalCaJ9j465mduWRkaxy2UAZ5UXGiGnmo5KKSh0IRCjoN40ZnoOBCMYrQyEM1clEpKA/VbIRfwg2Q+M36IRKPsnB5zML1MzsWzLvNJ565XK6gnme6rvP9999z//33c+TIEex2OxaLJWhuMzMRLZoKnMHO1Uw0C5cXLdg18+8TSb9I2gRBEITIU2gcPJhDbIyDL776hjatM9lP2Y+2q9esJybGQWFhEVu37SA9vQU7d+6pNHaI/Qh3p/xOhqUEAPdfBqH2Go3lz/9BadHGdM0l387lhQfvJvdQDuddPZW7n3qRlOapFccTkpJ4fuZnvDfjeaY/9E8OrD1I21bxZLaMxVVaSvbevWTv3cuRAvN8sR07tePPN1/DjOlvMPt/n6NpGldfe0lI8WzTrxvxK/KJVzfYe6CY7XsKUa0x/OWhJ7n4+psrvL0HjxzF4JGjOHL4ELPeepVpN19LUrPm3PjPf3Hi2NNDXXZBEI4xREAThEaGTVMbVFJpFm/jgSk9mDKklYnXmYFqFGExdmHlN6zGDlTjMArFKIoORsNUtGySKCoGjUAxPc4I5r0V7HiwcaGEM9+c4dp84pnb7aZXr15BPc8WLFjAgw8+SE5ODg6HA4vFUvEgb3YOZq+B5xTMRrPzCfdanW0zQolugiAIQs34bdMWftu0BYCVq9aZ9lu/YWOl/c6WIh5L/YVYpbz6M6C4itFXf0Xe3aeTeOMLaH1PrjQmZ382j/ztZgrz87j27/dy0vgzTcM8VVXlkhtu4dSJ5/LsvX9h3iez2b6nkIy0GDLSYomPteDVQ6fdOO/8szl17Ens2L6LrDaZpKY2C9nf6/GAxUJRsYd9OcXsPVCCVzcYe/Y53PKvp8jICi4KJjdrztW33cHlN93O4nlf8e70Z/n47de46/HnSUvPCLmmIAjHBiKgCUIjw2HTUFWgAXSoGLvGTeM7mohnZcKZjfXY9eVYjD0ouAK7CFFgGBaO94/h/IJi9u47RMf2GViDVNqqLYwwuQXNcqCF6xdtm7941qdPHx577DHat29f0ccnnk2bNo0DBw6YimeReKAFEk0Ip/9+JO2hQj7DCWNmXm8SGiMIgtDwnB+/p1w8U8hxKcxPHEjmnhUMSlE5NObPJFC5yuYva1fz/Zefcv1d99Ope/Dk/cFIz8zikddncuWNS/jvs48w/5sF7Nx3kNgYC7GOsh8bv5+/hGEjBtOmTWal+yJASrNkUpoFD/f0er1s27aTZT+sAOCPPYXkF7opKvEQG2Nn3BljufSWu+g68MSIbLVYLIw+fQInnXYmq376kbenP8tpk86jV/+BEZ+vIAhNk+P7m5sgNELi7BqqWv9J0BQFxvdtyZWj2gQRz3SsxjZi9blYjW00jgT8xwCKBUOxHNfCY3Gxk6+/WY6mqXRs34puXVvTtnU6mla17H1tE85TK5o5ImnziWcej4d+/frxyCOP0KlTp4o+/p5nBw4cwGazmYpnkXig+Z9PNLnEaiuMM9S8tXVMEARBqDsUDDpay6pvehyJPJKbzv3KClwtk/H2GU3mWZeiGpWfCTv36EXPfgOqvWaXASOZ9tYX3LLjFxZ88j7ff/UZG37dDsCMF99gxotvEBMTQ5t2WbTKTCcttTmJSYnExjrQNAterxdniZO8vHwOHjzEnt372L59J6XO0oo1ipzQp3cXRp8xgVPOuZDUdr2IJqWG1+tl7dp1rFq9lrS0VFI79WbNho206diZhIQE+QFIEI5hREAThEZGQowFu6birGcXtFYpDm4c14E4e+DHgheHvoxYfQ4qRUHHCtXDIAYMa0Ob0SjwenW2bN3D5i27sVotdOmcRbcubchqlVprD6KRCDxmlTjNvLAiyXfme/UXzx5++GE6d+5cqd+iRYu4//77OXjwYJVqm8Hm9m8LlfvM3w4zm4Ndi2DnEOw1VH8zL7ZQa0dyTBAEQajKvx++F2dpaZX27H37MYCMjJYA7N9/AK9Xp1WrdAAOHDiI2+UmM6sVAAcPHsLpdJKVmcWtu+UAACAASURBVEHiMxfCzhVQnMff4ovJn3Anyc3TiOsxCHt8QpW1bLbQ1TMjQyG1bS/Ou+UhJl9/L7m7NrBpzVLW/bSULb9tJHv/EQ4e2M+237fh9pj/qGu1aCQlxdGhTSrpLVPo1LUbfYaMoGv/YaS06YXFFhOVVbqus2fPXr75dj6dOnfikssuZtvWbfz6y68MGjyID2Z+RId27Rg16kSsVnm+E4RjERHQBKGREe+wEmO3kFdinjC1tlEUmDw4k55ZiQFHDGKM+cQac1GoP3uOF3TiMKh7T6umgl4umLjdHn7btJNfft2Ow2GnW5fWdOmURUZG82rnBwwmgIUS5qIR2vz7B4pniqLg9Xrxer2VPM+6dOlSqd+SJUv4xz/+waFDhyoKBlTX88zM66y6IZz+2zXNhRbN3P7HRUwTBEEIjaIoZJULYIE88dR0DF3npf88CcAL018jN/cIb73+AgCvvv4u27ZtZ+b7rwLwzrv/Y/Xa9Xw6622KM9uzLT6LpLQWJBdmY22ejHXyjfUmEGk2B6kdB5HacRAjptyMp7SY4ty9OPP24yw4TOGRHAry83CWFGPoOoqq4nDEEp+UREJycxwJzXEktiC2WSYWe2y1bDAMg4KCQr759jtUTWPyuZOw2+0ArFyxkldfeZXWrVtz3dTrSEhIYMZLr3Ly6JPo0aN7lVBTQRCaNiKgCUIjI95uId5ev4nl0xLtTBocmPfMwK6vIlYX8ayu0EkAEdCC4vWWeWA6naX8vGEra3/eQlxcDD26tqF7t7Y0S6n6q3ekBIo3kYZxRup15t+m63pFzrP+/fvz2GOPVQrbNAyDH3/8kdtvv528vLwqYZvBBLNgdocSz6INT43EsyzwNZyg5t8WzivN//wEQRCEhkNRFLj8UVr/vhpbj6FozVqiKAqa1nAFkCz2WBLTO5GY3il851rA7XazbNlP7Ni1i9Enjya1efOg/Xbt2sU9d9/D4MGD+dO117B12zaWLvuRiWefRYsWLeSeJgjHCCKgCUIjI9au0SzeBvvrL1xycIdkOqZX/lVOM3KIMz4X8ayuUFR0JXiVqOJiJwsWm1fIOpZwOl1h++h6mdBSVFTCyrW/s2L1Jpo1S6Rnt7Z06dSahITwIRhlwk3VtkgrcJrNCeaVN32eZ263m759+/Lkk0/SoUOHSn1XrFjBjTfeSEFBQVDxLJhg5ps/0LvMTDwLdk7ReKNF6i1WnbxoZvOa2SIIgiBET5/ePSp9lvbu1Z28vIKK/V49u5GUePSHqZ49ulXcJ+Iy20Pm0WI3xwu6rvP771tY9tNyBgzoz6AhgwEwMPBlKvbd/f1vU8uXr2D16tWcNWECkyafw5dffU18fBxnnXkGMTExIqQJQhNHBDRBaGTE2jTSkx31tp6qKJzUPY1Ym//HgZcY/TtUI6/e7DjeMNDwktrQZhy3hPLmCuzn/+q/HcoTzV88GzBgAM899xxt2rSp1Hfp0qXcfPPN5Ofnm4pn4TzQAm0LVUQg2HkFuy6Rnn+0HmiReqn5H5MvGoIgCDXnhqlXVtq/+sqLK+1fctGUSvvnTTm7zm1qrBiGQU5ODvMXLCStRQumTDkXNaCwkeH3apT/1x+Px8MnH3/M/O++47LLL6Nnr168/MprDBjQnxHDhzWoB58gCDVDBDRBaGRYLQodWsTV23qJMRr92iVVarMY+7Eb6+vNhuMRAzteJbiAFhvr4MzThtSzRQ1D9v7DfPDRgZB9VFVB140ah3AG84aqLZHGX/DSdR2v14vL5WLQoEFBxbNFixbx97//nby8vCo5z8zCSiMR1IL18x2P5lyC7Uea9yyYoBaJ6GY2v3igCYIgCHWNYRg4nU4WLf6B4pISxpw6hti4CHKmGZU90PzJy8vn+edeoF27dky94To8Hi/PPfcCZ511Jh07dpD8aILQBBEBTRAaGaqi0CUjHk1V8Op1/8UxPTmGVv4eb4aOzfgFRSpu1imGEY+uJDe0GY0WTVPxevU6KSJgFiboE56iyYEW2OYTz9xuNwMHDqwinum6zqJFi7jrrrvIycnBbrejaVq1xLHA9cOFefoIJhgGerGZXbNIBTOzMeHs8B/rb4eIaIIgCEJd4fV6WffzejZt+p0hw4aQ3rKsWikR3HoiuTtt376dO/9+F0OHDeXKq69k+YqVLPj+e6acO5mUlBTxthaEJoQIaILQCOmcHk+8w0JesbvO18pIcRAfc/SjQFFcWL2b6nzd4x2Pko5uxFJtRegYRFUUdMPAarXQpXMW3bq0IatVaq09WJp5n1U3F1rgOJ/3mcfjoW/fvkHFs4ULF3LPPfewf/9+bDZbhXhmNq+ZeOb1eqvY6BsT7HpFcw19CaLNxDr/7VCeZKG2Ix0rXyoEQRCEukLXdXbv2cOyZT/RqXNnzj5nAko1Hswi/ZFn2dJlrFyxknMmTWT86eN55933aZ2VyRlnnI7NZpN7niA0AURAE4RGSGYzB61SHPUioLVMsmPzy8WgUohG6JA6oYYoGh6lPSiSA8OHpql0bN+Kbl1b07Z1OppWu2EN0Qhi4TynQnmi+USh1NRUUlJSKo7rus7333/Pvffey969eytynpmJZ2aeZb7iBC6XC4/HU0VkMtsOtm92ThaLpcK+wOsQSWhmsDGR5D0LNVY80ARBEITawjAM8vMLWLxkKfYYB+NPH4/Fai07Fv1kUXV3u938b+ZHfDPvW6686gpaZWXx1NPPMuaUkxk0aKCEdQpCI0cENEFohCTFWOnTJpGNewrCd67pWrFW/LUK1Tgi4Zt1jG7E4NaOv4pWwYiNdTB+7Al0bJ+B1Vr3tyR/kSaYOAVVhbFQXlGBYpqqqmiaxvz587n//vu5//77iY+PZ+HChSHFs2jCN3Vdx+1206lTJ/r06VPFZh/V+SV78+bN/PLLL2iahqqqpiJhpK+h8qmFEyoFQRAEobZxu90sX7GKgzmHGDL0BBIrqo9W715kUFlDU5TINLXc3CM89eQzdOzUganXX8fe7GyeeuoZzj//PLKyssQbTRAaKSKgCUIjxGpRGNk1lZnL9lTzdh45Fq3yDVqlAAW9jlc9vvEq6XhJa2gzGgWJCbEkJkSQpLcWiESwicbjKZj3l8+Dy+PxMHPmTKxWK6NGjWLatGns27cPq9VaJWzTTDDzzRnMM07XdUaNGsVf/vKXWnvIVhSFN954gw0bNkSV/yzUq2/bTEgLNV91CiAIgiAIghlut5vPv/yanr160G9Av1qc2f+eF93IrVu28rfb72DkiSO45NKLmfm/WYw9dQy9e/cSEU0QGiEioAlCI0RRFIZ0SiEtyc6BvNL6Xdsoprq/wgkRoKi4lF4YxDS0JccVwUQYMy80M8EnmNAVOL+iKKiqWhH++P777zN79mxcLhdWqzWo55mZt1moNt9+oJdYbRBMRKxuGGekQlzgdrB9QRAEQaguhmGwceMmOnfpRFZm5tFHXYVK24YBhqFXuq8rimKeG83vVmUYZR5o/tuRtRksWbyEFctX8PiTj/HlV3Po2bMHmiapPgShsSFB1oLQSGmVEsPwLs3rfV0FT72veTzhNVJwKd0b2ozjjkBRqCbeaJEIPZqmVXibud1uU/HMf51o2+paYAp2zaqTAy3YXOH6htoXBEEQhOqw/8ABMjIyysIufX9G5W1fMaDi4hJKSpy43R503ag8ptKfUS66la0RuB1pm2GA01nKgvnfY7PZ8Hq9dXw1BEGoDuKBJgiNFJtF4dwTWvHF6mw83voKqZQvqnWLgkvtg5fUhjbkuCacN1q4sYGhhWb7/t5h/tvh8p2Z2RV4LCcnhw0bNtSqB1p2dnZE3mf+2+E80MzEtMC2wH0JXREEQRBqi0BPcrM+Xq8Xp7OUlSuWk5eXz8mnnEJMTAxWqwVFMfM9qb3nZ7fbUy85YQVBqB7yr1MQGimKojCsS3N6tU5g7fa8hjZHqAW8SjNKlROk+mYDYSbShBKp/PuGC+EMJpD5qmkFG2cWqunrH8w+HxaLhVmzZjF79uxK84cikj6GYWCxWCrsjjQEM1LPvmi8zerT2043DA4dzCGtheQmFARBOD45WqTn4IEDrFq5io0bN9KtezcyM7PKigRZgoRy+nmS1ZYdgiA0XkRAE4RGTKLDwtWj23HLWz+jSxhT00bRcCpD8SgtGtoSIQyhPLB8+6G80KItEOC/Har6pr83m6+Sp4/aqsLpE/2CCWj++9XxRAucJ1rxrS4oKi7hh8U/sGnTZhx2OxddelG9rS0IgiA0FFXvM7pu4PV6KC0tZdmypRQWFZKfn88nsz/myquuKv9xSUFR1TAz1dwyeeIXhMaLCGiC0IhRFDhrQDpvL9rJim25DW2OUAPcdKRUGQKI91lDECyfVzgvr2BzQORima9v4Diz/mbiWiC+Sp+B89aWiBZs/VDCWbDj4fqbtQW+P2bjasLh3AJ+27yTDb9up7jYiaqq6LqOzWqr1XUEQRAaM14DNhzxsCbPw94SHY8ByVaF3okaJ7eshc9DrwsOb4DcjVByAAwP2JIgoR2kDoCYhktnUeWuUp77zOVys23bVrZv347b5cLjcbNq1UpOGDKE/gMGYLGUV9GudG+tZS9pI6iFgiA0EkRAE4RGTrzDwt8mdOGal1eTX+JuaHOEaqArKRSpp6MrCQ1tikBVkSbSEE4zsSxwP9Q2VA3PDNUWyk7fnz/++zXNIRZpeKVZWzAPtEhDO8O1R0thYQlbtu7mt827yT5wGE1T8ZbnltT1+soxKQiC0PDsd+o8+3sJb+8sZY+z6uff2ek2dueV8sG2Qm7umcS41rFm9SeDU7gbfnsddnwBbpMUJIoKqYOg6+WQOSZAkKpbgulTuq7j9rgpKiripx9/xOP24PV68Xq9GIbB7Nmz6NSpE1abFUVV0VQtYMJatlD0M0FotEgVTkFoApzUvTlXjGqDzSL/ZJsaBjEUqefgUdpBdI+gQi0SjRAT6K0W7Fio/VDtgX3M2kKtH26dwGOhzsfsvIPNEWz+UOMiOcdIX6sjpDlL3fz6204++mQRr731FYuWbmD/gcMAFeJZU+SjD99j/Khh5OcdaWhThDrm6y8+Y/yoYezP3tfQpjRp5N9MGYYBL/xeQpe5uTyyuSSoeAYwtoWVObuL+WpPCePnZXP6nH3sLIigQrvhhQ3T4aszYMu75uIZgKHDweWw5M8w/7Iy0a2+CPLjkNfrxVXqYt3aNeTm5uL1llfeLD+2Z/ceFiyYT0lxCR6Pp/K9rXzK4H8Gum5UzFW2r+P16ui67tfuN6b+roQgCNVAPNAEoQmgqQo3n96J37OLmLsuG13urk0CQ4mhUJlEKb0R8azhqU4IZ6AAFGnIZrhQTrPwzXDhpKG813zbgXYH2hzJdQrVFo0YaCbgmV3nmnqcudwetm7by2+bdrJz9wEUFAyMsi84YTzN3G43q1etMT3evUc3YmJiTI9v/PU3SkpKamX8siUL+Xz2h9xx38MkJSXX+/q1MT7wHLr36AYGTDr9FNM5/DnznCmMOOlo36Z2/pGO/2z2R0x/9knue+Qp7HZHpWM7d+wE4JcNv5CYlFyn9n/wzju8+cqLldocMbE0a96cwUNHctlVVxMXFxf1+hvWreG9t17h9rvuZez4M6ocn/H803zy0cyg5x+N/aHOf8/uPabjIhlf0/UjGf/Lxu0Ul5RWahvWvx/2BPNrEi03rilk+h/OsP1OTrPy0PKj/ebuLWHQp7v55NR0hqeHsKdoH/z+Luil5n2CcXA5zDsXRr4ILQZFN7aGGL7CAR43hw7lsG7dz3jc7jKBy9ArBDBwM2/uXPoPGIjNbkNTNTSL5ldQINh9E3TdS48WOnklsLdQQ9e9dEjR6dBMocgFq/cauHUriqIedcKTZ3xBaNSIgCYITYSkGAv/vrAnJS4vizbmSFGBRo2ClxSK1Mm4lJ6IeNa4CCbehArh9Ik/kRQOqO52dV59NgTbDrSvNq5VNNvRePCZres7n0jt1w2Djb/tYMOv2zmYU+ZpYkTxTcTtdrPxl19Nj3fo2D7kF+BtW7Zy5Ii5h0s04/fvK/M42rJpM7Fx8fW+fm2MDzyHDh3bk5yczNcLl1Ua98gD97Jw/rdcf+udFBYUVjrm/340tfOPdvzO7dvxeCqLvHEJKVx69Y3s27uf0tLSOl1/f3Y2ACeefBrtOnQGoNRZwu+bfuXTj97HMLzccPNtUa+/Z1eZZ5HbHToFRbDzj8b+UOe/P3t/yLXDja/p+pGM/33rHnJzCyq19evRneRayPzgNeD1vS6uaudg5p5Sclzmn4ttHCpuj5dsp7dS+8FSnfFz9zH/9AwGtTAR0eKz4OQ3YMHlUHo4OiNdR2DRn2D0m5DaN7qx1cB3BQzdwOP1UOosZdnSZZSUFON2e/B4PBQVFuJyucqL6hgUFhby6Scfc82f/oTVUhbKWXbICHRqq8Dr9fLgWJUFW3WeXeLmqkFwxWAL2QUGKbEK+U6D62a5yXPZkGdFQWgaiIAmCE2IjBQHL1zZlzvf38Cctfvxiitao8PAgkvpSbF6Fl4lraHNEcoJJsSEE8wiGROtSAbm3mi1JZ6ZCWfhcqKFErOC7UcanhlKTAv3Gk0eN1VR6Nu7I317dyS/oJhNv+9iwy9/kJdfhKooYX90iI2N5eLLLo54vUDOPPvMao8NHP/ZbDvLly1i0pRJpKZFVrm3NtevjfHRnsPpZ56OzVb9xOWN7fyjZczYMRG/13Wx/sBBA5nz+SxGnjiSUWNOrXRs6hWXsGzxwpACmtn6S75fwML5c4iLNfdeg7o9/48+VFi9/Idqj6/p+pFwzlkjqrQlOBJrNKePR3eUcs92F1enW/l6RBLjf8gzFdFOaWFl/t7gnnQFHoMvdxWbC2gAyV1g9Ouw4IoyUSwaPMXww80w/lOwJ0c3NmrKYiW9uo6r1MXWrVv4Y9s2Sp2l5B7J5dChQxQXFZGXl4emaTgcZee8ZvVqNqzfwMBBg9AsFlTFEvAzjYFPCPOFa7pcXjweHd2rMKG7wts/FTH9R8hMUnh2ooXBmQrfbPPd74yofvgRBKH+EQFNEJoYLZPsPH9lX974fgfT520jp8DV0CYJgIEdt9IRpzISt9IFQ5GP18ZItCGcgWMjqbJpJqSZzVMT8SyUPT6q44lmJpoF2w8nhPn3CyVMRmpLJCQmxDJ4QFcGD+jKocP5/L5lNxt+/YPCImelAgL1Tc7BA/z39VdY8dOP5OUdITU1jVPGjefiy67EYrUC8Mr055n14XsAXDJlYsXYR556jv4DB1fse7xeXpvxIvPmfInTWULf/gO4+fY7qiVC/Lx2Na+9NJ0/tvxOUnIKk8+7gNbt2nHP327jsWen06df/zo5BzM++vA9Xp3+PO/N+pxZM99n/ryvyc/P48v5S/hp6Q/cd9dfK/raHQ7atm3P2ZOncGpAiGDFPB9/wcczPwh5rfLzjvDWay+z4sdlHMk9TGqLlgwZPoILL72CxMQkgKjWBjh4YD/vvvU6q5b/xJEjuWRktGLcmRM4Z/J5WKzWsNfp6y8+45nHH+GtD2fTMj2j4vjWLZt5+7VX2PDzOlyuUjKzWjNh4mTOPGdytc8/HFY/cXP5sqX8887bueeBhxk5+uRK/VavXME/br+ZO+59gJNPHRfx/P5Ec50jed981Oa/mabCpiKdaTvKnhNfy3ZjGDB3ZBKnLQkuoo1tYeO/G4N7j93WI5F/DmgWftGU7mUi2vdXgitEHrRglGTDuifhhGnRjYsCo/w/ZeGbXkqcJSxbupT9B/ZzYH+Zt2dZfrKyEE63243b7cZZUkJ8QgKffPwx3Xv0ICYmBkMrKyZQ+T5V+bq63G48HkCxsinbw5ndIMlhsGqPwVUfunEadiwWvzlEPxOERo18wxOEJki83cL1p7ZndPc0Xv9+B1+vy+ZQobvG+YMaFg2jSbmvW9GVeLxKKh6lAy664aUlhmJF3PAbH/6iTbgQTjPhJ5Qo5j9vpN5mwdqiFc9CeZ3VNISztkS0SMM5A8f5n19NPtuaN0uk+Qk9GDK4O7v35rBp8042b9mNy+UJK5rWJvuzs7l16tWkt8rk/kceo02bdmza+CuPP/wgu3b8wT0PPgLAn264iZbpGUx/9kne+ehT0y/3b7/6Er36DeCN92aya9dOpt1zF088PI1Hn34+Krs2b/yFf/z1VoaOGMld/3yQmJgYvvz0Y7767OM6P4dwvPKf5xkw+ARe+e8HLPp+PgBDho+oCAM1DIPc3MN8+/VXPPXvh4iJi2PEiaOqzBPJtXrsXw+wPzub+x56lNZt23Mo5yA/Lf2BeXO+ZMr5F0W9dva+vdwy9RpS01pw570P0L5zZw4dPMDcL7/g53VrGTBocLWu09Ytm/nLn6+jZ6/ePDvjFRKTkvlu7te8+OyT7Nu3l2uuv7Fa5x+M/Pw85n75Odv/2MrUm456nw0aMpT0jFZ8/slHVQS0Lz75iLj4BEacNDrsuZgRzXWO5H2r6XVoykzbUUqp30fc6/vdGBwV0VJtKrd0iuGkVAvxFoU0u8oPuyxoSlnop4+/9EjkiWGpkT/dNOsJo16FNY9BxymQNgg0B+T/ATs+hT9mg+ENPvaP2dDjWohvXc2zjhCjLIRzf3Y2v/7yC7m5ubjdZc/SRnlyf3x/ioJX1ykqKmLXrp3s27eXlGbNgmpdle+NPgFNRVUd/Ot7g/N7lTKstc7INnDtILh/gcLWPMvRe3bdnrUgCDVEBDRBaKJYNJXebRJ59MKeTB3bnkW/HmTp74fZfrCYghIPegThT4ZhkBxrrSeLQ9iBjSJ1Ah61TUObEhbF0MsSkhODocRiKA4MQ0SzpkioEMFIQjhDeYNFmu8scHx1xbNAIc3fvsD2cNckXHso4SxYWzAxLdL+tSlwKYpC68w0WmemcfJJ/Vm/4Q9+Xr+NvMIivF5vnf8TfuOV6bjcbh545DESywsD9B0wkD/f+lceuPvv/PbLBrr17BXxfOmZWZw6bjwAXbv1YMoFFzPj+afZt3cPGa0yI57nrddfITExiTvuvr/Cy+iiy6+q5AFUV+cQjozMLMaOLwuNO2PCxCrHFUWhWbPm/N9Fl7Jm5QrmfPZJUAEtkmv189rVTD7vAjp27lq2dqtMzpnyf6a2hVv71Rkv4HI5eejxp0lOSQEgtk27oAJXNLz5ygwsFit3T3ukIixy0nnns2vndmbPfJ8Jk6bQMj096vP38ciD9/LIg/dWOs9zz7+IieeeV9GmqipnTpzEazNeZNfO7bRu0w6AQzkH+fGHJZw5cVKVcNzAeSMl3HWO5n2rrX8zTYVDLoNZB6tWz3xjf1k+uh9GJ9MmVsWhVf7we3FkGlPaxzPpu/3kuXVui1Y889G8D5z6TuW2mFRoORjang2LrwdPYdVxhge2fw69boh2xcgwygvLUPb/V1paC6becAOff/YZP69bd/RHM10BRUEp/7NYLAwdOpRzp5xHenpGpXu74XNrK7e/a0opewst5JQauF1uPB4LMZqHgemlzPrFwssrNbLiXfxzlJMzOuo8u9JRPp88SwpCY0cENEFo4titKl0z4umSHs8lI9tQ7PJS7PKGFAf8iXdY0NSGvmGreJU0PLRtYDsiIPBSyU+FTYJA4SacUGU2troFAsBcKAt1LFrxLND+6nqhmV2HSLcj9USLxK668BDTNJWsVmkU5LsYMGw4f2zfHlGi8Zrw09Il9B84uEJ48tFvQFnVuZ/XrYlKfBoydHil/fYdOgJlnk+RigGGYbB+7RpOPHlMpRA9gKEjTuSnpZXzRtX2OYRj6IiRVdp0XWf2/z5gwby57N69k1Ln0WqBrbKygs4TybVq36kzX33+KaktWnDCsBG0aJleZZ5o1l75048MGDS4QjyrDQzDYN3qVZwwfESVnGInjj6Frz77hPVrV9MyIMwxmv9X7vrntIocaEWFBaxZvYqnHn2InIMHuOu+o2F1p505gf++/gpffvpxhXfal599gq7rjD9zQhXb/ef1x1eF059ornMk71t1rsOxwLxcD06Tj89NxTod4jUsJo9/J2fG8MXYlny5q5iHT2he+7JOyxNg8L9g2a1l+6oNmveF9JEY6SPZGdOtXp4IFVXF4XCwfft2xpx6Kn369mXunDlkZ2cDClp5iGZWVhYTJ03CarWydu1aunXvXl5cwIfvXgea4eVvQ3L5crONBdst2BQXOUUauq5zWa8CVje38ObPcRi6F6/XRYHTVnmeevKKFgSheoiAJgjHCIoCMXaNGLtG84Y2plo0tIgnHC+EC+E06+ffFq1gFmydSI5VVzwLJZwFy8kWzbUKtW3WZjbObHxte5+Fwmqz0qVLZ7p06VxnazhLSigpLmHZksWccfLRZOH+1yY/L7pcQc2aV/6kj4mLBaCoIIhHh6ldTlwuFynJVUWe5ORmAX1r/xzCkZpatRDLazNe5JNZM7n59js4YdhwkpKSUVWVB++5g62/bw46TyTX6p4HHuL1l6bz+ozpvPD0E6RntGL4SaO44JLLK3JpRbq2s6QEZ0kJzYPYXxNKnWXvV7NmVe/yKc3K3q+8vKqJ26v7/0pcfAIjTxrN9m1beeeNVznrnMn07luWDy8xMYkTTx7DvDlfceWfrsditfL1F5/RsXPXCm+w6hLNexzJ+1bT69BUWZ5vEiIJPNDeZiqe+RiZEcPIDPPKoTWm7XgouAVSunM4ZTDzC+3MO+zlm80e9rlKODIyvop3XG3gu6soSlnxGZvdTu/effj8s09JTUvjkssuY93atSxevJjSUienjBlDl65d+XHpMg4fPszf77wTq82Gqqr4bqf+tyqXrvHZb1bO6FjIae1h9xEL3++KodSw8crqGC7tlc+zpxYDsK/Qwseb4srvd5XtEwShcSICmiAIjQLF0AHzh726WdTnLi/i3fGImZdmoKeaWf9oBLPA4zU5ZraWDzPhKRJvtEhCOP33IxXR59nR9gAAIABJREFUfNuReqv5Xmuax62xYHc4sNntnHjSyfztnvtqZc5Iw3JD4YhxYLPZyD2SW+XYkSOVE4nXxTmEw2Kp+pj67dw5nDj6ZE4746xK7dl795nOE8m1SmvRkjvufQCv18sfW7ewfNkPfPDu22zZtInHnn0xqrXtDgd2h4NDOQfDrhsNdkf5+5VbNcn7kdyy9zApqWr1wpr+v5KVVZZeYccf2yoENICJk87lu7lzWPDtPOLi4jl8KIcLL72iRmtBdO9xJO+bj9r4N9OU2G7ifhanwknJjeEroMLXGdfywHYXq7Z4cRvOSkf3uwzaxtTVe3b0XqppGs1TU+nffwA//vgje/fsoVPnzlxzzZ9wOp2sX/8z77/7LigKV151FSnNmmGxaH73p6PzQVmI86wtzfh2RzwOTedAiQ1Fs6CqKj/uT2JFdixpMW5cusIhpw1Vs6CqSqU5mvYdTxCObRrDp6cgCMc5iuLGYSzFxq/1uq6h2yhRR6IrtRdiIzROaiOEszq5z8K1+c/nI9rCA/7jAucL51EX6nqFa6uuB1qw/sHGV8fuxoqiKAwZPoLVK5dTWFBAfEJCyP6OmDKvD7erbqssK4pC7379WbNqBR63u6KKJpSFawb2bSznYLVUDjf9Y+sW/ti2hRYtW9Z4bk3T6NSlK526dOXA/mzmzfmy0r/ZSNZWFIUThg1n1Y8/ciQ3N2QYZzTXSVEU+vYfyJqVKygpLiEm9qh30OKFC1BVld79BkR1vpGwe/dOAJIDPN+6dO9Jl67d+eLT2cTGxmKz2apdeTOQaN/jcO/b8UiJHvyzM1FTsKlBD9U764t0fiwI/uNpSV0WS/ZzQ1NVFavVSo+ePdm5aye7duxk/fr1OOx2ftu4kSNHjqCqKsOGD6dPn77Y7TY0TfPzGvPlQPOhoGkWCnWNQh1UP1c/VdUwUNlfakdRQLP4i3A+25r+PU8QjmUaycenIAjHNYYXm7Eeh764Xv/s/IRqFDT02Qv1TCTeVGb74UIYg80XzKMtlDeWWf9I+gabtzp/wcYHuw7Bxpl58AUSiWgWTHxrqlwz9UYUVeXeO25nw7q1FJcUk5t7mDWrVvCve+9i6++bKvq2bd8egJ+WLcXjdtepXZdf9Sfy8/J4/OEH2Z+9j7wjuXzw3zfRVK1RnsOwESNZ9P13rFr+E86SEjasW8szTzxK7779qj1nfn4ed952E8uWLOZQzkHcLhebfv2FNatW0Ltf/woRJpq1r77uz1jtdu75+2388vM6SopL2L1rB6/+5wVWr1xR0S/a63T5NdfhKi3lofv+wZ5dOykoyOfTWf/j688/5Zzzzq9SQKAmFBcVsmTR98ye+QFt27avkkMM4KxJ57Jl8yZ+XruGESeNDiusRkKk1znS9+14JS4g/NGiwAkJGte3sjYaD6e9peYqWVzVj6Baw+CohqaqZQUC7A4HI0aMLBO1DYNDOYfIzc3FMCCtRQsmnD2R2NhYrFYbiqJWmis4ZhEOSsiCAY3lvREEITjigSYIwvGLYcjPCMcJZiKNWQhn4HYoDzSz7WC5xsw8ysyOR1p102zfR21W4Qzcj0Q8jEQICzb2WPoC3DI9gxdefZP3336Dxx9+kJycgyQlJ9OhQyfOOHsS7TsezcHWtVsPLr78Kma+/19efvFZdF3nkaeeo//AwbVuV5fuPXn4iWd57aUXuebSC0hOTmHyeRdw6vgz+WHxQqzWo4+KjeEcrr3pVlRN44mHH6TEWULX7j247W938f5/32R/tnkYZygSE5O48LIr+Xz2/3jh6ccpKMgnNS2NE0eP4cJLL6/W2ukZrXj+5dd5541Xeej+eygoyKdVqyzGnXEmffyEoGivU6cuXXnqxZd5+/WXuem6q3G5SsnMbM3Um27jrHMmV+v8/fGvlumIiaFli3TOnjyFKedfVKXQBMDoU07llRefo6Agn/Fnnl3j9SHy6xzp+3a80sGh0tqmMK6ZhbEpGmMSXKQeWQH7lkDMGEgf2qD2eQ344lBw77NYFdLryE2u6r3oqBdackoKQ4cP47tvvsEol7KsNiv/d/4FpDRLwe5woGlq5XuTUcue0qKgCUKjRjGOlZ92BaEO+XjOAjp370GzFqETAh8+cJDfN/7KiSd2ryfLahuDGH0RcfrHDW1IvaATR752HR6lTUObItQhhmGw4ofV6B6D1NRUdF2vJM74vyqKwtNPP82nn36K1WpF0zRUVa348+8XbjtUW3VeQ20H2zdri5RIPPJCbfu/6rqO1+vF6/XicrnIy8vjueeeo2/fvkHH+GxXFIXt27fTqVsH2nZsXe1zCUbOwXw2/raHIaNG1eq8xwqffzyLF595gjc/mEV6RquGNkdopOi6ziXnTcRmtfHG+x8dU6J3XfDTwoV075ZJalpi2L4JjmTsFke11yr26MTkb0LJXgLZSyBnDeilZQeTusG4maDZqz2/Gd/tLual3/L578ktsYcoAvCf3S5u2FIa9NjIRI3FA2Jr1S5d1/n2uwX0HdAfu73qeeu6jtvtpqioiPnffcf6devYtGkT4047jTMnnEViYhI2u62Kd+5777zPjOkv1ZqdEydNJCkpnptvvAFbENEaIKcwO6K5Fi/eGNX3l0mnnxy1vYJwvCEeaIIgHOfIbwjHC2YeToGvocbXZvXNSD3OfETqhWbWVh1ChVcG7ocLMzXzRDMbX19VOIXgLFk4nxYt00U8E0Ky4ee1HM7J4Yo/TRXxrJERqxfCdxeA11n1YN5v8MMtMOwJsMZXPW7ooETvAfbdnmImfrufIq9B6bf7eXt0C5LsVef5br+L4Uka6VaFbHfVz/lzUuv/K6qiKGgWDYfDwbDhw9m3dw+6YXDa6eOJi43DarWiVromBqBgVMmBVlP8A0wFQWhsiIAmCMLxjTzvHxdEEj7oE2zMRJ7qFAsA8wqbkbyGmi9w27dvdr6RfLmtTgin/34oTzT/9sBrHCpsVkS0uuff0+7jrImTad+5M3m5uXw6aybr1qzm9rvuaWjThEZMcVEh7731BvEJCZw1sebho0ItY0uE1mfA9tnBj+9dAF+eDp0uhLSBYImFgu2w43NQ7TDiaVAj/6o43088A/hsdzHdZ+3i01NboloslHgNNhd6eWdnKQty3FycZWdun1hO+7mkkogWr8Hl6VazZWqEovgEL+Po81+ZDgaAqpSFciYlJXHq2HFYbdZyzzN7hRe6geFXhMC3XXv3KavVJvqZIDRiREATBOE4R55Sjhf8RZtwXmehPK+iqZIZbK1oPdAi3Q60MZJzCne9wrWFE8yCeaIFjg8lngnVY/sfW5l6xSUh+4wcNZp7HnwEgDGnnc5br73Etq1bcLlctG/fkbvum8aoU06tD3OFJsgjD9zL4u/nk5nVhrsfeKhWigcIdUCvG2DXV8G90ACcB2DDs8GPLf0rDH8iIhGtwvPMU/kzPrvES7JNY9iiPA4FeJq9u7sUA6qIaLdn2Ui11f7nv6IoJCcncSjnEK1atar8+Gcc7aNqKna7nfYdOgBUpHKouCcFGVexa0BFN7/tQMyOxcXFcdrp4/hu3rwKwU4QhMaFCGiCIDRxFAwlFi9JgBXFKERV8lAMTyRDheOQ6oZw+o8P5o0WeLymHmj+YwPn8T+PYF5oZmKZ2fmFEtci9T7z3w5sMwvpDGdDsH5CeNq178jXC5dF3H/QCUMZdELDJhQXmhZ33TeNu+6b1tBmCOGIbw29b4O1j0Q/dvcc+FGDYY+BYl4Sc2ueO6h4BtAh3sIRL1XEMx/v7S7LgTa3Tyzj15fQ0qpwZ9vaz8sGZfe/Hj2688WXXxMXF0dSUlLQfqqiomhK0LynwTCgUgin2XaVcX7HFEVh7LhT+dPUa1i8cCHDhw0VAU0QGikioAmC0GQxsFKqnoBTHYxupIBiQcGJRd9GDIuwsKcsj4cJinwxP24wE2KCCVfhxKRIBK6aimiBY8zW9rUH2/fh/+AfiRhVnTDOSEM3zeYM54UmIpogCEI16Xo5HNkM22dFP3bnF2Xi2dBHTXOidUi0ckH7OF77vbDKsVMzY/j2gDvkEu/5PNF6xxJvUXDUoW4UGxPD+HFjWPLDMjSrlQEDB2C1Vg0XDSeaVcKoWc6ybt27ccttN2Fg8NGHHzL+tHH0799PBDRBaKSIgCYIQpPEwEqxehZOdSQGmp83WRxetRke2hGv/w+rsTncROKJdhxhJs7UhgdaKI82M5EMgnuMRRPKGWoO/3OOluqGcPpvh/I4CzdOxDNBEIRaQFFgyLSyiptb34t+/I5PIaYl9LvddPqXTkwjzqLy/Mb8SlLSqa1imL4rtIAGsOaIh2aaQmZM3YpGiqKQmJjIuLFj2Lt3Hwu+m0/rtm3p1q2rebxlBFTnNtWseTOuu/5PDBw4gC8++5yOHdpx+19uxeFwiHgmCI0Y+dcpCELTQ1FwqX0p8YlnVTvgJY0iZQI6QapLVe4qHAdE4iFl1j9cn8AQxUiP+R+PdHyw7WDzBLaFErHC9QvVFm471FqhrmewcxQEQRCqiaLB4Ptg6BNgT41mYFkhgm5XhuylKQrPDk/lw9EtyIwpey6zKHBCmoMfD5sLaJoC17Vz8NMpyWTG1s/XUkVRsFqttG6dxTlnn4XDamHOV3PYn53NUU8yI8zf0T7R3qUsVgsXXnwBb7z9KqXOEhYumM8Vl1/CxIlnExsbK+KZIDRyxANNEIQAGv8XVsOw41SHQVDx7CgepRVupTt2Y4VJD6U8k2utmyg0QmojhNNsnFmb/7rh8q1FE8rp3+4jkhBOs+sQyfFIvc/890OJc+HERf+5REgTBEGoBdpNgMyTYctM+GMW5G8l6HOfJQ5anQJdLoXUvhFPf17HeM5oE8ubmwtYebCU34p0SoJk0mhhU5jcys6NnRz0TGqYr6OqWlYsoF/fPnTp3Imly35kw/oNDB02lLi4uDCjjUqbkd6jRowczp9vvoE9u3fx8UezOHvCWXTs2AFN06RwjiA0EURAEwShMkoEyfcbGJ1YvErLCHqquNX22L0mAppCjVz2haZDMPHGTMCKZs5IKnL6+gbrE01FT7M5/fv5UxchnIHtoYSzcPOEGxOqGIIgCIJQTazx0P2qsr+ifXBkI5QcAN0DtkRIaAfJ3UCzVWv6OKvKn3uWJeg/4jL4dmQi+5w6bh1SbApd4jW6JFqwNJLHL1VViYuL45STR3Po0GEWLlpMYnIyAwcNRNNC/1BbRvj7VNu2bbj5tpto0TKNeV9/zdATBnPLzTditVpFOBOEJoYIaIIg+KFgGHVT/ah20TAi+vhSMKiaHLZSD/FAO+4IFNFqkm8rlAdaKMErkGgFNf9xgXPXdu6wUOGWwfbNBLFQ9piNFxFNEAShDonLKPurI5JtCmNaVk+Iq08URcFisdCiRRqTzjmbrVu38eXnX9CjZ086du4UcqyBeQ60+Pg4rrzmCsaOG8M3c+eRn3uY66/7E3FxcRKqKQhNFPmXKwhCJXRSaewfDYriRKUggp46mnHQ/LBRs8pJQtMhWA6vYK+B29HOHS6PV6h+oeYKFhIZbD+wLdrwx1Bjw60dzvZQ6wReH0EQBEGob3z50bp06cwF/zcFZ3ERn3/6GYdycsKMrJwjTVUVJkw8i/9+8BbNm6fw3dx5nHP2WZx77iTi4+NFPBOEJox4oAmCUAmPmo5uJKEauQ1tiimqUYxN/5USdVT4fsavIfsYSiTu+cKxQrAwzmCeaGZjw80dmPvMf16zuYN5Wvn3jWQ7VFskxyMNszRri2Tbtx9paKh4nwmCIAgNgaqqOBwORgwfRp/evZi/YCEeXWfEiSNxOByVOxuVPdD69uvDLX+5GY/bxZzPv2DMmJPpPnECFotFwjUF4RhABDRBECphGAm4lc7YjeUNbUoIvDj0RbjULngJHnqg4MVh/IDF2Gs6i67EYZBQV0YKjYhIxa/ayBdmJsSZhXaGKjzg3y9wO5J9M8zWMiNUyGbgfiiPM7O2cCGcIqQJgiAI9Y2maSQlJXH2hDPZs3cv876aQ2abNvQf0B9VUcpqUZVHMrRo2YIbbppK7z69mP/Nd3Tt0onrp16LzWYTjzNBOIYQAU0QhEoYigUnQ7DxMwrOhjbHFI3DJHj/S5F6Dh7aYyi+XGc6KgU4vD8QYywCgpR/KsejtEYnqV7sFRqeUN5n/m12uz2q/F3++ItioV7N+gfrE6w9UuGsOr92R5qrLHA/nGeZf8imoijYbDbTOQLfF0EQBEFoCHz50dq0bs3FF13A+g2/MGvmRwwecgJt27WlX/9+XHv9NZw9cQJLlyxh3apVXHLRBSQmJkRYhEAQhKaECGiCIFTBo7SlVB2IQ19K480RZmAx9pLgfQuP2hEPrTEMGyqHsbKt3PPMaz7acFCq9MdAHm6ON8KJaH369GH27Nl4vd5qCVD+4ZrBRK9IxK9IBbHqeqBFS7gQzmj6lJaWkpqaStu2bSPKDycIgiAIDY3vh5/+/frSrWsXvl+4iDWrVtG2fXtat87ku3nzOG3cWLKyMtE0TcI1BeEYRQQ0QRCqYGChWB2HxdiJxdjV0OaERKUIm/4zNtaXt0TypVvBpfXBrXZpvPqgUK/4i2mnnHIKCxcu5JtvvsHtdofMXxYJ1clVFm2/2h4LNRewgo33eDyoqsqtt95KUlISLperUt9IRDhBEARBaChUVSU2Npbxp42jsLCQXbt3061TB9LT0yXPmSAcB4iAJghCUHSSKFTPJ8H7NhoHafxKU6T2KbiVdhSrYzEMe10aJDQiglV7NAvhVFWVp59+mrfeeovFixeTl5fXUGYfU6iqSkZGBueeey7jx49nx44dgHklVP98cSKiCYIgCI0FRVEq8qMlJiZWtAmCcOwjApogCKZ4lCwK1EuI539Y9N00fhEtHAoe2lCkTcFLWkMbI9QjZp5NwUS0oqIiYmJiuOOOO7jttttwu91VxsuDcuT4X9+YmBh0XWfbtm14vd5KfQK3pRKnIAiC0NiR5wFBOL4QAU0QhJB41DbkG1cSp36FzViHYrgb2qRqolGq9KRYm4iX5g1tjNBIMBPRcnJyKCgoICYmBoul8q0y2oT/4fpGOr4uiVSkClcoIFSbYRgcOHCA4uJiPB5P0H7BiggIgiAcjxQ4j1DQ0EYIgiAIlRABTRCEsOhKMwqUC7EbvYjRvylP0N90vEK8NKNEO41SBmBgDT9AOCYJJf74ezr5tp1OJ6WlpRX9zISzUIn8IxXSIhGLaktQCieWRZqHLFwRAbMKneG2IylOIAiCIAiCIAj1jQhogiBEiEap0g+X1hW7sR67vgyrsZNQlS4bFEXDSxpOZTClyhB0Jb6hLRIaMcFyoVVnO9gxoMpxH4H9AtsDbawrauJZFthWEyFNxDJBEARBEAShsSICmiAIUWEQUyZKaX2wGLvLKmAam1GVHBTDE36CukTR8BopeNT2lCp9cCsdMYgBJBTseCcSYaamIhpUFcSCCWTBxLRAwSyYvQ3pgWbWXh3hzH8/VB//dhHWBEEQBEEQhIZGBDRBEKqBgoEDt9IJt9qeEsWJZmRjYTsWYyeacRDVyENVnGDUlYeahoENXUnCSxoeJQu30g6vko5hxGEo8vEmVEVV1UrJ6wOJViyLVDgLJ5o1JQ+0YO21Fb4ZiKqqJhYLgiAIgiAIQv0i3zAFQagZioZOHLrSEbfRHkX1ouBENQpQyUU1ctE4gsoRFIpQDCcKpeXFCLwo6GUOYobh5yimYqCVv1oxsGMoDgzi0Y0EvGoKOsnopKArCRg4ynOblU8gDmeCH4qilAlnhgdFUcJWdjQTyIKJY6GEs0hFs3BiWV0k068tL7TqeJ2F6+fDJ54ZhoGqiZAmCIIgCIIgNCwioAmCUHsoKka56KUrCUCrcjHLAHQUPIC3PNRTR1G8gA6GXtZHUcBQyl5RMQwN0DAUDRQLhq6BqiIKmRApuq6j6zqxcTHszzuIYRhYLBbcbndEIlJt5D+DyDzSAvuaHa8ralphM9L9SMUzq9VKYWEhhmEQE+PA4/GgaZpU5xQEQagG+Xn53Hffv3n6mYfqZP6vvpzHE0+8yPsfvELLli1M2wRBEJoyIqAJglAPKJSFXGpAmUZW5XC4bQPRzYSI0XUdj8eL1+vB7faQkprMnp17OXjwIOnp6VgslqiEqUgqZ1a3T6j2hqI2PNCimScQRVFwu93s27ePuPhYrHYLTqcTq8WKZtFESBMEQRAq8fHHX/L8cy/z4czXSUtr3tDmCIJwjCICmiAIgnBMoes6Xo8Xt9uF2+3B7XLhiLGTlpHK/j0HcTqdJCYmYrVaqzV/JEJZJMeaigBUHREsUiHNbGxpaSmHDx/Gq3to17kjHo+XUmcpus3AalgqPAmbyjUUBEFoKLZt3c6bb77H+g2/kXckj4svuo5hwwdzwQWTSU1tVqdrn3HmOM44c1ydriEIglCfiIAmCIIgHFN4vV48Xg9er47X48Hj8eLxeEhrmYqiKBzOyWXP3j3lqfcMfNpOJKGFQu3hL375tn1NqqbiiHWQ1SoDR6wDj8eNqqqoHg+KAqqioqs6mqY1hOmCIAhNgr1793HTTXcwevRInn76Xzzz9Axu/+ufWbF8NR999ClTp17Z0CYKgiA0KURAEwRBEI5JysQxvzxkqkJysyQcsXZKnaVl3mluNx63B4/Xg8fjQQF0XcSz+qCsoAMoqopFs2CxaGgWCzabFavVSkysA5vNVtH/6PspXmeCIAiRsGD+ElwuN7feOpWSkhIURaF160xat86Map4DB3J4++0PWbliNblH8miV0ZLxp49l8uSzsFrNv06a5UA7ePAQb77xHsuXryYvL5/mzZsxdtxoLr30/ErzffjhJ7w04w0+mvUmH/3vM+Z8/R1Op5P+/Xpz219uqAjVnDHjDWZ++AkA5//fVRXjH3/iAQYO7Bfy3MLZ4na5ufnmOzl06DCvvPIMSclJALhKXdzw579RVFjMy688Q0JCXFTnJghC00T+FQuCIAjHFJqmYegGmubFsFjQdR3DsGAYZSKM3bCjWbTyME83Ho8Hr8eLbuhVRDeh7vB5namKiqqqaBYNq9WKpqlYLFasVguW8n1Ns5S9WspeFVWtqNIpCIIgBMdZ4kTXdQqLitCq+ZmZnb2f66//G2lpzbnnnr/SoVM7cg4eYs5X37Ju3QYGDQotUFWd7yB/vuGvtMpI518P3U3btlls/HUzjz76DDt27OKBB+6sMub1196lT99evPPOf9i1ay/3/fMR/v3oszzx5IMATJ16JS1btog6B1oktlhtVu67/06mXnsr06Y9yWOP34+qqjz9zH/YtWsPzz33aIV4Vp1zEwShaSECmiAIgnBMoaoqFqul3MNJKRNbXC5UVUPTyqo7ut1uvB4PVqsV3Sir1GnoOkCF0CbULT4PNMrfJ00tKw7gE8osFYKapUJMs1otFfuS/0wQBCE0w0acwPsfzOb22+7htNNPxeP2oOt6VD9AzJjxJq7SUh779/0kp5R5X7Vpk8V1U6+olk2vvvo2brebhx6+m8SkRAD6D+jDzbdcx733PMyvv26iR4+ulcZkZKYzbtxoALp168z550/ihRdeZd++bDIy0qtlRzS2pKencec/buPuf/yLN954j/T0Fsz9ej633nY9Xbt2qtG5CYLQtBABTRAEQTjmUFUVxaqgqApWi47VaimryukpC9X0eGwY5cKZ1+tF1496nol4Vj/4C2CqqqKqSvnrUSHNYrGgWTQsFgsWixVVVSTvmSAIQoT06NGVaf/6B6+/9i4vzXgDgHMmXsLQoYO48qqLIhKflv+0mkGD+laIZzVl2dLlDBzYt0Jg8jFgQF8A1q3bUEVkGjZkUKX99u3bArB3b80EtGhsGTp0EBdeNIX33v0Ii0Vj7NjRnH32+BqfmyAITQsR0ARBEIRjEkVRsFgsYAGrYS0Tyrzlglm5eOYTzgxdFwGtAagI41RVDI4KaZqmlYV2lgtpqqqKx5kgCEI1GDZsMMOGDWbnzt3c/Y+HGDCgN3PnzmfN2vW89vrzJCbEm451Op04nU5SUyMLiQyH0+mkpMTJDz8s59Qxkyra/dMn5OcVVBnXvHlKpf3YuFgAigqL69WW008fwwfvz8Lt9nDBhZNr5dwEQWhaiIAmCIIgHPP4i2lQ+YFW8p41HIZh+FXgVCr+fPuCIAhC7ZCclEhqajNu+8sN9B/QhwcfeJx1a9Zz4knDTMfY7XbsDjs5OYdqxQa73Y7NbmPUScO56x+3RTyuLu4H0dridrl58MHHaNYsGYB///tZnn/u31ht1mrNJwhC00QENEEQBOG4w1+oEQRBEITjiVYZGQCVKh0HQ1EUhg4dxIqfVnMkN6/GYZyKojBs2GBWrlxLQUFRRfL92iAmxgGA2+2qE1uef/5l/ti2k6ef+ReGAbfdejcvvvgqt952fbXmEwShaSIlrARBEARBEARBEI4xXn/9XV599R1+37yNouJiDMPg983beP75V8jKakXffj3DznHddZdjtdu448772bB+IyUlTnbt2sNLM95k5cq1Uds0deoVqKrKP+58kPU//0pxSQm5uUdYtWot9//zUbb8vq06p0q7dm0A+HHZStxuT6VjW7b8wSknT+SFF16tli3z5n3PF1/MY+rUK+jZszu9enXn2msv57PPvua7bxfW+bkJgtB4EA80QRAEQRAEQRCEY4xzp5zNnK++4Zln/sPOnXsoKSlh2rTHGTSoHxdfch4OhyPsHOnpLZkx40neevN9HnjgMfILCshslcH48WPo27dX1Da1bNmCl15+inf+O5OHH36aQ4cOk5ScSIcO7ZgwYTwdOrarxpmWVee87LLzef+D2Uyf/jq6rvP4Ew8wcGC/Gtnyxx87ePrp6YwaPYLJ506oGHve/03klw0befLJ6XTq3JG2bbPq7NwEQWg8KIYkfhGEsHw8Z8H/s3fncTaX/R/H3+d7A9lUAAAgAElEQVTMPmMWs4/BIGPfd0ohIlKylEql7kQq7SVakPxoU9SdShSpEKJhLGm5o0V2IkuyL7MPZj0z5/z+6HZux4yZM5vvLK/n49Hj4brO9b2+n++572Tevtd1KbpxEwWGhhQ4LikuXgf27lHXro2vUGUAgOJIiD+rvX+eUMfrrjO6FABVxKb//EcNG0YoJKR0TrQsiqSkZL0y6Q1Nf/vVK35vXHk2m00bNvyp6KZNFRgcXODYCz+/3Hpj9ytUHVBxsYQTqODuvWe0Zs74UJK0bNlK9eh+i+LjS2ez14KU5r0ufoYL9uzZp2efm1Dgdc6MKcn8AAAApcXFxUU5OVZD7m028WNfVZKT+8//z1xdWXAGlCZ+JwUqsOPHT+rYsRPqcnUHo0sptrJ+hsrwHQEAgIrP08tTGRnObXJf2jg3p2rJTM+SJHk4sUwXgPMI0IAKbOPG3+Tj41OsPSjKi4uf4Y8/9urZZ17Wzp1/2D9PS0vTvHkLNXnym5Lk1JiSzA8AAFAWvKv56tzZTEPu7R/gz/LNKuTsuUy5uLoQoAGljHc6gQps44bf1LFTW7m6umrWrLlatPBrSdLtt91vH3PxBqrx8Yn6ZO7n2rRpq1JTzyooKFC9buimu+++XW5u//vt4GzqWc2Zs0C//bZFyckpCgkJUecu7XTXsNvk7+db6L0Ku/5yz9C0aWM9+dRoLVnyjXbv2qu4uARNnPS6buxzvYYNGyJJTo0pyfwFWbjwa30wa64WLZ6rL75You++/VFZ2Ra1bdtSDz/yL4WHh0mSfv11s8Y9/4omTHhO117XxWGOzZu369lnXtb48U/q+p7svQQAQFXhHxio+NOnZcnOkZs7P4ah7CQmnlNAYJDRZQCVDr9zAxVUakqq9uzZp1sH9pMkjRp1n8LCQjVzxodauGiOQkIc/6N5+nS8Hh79tGpEhGvyq+MVFVVTe/fs19Spb+vIkWOaOHGsfeyrU6brzOk4vfLKONWOqqXExET98vPvWh27XrffPqDQexV2/eWeQZJM+awxuLTPmTElmb8ws2bNVYf2bXT//Xfq5IkzmvbaO3pszPP66OMZ8vOtpg4d2ig8PEzLl6/KE6CtWL5K1ar5qOu1XS4zOwAAqIwCqgfK7GLW6TMpqlWr4I3dgeLKyMhWamq6GjarZ3QpQKXDEk6ggvr5l99lNpvVoWNbp8bPnj1PFotFr04Zr4YN68vT01Ot27TQmMdG6qf//KI9e/bZx+7Yvktdr+mk+tH15O7upoiIcA0c1N8h/CqIs9df+gx//LFXb7z+nq65ppMeHfOgroquq5dfekZHjhzXlCnTnR5TkvmdUatmDd3Qu7t8fHwU3aCeXnzxGSUkJGnpVyskSWazWTff0kfbtu3S0aPH7dclJCTp559/V8+e18nd3c3p+wEAgIrP7GJWWEQNnTiRZNhhAqj8jh5NkIenp/wDA40uBah0CNCACmrjht/UunUz+Xh7OzX+l583qVWrZvLz93Pob9OmpSRpx47d9r6rrqqrmJg1Wr58lc6ciS9ybc5ef+kzNG3aWK+/MdFhTzcfHx/de+9QvfDCU06PKcn8zujSpaNDOyqqpmrVitTWbTvtfTf27SV3dzetWLHa3vfNN6tltVrVt28vp+8FAAAqjxpRUTKZzDpytOh/vgIKc+5suuLiUlWnfv0ir7AAUDgCNKACys7K1uYt23X11Z2cGp+ZmamMjExt3LhJPa+/1f7P9T0GqF/f2yVJZ1PP2ce/POE5tevQRh99ME93DH1Ad97xoN5/f45Sz5673C0cOHN9UZ+hqMpy/uqBAXn7qgc4fIf+fr7q1v0arVn9nbIys5Sbm6tVK9epfnQ91Y/mlXoAAKoiFxcX1axbT6dOJuv8eWMOFEDlZLXadOCvMwqoXl0BQex/BpQF9kADKqDNW7YrOytbXa7uWPhgSR4eHnL3cNd113bR8+OeKHR8aGiwxo9/Urm5uTr01xH9+uvvWvD5V9q/7y+nTnBy5vrCnqFJk4Z6bdqEAu9T0JjSmP9ykpNSFBzs+Fp8cnKK/C45IGHAgL5au+Z7rV//o3x8fJSYmKS7nDisAOXP2dSzevnlaZxgBgAoseCwMCWeOaM9e46rVasotnVAqdi//5QyM3MU3STa6FKASos30IAKaOOG39SwYf08IY6X1z9HVVss2Q79JpNJnTu31+bN23XuXJrT93FxcVF0g3q6+57b1fP667Rr1x7ZbLYC7+Xs9Zd7htJSlvP//Msmh/bRo8d1/PhJtWnTwqG/UaMGatiwvpaviNXy5avk7u6m66/n5E1UXMuWrVSP7rcoPj7R6FIAoMIymUyKbtpUZrOr9uw5IauV/dBQMkeOxCsx4awaNG0qDy8vo8sBKi0CNKAcO3jwb/XofovefXe2vc9qteqXX3/X1fm8WVWnTm1J0q+/bJbFkuPw2ahRw2U2mzVu7CTt2rlH6RkZSk5O0ZYt2zXhpak6eOCQJCn17Dk9/dRL2rjxNyUkJMmSbdHevfu1det2tWzVzL6fwuXu5cz1BT1DaSjp/Pl97xc7fvyk1q37QWlpaTp44JAmv/KGAgMDdOug/nnG3jKgrw7sP6Tt23er67Vd5OvrU6yaYIxDfx3WSy9O0b3DH9GOHbt1150j9e67s5WQkGR0aQCACszF1VUNmzdXZqZFO3ceVXa2xeiSUAHZbDYd+vuMjh5NUFR0tPwC8m4zAqD0EKABFcyePfuUkpyabzjUqFG07rnndn3x5VLd2GeIenS/RVu2bJckhYWF6oMP31J0g3qaMmW6Btw8TA8++IQWLVqunjd0V72r6kj6Z++uu4YN0bo132v0Q0+p/813asqrb+m6667RxIljC72XM9cX9Axl/R2VhpEjh+uPP/7UXXc8qDFjnldISIjefmeK/C9ZwilJPbp3lZ9vNUlS3xt7lkk9KBsnT57So48+J19fX02fPlktWjTV1GkvqUZEmL76arnR5QEAKjgPLy81bd1GOTnS9u1H2BMNRZKbm6s9e07o1MkU1W/cWKEREUaXBFR67IEGlGP169fVd987/qC+ccNvCg8PU916UfleM/y+OzX8vjvz/SwwsLrGPDZSYx4bWeB9W7durtatmxda3+XuVdj1hT1DSZV0/vy+94u5u7nq8cdH6fHHRxU6l6ubq9w83BXuE6ZWTnynKD++/26DsrMtevzxUcrIyJDJZFKtWpGqVSuySPPExyfqk7mfa9OmrUpNPaugoED1uqGb7r77drm5ucqSbdGYMWOVmJikjz56W/4B/pL+OQhj9MPPKO18uj786G3724uFzXexuLgEzZu3UJt/36rklFTViAhTnxt7aeDAm+xj3313tr75ZrXWrPnK4dpffvld48dN1owZU9WseWPNmjVXixZ+LUm6/bb77eNef2Oi2rZtVeTaAAD/DdHatNGBPXu0ffthRURUV1RUiFxdec8Bl3fmTKoOH46TTSY1btlC1fz8jS4JqBL40yxQwWzc+JuuvqaD0WWUSFk/Q3n6jnbt2qPEhCQ98MAwjhOvYDIzMmW1WnU+LU0u5uL9IHP6dLweHv20akSEa/Kr4xUVVVN79+zX1Klv68iRY5o4cazc3N308oSxGvXg43rllTf12usTZDabNf3t93Xs2AnNmDHVHp45M9//7n1GDz30jEJCgvTCC0+rXv06SohPVOyqb7Vjx261a9eqSM8yatR9CgsL1cwZH2rhojkKCXE84asotQEA/ufCcs6EM2d07NAhxcenKjIyUGFhAXJ358c1/MNqtSkp8ZyOH0/S+bRMhUZEqGbdOnJ15RAK4Erhd2Sggpk3/32jSyixsn6G8vIdpaWlaf68RfL19VH/m/saXQ6KqPPVHfTFl0v11BMvqPeNPZVjyZHVapW5CGHa7NnzZLFY9OqU8fLz95MktW7TQmMeG6kXX5iiPXv2qUmThgoPD9HYcU9o/LjJmjv3c4WHh2rN6u/0+BMPqWHD+kWeT5JmzfpE2VlZem3aBAVU/+dvpmvXrqmRo4aX0jdUvGcta9nZFv37oxVOj9+yc08ZVgMAxbTF6ALKn2G39zK6hCsuN9eqrKwcnT+fqZSUNFmtNgUEBapZoyby9qlmdHlAlUOABgBl4JVJb+jHHzeqZs0aeunlZzk8oAJq0qShXpk8TnM+XqAPZs2VJA24ZZg6dWqn++6/UxER4YXO8cvPm9S2bUt7oHRBmzYtJUk7duy2h0qdOrXTHXcO1ucLvpKrq4t69eqmm2/uU+z5Nv22Ve3atbSHZ2WtKLWVJRdXF/XrXfj+h2fPZujEiSRFN2lS5jUBQFFZrValp51X+vnzysrMlCU7W1arVf89zLxKOZ+Rrrj4JO3de8LoUq44FxcXubq7yadaNdWqF67qQUFy9/AwuiygyiJAAwAn3X77AN1++wCnxr740tN6UU+XcUUoa507t1fnzu119OhxjR/3qtq0aa41a77Ttu279PGcmfYDIvKTmZmpjIxMbdy4ST2vv9Xeb7PZZPvvT0BnU885XHPjjdfryy+WyGLJ0dA7BhZ7vszMTGVmZio42HGZZdE4/1NacZ61rLiYzYquX7PQcQnxZ5WelqOroq+6AlUBAIrr4IG/tHb1WnW87jqjSwFQxRGgAQBQiAB/PwUHB+qJJ0erdZsWmjTxde3Ytktdr+182Ws8PDzk7uGu667toufHPVHoPSzZFk2a9JoCA/85gn7atHc0c8Y0ubm7FXk+Dw8PeXh6KCEhsdD7VvPxliXbIoslx2Gj//j4pEKvvfh+RXlWAAAAoKLheBegAvpu/X/U/6Y7de5cmtGl4CKrVq3TwIH3KC093ehSUIZq/PeYeHd39wLHmUwmde7cXps3b3fq39WZMz/U34eO6uUJz+qll5/VXwcP6733ZhdrPpPJpE6d2mnrlp1KSU4t+Hlq/PM8Rw4fdej/9Zff84z18vKUJFks2XnuV5RnBQAAACoaAjSggsnOtuijj+ZpyG23FHlfrWXLVqpH91sUH1/4WylXYp7Kdq/evXvIx9tbC+YvLuXKYIQ5cxZo9uzPdGD/IaWlp8tms+nA/kOaOfMj1axZQy1bNS10jlGjhstsNmvc2EnatXOP0jMylJycoi1btmvCS1N18MAhSdLatT8oJmatRo0arqZNG6tZs8Z68MF7tWLFaq3/9scizydJI0feKzcPdz03doJ279qrjIxMHTt2Qh/M+kSbN2+3j+t6bWf5+/nq/VlzFReXoOTkFM2Zs0Be3l55nqdOndqSpF9/2SyLJadYzwoAAABURCzhBCqYb9d9r4SEJN3cv0/hg3FFubi46Kb+ffTpJ1/orruHyMfb2+iSUAKDBt+s2FXr9Pbb7+vo0RPKyMjQK6+8rnbtWumuYUPk6elZ6BxhYaH64MO39Nn8RZoyZboSE5PkH+CnevXqqH//Pqp3VR39/fcRTZ/+b13X7WoNHNTffu2Q227RH7v36s03/6360VcpKqqmU/NdEB4eplmz3tSnn3yhiRNf09lz5xRZI0J9+lyvli2b2cd5eXnqlcnj9d57s3X3sJEKCgrSsGGD1bhxA33/3U8Oz9OoUbTuued2ffHlUv3733NktVr1+hsT1bZtqyLVBgAAAFQ0BGhABbPim9Vq3771FTtZD0XT8/pr9eEHn2jd2h80YEBfo8tBCfj7+Wro0IEaOnSgkpKS9cqkNzT97VeLPE9gYHWNeWykxjw2Mt/P69aNUmzsonw/mzBpbJHnu1hYWIiefW5MoeOaNW+s92e9maf/u++X5+kbft+dGn7fnfnOU5TaAAAAgIqEAA2oQBITk7R/31966KH783x2NvWs5sxZoN9+26Lk5BSFhISoc5d2umvYbfL389WsWXO1aOHXkqTbb/vf9RfeHvnll981ftxke7+Hp4fqRNXSgAH91LtPD3t/YfNIUnx8oj6Z+7k2bdqq1NSzCgoKVK8buunuu2932KS8MKV5r5J+P4Vdf0FQcKBq147ULz//RoBWiZhN7HgAAAAAVGUEaEAFsnvXXklSw0b183z26pTpOnM6Tq+8Mk61o2opMTFRv/z8u1bHrtfttw/QqFH3KSwsVDNnfKiFi+YoJCTI4frOndvb3zax2WxKTk7RmjXf6fXXZ8q7mre6XtNJkgqd5/TpeD08+mnViAjX5FfHKyqqpvbu2a+pU9/WkSPHNHFi3jdqLqc071XS76ew6y/WqHED/fjDz7JarTKbCV4qA5PJ6AoAAAAAGImf7IAK5MyZeElSUFD1PJ/t2L5LXa/ppPrR9eTu7qaIiHANHNQ/T7jjDJPJpMDA6rrjjkFq3bqFYr5Z4/S1s2fPk8Vi0atTxqthw/ry9PRU6zYtNOaxkfrpP79oz559Ra6nNO5V0u+nKNcHBQYqMzNTZ1PPldqzwlj+Af7FWr4JAAAAoHLgDTSgAjmfliZJ8vLKezreVVfVVUzMGgWHBqlTp/YKCwsp0txWq1WLF6/Q+m9/0LHjJ5WVmWX/LDIywul5fvl5k9q2bSk/fz+H/jZtWkqSduzYrSZNGhapttK4V0m/n6Jc7+Xzz/8+59PS2KsOAAAAACoBAjSgAqnm4yNJSk/PUGCg41toL094Th99NE8ffTBP77z9gcLDw9T12k66864hDnt0Xc6HH36qpUti9MSTD6lTp3by9/eT2WzWSy9O0cGDh5yqLzMzUxkZmdq4cZN6Xn+rvd9ms8lms0lSqb2VVdR7lfT7Kcr1GWkZkiTfaj6l8agAAAAAAIMRoAEVSHh4qCQpKSlZNWvWcPgsNDRY48c/qdzcXB3664h+/fV3Lfj8K+3f95dTS8/WrPle117XRTfe2NOh/9SpOKfr8/DwkLuHu667toueH/eE09cVR1HvVdLvpyjXJyYlydPTU75OBHMAAAAAgPKPAA2oQJo1byxJ2vfnQbVo0TTfMS4uLopuUE/RDerpzJl4rV69XjabTSaTSV5enpIkiyU732vdXN0c2of+OqxDhw4rLCzYof9y85hMJnXu3F6bN2/XuXNp8vUt+RtYpX2vknw/hV1/wZ9796t580YcIAAAAAAAlQQ/3QEVSGBgdTVsWF/btu106E89e05PP/WSNm78TQkJSbJkW7R3735t3bpdLVs1s4c7derUliT9+stmWSw5DnNc3aWDfvhxgzZv2qbMzEzt2rlHb775nlq2zBvUFTTPqFHDZTabNW7sJO3auUfpGRlKTk7Rli3bNeGlqTp4wLnloKV5r5J+P85eL0mJCUk6evSEOnfpWKTnBAAAAACUXybbhc2CAFzWstjvFd24iQJDC954PjkxUft379Y1VzeSyWwqcGxxrVq1TtPfel+LF8912KB+27ZdWr5spfbs3aez584rJDhI11zTSXcNG6JqF+3F9cncz7Vy1TolJ6XIarXq9Tcmqm3bVkrPyNAH78/Vhg2/KSMjU42bNNAjDz+gzz5brL17/9TnX8x2qONy80j/LDH9bP4i/fLLZiUmJsk/wE/16tVR//591KVL+yK/mVUa9yrp9+Ps9QsXfq1PP/lCi7+aIx8f9kADyqszZ1J18K/Tan9NV6NLAQAU4OCBv7R29VqNfvQho0uplJLi4nVg7x7demN3o0sByj0CNMAJzgZo51JTtWf7dnXoEC0Pj7JZIZ2dbdHwex9Snxt76Z57bi+Te6B4cnNzNfzeh9W1a2c9OPJeo8sBUIATx5N0/GSyWnfqbHQpAIACEKCVLQI0wHks4QRKkZePtyQpPS2rzO7h7u6mESPu1eJFy3XuXFqZ3QdFt3bt9zqflq677h5idCkACpGWniUvL2+jywAAAEAFwSECQClydXWTp7eXUlLTVD2w7Jbvde/RVd17sOyovLnxxp55TjEFUD6lpKQpKKxG4QMBAAAAEaABpS4gKEgJ8XGqWzfU6FLKrb//PqJ/3T+mwDFdr+2siRPHXqGKAFQl585lKCvLosDgQKNLAQAAQAVBgAaUspDwcJ0+dlxJSecVGFjN6HLKpbp1o/Td98uNLgNAFXXyZLK8fbzl4+tndCkAAACoINgDDShl3t4+CggK0t+H48QZHQBQvqSdz1J8/FlF1I4yuhQAAABUIARoQBmoc9VVysyw6NSpZKNLAQBc5K9DZ+Tj66vgUJbZAwAAwHkEaEAZ8PDyUnhkTR05kqD0jGyjywEASDp5Mklnz6arTv36RpcCAACACoYADSgjkXWi5Onto927j8piyTW6HACo0pKT03ToUJxq1q0jH19fo8sBAABABUOABpQRs9msBs2aSjJrz57jys0lRAMAI5w7n6G9e08oODRUNWrVNrocAADKDXZsBpxHgAY4wdXVRbnWogdgbm7uatC8uTIzLdq+44iysixlUB0A4HISEs5p586j8vX3V90GDYwuBwCAciU3N1eurq5GlwFUCARogBM8PDyUnZVVrGu9vX3UtE1byeSqbdsOKynpfClXBwC4lNVq05Ej8dq797hCwyPUoFkzmcz8sQcAgItZsrPk4eFudBlAhUDUDDjB39dHaefPFft6dw8PNWnVWn/v368//jimwKBqqlc3TF5e/McKAEpbQuI5/X0oThZLrupGRyu0Rg2jSwIAoFxKO39O/r4+RpcBVAgEaIATQgKra/f+v2SzWov9BoOLi4vqN26ssBoROnzggLZuOaTAoGoKDfNXdX8fmV14MwIAiisrK0eJSed05nSKzp/PVHBoqGpfVU9u7h5GlwYAQLlks1p1NiVFtRteZXQpQIVAgAY4ISIsWDv3HlByQqICQ0NKNJevf4CatW2nxPh4xZ08ob17TsgkydPbQx7urnIhSAMA59hsysm1KiMjW1lZFpldXBQYHKyoBk1UjZM2AQAoUHJCoqy5VkWEBhtdClAhEKABTvDy9FB4SJBOHT9e4gBNkkwmk4JDQxUcGipLdrbOpqQqPe28LNnZnNYJAE4ymSV3d1f5BXrJ29dXvn5+MrPPGQAATjl1/LjCQ4Lk5cnb2oAzCNAAJzVpWE/fbfhdCWfOKDgsrNTmdXN3V1BoiIJU8mAOAAAAAAqTcOaM0s6fU4eW7YwuBagw+GtawEl+1XxUt1YNHTt0SLm5OUaXAwAAAABFlpubo2OHDqlurRry961mdDlAhUGABhRB4wZ1ZTJJB/f+KZvNZnQ5AAAAAOA0m82mg3v/lMn0z882AJxHgAYUgbubmzq3baFzKSk6duiQ0eUAAAAAgNOO/n1I55KT1alNM7m7uRldDlChEKABRVTd31dtmjfUqePHdfzwYaPLAQAAAIBCHT98WKePHVebFo0UGOBvdDlAhcMhAkAx1IwIU05Ornb8sV+ZGRmq17AhJ78BAAAAKHesVqsO7dun5Ph4tW7WUDUjSu9ANKAqIUADiqlOrRry8fbSb9t2a8+2bYqqX1++/vxNDgAAAFAc2dnZijsT59CXlJgoSTp+7LhDv4uLiyJqRFyx2iqqc6mpOnLwoLKzMtWlfUuFBFU3uiSgwjLZ2AkdKJG09Axt/2O/4hKSFBwaqsioOvL09jK6LAAAAKBCybHkaM7Hc5VjKfzE+/oN6uuG3r2uQFUVU2Z6hk4cOayEuDiFBgeqVdMG8uFnFKBECNCAUnIqLkE79x5UenqG/AL8VT0oWNX8/OTp5SUXV1eZTCajSwQAAADKtXVrvtXBg3/JZrVedoxJUp9+fVS3HqdISv+crJmbk6PMjHSdP3tOyYkJOpuSKm9vL7VoXF8RocFGlwhUCgRoQCmy2Ww6E5+oYyfP6ExCkixO/O0ZAAAAgH+knj2vvw4fVUE/pLqYzWrRtKHM/AV1Hu5ubgoNrq5aNcIVFhLIX+IDpYg90IBSZDKZFB4arPD//i1Pekam0tIzZLHkyFbgHwMAAAAAWK1WHT1xStkWS76fm80mNbgqSp3aNLvClZVfJpnk5uYqby9PlmkCZYgADShD3l6e8vbyNLoMAAAAoMJo2bSBtu76U7m5uXk+s1pt6ty2hSLDQw2oDEBVZja6AAAAAAAALmjRpEG+4ZkkeXt7qk7tyCtcEQAQoAEAAAAAypE6tWrI18c7T7+L2axW7H0GwCAEaAAAAACAcsMkqWXThnIxuzj051qtatm4gTFFAajyCNAAAAAAAOVKiybRyrU6LuP09/VVjQj2PgNgDAI0AAAAAEC5UiMsREHVA+xts9lFbVo0Eos3ARiFAA0AAAAAUO60bNpAZvM/P7Jarblq3qi+wRUBqMoI0AAAAAAA5U6LxtGyWq2SpNCgQIUGBxpcEYCqjAANAAAAAFDuBAcGKDw0WJLUunkjg6sBUNURoAEAAAAAyqXWzRrKJKl5Y5ZvAjAWARoAAAAAoFxq0ThadWpHKsDP1+hSAFRxJpvNZjO6CAAAAAAA8nMqLkER/13KCQBGIUADAAAAAAAACsASTgAAAAAAAKAABGgAAAAAAABAAQjQAAAAAAAAgAIQoAEAAAAAAAAFIEADAAAAAAAACkCABgAAAAAAABSAAA0AAAAAAAAoAAEaAAAAAAAAUAACNAAAAAAAAKAABGgAAAAAAABAAQjQAAAAAAAAgAIQoAEAAAAAAAAFIEADAAAAAAAACkCABgAAAAAAABSAAA0AAAAAAAAoAAEaAAAAAAAAUAACNAAAAAAAAKAABGgAAAAAAABAAQjQAAAAAAAAgAIQoAEAAAAAAAAFIEADAAAAAAAACkCABgAAAAAokl27dmnSpEm65pprVLNmTbm5uclkMlWJf1xcXNS7d2/FxcUZ/T8DgCvIZLPZbEYXAQAAAAAo/w4fPqwXXnhBixYtksViMbocQ7Vr104xMTEKCwszuhQAVwABGgAAAACgUD/++KOGDh2q06dPG11KuUGIBlQdBGgAAAAAgAJt2LBBffr0UVpaWp7PPD095ebmZkBVV5bFYlFmZmae/rZt22rVqlUKDQ01oCoAVwoBGgAAAADgsk6ePKmOHTvq+PHjDv3du3fXo48+qj5cspgAACAASURBVM6dOysoKEguLi4GVXhlvP/++3rkkUfy/axNmzZau3atgoKCrnBVAK4UV6MLAAAAAACUX5MmTXIIzzw8PDR9+nSNGjVKJpPJwMqurIKedevWrbrhhhsUGxvLm2hAJcUpnAAAAACAfB0+fFjz58936Js2bZoeeuihKhWe5cfb29uhvXXrVvXr109nzpwxqCIAZYkADQAAAACQr9jYWKWnp9vbHTp00OjRow2sqPy47777NGjQIIe+zZs366abbiJEAyohAjQAAAAAQL7Wr1/v0H7ggQeqxIEBzvD29ta8efPyDdH69eunuLg4gyoDUBYI0AAAAAAA+Tp27JhDu0uXLgZVUj55e3vrs88+04ABAxz6t2zZohtvvFEJCQkGVQagtBGgAQAAAADyFR8f79Bmg/y8PD09tXDhwjwh2tatW9W7d2/eRAMqCQI0AAAAAEC+cnNzHdpmMz9C5sfd3V2ff/55nuWcW7duVd++fdkTDagE+N0PAAAAAIAS8vLy0rx58zR48GCH/i1btnCwAFAJEKABAAAAAFAKvL299emnn2rgwIEO/RwsAFR8BGgAAAAAAJQSb29vLViwQLfeeqtDPwcLABUbARoAAAAAAKXI09NTX375ZZ4QjYMFgIqLAA0AAAAAgFLm7u6uBQsW5FnOycECQMVEgAYAAAAAQBnw8vLS/PnzOVgAqAQI0AAAAAAAKCMXDhYYNGiQQz8HCwAVCwEaAAAAAACFqF69ukM7JSXF6Wu9vb312WefacCAAQ79Fw4WSExMLJUaAZQdAjQAAAAAAApRo0YNh/auXbtks9mcvt7T01MLFy7ME6Jt3bpVN9xwA2+iAeWcyVaUf+MBAAAAAIax2WzatGmTFi1apJ9//lknT55URkZGmd0vMTFRVqvV3g4KCpLZXLnewwgICFBUVJR69eqloUOHqnbt2vmOS0hIUL169XTu3DlJkoeHhzZv3qxmzZoV6X6ZmZkaNmyYlixZ4tDftm1brVy5UmFhYcV7EABligANAAAAACqAU6dOacyYMfr666+Vk5NjdDmVkr+/v5588kk999xz8vDwyPN5v379tGrVKnu7f//+WrJkidzc3Ip0n/T0dN1zzz15QrR27dopJiaGEA0ohwjQAAAAAKCcO3jwoPr27asDBw4YXUqVMHDgQC1YsECenp4O/d9++61uuOEG+9JNk8mkxx57TK+99lqxQrS7775bS5cudehv166dVq5cqdDQ0JI9BIBSRYAGAAAAAOXY2bNnde2112rHjh15PjObzTKZTAZUVXnYbDaHZaoXPPLII5o5c6ZDn9Vq1YABA/TNN9849Hfr1k2TJ09Wp06d5OLi4vS9MzIydNddd2nZsmUO/W3atNGaNWsUHBxchCcBUJYI0AAAAACgHJs4caImTJjg0HfjjTfqySefVKtWrfK8JYWiSUlJ0XfffafJkyc7vOHn4uKijRs3qmPHjg7jExIS1LlzZx08eDDPXJGRkYqOjla1atWcvn92drbWrVuX50CCNm3aaPXq1QoJCSniEwEoCwRoAAAAAFBOZWVlKTIyUomJifa+hx9+WO+8806R3nRC4ZKSktSzZ09t27bN3nfbbbdp4cKFecbu27dPgwYN0h9//FGmNd15551asGBBmd4DgHMq1/EpAAAAAFCJbNiwwSE8q1u3rl5//XXCszIQGBio999/X66urva+NWvWKCsrK8/Yhg0b6ocfftDdd98td3f3Mqspv2W7AIxBgAYAAAAA5dS+ffsc2jfffLO8vLwMqqbya9++verVq2dvp6am6tSpU/mODQ4O1qeffqoNGzZoxIgRioyMlLu7e6nuSceCMaD8cC18CAAAAADACAkJCQ7tyMjIy47Nzs7WokWLZLPZNGTIkCLtjRYfH6+vvvpKdevWVe/eve0hUE5OjpYtW6YDBw4UKcwxm81q166devbsaZ/LYrHoq6++UlpamoYOHVqkfcKSk5P1xRdfqEaNGurfv3+eN/BsNpvWr1+vffv2afDgwQoLC3N67kvrjoyM1P79++19cXFxqlOnTr7jTSaT2rdvr/bt2ys7O1snT55UfHy8zp8/X6z7x8XFaejQocW6FkDZIkADAAAAgHLq0tMhzebLLyIaMWKE5s2bJ0mKiYnJd++u/GRnZ+uaa67R/v37ZTKZNGPGDD3yyCOSpLFjx+rNN98sVu0mk0mzZs3Sgw8+KEl68skn9e6770qSvvzyS61evdphueTlZGZmqnv37vbljJMnT9b48eMdxsyZM0cjRoyQzWbT9OnTtX379iIFdBe79DvO74TO/Li7u6tOnTqXDduccfTo0WJfC6BssYQTAAAAACqBFStW2H8dGxurnJwcp67bt2+f/Y0rm82mb775xv7ZmjVril2PzWbTunXr7L+OiYmxf/bdd99p/vz5Ts3z1ltvOewFdnF9F/ddeEPur7/+KvPN/QFUPQRoAAAAAFAJXLzZfU5OjnJzc4t83aXtvn37FntPLxcXF/Xp08fezs7Otv/aZrNp3LhxSkpKKnCOQ4cO6bXXXnPou3ie/Gq+3BgAKAmWcAIAAAAA8jV58mR17Ngxzx5oq1at0k8//WRv33rrrerQoYO9bTab1aZNG/Xo0eOyc58+fVovv/yyZsyYkW9IZ7Va9dxzzyk1NbWUngYAio8ADQAAAACQLzc3Nw0cODBPf3x8vEOA1rt3b40cObLI83/44YcaPny42rZtm+eztWvXatmyZUWeEwDKAks4AQAAAACGyM7O1hNPPCGLxeLQn56erqeeesrpZagAUNYI0AAAAAAAhvnpp5/yHCgwffp07dmzx6CKACAvAjQAAAAAgKFeeuklxcXFSfrn4IBp06YZXBEAOCJAAwAAAABcUWazWV5eXvb2iRMnNGnSJNlsNj377LM6d+6c/TMfHx8jSgQABwRoAAAAAFAJ5eTkOPWPEfuMeXh46Mknn3Tomz17tqZMmaKlS5fa+8xms8aOHXulywOAPDiFEwAAAAAqmczMTEVFRTk1Nicnp4yryd9DDz2kVatWadu2bZKkrKwsvfDCCw5jevXqpcGDB+vFF180okQAsCNAAwAAAIBKxmazKTEx0egyCuTm5qZ33nlHPXr0yDfE8/Hx0ZtvvimzmYVTAIzH70QAAAAAAEN07dpVw4YNy/ezRx99VE2bNr3CFQFA/ngDDQAAAAAqIV9fX6fG5ebmKj09vYyrubxp06bpyJEj2rJli2w2m0wmk3r06KFx48YZVhMAXIoADQAAAAAqGS8vLx08eFAeHh6Fjt22bZu6d+9+BarKX2hoqNavX6/z58/LarXKxcVF1apVM6weAMgPARoAAAAAVEL+/v5OBWjlIawymUxOvzEHAEYgQAMAAAAAVCpTp07V3LlzL/u52WxWixYtNGLECHl5eV3BygBUVARoAAAAAIBKZdWqVU6Ni4uL0+TJk8u4GgCVAadwAgAAAEAlcPFSTA8PD7m6Ove+hI+PT4HtsrjGxcVFnp6exaovvyWnxV2Gunnz5mJdB6DqIUADAAAAgErgX//6l0wmk0wmk4YPHy4XFxenrmvQoIGuvfZaSZK7u7vuvffeQq8ZPHiwAgICJElRUVG64YYbChxvMpl03333yWw2y2QyaciQIfLz83Oqvho1aqhfv36SJFdX13zru/vuu53a7+1irq6uGjZsWJGuAVB1sYQTAAAAAMqpS0OwnJycy46dMmWKbrnlFlmtVnXq1KlI91izZo02bNigyMhINW7cuNBrWrRood27d2vXrl3q2LGjqlevXug1zz//vHr27KnMzEx16dLF6fpMJpOWLVum//znPwoNDVXz5s3zjLn55pu1c+dO7dy5U1ar1ak5mzRpoqZNm+b57NLv2Nk3+QBUbvxOAAAAAADlVFhYmEP70KFDlx1rMpmKFJxdzNPTUz179izSNZGRkYqMjCzSNe3bty/S+Avc3Nx0/fXXFzimQYMGatCgQbHmvyAnJ0dHjhxx6AsPDy/RnAAqB5ZwAgAAAEA51bx5c5lMJnv766+/VlJSkoEVVW7r1q3T0aNH7e2wsLA8ISaAqokADQAAAADKqQ4dOqhmzZr2dlxcnO6//36lpaUZWFXldODAAY0ePdphCWj//v3l5uZmYFUAyguWcAIAAABAOeXi4qKxY8fq4YcftvctX75cnTp10ujRo9W6dWt5eXkZWGHFZrPZlJKSom+//Vbvv/++w9t9np6eevrppw2sDkB5YrLZbDajiwAAAAAA5C8rK0v9+/fXunXrjC6lyjCZTJoyZYrGjh17Re979OhRRUVF2dtNmjTRH3/8cUVrAJA/lnACAAAAQDnm4eGhBQsWqGvXrkaXUiWYzWY9/vjjeuaZZ4wuBUA5QoAGAAAAAOVcSEiIYmNjNW7cOPn5+RldTqV11VVXaf78+XrjjTfk4uJidDkAyhGWcAIAAABABXLixAnFxMTo559/1smTJ5WRkVFm99q8ebOysrLs7Q4dOlS6TfX9/f0VFRWlG264QT179lS1atUMq4UlnED5RYAGAAAAAMhXVFSUjh49am8nJCQoKCjIwIoqNwI0oPxiCScAAAAAAABQAAI0AAAAAAAAoAAEaAAAAAAAAEABCNAAAAAAAACAAhCgAQAAAAAAAAUgQAMAAAAAAAAKQIAGAAAAAAAAFIAADQAAAAAAACgAARoAAAAAAABQAAI0AAAAAAAAoAAEaAAAAAAAAEABCNAAAAAAAACAAhCgAQAAAAAAAAUgQAMAAAAAVBm5ubk6ePCg4uPjjS4FQAVCgAYAAAAAqBKsVqtGjRqlhg0bKjo6WqtXrza6JAAVBAEaAAAAAKBK2LFjh+bMmSOr1arU1FTNnDnT6JIAVBAEaAAAAACAKmHx4sWyWq32dlhYmIHVAKhICNAAAAAAAOVedna2Q/hVVBaLRV9//bVD34ABAxzaubm5ys7OLvY9AFReBGgAAAAAgHLLZrNpxowZuuqqq9S+fXvt3LmzWPPs3LlT+/fvt7eDg4PVvXt3e3vr1q1q3bq1oqOj9cEHH8hms5W4dgCVBwEaAAAAAKBcslqtmjp1qh5//HEdP35cW7du1YsvvlisuZYuXarc3Fx7u3fv3vL19bW3x44dq127duno0aN6+OGH9dZbbxGiAbAjQAMAAAAAlDs2m01Tp07V+PHjHYIsk8lU5Llyc3O1dOlSh74hQ4Y4tC+eNzc3V88++6ymT59e5HsBqJwI0AAAAAAA5YrNZtOUKVP04osvOoRnYWFhmjx5cpHn27Ztmw4cOGBvV69eXb169XIYM23aNAUGBtrbVqtVTz/9NG+iAZBEgAYAAAAAKEdsNpsmT56sl19+Oc+JmStXrlSzZs2KPOelyzf79esnb29vhzGtWrVSTEyMgoODHWp59tlnCdEAEKABAAAAAMoHm82mV199VRMmTHAIvEJDQ7Vy5Uq1bdu2WHMuWbLEoW/w4MH5ju3cubOWL1/uEKLl5ubqueeeI0QDqjgCNAAAAACA4S4cGPDSSy85vHkWEhKiVatWFSs8k/5Zvnnw4EF7O7/lmxfr0qWLVqxYoaCgIHsfIRoAAjQAAAAAgKEud2BASEiIVq9eXezwTJKWLFniEMjlt3zzUp07d1ZMTIyqV69u7+NgAaBqI0ADAAAAABjmwp5nL7zwQp4DA1avXq02bdoUe+7c3Nw8yzcvPX3zcjp16qTY2FgOFgAgiQANAAAAAGCQi/c8uzQ8i4mJKVF4Jkk7d+7Uvn377O3g4GB1797d6es7duyomJgYh+WcHCwAVE0EaAAAAACAK+5CeHa50zbbtWtX4nssXrzYod27d2/5+voWaY7OnTtrxYoVHCwAVHEEaAAAAACAK8pqter//u//Sv3AgItZLBYtX77coc/Z5ZuX6tKli5YvX87BAkAVRoAGAAAAALhiLhwYcOmeZyEhIYqNjS3xss0Ldu3apb179zrM361bt2LP16VLF8XExCggIMDex8ECQNVBgAYAAAAAuCJsNpteeeWVyx4YUBpvnl2wePFih3v07t1b/v7+JZqzU6dOWr16tcPpnBwsAFQNBGgAAAAAgDJ3ITybOHFinvBs5cqVpfbmmVS6yzcvxcECQNVEgAYAAAAAKHOzZs3SxIkTHfY8Cw0NVUxMTKm+eSb9c/rm/v377e2SLt+8VEF7on366aeldh8A5QcBGgAAAACgTNlsNr377rsO4Zmbm5tiYmJK5bTNSy1dulS5ubn2du/eveXn51eq97j66qu1ePFiubm52ftyc3M1c+bMUr0PgPKBAA0AAAAAUKZMJpPq16/v0GexWPTRRx85BF2lITc3V0uXLnXoK63lmxfLzs7W3LlzZbFYHPobNGhQ6vcCYDwCNAAAAABAmXv33XfzhEsfffSRRo0alSeEKolt27bpwIED9nb16tXVs2fPUptf+ic8u//++zV//nyH/hYtWuitt94q1XsBKB8I0AAAAAAAZa5WrVpas2aNGjVq5ND/8ccf6+GHHy61EO3S5Zv9+vWTt7d3qcwt/S88W7BggUN/ixYtFBsbq4iIiFK7F4DygwANAAAAAHBF1KlTR7GxsQ4hms1m0+zZs0slRLNarVqyZIlD3+DBg0s058Wys7P1r3/9K0941qxZM61evVo1atQotXsBKF8I0AAAAAAAV8yFEK1hw4b2vgsh2ujRo0u0J9q2bdt08OBBe7t69erq1atXieq9ICsrSyNGjNBnn33m0H8hPOPNM6ByI0ADAAAAAFxRderU0dq1axUdHW3vuxCiPfTQQ8UO0ZYsWeJw0mffvn1LZflmdna2RowYoXnz5jn0N2vWTGvWrFFkZGSJ7wGgfCNAAwAAAABccbVr19b69esd3kST/jlYYOTIkUVezpnf8s3bbrutxHVmZ2frvvvuy3NgQPPmzbV27VqWbQJVBAEaAAAAAMAQlztYYM6cORo9enSRQrQdO3Zo//799nZwcLC6d+9eovouHBjw+eefO/RzYABQ9RCgAQAAAAAMExUVpdjYWDVu3NjeZ7PZ9PHHHxcpRPvqq68c2n369JGvr2+x68rKysr3wIDmzZsrNjaWZZtAFUOABgAAAAAw1OVO5/z444/10EMPKScnp8DrLRaLvv76a4e+IUOGFLuewg4MYNkmUPUQoAEAAAAADBcVFZXvwQIXQrSCDhbYvXu39u7da28HBwerW7duxaojOztbDz74YJ49zwjPgKqNAA0AAAAAUC7UqlUr34MFZs+eXeDBAosXL5bNZrO3+/TpIz8/vyLf/8KeZ5eettmiRQutXbuWZZtAFUaABgAAAAAoNy4cLHDxnmiS7HuiZWdnO/SX1vLNC+HZpXuecWAAAIkADQAAAABQzkRFRWnVqlX5hmhvvvmmQ9/OnTu1b98+ezskJKRYyzdfffXVyx4YwLJNAARoAAAAAIBy53IHC6xevdph3JIlS2S1Wu3t3r17F3n5ps1mU2xsrENf8+bN2fMMgB0BGgAAAACgXLpwsECDBg3sfb1797b/Ojc3V8uWLXO4ZvDgwUW+j8lkcpiX8AzApVyNLgAAAAAAgMupVauWNm3apIULFyoiIkL9+vWzf7Zt2zYdOHDA3q5evbp69epVrPtMmjRJrVu3VnJysoYMGVKsQwgAVF4EaAAAAACAcs3f318PPvhgnv6lS5cqNzfX3r7pppvk7e1drHuYTCYNHDiw2DUCqNxYwgkAAAAAqJA2bNjg0C7O8k0AcAYBGgAAAACgQrr4gIHIyEj17NnTwGoAVGYs4QQAAAAAVEivvfaagoODdfr0aY0ZM6bYyzcBoDAEaAAAAACACikgIEBTpkwxugwAVQBLOAEAAAAAAIACEKABAAAAAAAABSBAAwAAAAAAAApAgAYAAAAAAAAUgAANAAAAAAAAKAABGgAAAAAAAFAAAjQAAAAAAACgAARoAAAAAIB8eXp6OrSzsrIMqqRquPT79fDwMKgSAJciQAMAAAAA5CsiIsKhffToUYMqqRou/X4v/f4BGIcADQAAAACQr+joaIf2qlWrDKqkaoiNjXVoN2jQwKBKAFyKAA0AAAAAkK/+/fs7tD/44AMlJCQYVE3lduLECX3yyScOff369TOmGAB5EKABAAAAAPLVrVs31apVy96Oi4vTgw8+qMzMTAOrqnwyMjL0wAMPKDEx0d5Xt25dXX311QZWBeBiBGgAAAAAgHz5+fnp+eefd+hbtmyZBg0apL///tugqiqXv/76SzfddJNWr17t0P/SSy/Jy8vLoKoAXMpks9lsRhcBAAAAACifsrKydMstt2jNmjUO/dWqVdPNN9+s7t27Kzw8XK6urgZVWPFYLBadPHlSP/zwg7755hulpaU5fN6/f38tW7ZMLi4uBlUI4FIEaAAAAACAAiUmJqpnz57avn270aVUeh06dNDatWvl7+9vdCkALsISTgAAAABAgYKCgvTDDz/o1ltvlclkMrqcSslsNuuOO+7QunXrCM+AcogADQAAAABQKH9/fy1atEhLlixR69atWbJZSlxdXdW+fXutWLFC8+fPl5+fn9ElAcgHSzgBAAAAAEWSk5OjvXv3av369Tpy5IjOnDmjnJwco8uqMFxdXRUeHq46dero+uuvV6NGjdjvDCjnCNAAAAAAAACAArCEEwAAAAAAACgAARoAAAAAAABQAAI0AAAAAAAAoAAEaAAAAAAAAEABCNAAAAAAAACAAhCgAQAAAAAAAAVwNboAAAAAAEDpSk/PUKfrujk19tknn9CwO4aWyn2/WLRY//f6G1q38huFhYY6dc269d/pqbHP29tms1n+/v5q2byZRj3wgJo0blQqtV0JxXl+ABUDARoAAAAAVDLe3l7a+ftvDn3PjntBq9et0+8bf5KHu7tBlV3ea69OVp8beiknJ0d/7t+vFye+ouEPjtTiBfMVVbu20eUBqOJYwgkAAAAAKDdcXV3VrEkTPfPE48rMzNTS5SuMLgkAeAMNAAAAAKqyM3Fx+vcHH2rDz78oOSVFoSEhuqnvjRr5r/vl5uZmH5eSkqJ3Z32gnzb+rKSkJIWFhem6rtdoxP33KcDfX2++M0OffrZAktSrX3/7dR++N1OdOnQocl1RtWvZ6ytOvZ98tkBvvTND366K0ZxP52nV6jXKys5Wpw7t9eyTTyiyRg2Hef/cv1/vzfpQW7dvV1ZWlqJq19LtgwbptsGDHMZdmHf9qpWa9/nnilkVq5TUVA27Y2ipPj+A8oUADQAAAACqqJOnTuuu4fepZmSkZrz1hurVqaNdu//Q+AkTdejvv/XWtKn2sc+/NEEnT53SO2+8prp16yo+Pl4//rRBX38To+HD7tJTj41RjYiIUtsD7PCRI5KkiPDwYtV7wZvvzNA1nTvrkVEjdez4Cb04aZKGjxipr75YIH8/P0n/hGf3/GuEWrdsoQVzP1ZAQIBiVsVqyutv6PjJk3pyzKN5550xQ507dtDyxYu0dv16Db51QKk+P4DyhSWcAAAAAFBFvfPee8q2WDTzrTfUtHFjeXl5qUP7dhr37DP69rvvtXPXbvvYzVu26Ppu16lRw4bycHdXzchI3TX0dg0fdlep1pSTk6Pdf/yhN6a/Iz8/Xw0acEux6r2gTu3a6t+vr6pVq6bGjRrqtVdfVVx8vBZ88aV9zMx/vy83Nze9OW2q6kRFKcDfX8PuGKpBA27RvAWf6+Sp03nmrVWzpm656Sb5+flq8K0DSvU7AFD+EKABAAAAQBX1408/qX3bNgoICHDo79i+vSRp89at9r4GDaL11bKvtfCrr3TqdN5AqaSeHf+CWrTvqDadr9adw+9X6tmz+nT2R6oZGVmsei/odu21Du16deuoTlSUftu8WZJks9m06ffN6tShvar5+DiM7XV9D1mtVm3esiWfebsW6zkBVEws4QQAAACAKigjI0Pp6Rn6/sf/qFXHzvZ+m80mm80mSUpJTbX3vzn1//T2u+/p7Znv6dVpryuyRg1d372bHrhvuAL8/Utcz4VTOLOysvTrpk0a9/JEvfbmW/r3O2/LxcWlyPVeEBQUmLcvMFCJSUmSpMzMTGVlZys4KCjPuAt9ySkpeT4LDQkp3oMCqJAI0AAAAACgCvL09JSHh4d69eihKZMmFDo+PCxMU1+ZpNzcXO0/cFD/2bBBsz/5VHv2/qk5H7xfanV5eHjouq5d9cJzz+q5F17U/M+/0PC7hxW53gsSE5PyhF2JSUn20M/T01Me7u72QO3ScZJU/ZI33iTJzZUfp4GqhCWcAAAA+P/27iVEqzqO4/BvxjauVOymYIvynm2a18lF0Ua0aNUNNYQyleyi1AhpRdQmwi52w4VDjjWYpBK1CCSELC3SWZhQgbNKZ+mQ4DRNzQxYCykcjC/jBRryeXYvnPec3/8sP/zPOcAVqKmpqe684/b67vDh6uv7ddT/GzduXM2ZPaseW7Wy7rlrcR05evSfHWDjx4+vqqqhoaFLnu/uxYvqlnk3V3vH9jrd13fR83518OCI3z8fP14nenrqtvmNqjp7H+Y3GnWoq6sGBn4fcey+L/dXc3NzNVpaRnWty7l+YGwR0AAAAK5QbevWVnNzcz359DN15Puj9dvAQP1y6lQd6uqqtmc31rHu7qo6+2jk6ieeqv1fH6iTvb01NDRUP/z4Ux3q6qpGy63V1NRUVVXTb7qxqqoOfPNtDQ8PX/J8ax9fU/39/dXxYecFzXuuEz099fnevdXf31/Hurtrwwsv1tWTJ9dDS5eMuM7gH4O1fuNzdaKnp0739dXOXbvrk08/q+XLltbUKdefd95/c7nXD4wd9pwCAABcoaZOmVK7dnRW+7aOev6ll+tkb29NmjSxZk6fUQ/ed2/NnDGjqqomTphQqx9dUR/v3lOvbHqtTvf11XXXXlOLFi6s1Sse+ed88+bOrTWrVlZHZ2e9/tbbdebMmWrf8l4taG29qPkWtLZWa6Oldu7aIayAyAAABc9JREFUXcuXLh31vOdqW7e22ju216Y3NtfQ8HC1Nhr15qZXR7y3bc7sWdW57f3asnVrLXt4RQ0ODtYN06bVhvVtteSB+0c97+VePzB2NP35915bAAAA+J/4YMdHtfmdd+vAvi/O+2onwIXyCCcAAAAABAIaAAAAAAQCGgAAAAAE3oEGAAAAAIEdaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEAhoAAAAABAIaAAAAAAQCGgAAAAAEFxVVXv+6yEAAAAAYKz6CxDB6Gk3sU+9AAAAAElFTkSuQmCC", + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "execute_live_flowchart" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/diagrams/execute_live.png b/docs/diagrams/execute_live.png new file mode 100644 index 0000000000..2e31843976 Binary files /dev/null and b/docs/diagrams/execute_live.png differ diff --git a/docs/diagrams/execute_live.svg b/docs/diagrams/execute_live.svg new file mode 100644 index 0000000000..80e12c4544 --- /dev/null +++ b/docs/diagrams/execute_live.svg @@ -0,0 +1,77 @@ + + + + + + + %3 + + + cluster_Test Execution + + Test Execution + + + cluster_ethereum/execution-spec-tests + + ethereum/execution-spec-tests + + + cluster_Execution Client + + Execution Client + + + + 1881f8afb7ac435685eafd011751d761 + + ./tests/**/*.py + (state_tests) + + + + db7e95947e7f4ab29547c491509fd6e0 + + $ execute + + + + 1881f8afb7ac435685eafd011751d761->db7e95947e7f4ab29547c491509fd6e0 + + + + + + 1e7c8a2fd0d044329b52d70a0e0dbd4e + + $ client.exe + + + + db7e95947e7f4ab29547c491509fd6e0->1e7c8a2fd0d044329b52d70a0e0dbd4e + + + eth_getTransactionByHash + + + + db7e95947e7f4ab29547c491509fd6e0->1e7c8a2fd0d044329b52d70a0e0dbd4e + + + eth_sendRawTransaction + + + + 971eee73ec484d7ebd9b91d360499537 + + Test Report + + + + db7e95947e7f4ab29547c491509fd6e0->971eee73ec484d7ebd9b91d360499537 + + + + + diff --git a/docs/diagrams/execute_live_highres.png b/docs/diagrams/execute_live_highres.png new file mode 100644 index 0000000000..465f3bf352 Binary files /dev/null and b/docs/diagrams/execute_live_highres.png differ diff --git a/docs/diagrams/fill.png b/docs/diagrams/fill.png new file mode 100644 index 0000000000..20ed35bfec Binary files /dev/null and b/docs/diagrams/fill.png differ diff --git a/docs/diagrams/fill.svg b/docs/diagrams/fill.svg new file mode 100644 index 0000000000..ad7f946647 --- /dev/null +++ b/docs/diagrams/fill.svg @@ -0,0 +1,63 @@ + + + + + + + %3 + + + cluster_t8n tool + + t8n tool + + + cluster_ethereum/execution-spec-tests + + ethereum/execution-spec-tests + + + + 34308c1f9d004d69a6060d05e5f9fedf + + fixtures/**/*.json + + + + 43d801a53d384cb6ba99631bb04caf11 + + $ eels-daemon + + + + 83952c482b2b47ba887b7210b5b60891 + + $ fill + + + + 43d801a53d384cb6ba99631bb04caf11->83952c482b2b47ba887b7210b5b60891 + + + + + + cf90e35199ab48a6b7f4ad6252241b3e + + ./tests/**/*.py + + + + cf90e35199ab48a6b7f4ad6252241b3e->83952c482b2b47ba887b7210b5b60891 + + + + + + 83952c482b2b47ba887b7210b5b60891->34308c1f9d004d69a6060d05e5f9fedf + + + + + diff --git a/docs/diagrams/img/besu.png b/docs/diagrams/img/besu.png new file mode 100644 index 0000000000..ea8c05863b Binary files /dev/null and b/docs/diagrams/img/besu.png differ diff --git a/docs/diagrams/img/clients.png b/docs/diagrams/img/clients.png new file mode 100644 index 0000000000..f999797630 Binary files /dev/null and b/docs/diagrams/img/clients.png differ diff --git a/docs/diagrams/img/erigon.png b/docs/diagrams/img/erigon.png new file mode 100644 index 0000000000..4cd002deae Binary files /dev/null and b/docs/diagrams/img/erigon.png differ diff --git a/docs/diagrams/img/ethjs.png b/docs/diagrams/img/ethjs.png new file mode 100644 index 0000000000..c188365284 Binary files /dev/null and b/docs/diagrams/img/ethjs.png differ diff --git a/docs/diagrams/img/geth.png b/docs/diagrams/img/geth.png new file mode 100644 index 0000000000..f3c28eaef4 Binary files /dev/null and b/docs/diagrams/img/geth.png differ diff --git a/docs/diagrams/img/html.png b/docs/diagrams/img/html.png new file mode 100644 index 0000000000..e9aed146a0 Binary files /dev/null and b/docs/diagrams/img/html.png differ diff --git a/docs/diagrams/img/json.png b/docs/diagrams/img/json.png new file mode 100644 index 0000000000..d0ff1fd98c Binary files /dev/null and b/docs/diagrams/img/json.png differ diff --git a/docs/diagrams/img/nethermind.png b/docs/diagrams/img/nethermind.png new file mode 100644 index 0000000000..d262905c3d Binary files /dev/null and b/docs/diagrams/img/nethermind.png differ diff --git a/docs/diagrams/img/nethermind.svg b/docs/diagrams/img/nethermind.svg new file mode 100644 index 0000000000..d3aafb40ef --- /dev/null +++ b/docs/diagrams/img/nethermind.svg @@ -0,0 +1,37 @@ + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/docs/diagrams/img/reth.png b/docs/diagrams/img/reth.png new file mode 100644 index 0000000000..a31c8cab09 Binary files /dev/null and b/docs/diagrams/img/reth.png differ diff --git a/docs/diagrams/state.svg b/docs/diagrams/state.svg new file mode 100644 index 0000000000..37b4fd9df4 --- /dev/null +++ b/docs/diagrams/state.svg @@ -0,0 +1,94 @@ + + + + + + + + + + + + + + Pre-State + + diff --git a/pyproject.toml b/pyproject.toml index 38c76c5d54..82747fc1be 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -82,6 +82,10 @@ docs = [ "pillow>=10.0.1,<11", "pyspelling>=2.8.2,<3", ] +diagrams = [ + "jupyter>=1.1.1,<2", + "diagrams>=0.23.3,<1", +] [project.scripts] fill = "cli.pytest_commands.fill:fill" diff --git a/uv.lock b/uv.lock index 5ea4ef75fb..21708aefca 100644 --- a/uv.lock +++ b/uv.lock @@ -14,6 +14,76 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53", size = 13643 }, ] +[[package]] +name = "anyio" +version = "4.6.2.post1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9f/09/45b9b7a6d4e45c6bcb5bf61d19e3ab87df68e0601fa8c5293de3542546cc/anyio-4.6.2.post1.tar.gz", hash = "sha256:4c8bc31ccdb51c7f7bd251f51c609e038d63e34219b44aa86e47576389880b4c", size = 173422 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e4/f5/f2b75d2fc6f1a260f340f0e7c6a060f4dd2961cc16884ed851b0d18da06a/anyio-4.6.2.post1-py3-none-any.whl", hash = "sha256:6d170c36fba3bdd840c73d3868c1e777e33676a69c3a72cf0a0d5d6d8009b61d", size = 90377 }, +] + +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321 }, +] + +[[package]] +name = "argon2-cffi" +version = "23.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "argon2-cffi-bindings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/31/fa/57ec2c6d16ecd2ba0cf15f3c7d1c3c2e7b5fcb83555ff56d7ab10888ec8f/argon2_cffi-23.1.0.tar.gz", hash = "sha256:879c3e79a2729ce768ebb7d36d4609e3a78a4ca2ec3a9f12286ca057e3d0db08", size = 42798 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a4/6a/e8a041599e78b6b3752da48000b14c8d1e8a04ded09c88c714ba047f34f5/argon2_cffi-23.1.0-py3-none-any.whl", hash = "sha256:c670642b78ba29641818ab2e68bd4e6a78ba53b7eff7b4c3815ae16abf91c7ea", size = 15124 }, +] + +[[package]] +name = "argon2-cffi-bindings" +version = "21.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b9/e9/184b8ccce6683b0aa2fbb7ba5683ea4b9c5763f1356347f1312c32e3c66e/argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3", size = 1779911 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d4/13/838ce2620025e9666aa8f686431f67a29052241692a3dd1ae9d3692a89d3/argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367", size = 29658 }, + { url = "https://files.pythonhosted.org/packages/b3/02/f7f7bb6b6af6031edb11037639c697b912e1dea2db94d436e681aea2f495/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d", size = 80583 }, + { url = "https://files.pythonhosted.org/packages/ec/f7/378254e6dd7ae6f31fe40c8649eea7d4832a42243acaf0f1fff9083b2bed/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae", size = 86168 }, + { url = "https://files.pythonhosted.org/packages/74/f6/4a34a37a98311ed73bb80efe422fed95f2ac25a4cacc5ae1d7ae6a144505/argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c", size = 82709 }, + { url = "https://files.pythonhosted.org/packages/74/2b/73d767bfdaab25484f7e7901379d5f8793cccbb86c6e0cbc4c1b96f63896/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86", size = 83613 }, + { url = "https://files.pythonhosted.org/packages/4f/fd/37f86deef67ff57c76f137a67181949c2d408077e2e3dd70c6c42912c9bf/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f", size = 84583 }, + { url = "https://files.pythonhosted.org/packages/6f/52/5a60085a3dae8fded8327a4f564223029f5f54b0cb0455a31131b5363a01/argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e", size = 88475 }, + { url = "https://files.pythonhosted.org/packages/8b/95/143cd64feb24a15fa4b189a3e1e7efbaeeb00f39a51e99b26fc62fbacabd/argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082", size = 27698 }, + { url = "https://files.pythonhosted.org/packages/37/2c/e34e47c7dee97ba6f01a6203e0383e15b60fb85d78ac9a15cd066f6fe28b/argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f", size = 30817 }, + { url = "https://files.pythonhosted.org/packages/5a/e4/bf8034d25edaa495da3c8a3405627d2e35758e44ff6eaa7948092646fdcc/argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93", size = 53104 }, +] + +[[package]] +name = "arrow" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "python-dateutil" }, + { name = "types-python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2e/00/0f6e8fcdb23ea632c866620cc872729ff43ed91d284c866b515c6342b173/arrow-1.3.0.tar.gz", hash = "sha256:d4540617648cb5f895730f1ad8c82a65f2dad0166f57b75f3ca54759c4d67a85", size = 131960 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f8/ed/e97229a566617f2ae958a6b13e7cc0f585470eac730a73e9e82c32a3cdd2/arrow-1.3.0-py3-none-any.whl", hash = "sha256:c728b120ebc00eb84e01882a6f5e7927a53960aa990ce7dd2b10f39005a67f80", size = 66419 }, +] + [[package]] name = "asn1crypto" version = "1.5.1" @@ -23,6 +93,39 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/c9/7f/09065fd9e27da0eda08b4d6897f1c13535066174cc023af248fc2a8d5e5a/asn1crypto-1.5.1-py2.py3-none-any.whl", hash = "sha256:db4e40728b728508912cbb3d44f19ce188f218e9eba635821bb4b68564f8fd67", size = 105045 }, ] +[[package]] +name = "asttokens" +version = "2.4.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/45/1d/f03bcb60c4a3212e15f99a56085d93093a497718adf828d050b9d675da81/asttokens-2.4.1.tar.gz", hash = "sha256:b03869718ba9a6eb027e134bfdf69f38a236d681c83c160d510768af11254ba0", size = 62284 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/45/86/4736ac618d82a20d87d2f92ae19441ebc7ac9e7a581d7e58bbe79233b24a/asttokens-2.4.1-py2.py3-none-any.whl", hash = "sha256:051ed49c3dcae8913ea7cd08e46a606dba30b79993209636c4875bc1d637bc24", size = 27764 }, +] + +[[package]] +name = "async-lru" +version = "2.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions", marker = "python_full_version < '3.11'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/80/e2/2b4651eff771f6fd900d233e175ddc5e2be502c7eb62c0c42f975c6d36cd/async-lru-2.0.4.tar.gz", hash = "sha256:b8a59a5df60805ff63220b2a0c5b5393da5521b113cd5465a44eb037d81a5627", size = 10019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fa/9f/3c3503693386c4b0f245eaf5ca6198e3b28879ca0a40bde6b0e319793453/async_lru-2.0.4-py3-none-any.whl", hash = "sha256:ff02944ce3c288c5be660c42dbcca0742b32c3b279d6dceda655190240b99224", size = 6111 }, +] + +[[package]] +name = "attrs" +version = "24.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fc/0f/aafca9af9315aee06a89ffde799a10a582fe8de76c563ee80bbcdc08b3fb/attrs-24.2.0.tar.gz", hash = "sha256:5cfb1b9148b5b086569baec03f20d7b6bf3bcacc9a42bebf87ffaaca362f6346", size = 792678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/21/5b6702a7f963e95456c0de2d495f67bf5fd62840ac655dc451586d23d39a/attrs-24.2.0-py3-none-any.whl", hash = "sha256:81921eb96de3191c8258c199618104dd27ac608d9366f5e35d011eae1867ede2", size = 63001 }, +] + [[package]] name = "babel" version = "2.16.0" @@ -74,6 +177,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/2e/ef/a38a2189959246543e60859fb65bd3143129f6d18dfc7bcdd79217f81ca2/black-22.3.0-py3-none-any.whl", hash = "sha256:bc58025940a896d7e5356952228b68f793cf5fcb342be703c3a2669a1488cb72", size = 153859 }, ] +[[package]] +name = "bleach" +version = "6.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "webencodings" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/9a/0e33f5054c54d349ea62c277191c020c2d6ef1d65ab2cb1993f91ec846d1/bleach-6.2.0.tar.gz", hash = "sha256:123e894118b8a599fd80d3ec1a6d4cc7ce4e5882b1317a7e1ba69b56e95f991f", size = 203083 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/55/96142937f66150805c25c4d0f31ee4132fd33497753400734f9dfdcbdc66/bleach-6.2.0-py3-none-any.whl", hash = "sha256:117d9c6097a7c3d22fd578fcd8d35ff1e125df6736f554da4e432fdd63f31e5e", size = 163406 }, +] + [[package]] name = "bracex" version = "2.5" @@ -315,6 +430,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/f3/18/3e867ab37a24fdf073c1617b9c7830e06ec270b1ea4694a624038fc40a03/colorlog-6.8.2-py3-none-any.whl", hash = "sha256:4dcbb62368e2800cb3c5abd348da7e53f6c362dda502ec27c560b2e58a66bd33", size = 11357 }, ] +[[package]] +name = "comm" +version = "0.2.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/a8/fb783cb0abe2b5fded9f55e5703015cdf1c9c85b3669087c538dd15a6a86/comm-0.2.2.tar.gz", hash = "sha256:3fd7a84065306e07bea1773df6eb8282de51ba82f77c72f9c85716ab11fe980e", size = 6210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e6/75/49e5bfe642f71f272236b5b2d2691cf915a7283cc0ceda56357b61daa538/comm-0.2.2-py3-none-any.whl", hash = "sha256:e6fb86cb70ff661ee8c9c14e7d36d6de3b4066f1441be4063df9c5009f0a64d3", size = 7180 }, +] + [[package]] name = "coverage" version = "7.6.1" @@ -450,6 +577,40 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/5e/39/bee67e2b541ca3478a982c68d7d23b718fa7f2947bdfc0eecdba9c4e0882/cytoolz-0.12.3-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:456395d7aec01db32bf9e6db191d667347c78d8d48e77234521fa1078f60dabb", size = 340712 }, ] +[[package]] +name = "debugpy" +version = "1.8.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6d/00/5a8b5dc8f52617c5e41845e26290ebea1ba06377cc08155b6d245c27b386/debugpy-1.8.7.zip", hash = "sha256:18b8f731ed3e2e1df8e9cdaa23fb1fc9c24e570cd0081625308ec51c82efe42e", size = 4957835 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/46/50/1850a5a0cab6f65a21e452166ec60bac5f8a995184d17e18bb9dc3789c72/debugpy-1.8.7-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:95fe04a573b8b22896c404365e03f4eda0ce0ba135b7667a1e57bd079793b96b", size = 2090182 }, + { url = "https://files.pythonhosted.org/packages/87/51/ef4d5c55c06689b377678bdee870e3df8eb2a3d9cf0e618b4d7255413c8a/debugpy-1.8.7-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:628a11f4b295ffb4141d8242a9bb52b77ad4a63a2ad19217a93be0f77f2c28c9", size = 3547569 }, + { url = "https://files.pythonhosted.org/packages/eb/df/a4ea1f95022f93522b59b71ec42d6703abe3e0bee753070118816555fee9/debugpy-1.8.7-cp310-cp310-win32.whl", hash = "sha256:85ce9c1d0eebf622f86cc68618ad64bf66c4fc3197d88f74bb695a416837dd55", size = 5153144 }, + { url = "https://files.pythonhosted.org/packages/47/f7/912408b69e83659bd62fa29ebb7984efe81aed4f5e08bfe10e31a1dc3c3a/debugpy-1.8.7-cp310-cp310-win_amd64.whl", hash = "sha256:29e1571c276d643757ea126d014abda081eb5ea4c851628b33de0c2b6245b037", size = 5185605 }, + { url = "https://files.pythonhosted.org/packages/f6/0a/4a4516ef4c07891542cb25620085507cab3c6b23a42b5630c17788fff83e/debugpy-1.8.7-cp311-cp311-macosx_14_0_universal2.whl", hash = "sha256:caf528ff9e7308b74a1749c183d6808ffbedbb9fb6af78b033c28974d9b8831f", size = 2204794 }, + { url = "https://files.pythonhosted.org/packages/46/6f/2bb0bba20b8b74b7c341379dd99275cf6aa7722c1948fa99728716aad1b9/debugpy-1.8.7-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cba1d078cf2e1e0b8402e6bda528bf8fda7ccd158c3dba6c012b7897747c41a0", size = 3122160 }, + { url = "https://files.pythonhosted.org/packages/c0/ce/833351375cef971f0caa63fa82adf3f6949ad85410813026a4a436083a71/debugpy-1.8.7-cp311-cp311-win32.whl", hash = "sha256:171899588bcd412151e593bd40d9907133a7622cd6ecdbdb75f89d1551df13c2", size = 5078675 }, + { url = "https://files.pythonhosted.org/packages/7d/e1/e9ac2d546143a4defbaa2e609e173c912fb989cdfb5385c9771770a6bf5c/debugpy-1.8.7-cp311-cp311-win_amd64.whl", hash = "sha256:6e1c4ffb0c79f66e89dfd97944f335880f0d50ad29525dc792785384923e2211", size = 5102927 }, + { url = "https://files.pythonhosted.org/packages/59/4b/9f52ca1a799601a10cd2673503658bd8c8ecc4a7a43302ee29cf062474ec/debugpy-1.8.7-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:4d27d842311353ede0ad572600c62e4bcd74f458ee01ab0dd3a1a4457e7e3706", size = 2529803 }, + { url = "https://files.pythonhosted.org/packages/80/79/8bba39190d2ea17840925d287f1c6c3a7c60b58f5090444e9ecf176c540f/debugpy-1.8.7-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:703c1fd62ae0356e194f3e7b7a92acd931f71fe81c4b3be2c17a7b8a4b546ec2", size = 4170911 }, + { url = "https://files.pythonhosted.org/packages/3b/19/5b3d312936db8eb281310fa27903459328ed722d845d594ba5feaeb2f0b3/debugpy-1.8.7-cp312-cp312-win32.whl", hash = "sha256:2f729228430ef191c1e4df72a75ac94e9bf77413ce5f3f900018712c9da0aaca", size = 5195476 }, + { url = "https://files.pythonhosted.org/packages/9f/49/ad20b29f8c921fd5124530d3d39b8f2077efd51b71339a2eff02bba693e9/debugpy-1.8.7-cp312-cp312-win_amd64.whl", hash = "sha256:45c30aaefb3e1975e8a0258f5bbd26cd40cde9bfe71e9e5a7ac82e79bad64e39", size = 5235031 }, + { url = "https://files.pythonhosted.org/packages/41/95/29b247518d0a6afdb5249f5d05743c9c5bfaf4bd13a85b81cb5e1dc65837/debugpy-1.8.7-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:d050a1ec7e925f514f0f6594a1e522580317da31fbda1af71d1530d6ea1f2b40", size = 2517557 }, + { url = "https://files.pythonhosted.org/packages/4d/93/026e2000a0740e2f54b198f8dc317accf3a70b6524b2b15fa8e6eca74414/debugpy-1.8.7-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f2f4349a28e3228a42958f8ddaa6333d6f8282d5edaea456070e48609c5983b7", size = 4162703 }, + { url = "https://files.pythonhosted.org/packages/c3/92/a48e653b19a171434290ecdc5935b7a292a65488139c5271d6d0eceeb0f1/debugpy-1.8.7-cp313-cp313-win32.whl", hash = "sha256:11ad72eb9ddb436afb8337891a986302e14944f0f755fd94e90d0d71e9100bba", size = 5195220 }, + { url = "https://files.pythonhosted.org/packages/4e/b3/dc3c5527edafcd1a6d0f8c4ecc6c5c9bc431f77340cf4193328e98f0ac38/debugpy-1.8.7-cp313-cp313-win_amd64.whl", hash = "sha256:2efb84d6789352d7950b03d7f866e6d180284bc02c7e12cb37b489b7083d81aa", size = 5235333 }, + { url = "https://files.pythonhosted.org/packages/51/b1/a0866521c71a6ae3d3ca320e74835163a4671b1367ba360a55a0a51e5a91/debugpy-1.8.7-py2.py3-none-any.whl", hash = "sha256:57b00de1c8d2c84a61b90880f7e5b6deaf4c312ecbde3a0e8912f2a56c4ac9ae", size = 5210683 }, +] + +[[package]] +name = "decorator" +version = "5.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/0c/8d907af351aa16b42caae42f9d6aa37b900c67308052d10fdce809f8d952/decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330", size = 35016 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d5/50/83c593b07763e1161326b3b8c6686f0f4b0f24d5526546bee538c89837d6/decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186", size = 9073 }, +] + [[package]] name = "defusedxml" version = "0.7.1" @@ -459,6 +620,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61", size = 25604 }, ] +[[package]] +name = "diagrams" +version = "0.23.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "graphviz" }, + { name = "jinja2" }, + { name = "typed-ast" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/61/44cc86725be481d87c7f35de39cdc21e57ad38dca90d81a2dd14a166ecd2/diagrams-0.23.4.tar.gz", hash = "sha256:b7ada0b119b5189dd021b1dc1467fad3704737452bb18b1e06d05e4d1fa48ed7", size = 23853676 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/e0/ec876b8bb5b2201e8d5e990bd2f7f8b2f3e654316522dfd520c59291d3c0/diagrams-0.23.4-py3-none-any.whl", hash = "sha256:1ba69d98fcf8d768dbddf07d2c77aba6cc95c2e6f90f37146c04c96bc6765450", size = 24573100 }, +] + [[package]] name = "eth-hash" version = "0.7.0" @@ -544,6 +719,10 @@ dependencies = [ ] [package.optional-dependencies] +diagrams = [ + { name = "diagrams" }, + { name = "jupyter" }, +] docs = [ { name = "cairosvg" }, { name = "mike" }, @@ -582,6 +761,7 @@ requires-dist = [ { name = "click", specifier = ">=8.1.0,<9" }, { name = "coincurve", specifier = ">=20.0.0,<21" }, { name = "colorlog", specifier = ">=6.7.0,<7" }, + { name = "diagrams", marker = "extra == 'diagrams'", specifier = ">=0.23.3,<1" }, { name = "ethereum", git = "https://github.com/ethereum/execution-specs" }, { name = "ethereum-spec-evm-resolver", git = "https://github.com/petertdavies/ethereum-spec-evm-resolver" }, { name = "ethereum-types", specifier = ">=0.2.1,<0.3" }, @@ -593,6 +773,7 @@ requires-dist = [ { name = "gitpython", specifier = ">=3.1.31,<4" }, { name = "hive-py", git = "https://github.com/marioevz/hive.py" }, { name = "isort", marker = "extra == 'lint'", specifier = ">=5.8,<6" }, + { name = "jupyter", marker = "extra == 'diagrams'", specifier = ">=1.1.1,<2" }, { name = "mike", marker = "extra == 'docs'", specifier = ">=1.1.2,<2" }, { name = "mkdocs", marker = "extra == 'docs'", specifier = ">=1.4.3,<2" }, { name = "mkdocs-gen-files", marker = "extra == 'docs'", specifier = ">=0.5.0,<1" }, @@ -676,6 +857,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/43/09/2aea36ff60d16dd8879bdb2f5b3ee0ba8d08cbbdcdfe870e695ce3784385/execnet-2.1.1-py3-none-any.whl", hash = "sha256:26dee51f1b80cebd6d0ca8e74dd8745419761d3bef34163928cbebbdc4749fdc", size = 40612 }, ] +[[package]] +name = "executing" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/8c/e3/7d45f492c2c4a0e8e0fad57d081a7c8a0286cdd86372b070cca1ec0caa1e/executing-2.1.0.tar.gz", hash = "sha256:8ea27ddd260da8150fa5a708269c4a10e76161e2496ec3e587da9e3c0fe4b9ab", size = 977485 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b5/fd/afcd0496feca3276f509df3dbd5dae726fcc756f1a08d9e25abe1733f962/executing-2.1.0-py2.py3-none-any.whl", hash = "sha256:8d63781349375b5ebccc3142f4b30350c0cd9c79f921cde38be2be4637e98eaf", size = 25805 }, +] + +[[package]] +name = "fastjsonschema" +version = "2.20.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/03/3f/3ad5e7be13b4b8b55f4477141885ab2364f65d5f6ad5f7a9daffd634d066/fastjsonschema-2.20.0.tar.gz", hash = "sha256:3d48fc5300ee96f5d116f10fe6f28d938e6008f59a6a025c2649475b87f76a23", size = 373056 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6d/ca/086311cdfc017ec964b2436fe0c98c1f4efcb7e4c328956a22456e497655/fastjsonschema-2.20.0-py3-none-any.whl", hash = "sha256:5875f0b0fa7a0043a91e93a9b8f793bcbbba9691e7fd83dca95c28ba26d21f0a", size = 23543 }, +] + [[package]] name = "filelock" version = "3.15.4" @@ -730,6 +929,15 @@ version = "0.0.3" source = { registry = "https://pypi.org/simple" } sdist = { url = "https://files.pythonhosted.org/packages/5f/45/7a301ca31e67f44cf0a0e4bb683f8177b65b82f64246b60793b8776226d9/fname8-0.0.3.tar.gz", hash = "sha256:eeb7b8e117b60946eac41f334329c5d0edea52e7930d4fce9cd09e8cf8cf2eeb", size = 2765 } +[[package]] +name = "fqdn" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/30/3e/a80a8c077fd798951169626cde3e239adeba7dab75deb3555716415bd9b0/fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f", size = 6015 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014", size = 9121 }, +] + [[package]] name = "ghp-import" version = "2.1.0" @@ -766,6 +974,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e9/bd/cc3a402a6439c15c3d4294333e13042b915bbeab54edc457c723931fed3f/GitPython-3.1.43-py3-none-any.whl", hash = "sha256:eec7ec56b92aad751f9912a73404bc02ba212a23adb2c7098ee668417051a1ff", size = 207337 }, ] +[[package]] +name = "graphviz" +version = "0.20.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fa/83/5a40d19b8347f017e417710907f824915fba411a9befd092e52746b63e9f/graphviz-0.20.3.zip", hash = "sha256:09d6bc81e6a9fa392e7ba52135a9d49f1ed62526f96499325930e87ca1b5925d", size = 256455 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/be/d59db2d1d52697c6adc9eacaf50e8965b6345cc143f671e1ed068818d5cf/graphviz-0.20.3-py3-none-any.whl", hash = "sha256:81f848f2904515d8cd359cc611faba817598d2feaac4027b266aa3eda7b3dde5", size = 47126 }, +] + [[package]] name = "griffe" version = "1.2.0" @@ -778,6 +995,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/36/0b/5caa5617b63535fe1e0abc23af92bd1e6df4bd3d5b72bfe2c675d4770235/griffe-1.2.0-py3-none-any.whl", hash = "sha256:a8b2fcb1ecdc5a412e646b0b4375eb20a5d2eac3a11dd8c10c56967a4097663c", size = 126930 }, ] +[[package]] +name = "h11" +version = "0.14.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz", hash = "sha256:8f19fbbe99e72420ff35c00b27a34cb9937e902a8b810e2c88300c6f0a3b699d", size = 100418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/04/ff642e65ad6b90db43e668d70ffb6736436c7ce41fcc549f4e9472234127/h11-0.14.0-py3-none-any.whl", hash = "sha256:e3fe4ac4b851c468cc8363d500db52c2ead036020723024a109d37346efaa761", size = 58259 }, +] + [[package]] name = "hexbytes" version = "1.2.1" @@ -805,46 +1031,418 @@ dependencies = [ ] sdist = { url = "https://files.pythonhosted.org/packages/ac/b6/b55c3f49042f1df3dcd422b7f224f939892ee94f22abcf503a9b7339eaf2/html5lib-1.1.tar.gz", hash = "sha256:b2e5b40261e20f354d198eae92afc10d750afb487ed5e50f9c4eaf07c184146f", size = 272215 } wheels = [ - { url = "https://files.pythonhosted.org/packages/6c/dd/a834df6482147d48e225a49515aabc28974ad5a4ca3215c18a882565b028/html5lib-1.1-py2.py3-none-any.whl", hash = "sha256:0d78f8fde1c230e99fe37986a60526d7049ed4bf8a9fadbad5f00e22e58e041d", size = 112173 }, + { url = "https://files.pythonhosted.org/packages/6c/dd/a834df6482147d48e225a49515aabc28974ad5a4ca3215c18a882565b028/html5lib-1.1-py2.py3-none-any.whl", hash = "sha256:0d78f8fde1c230e99fe37986a60526d7049ed4bf8a9fadbad5f00e22e58e041d", size = 112173 }, +] + +[[package]] +name = "httpcore" +version = "1.0.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "h11" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b6/44/ed0fa6a17845fb033bd885c03e842f08c1b9406c86a2e60ac1ae1b9206a6/httpcore-1.0.6.tar.gz", hash = "sha256:73f6dbd6eb8c21bbf7ef8efad555481853f5f6acdeaff1edb0694289269ee17f", size = 85180 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/06/89/b161908e2f51be56568184aeb4a880fd287178d176fd1c860d2217f41106/httpcore-1.0.6-py3-none-any.whl", hash = "sha256:27b59625743b85577a8c0e10e55b50b5368a4f2cfe8cc7bcfa9cf00829c2682f", size = 78011 }, +] + +[[package]] +name = "httpx" +version = "0.27.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "certifi" }, + { name = "httpcore" }, + { name = "idna" }, + { name = "sniffio" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/78/82/08f8c936781f67d9e6b9eeb8a0c8b4e406136ea4c3d1f89a5db71d42e0e6/httpx-0.27.2.tar.gz", hash = "sha256:f7c2be1d2f3c3c3160d441802406b206c2b76f5947b11115e6df10c6c65e66c2", size = 144189 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/56/95/9377bcb415797e44274b51d46e3249eba641711cf3348050f76ee7b15ffc/httpx-0.27.2-py3-none-any.whl", hash = "sha256:7bb2708e112d8fdd7829cd4243970f0c223274051cb35ee80c03301ee29a3df0", size = 76395 }, +] + +[[package]] +name = "idna" +version = "3.8" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e8/ac/e349c5e6d4543326c6883ee9491e3921e0d07b55fdf3cce184b40d63e72a/idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603", size = 189467 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/7e/d71db821f177828df9dea8c42ac46473366f191be53080e552e628aad991/idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac", size = 66894 }, +] + +[[package]] +name = "iniconfig" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d7/4b/cbd8e699e64a6f16ca3a8220661b5f83792b3017d0f79807cb8708d33913/iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3", size = 4646 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374", size = 5892 }, +] + +[[package]] +name = "ipykernel" +version = "6.29.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "platform_system == 'Darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e9/5c/67594cb0c7055dc50814b21731c22a601101ea3b1b50a9a1b090e11f5d0f/ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215", size = 163367 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/5c/368ae6c01c7628438358e6d337c19b05425727fbb221d2a3c4303c372f42/ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5", size = 117173 }, +] + +[[package]] +name = "ipython" +version = "8.29.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "exceptiongroup", marker = "python_full_version < '3.11'" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, + { name = "typing-extensions", marker = "python_full_version < '3.12'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/e0/a3f36dde97e12121106807d80485423ae4c5b27ce60d40d4ab0bab18a9db/ipython-8.29.0.tar.gz", hash = "sha256:40b60e15b22591450eef73e40a027cf77bd652e757523eebc5bd7c7c498290eb", size = 5497513 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c5/a5/c15ed187f1b3fac445bb42a2dedd8dec1eee1718b35129242049a13a962f/ipython-8.29.0-py3-none-any.whl", hash = "sha256:0188a1bd83267192123ccea7f4a8ed0a78910535dbaa3f37671dca76ebd429c8", size = 819911 }, +] + +[[package]] +name = "ipywidgets" +version = "8.1.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "comm" }, + { name = "ipython" }, + { name = "jupyterlab-widgets" }, + { name = "traitlets" }, + { name = "widgetsnbextension" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c7/4c/dab2a281b07596a5fc220d49827fe6c794c66f1493d7a74f1df0640f2cc5/ipywidgets-8.1.5.tar.gz", hash = "sha256:870e43b1a35656a80c18c9503bbf2d16802db1cb487eec6fab27d683381dde17", size = 116723 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/2d/9c0b76f2f9cc0ebede1b9371b6f317243028ed60b90705863d493bae622e/ipywidgets-8.1.5-py3-none-any.whl", hash = "sha256:3290f526f87ae6e77655555baba4f36681c555b8bdbbff430b70e52c34c86245", size = 139767 }, +] + +[[package]] +name = "isoduration" +version = "20.11.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "arrow" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7c/1a/3c8edc664e06e6bd06cce40c6b22da5f1429aa4224d0c590f3be21c91ead/isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9", size = 11649 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042", size = 11321 }, +] + +[[package]] +name = "isort" +version = "5.13.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/87/f9/c1eb8635a24e87ade2efce21e3ce8cd6b8630bb685ddc9cdaca1349b2eb5/isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109", size = 175303 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/b3/8def84f539e7d2289a02f0524b944b15d7c75dab7628bedf1c4f0992029c/isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6", size = 92310 }, +] + +[[package]] +name = "jedi" +version = "0.19.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d6/99/99b493cec4bf43176b678de30f81ed003fd6a647a301b9c927280c600f0a/jedi-0.19.1.tar.gz", hash = "sha256:cf0496f3651bc65d7174ac1b7d043eff454892c708a87d1b683e57b569927ffd", size = 1227821 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/9f/bc63f0f0737ad7a60800bfd472a4836661adae21f9c2535f3957b1e54ceb/jedi-0.19.1-py2.py3-none-any.whl", hash = "sha256:e983c654fe5c02867aef4cdfce5a2fbb4a50adc0af145f70504238f18ef5e7e0", size = 1569361 }, +] + +[[package]] +name = "jinja2" +version = "3.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ed/55/39036716d19cab0747a5020fc7e907f362fbf48c984b14e62127f7e68e5d/jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369", size = 240245 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d", size = 133271 }, +] + +[[package]] +name = "json5" +version = "0.9.25" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/91/59/51b032d53212a51f17ebbcc01bd4217faab6d6c09ed0d856a987a5f42bbc/json5-0.9.25.tar.gz", hash = "sha256:548e41b9be043f9426776f05df8635a00fe06104ea51ed24b67f908856e151ae", size = 40332 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8a/3c/4f8791ee53ab9eeb0b022205aa79387119a74cc9429582ce04098e6fc540/json5-0.9.25-py3-none-any.whl", hash = "sha256:34ed7d834b1341a86987ed52f3f76cd8ee184394906b6e22a1e0deb9ab294e8f", size = 30109 }, +] + +[[package]] +name = "jsonpointer" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6a/0a/eebeb1fa92507ea94016a2a790b93c2ae41a7e18778f85471dc54475ed25/jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef", size = 9114 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942", size = 7595 }, +] + +[[package]] +name = "jsonschema" +version = "4.23.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "jsonschema-specifications" }, + { name = "referencing" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/38/2e/03362ee4034a4c917f697890ccd4aec0800ccf9ded7f511971c75451deec/jsonschema-4.23.0.tar.gz", hash = "sha256:d71497fef26351a33265337fa77ffeb82423f3ea21283cd9467bb03999266bc4", size = 325778 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/69/4a/4f9dbeb84e8850557c02365a0eee0649abe5eb1d84af92a25731c6c0f922/jsonschema-4.23.0-py3-none-any.whl", hash = "sha256:fbadb6f8b144a8f8cf9f0b89ba94501d143e50411a1278633f56a7acf7fd5566", size = 88462 }, +] + +[package.optional-dependencies] +format-nongpl = [ + { name = "fqdn" }, + { name = "idna" }, + { name = "isoduration" }, + { name = "jsonpointer" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "uri-template" }, + { name = "webcolors" }, +] + +[[package]] +name = "jsonschema-specifications" +version = "2024.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "referencing" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/10/db/58f950c996c793472e336ff3655b13fbcf1e3b359dcf52dcf3ed3b52c352/jsonschema_specifications-2024.10.1.tar.gz", hash = "sha256:0f38b83639958ce1152d02a7f062902c41c8fd20d558b0c34344292d417ae272", size = 15561 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/0f/8910b19ac0670a0f80ce1008e5e751c4a57e14d2c4c13a482aa6079fa9d6/jsonschema_specifications-2024.10.1-py3-none-any.whl", hash = "sha256:a09a0680616357d9a0ecf05c12ad234479f549239d0f5b55f3deea67475da9bf", size = 18459 }, +] + +[[package]] +name = "jupyter" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipywidgets" }, + { name = "jupyter-console" }, + { name = "jupyterlab" }, + { name = "nbconvert" }, + { name = "notebook" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/f3/af28ea964ab8bc1e472dba2e82627d36d470c51f5cd38c37502eeffaa25e/jupyter-1.1.1.tar.gz", hash = "sha256:d55467bceabdea49d7e3624af7e33d59c37fff53ed3a350e1ac957bed731de7a", size = 5714959 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/38/64/285f20a31679bf547b75602702f7800e74dbabae36ef324f716c02804753/jupyter-1.1.1-py2.py3-none-any.whl", hash = "sha256:7a59533c22af65439b24bbe60373a4e95af8f16ac65a6c00820ad378e3f7cc83", size = 2657 }, +] + +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105 }, +] + +[[package]] +name = "jupyter-console" +version = "6.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ipykernel" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "pyzmq" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bd/2d/e2fd31e2fc41c14e2bcb6c976ab732597e907523f6b2420305f9fc7fdbdb/jupyter_console-6.6.3.tar.gz", hash = "sha256:566a4bf31c87adbfadf22cdf846e3069b59a71ed5da71d6ba4d8aaad14a53539", size = 34363 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ca/77/71d78d58f15c22db16328a476426f7ac4a60d3a5a7ba3b9627ee2f7903d4/jupyter_console-6.6.3-py3-none-any.whl", hash = "sha256:309d33409fcc92ffdad25f0bcdf9a4a9daa61b6f341177570fdac03de5352485", size = 24510 }, +] + +[[package]] +name = "jupyter-core" +version = "5.7.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/11/b56381fa6c3f4cc5d2cf54a7dbf98ad9aa0b339ef7a601d6053538b079a7/jupyter_core-5.7.2.tar.gz", hash = "sha256:aa5f8d32bbf6b431ac830496da7392035d6f61b4f54872f15c4bd2a9c3f536d9", size = 87629 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c9/fb/108ecd1fe961941959ad0ee4e12ee7b8b1477247f30b1fdfd83ceaf017f0/jupyter_core-5.7.2-py3-none-any.whl", hash = "sha256:4f7315d2f6b4bcf2e3e7cb6e46772eba760ae459cd1f59d29eb57b0a01bd7409", size = 28965 }, +] + +[[package]] +name = "jupyter-events" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jsonschema", extra = ["format-nongpl"] }, + { name = "python-json-logger" }, + { name = "pyyaml" }, + { name = "referencing" }, + { name = "rfc3339-validator" }, + { name = "rfc3986-validator" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8d/53/7537a1aa558229bb0b1b178d814c9d68a9c697d3aecb808a1cb2646acf1f/jupyter_events-0.10.0.tar.gz", hash = "sha256:670b8229d3cc882ec782144ed22e0d29e1c2d639263f92ca8383e66682845e22", size = 61516 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a5/94/059180ea70a9a326e1815176b2370da56376da347a796f8c4f0b830208ef/jupyter_events-0.10.0-py3-none-any.whl", hash = "sha256:4b72130875e59d57716d327ea70d3ebc3af1944d3717e5a498b8a06c6c159960", size = 18777 }, +] + +[[package]] +name = "jupyter-lsp" +version = "2.2.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/85/b4/3200b0b09c12bc3b72d943d923323c398eff382d1dcc7c0dbc8b74630e40/jupyter-lsp-2.2.5.tar.gz", hash = "sha256:793147a05ad446f809fd53ef1cd19a9f5256fd0a2d6b7ce943a982cb4f545001", size = 48741 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/e0/7bd7cff65594fd9936e2f9385701e44574fc7d721331ff676ce440b14100/jupyter_lsp-2.2.5-py3-none-any.whl", hash = "sha256:45fbddbd505f3fbfb0b6cb2f1bc5e15e83ab7c79cd6e89416b248cb3c00c11da", size = 69146 }, +] + +[[package]] +name = "jupyter-server" +version = "2.14.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "argon2-cffi" }, + { name = "jinja2" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "jupyter-events" }, + { name = "jupyter-server-terminals" }, + { name = "nbconvert" }, + { name = "nbformat" }, + { name = "overrides" }, + { name = "packaging" }, + { name = "prometheus-client" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "pyzmq" }, + { name = "send2trash" }, + { name = "terminado" }, + { name = "tornado" }, + { name = "traitlets" }, + { name = "websocket-client" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0c/34/88b47749c7fa9358e10eac356c4b97d94a91a67d5c935a73f69bc4a31118/jupyter_server-2.14.2.tar.gz", hash = "sha256:66095021aa9638ced276c248b1d81862e4c50f292d575920bbe960de1c56b12b", size = 719933 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/57/e1/085edea6187a127ca8ea053eb01f4e1792d778b4d192c74d32eb6730fed6/jupyter_server-2.14.2-py3-none-any.whl", hash = "sha256:47ff506127c2f7851a17bf4713434208fc490955d0e8632e95014a9a9afbeefd", size = 383556 }, +] + +[[package]] +name = "jupyter-server-terminals" +version = "0.5.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "terminado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fc/d5/562469734f476159e99a55426d697cbf8e7eb5efe89fb0e0b4f83a3d3459/jupyter_server_terminals-0.5.3.tar.gz", hash = "sha256:5ae0295167220e9ace0edcfdb212afd2b01ee8d179fe6f23c899590e9b8a5269", size = 31430 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/2d/2b32cdbe8d2a602f697a649798554e4f072115438e92249624e532e8aca6/jupyter_server_terminals-0.5.3-py3-none-any.whl", hash = "sha256:41ee0d7dc0ebf2809c668e0fc726dfaf258fcd3e769568996ca731b6194ae9aa", size = 13656 }, ] [[package]] -name = "idna" -version = "3.8" +name = "jupyterlab" +version = "4.3.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/e8/ac/e349c5e6d4543326c6883ee9491e3921e0d07b55fdf3cce184b40d63e72a/idna-3.8.tar.gz", hash = "sha256:d838c2c0ed6fced7693d5e8ab8e734d5f8fda53a039c0164afb0b82e771e3603", size = 189467 } +dependencies = [ + { name = "async-lru" }, + { name = "httpx" }, + { name = "ipykernel" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyter-lsp" }, + { name = "jupyter-server" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "packaging" }, + { name = "setuptools" }, + { name = "tomli", marker = "python_full_version < '3.11'" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/1b/19/67c3dd19789337396f2e43d9d8373d5e59b4ce6ad8df51edde83bf2156fd/jupyterlab-4.3.0.tar.gz", hash = "sha256:7c6835cbf8df0af0ec8a39332e85ff11693fb9a468205343b4fc0bfbc74817e5", size = 21797258 } wheels = [ - { url = "https://files.pythonhosted.org/packages/22/7e/d71db821f177828df9dea8c42ac46473366f191be53080e552e628aad991/idna-3.8-py3-none-any.whl", hash = "sha256:050b4e5baadcd44d760cedbd2b8e639f2ff89bbc7a5730fcc662954303377aac", size = 66894 }, + { url = "https://files.pythonhosted.org/packages/2c/61/e87b188e224c040ff5a30fd63ea61d1767e419d23abb9c731693d6de0a64/jupyterlab-4.3.0-py3-none-any.whl", hash = "sha256:f67e1095ad61ae04349024f0b40345062ab108a0c6998d9810fec6a3c1a70cd5", size = 11662506 }, ] [[package]] -name = "iniconfig" -version = "2.0.0" +name = "jupyterlab-pygments" +version = "0.3.0" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/d7/4b/cbd8e699e64a6f16ca3a8220661b5f83792b3017d0f79807cb8708d33913/iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3", size = 4646 } +sdist = { url = "https://files.pythonhosted.org/packages/90/51/9187be60d989df97f5f0aba133fa54e7300f17616e065d1ada7d7646b6d6/jupyterlab_pygments-0.3.0.tar.gz", hash = "sha256:721aca4d9029252b11cfa9d185e5b5af4d54772bb8072f9b7036f4170054d35d", size = 512900 } wheels = [ - { url = "https://files.pythonhosted.org/packages/ef/a6/62565a6e1cf69e10f5727360368e451d4b7f58beeac6173dc9db836a5b46/iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374", size = 5892 }, + { url = "https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl", hash = "sha256:841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780", size = 15884 }, ] [[package]] -name = "isort" -version = "5.13.2" +name = "jupyterlab-server" +version = "2.27.3" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/87/f9/c1eb8635a24e87ade2efce21e3ce8cd6b8630bb685ddc9cdaca1349b2eb5/isort-5.13.2.tar.gz", hash = "sha256:48fdfcb9face5d58a4f6dde2e72a1fb8dcaf8ab26f95ab49fab84c2ddefb0109", size = 175303 } +dependencies = [ + { name = "babel" }, + { name = "jinja2" }, + { name = "json5" }, + { name = "jsonschema" }, + { name = "jupyter-server" }, + { name = "packaging" }, + { name = "requests" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/0a/c9/a883ce65eb27905ce77ace410d83587c82ea64dc85a48d1f7ed52bcfa68d/jupyterlab_server-2.27.3.tar.gz", hash = "sha256:eb36caca59e74471988f0ae25c77945610b887f777255aa21f8065def9e51ed4", size = 76173 } wheels = [ - { url = "https://files.pythonhosted.org/packages/d1/b3/8def84f539e7d2289a02f0524b944b15d7c75dab7628bedf1c4f0992029c/isort-5.13.2-py3-none-any.whl", hash = "sha256:8ca5e72a8d85860d5a3fa69b8745237f2939afe12dbf656afbcb47fe72d947a6", size = 92310 }, + { url = "https://files.pythonhosted.org/packages/54/09/2032e7d15c544a0e3cd831c51d77a8ca57f7555b2e1b2922142eddb02a84/jupyterlab_server-2.27.3-py3-none-any.whl", hash = "sha256:e697488f66c3db49df675158a77b3b017520d772c6e1548c7d9bcc5df7944ee4", size = 59700 }, ] [[package]] -name = "jinja2" -version = "3.1.4" +name = "jupyterlab-widgets" +version = "3.0.13" source = { registry = "https://pypi.org/simple" } -dependencies = [ - { name = "markupsafe" }, -] -sdist = { url = "https://files.pythonhosted.org/packages/ed/55/39036716d19cab0747a5020fc7e907f362fbf48c984b14e62127f7e68e5d/jinja2-3.1.4.tar.gz", hash = "sha256:4a3aee7acbbe7303aede8e9648d13b8bf88a429282aa6122a993f0ac800cb369", size = 240245 } +sdist = { url = "https://files.pythonhosted.org/packages/59/73/fa26bbb747a9ea4fca6b01453aa22990d52ab62dd61384f1ac0dc9d4e7ba/jupyterlab_widgets-3.0.13.tar.gz", hash = "sha256:a2966d385328c1942b683a8cd96b89b8dd82c8b8f81dda902bb2bc06d46f5bed", size = 203556 } wheels = [ - { url = "https://files.pythonhosted.org/packages/31/80/3a54838c3fb461f6fec263ebf3a3a41771bd05190238de3486aae8540c36/jinja2-3.1.4-py3-none-any.whl", hash = "sha256:bc5dd2abb727a5319567b7a813e6a2e7318c39f4f487cfe6c89c6f9c7d25197d", size = 133271 }, + { url = "https://files.pythonhosted.org/packages/a9/93/858e87edc634d628e5d752ba944c2833133a28fa87bb093e6832ced36a3e/jupyterlab_widgets-3.0.13-py3-none-any.whl", hash = "sha256:e3cda2c233ce144192f1e29914ad522b2f4c40e77214b0cc97377ca3d323db54", size = 214392 }, ] [[package]] @@ -988,6 +1586,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/3f/14/c3554d512d5f9100a95e737502f4a2323a1959f6d0d01e0d0997b35f7b10/MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb", size = 17127 }, ] +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899 }, +] + [[package]] name = "mccabe" version = "0.7.0" @@ -1030,6 +1640,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/66/8a/f226f8c512a4e3ee36438613fde32d371262e985643d308850cf4bdaed15/mike-1.1.2-py3-none-any.whl", hash = "sha256:4c307c28769834d78df10f834f57f810f04ca27d248f80a75f49c6fa2d1527ca", size = 26933 }, ] +[[package]] +name = "mistune" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ef/c8/f0173fe3bf85fd891aee2e7bcd8207dfe26c2c683d727c5a6cc3aec7b628/mistune-3.0.2.tar.gz", hash = "sha256:fc7f93ded930c92394ef2cb6f04a8aabab4117a91449e72dcc8dfa646a508be8", size = 90840 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f0/74/c95adcdf032956d9ef6c89a9b8a5152bf73915f8c633f3e3d88d06bd699c/mistune-3.0.2-py3-none-any.whl", hash = "sha256:71481854c30fdbc938963d3605b72501f5c10a9320ecd412c121c163a1c7d205", size = 47958 }, +] + [[package]] name = "mkdocs" version = "1.6.0" @@ -1225,6 +1844,108 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/2a/e2/5d3f6ada4297caebe1a2add3b126fe800c96f56dbe5d1988a2cbe0b267aa/mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d", size = 4695 }, ] +[[package]] +name = "nbclient" +version = "0.10.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "nbformat" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/e2/d2/39bc36604f24bccd44d374ac34769bc58c53a1da5acd1e83f0165aa4940e/nbclient-0.10.0.tar.gz", hash = "sha256:4b3f1b7dba531e498449c4db4f53da339c91d449dc11e9af3a43b4eb5c5abb09", size = 62246 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/66/e8/00517a23d3eeaed0513e718fbc94aab26eaa1758f5690fc8578839791c79/nbclient-0.10.0-py3-none-any.whl", hash = "sha256:f13e3529332a1f1f81d82a53210322476a168bb7090a0289c795fe9cc11c9d3f", size = 25318 }, +] + +[[package]] +name = "nbconvert" +version = "7.16.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "beautifulsoup4" }, + { name = "bleach" }, + { name = "defusedxml" }, + { name = "jinja2" }, + { name = "jupyter-core" }, + { name = "jupyterlab-pygments" }, + { name = "markupsafe" }, + { name = "mistune" }, + { name = "nbclient" }, + { name = "nbformat" }, + { name = "packaging" }, + { name = "pandocfilters" }, + { name = "pygments" }, + { name = "tinycss2" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/af/e8/ba521a033b21132008e520c28ceb818f9f092da5f0261e94e509401b29f9/nbconvert-7.16.4.tar.gz", hash = "sha256:86ca91ba266b0a448dc96fa6c5b9d98affabde2867b363258703536807f9f7f4", size = 854422 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b8/bb/bb5b6a515d1584aa2fd89965b11db6632e4bdc69495a52374bcc36e56cfa/nbconvert-7.16.4-py3-none-any.whl", hash = "sha256:05873c620fe520b6322bf8a5ad562692343fe3452abda5765c7a34b7d1aa3eb3", size = 257388 }, +] + +[[package]] +name = "nbformat" +version = "5.10.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "fastjsonschema" }, + { name = "jsonschema" }, + { name = "jupyter-core" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6d/fd/91545e604bc3dad7dca9ed03284086039b294c6b3d75c0d2fa45f9e9caf3/nbformat-5.10.4.tar.gz", hash = "sha256:322168b14f937a5d11362988ecac2a4952d3d8e3a2cbeb2319584631226d5b3a", size = 142749 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl", hash = "sha256:3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b", size = 78454 }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195 }, +] + +[[package]] +name = "notebook" +version = "7.0.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, + { name = "jupyterlab" }, + { name = "jupyterlab-server" }, + { name = "notebook-shim" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/7d/97/369dd928d0561e7a8ae673156d2470664a83935320b068fa35b54d19f0bd/notebook-7.0.7.tar.gz", hash = "sha256:3bcff00c17b3ac142ef5f436d50637d936b274cfa0b41f6ac0175363de9b4e09", size = 3936954 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f2/57/2f8d59ddc7f2d0d8ac4f80f869545bc44646fc78c1c083b3655c58e3edfb/notebook-7.0.7-py3-none-any.whl", hash = "sha256:289b606d7e173f75a18beb1406ef411b43f97f7a9c55ba03efa3622905a62346", size = 4020164 }, +] + +[[package]] +name = "notebook-shim" +version = "0.2.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-server" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/54/d2/92fa3243712b9a3e8bafaf60aac366da1cada3639ca767ff4b5b3654ec28/notebook_shim-0.2.4.tar.gz", hash = "sha256:b4b2cfa1b65d98307ca24361f5b30fe785b53c3fd07b7a47e89acb5e6ac638cb", size = 13167 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl", hash = "sha256:411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef", size = 13307 }, +] + +[[package]] +name = "overrides" +version = "7.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/36/86/b585f53236dec60aba864e050778b25045f857e17f6e5ea0ae95fe80edd2/overrides-7.7.0.tar.gz", hash = "sha256:55158fa3d93b98cc75299b1e67078ad9003ca27945c76162c1c0766d6f91820a", size = 22812 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/ab/fc8290c6a4c722e5514d80f62b2dc4c4df1a68a41d1364e625c35990fcf3/overrides-7.7.0-py3-none-any.whl", hash = "sha256:c7ed9d062f78b8e4c1a7b70bd8796b35ead4d9f510227ef9c5dc7626c60d7e49", size = 17832 }, +] + [[package]] name = "packaging" version = "24.1" @@ -1243,6 +1964,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/90/96/04b8e52da071d28f5e21a805b19cb9390aa17a47462ac87f5e2696b9566d/paginate-0.5.7-py2.py3-none-any.whl", hash = "sha256:b885e2af73abcf01d9559fd5216b57ef722f8c42affbb63942377668e35c7591", size = 13746 }, ] +[[package]] +name = "pandocfilters" +version = "1.5.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/70/6f/3dd4940bbe001c06a65f88e36bad298bc7a0de5036115639926b0c5c0458/pandocfilters-1.5.1.tar.gz", hash = "sha256:002b4a555ee4ebc03f8b66307e287fa492e4a77b4ea14d3f934328297bb4939e", size = 8454 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl", hash = "sha256:93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc", size = 8663 }, +] + +[[package]] +name = "parso" +version = "0.8.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/66/94/68e2e17afaa9169cf6412ab0f28623903be73d1b32e208d9e8e541bb086d/parso-0.8.4.tar.gz", hash = "sha256:eb3a7b58240fb99099a345571deecc0f9540ea5f4dd2fe14c2a99d6b281ab92d", size = 400609 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/ac/dac4a63f978e4dcb3c6d3a78c4d8e0192a113d288502a1216950c41b1027/parso-0.8.4-py2.py3-none-any.whl", hash = "sha256:a418670a20291dacd2dddc80c377c5c3791378ee1e8d12bffc35420643d43f18", size = 103650 }, +] + [[package]] name = "pathspec" version = "0.12.1" @@ -1264,6 +2003,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/4f/48/9533518e0394fb858ac2b4b55fe18f24aa33c87c943f691336ec842d9728/pep8_naming-0.13.3-py3-none-any.whl", hash = "sha256:1a86b8c71a03337c97181917e2b472f0f5e4ccb06844a0d6f0a33522549e7a80", size = 8490 }, ] +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772 }, +] + [[package]] name = "pillow" version = "10.4.0" @@ -1341,6 +2092,60 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669", size = 20556 }, ] +[[package]] +name = "prometheus-client" +version = "0.21.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e1/54/a369868ed7a7f1ea5163030f4fc07d85d22d7a1d270560dab675188fb612/prometheus_client-0.21.0.tar.gz", hash = "sha256:96c83c606b71ff2b0a433c98889d275f51ffec6c5e267de37c7a2b5c9aa9233e", size = 78634 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/2d/46ed6436849c2c88228c3111865f44311cff784b4aabcdef4ea2545dbc3d/prometheus_client-0.21.0-py3-none-any.whl", hash = "sha256:4fa6b4dd0ac16d58bb587c04b1caae65b8c5043e85f778f42f5f632f6af2e166", size = 54686 }, +] + +[[package]] +name = "prompt-toolkit" +version = "3.0.48" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/2d/4f/feb5e137aff82f7c7f3248267b97451da3644f6cdc218edfe549fb354127/prompt_toolkit-3.0.48.tar.gz", hash = "sha256:d6623ab0477a80df74e646bdbc93621143f5caf104206aa29294d53de1a03d90", size = 424684 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a9/6a/fd08d94654f7e67c52ca30523a178b3f8ccc4237fce4be90d39c938a831a/prompt_toolkit-3.0.48-py3-none-any.whl", hash = "sha256:f49a827f90062e411f1ce1f854f2aedb3c23353244f8108b89283587397ac10e", size = 386595 }, +] + +[[package]] +name = "psutil" +version = "6.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/26/10/2a30b13c61e7cf937f4adf90710776b7918ed0a9c434e2c38224732af310/psutil-6.1.0.tar.gz", hash = "sha256:353815f59a7f64cdaca1c0307ee13558a0512f6db064e92fe833784f08539c7a", size = 508565 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/01/9e/8be43078a171381953cfee33c07c0d628594b5dbfc5157847b85022c2c1b/psutil-6.1.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6e2dcd475ce8b80522e51d923d10c7871e45f20918e027ab682f94f1c6351688", size = 247762 }, + { url = "https://files.pythonhosted.org/packages/1d/cb/313e80644ea407f04f6602a9e23096540d9dc1878755f3952ea8d3d104be/psutil-6.1.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:0895b8414afafc526712c498bd9de2b063deaac4021a3b3c34566283464aff8e", size = 248777 }, + { url = "https://files.pythonhosted.org/packages/65/8e/bcbe2025c587b5d703369b6a75b65d41d1367553da6e3f788aff91eaf5bd/psutil-6.1.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9dcbfce5d89f1d1f2546a2090f4fcf87c7f669d1d90aacb7d7582addece9fb38", size = 284259 }, + { url = "https://files.pythonhosted.org/packages/58/4d/8245e6f76a93c98aab285a43ea71ff1b171bcd90c9d238bf81f7021fb233/psutil-6.1.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:498c6979f9c6637ebc3a73b3f87f9eb1ec24e1ce53a7c5173b8508981614a90b", size = 287255 }, + { url = "https://files.pythonhosted.org/packages/27/c2/d034856ac47e3b3cdfa9720d0e113902e615f4190d5d1bdb8df4b2015fb2/psutil-6.1.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d905186d647b16755a800e7263d43df08b790d709d575105d419f8b6ef65423a", size = 288804 }, + { url = "https://files.pythonhosted.org/packages/ea/55/5389ed243c878725feffc0d6a3bc5ef6764312b6fc7c081faaa2cfa7ef37/psutil-6.1.0-cp37-abi3-win32.whl", hash = "sha256:1ad45a1f5d0b608253b11508f80940985d1d0c8f6111b5cb637533a0e6ddc13e", size = 250386 }, + { url = "https://files.pythonhosted.org/packages/11/91/87fa6f060e649b1e1a7b19a4f5869709fbf750b7c8c262ee776ec32f3028/psutil-6.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:a8fb3752b491d246034fa4d279ff076501588ce8cbcdbb62c32fd7a377d996be", size = 254228 }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993 }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842 }, +] + [[package]] name = "py-ecc" version = "7.0.1" @@ -1646,6 +2451,46 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892 }, ] +[[package]] +name = "python-json-logger" +version = "2.0.7" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4f/da/95963cebfc578dabd323d7263958dfb68898617912bb09327dd30e9c8d13/python-json-logger-2.0.7.tar.gz", hash = "sha256:23e7ec02d34237c5aa1e29a070193a4ea87583bb4e7f8fd06d3de8264c4b2e1c", size = 10508 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/35/a6/145655273568ee78a581e734cf35beb9e33a370b29c5d3c8fee3744de29f/python_json_logger-2.0.7-py3-none-any.whl", hash = "sha256:f380b826a991ebbe3de4d897aeec42760035ac760345e57b812938dc8b35e2bd", size = 8067 }, +] + +[[package]] +name = "pywin32" +version = "308" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/72/a6/3e9f2c474895c1bb61b11fa9640be00067b5c5b363c501ee9c3fa53aec01/pywin32-308-cp310-cp310-win32.whl", hash = "sha256:796ff4426437896550d2981b9c2ac0ffd75238ad9ea2d3bfa67a1abd546d262e", size = 5927028 }, + { url = "https://files.pythonhosted.org/packages/d9/b4/84e2463422f869b4b718f79eb7530a4c1693e96b8a4e5e968de38be4d2ba/pywin32-308-cp310-cp310-win_amd64.whl", hash = "sha256:4fc888c59b3c0bef905ce7eb7e2106a07712015ea1c8234b703a088d46110e8e", size = 6558484 }, + { url = "https://files.pythonhosted.org/packages/9f/8f/fb84ab789713f7c6feacaa08dad3ec8105b88ade8d1c4f0f0dfcaaa017d6/pywin32-308-cp310-cp310-win_arm64.whl", hash = "sha256:a5ab5381813b40f264fa3495b98af850098f814a25a63589a8e9eb12560f450c", size = 7971454 }, + { url = "https://files.pythonhosted.org/packages/eb/e2/02652007469263fe1466e98439831d65d4ca80ea1a2df29abecedf7e47b7/pywin32-308-cp311-cp311-win32.whl", hash = "sha256:5d8c8015b24a7d6855b1550d8e660d8daa09983c80e5daf89a273e5c6fb5095a", size = 5928156 }, + { url = "https://files.pythonhosted.org/packages/48/ef/f4fb45e2196bc7ffe09cad0542d9aff66b0e33f6c0954b43e49c33cad7bd/pywin32-308-cp311-cp311-win_amd64.whl", hash = "sha256:575621b90f0dc2695fec346b2d6302faebd4f0f45c05ea29404cefe35d89442b", size = 6559559 }, + { url = "https://files.pythonhosted.org/packages/79/ef/68bb6aa865c5c9b11a35771329e95917b5559845bd75b65549407f9fc6b4/pywin32-308-cp311-cp311-win_arm64.whl", hash = "sha256:100a5442b7332070983c4cd03f2e906a5648a5104b8a7f50175f7906efd16bb6", size = 7972495 }, + { url = "https://files.pythonhosted.org/packages/00/7c/d00d6bdd96de4344e06c4afbf218bc86b54436a94c01c71a8701f613aa56/pywin32-308-cp312-cp312-win32.whl", hash = "sha256:587f3e19696f4bf96fde9d8a57cec74a57021ad5f204c9e627e15c33ff568897", size = 5939729 }, + { url = "https://files.pythonhosted.org/packages/21/27/0c8811fbc3ca188f93b5354e7c286eb91f80a53afa4e11007ef661afa746/pywin32-308-cp312-cp312-win_amd64.whl", hash = "sha256:00b3e11ef09ede56c6a43c71f2d31857cf7c54b0ab6e78ac659497abd2834f47", size = 6543015 }, + { url = "https://files.pythonhosted.org/packages/9d/0f/d40f8373608caed2255781a3ad9a51d03a594a1248cd632d6a298daca693/pywin32-308-cp312-cp312-win_arm64.whl", hash = "sha256:9b4de86c8d909aed15b7011182c8cab38c8850de36e6afb1f0db22b8959e3091", size = 7976033 }, + { url = "https://files.pythonhosted.org/packages/a9/a4/aa562d8935e3df5e49c161b427a3a2efad2ed4e9cf81c3de636f1fdddfd0/pywin32-308-cp313-cp313-win32.whl", hash = "sha256:1c44539a37a5b7b21d02ab34e6a4d314e0788f1690d65b48e9b0b89f31abbbed", size = 5938579 }, + { url = "https://files.pythonhosted.org/packages/c7/50/b0efb8bb66210da67a53ab95fd7a98826a97ee21f1d22949863e6d588b22/pywin32-308-cp313-cp313-win_amd64.whl", hash = "sha256:fd380990e792eaf6827fcb7e187b2b4b1cede0585e3d0c9e84201ec27b9905e4", size = 6542056 }, + { url = "https://files.pythonhosted.org/packages/26/df/2b63e3e4f2df0224f8aaf6d131f54fe4e8c96400eb9df563e2aae2e1a1f9/pywin32-308-cp313-cp313-win_arm64.whl", hash = "sha256:ef313c46d4c18dfb82a2431e3051ac8f112ccee1a34f29c263c583c568db63cd", size = 7974986 }, +] + +[[package]] +name = "pywinpty" +version = "2.0.14" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/82/90f8750423cba4b9b6c842df227609fb60704482d7abf6dd47e2babc055a/pywinpty-2.0.14.tar.gz", hash = "sha256:18bd9529e4a5daf2d9719aa17788ba6013e594ae94c5a0c27e83df3278b0660e", size = 27769 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/07/09/56376af256eab8cc5f8982a3b138d387136eca27fa1a8a68660e8ed59e4b/pywinpty-2.0.14-cp310-none-win_amd64.whl", hash = "sha256:0b149c2918c7974f575ba79f5a4aad58bd859a52fa9eb1296cc22aa412aa411f", size = 1397115 }, + { url = "https://files.pythonhosted.org/packages/be/e2/af1a99c0432e4e58c9ac8e334ee191790ec9793d33559189b9d2069bdc1d/pywinpty-2.0.14-cp311-none-win_amd64.whl", hash = "sha256:cf2a43ac7065b3e0dc8510f8c1f13a75fb8fde805efa3b8cff7599a1ef497bc7", size = 1397223 }, + { url = "https://files.pythonhosted.org/packages/ad/79/759ae767a3b78d340446efd54dd1fe4f7dafa4fc7be96ed757e44bcdba54/pywinpty-2.0.14-cp312-none-win_amd64.whl", hash = "sha256:55dad362ef3e9408ade68fd173e4f9032b3ce08f68cfe7eacb2c263ea1179737", size = 1397207 }, + { url = "https://files.pythonhosted.org/packages/7d/34/b77b3c209bf2eaa6455390c8d5449241637f5957f41636a2204065d52bfa/pywinpty-2.0.14-cp313-none-win_amd64.whl", hash = "sha256:074fb988a56ec79ca90ed03a896d40707131897cefb8f76f926e3834227f2819", size = 1396698 }, +] + [[package]] name = "pyyaml" version = "6.0.2" @@ -1702,6 +2547,92 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/5a/66/bbb1dd374f5c870f59c5bb1db0e18cbe7fa739415a24cbd95b2d1f5ae0c4/pyyaml_env_tag-0.1-py3-none-any.whl", hash = "sha256:af31106dec8a4d68c60207c1886031cbf839b68aa7abccdb19868200532c2069", size = 3911 }, ] +[[package]] +name = "pyzmq" +version = "26.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fd/05/bed626b9f7bb2322cdbbf7b4bd8f54b1b617b0d2ab2d3547d6e39428a48e/pyzmq-26.2.0.tar.gz", hash = "sha256:070672c258581c8e4f640b5159297580a9974b026043bd4ab0470be9ed324f1f", size = 271975 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1f/a8/9837c39aba390eb7d01924ace49d761c8dbe7bc2d6082346d00c8332e431/pyzmq-26.2.0-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:ddf33d97d2f52d89f6e6e7ae66ee35a4d9ca6f36eda89c24591b0c40205a3629", size = 1340058 }, + { url = "https://files.pythonhosted.org/packages/a2/1f/a006f2e8e4f7d41d464272012695da17fb95f33b54342612a6890da96ff6/pyzmq-26.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:dacd995031a01d16eec825bf30802fceb2c3791ef24bcce48fa98ce40918c27b", size = 1008818 }, + { url = "https://files.pythonhosted.org/packages/b6/09/b51b6683fde5ca04593a57bbe81788b6b43114d8f8ee4e80afc991e14760/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89289a5ee32ef6c439086184529ae060c741334b8970a6855ec0b6ad3ff28764", size = 673199 }, + { url = "https://files.pythonhosted.org/packages/c9/78/486f3e2e824f3a645238332bf5a4c4b4477c3063033a27c1e4052358dee2/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5506f06d7dc6ecf1efacb4a013b1f05071bb24b76350832c96449f4a2d95091c", size = 911762 }, + { url = "https://files.pythonhosted.org/packages/5e/3b/2eb1667c9b866f53e76ee8b0c301b0469745a23bd5a87b7ee3d5dd9eb6e5/pyzmq-26.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8ea039387c10202ce304af74def5021e9adc6297067f3441d348d2b633e8166a", size = 868773 }, + { url = "https://files.pythonhosted.org/packages/16/29/ca99b4598a9dc7e468b5417eda91f372b595be1e3eec9b7cbe8e5d3584e8/pyzmq-26.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a2224fa4a4c2ee872886ed00a571f5e967c85e078e8e8c2530a2fb01b3309b88", size = 868834 }, + { url = "https://files.pythonhosted.org/packages/ad/e5/9efaeb1d2f4f8c50da04144f639b042bc52869d3a206d6bf672ab3522163/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:28ad5233e9c3b52d76196c696e362508959741e1a005fb8fa03b51aea156088f", size = 1202861 }, + { url = "https://files.pythonhosted.org/packages/c3/62/c721b5608a8ac0a69bb83cbb7d07a56f3ff00b3991a138e44198a16f94c7/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:1c17211bc037c7d88e85ed8b7d8f7e52db6dc8eca5590d162717c654550f7282", size = 1515304 }, + { url = "https://files.pythonhosted.org/packages/87/84/e8bd321aa99b72f48d4606fc5a0a920154125bd0a4608c67eab742dab087/pyzmq-26.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b8f86dd868d41bea9a5f873ee13bf5551c94cf6bc51baebc6f85075971fe6eea", size = 1414712 }, + { url = "https://files.pythonhosted.org/packages/cd/cd/420e3fd1ac6977b008b72e7ad2dae6350cc84d4c5027fc390b024e61738f/pyzmq-26.2.0-cp310-cp310-win32.whl", hash = "sha256:46a446c212e58456b23af260f3d9fb785054f3e3653dbf7279d8f2b5546b21c2", size = 578113 }, + { url = "https://files.pythonhosted.org/packages/5c/57/73930d56ed45ae0cb4946f383f985c855c9b3d4063f26416998f07523c0e/pyzmq-26.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:49d34ab71db5a9c292a7644ce74190b1dd5a3475612eefb1f8be1d6961441971", size = 641631 }, + { url = "https://files.pythonhosted.org/packages/61/d2/ae6ac5c397f1ccad59031c64beaafce7a0d6182e0452cc48f1c9c87d2dd0/pyzmq-26.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:bfa832bfa540e5b5c27dcf5de5d82ebc431b82c453a43d141afb1e5d2de025fa", size = 543528 }, + { url = "https://files.pythonhosted.org/packages/12/20/de7442172f77f7c96299a0ac70e7d4fb78cd51eca67aa2cf552b66c14196/pyzmq-26.2.0-cp311-cp311-macosx_10_15_universal2.whl", hash = "sha256:8f7e66c7113c684c2b3f1c83cdd3376103ee0ce4c49ff80a648643e57fb22218", size = 1340639 }, + { url = "https://files.pythonhosted.org/packages/98/4d/5000468bd64c7910190ed0a6c76a1ca59a68189ec1f007c451dc181a22f4/pyzmq-26.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3a495b30fc91db2db25120df5847d9833af237546fd59170701acd816ccc01c4", size = 1008710 }, + { url = "https://files.pythonhosted.org/packages/e1/bf/c67fd638c2f9fbbab8090a3ee779370b97c82b84cc12d0c498b285d7b2c0/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77eb0968da535cba0470a5165468b2cac7772cfb569977cff92e240f57e31bef", size = 673129 }, + { url = "https://files.pythonhosted.org/packages/86/94/99085a3f492aa538161cbf27246e8886ff850e113e0c294a5b8245f13b52/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ace4f71f1900a548f48407fc9be59c6ba9d9aaf658c2eea6cf2779e72f9f317", size = 910107 }, + { url = "https://files.pythonhosted.org/packages/31/1d/346809e8a9b999646d03f21096428453465b1bca5cd5c64ecd048d9ecb01/pyzmq-26.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:92a78853d7280bffb93df0a4a6a2498cba10ee793cc8076ef797ef2f74d107cf", size = 867960 }, + { url = "https://files.pythonhosted.org/packages/ab/68/6fb6ae5551846ad5beca295b7bca32bf0a7ce19f135cb30e55fa2314e6b6/pyzmq-26.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:689c5d781014956a4a6de61d74ba97b23547e431e9e7d64f27d4922ba96e9d6e", size = 869204 }, + { url = "https://files.pythonhosted.org/packages/0f/f9/18417771dee223ccf0f48e29adf8b4e25ba6d0e8285e33bcbce078070bc3/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0aca98bc423eb7d153214b2df397c6421ba6373d3397b26c057af3c904452e37", size = 1203351 }, + { url = "https://files.pythonhosted.org/packages/e0/46/f13e67fe0d4f8a2315782cbad50493de6203ea0d744610faf4d5f5b16e90/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:1f3496d76b89d9429a656293744ceca4d2ac2a10ae59b84c1da9b5165f429ad3", size = 1514204 }, + { url = "https://files.pythonhosted.org/packages/50/11/ddcf7343b7b7a226e0fc7b68cbf5a5bb56291fac07f5c3023bb4c319ebb4/pyzmq-26.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5c2b3bfd4b9689919db068ac6c9911f3fcb231c39f7dd30e3138be94896d18e6", size = 1414339 }, + { url = "https://files.pythonhosted.org/packages/01/14/1c18d7d5b7be2708f513f37c61bfadfa62161c10624f8733f1c8451b3509/pyzmq-26.2.0-cp311-cp311-win32.whl", hash = "sha256:eac5174677da084abf378739dbf4ad245661635f1600edd1221f150b165343f4", size = 576928 }, + { url = "https://files.pythonhosted.org/packages/3b/1b/0a540edd75a41df14ec416a9a500b9fec66e554aac920d4c58fbd5756776/pyzmq-26.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:5a509df7d0a83a4b178d0f937ef14286659225ef4e8812e05580776c70e155d5", size = 642317 }, + { url = "https://files.pythonhosted.org/packages/98/77/1cbfec0358078a4c5add529d8a70892db1be900980cdb5dd0898b3d6ab9d/pyzmq-26.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:c0e6091b157d48cbe37bd67233318dbb53e1e6327d6fc3bb284afd585d141003", size = 543834 }, + { url = "https://files.pythonhosted.org/packages/28/2f/78a766c8913ad62b28581777ac4ede50c6d9f249d39c2963e279524a1bbe/pyzmq-26.2.0-cp312-cp312-macosx_10_15_universal2.whl", hash = "sha256:ded0fc7d90fe93ae0b18059930086c51e640cdd3baebdc783a695c77f123dcd9", size = 1343105 }, + { url = "https://files.pythonhosted.org/packages/b7/9c/4b1e2d3d4065be715e007fe063ec7885978fad285f87eae1436e6c3201f4/pyzmq-26.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:17bf5a931c7f6618023cdacc7081f3f266aecb68ca692adac015c383a134ca52", size = 1008365 }, + { url = "https://files.pythonhosted.org/packages/4f/ef/5a23ec689ff36d7625b38d121ef15abfc3631a9aecb417baf7a4245e4124/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:55cf66647e49d4621a7e20c8d13511ef1fe1efbbccf670811864452487007e08", size = 665923 }, + { url = "https://files.pythonhosted.org/packages/ae/61/d436461a47437d63c6302c90724cf0981883ec57ceb6073873f32172d676/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4661c88db4a9e0f958c8abc2b97472e23061f0bc737f6f6179d7a27024e1faa5", size = 903400 }, + { url = "https://files.pythonhosted.org/packages/47/42/fc6d35ecefe1739a819afaf6f8e686f7f02a4dd241c78972d316f403474c/pyzmq-26.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ea7f69de383cb47522c9c208aec6dd17697db7875a4674c4af3f8cfdac0bdeae", size = 860034 }, + { url = "https://files.pythonhosted.org/packages/07/3b/44ea6266a6761e9eefaa37d98fabefa112328808ac41aa87b4bbb668af30/pyzmq-26.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:7f98f6dfa8b8ccaf39163ce872bddacca38f6a67289116c8937a02e30bbe9711", size = 860579 }, + { url = "https://files.pythonhosted.org/packages/38/6f/4df2014ab553a6052b0e551b37da55166991510f9e1002c89cab7ce3b3f2/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e3e0210287329272539eea617830a6a28161fbbd8a3271bf4150ae3e58c5d0e6", size = 1196246 }, + { url = "https://files.pythonhosted.org/packages/38/9d/ee240fc0c9fe9817f0c9127a43238a3e28048795483c403cc10720ddef22/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:6b274e0762c33c7471f1a7471d1a2085b1a35eba5cdc48d2ae319f28b6fc4de3", size = 1507441 }, + { url = "https://files.pythonhosted.org/packages/85/4f/01711edaa58d535eac4a26c294c617c9a01f09857c0ce191fd574d06f359/pyzmq-26.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:29c6a4635eef69d68a00321e12a7d2559fe2dfccfa8efae3ffb8e91cd0b36a8b", size = 1406498 }, + { url = "https://files.pythonhosted.org/packages/07/18/907134c85c7152f679ed744e73e645b365f3ad571f38bdb62e36f347699a/pyzmq-26.2.0-cp312-cp312-win32.whl", hash = "sha256:989d842dc06dc59feea09e58c74ca3e1678c812a4a8a2a419046d711031f69c7", size = 575533 }, + { url = "https://files.pythonhosted.org/packages/ce/2c/a6f4a20202a4d3c582ad93f95ee78d79bbdc26803495aec2912b17dbbb6c/pyzmq-26.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:2a50625acdc7801bc6f74698c5c583a491c61d73c6b7ea4dee3901bb99adb27a", size = 637768 }, + { url = "https://files.pythonhosted.org/packages/5f/0e/eb16ff731632d30554bf5af4dbba3ffcd04518219d82028aea4ae1b02ca5/pyzmq-26.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:4d29ab8592b6ad12ebbf92ac2ed2bedcfd1cec192d8e559e2e099f648570e19b", size = 540675 }, + { url = "https://files.pythonhosted.org/packages/04/a7/0f7e2f6c126fe6e62dbae0bc93b1bd3f1099cf7fea47a5468defebe3f39d/pyzmq-26.2.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:9dd8cd1aeb00775f527ec60022004d030ddc51d783d056e3e23e74e623e33726", size = 1006564 }, + { url = "https://files.pythonhosted.org/packages/31/b6/a187165c852c5d49f826a690857684333a6a4a065af0a6015572d2284f6a/pyzmq-26.2.0-cp313-cp313-macosx_10_15_universal2.whl", hash = "sha256:28c812d9757fe8acecc910c9ac9dafd2ce968c00f9e619db09e9f8f54c3a68a3", size = 1340447 }, + { url = "https://files.pythonhosted.org/packages/68/ba/f4280c58ff71f321602a6e24fd19879b7e79793fb8ab14027027c0fb58ef/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d80b1dd99c1942f74ed608ddb38b181b87476c6a966a88a950c7dee118fdf50", size = 665485 }, + { url = "https://files.pythonhosted.org/packages/77/b5/c987a5c53c7d8704216f29fc3d810b32f156bcea488a940e330e1bcbb88d/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8c997098cc65e3208eca09303630e84d42718620e83b733d0fd69543a9cab9cb", size = 903484 }, + { url = "https://files.pythonhosted.org/packages/29/c9/07da157d2db18c72a7eccef8e684cefc155b712a88e3d479d930aa9eceba/pyzmq-26.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ad1bc8d1b7a18497dda9600b12dc193c577beb391beae5cd2349184db40f187", size = 859981 }, + { url = "https://files.pythonhosted.org/packages/43/09/e12501bd0b8394b7d02c41efd35c537a1988da67fc9c745cae9c6c776d31/pyzmq-26.2.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:bea2acdd8ea4275e1278350ced63da0b166421928276c7c8e3f9729d7402a57b", size = 860334 }, + { url = "https://files.pythonhosted.org/packages/eb/ff/f5ec1d455f8f7385cc0a8b2acd8c807d7fade875c14c44b85c1bddabae21/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:23f4aad749d13698f3f7b64aad34f5fc02d6f20f05999eebc96b89b01262fb18", size = 1196179 }, + { url = "https://files.pythonhosted.org/packages/ec/8a/bb2ac43295b1950fe436a81fc5b298be0b96ac76fb029b514d3ed58f7b27/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_i686.whl", hash = "sha256:a4f96f0d88accc3dbe4a9025f785ba830f968e21e3e2c6321ccdfc9aef755115", size = 1507668 }, + { url = "https://files.pythonhosted.org/packages/a9/49/dbc284ebcfd2dca23f6349227ff1616a7ee2c4a35fe0a5d6c3deff2b4fed/pyzmq-26.2.0-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:ced65e5a985398827cc9276b93ef6dfabe0273c23de8c7931339d7e141c2818e", size = 1406539 }, + { url = "https://files.pythonhosted.org/packages/00/68/093cdce3fe31e30a341d8e52a1ad86392e13c57970d722c1f62a1d1a54b6/pyzmq-26.2.0-cp313-cp313-win32.whl", hash = "sha256:31507f7b47cc1ead1f6e86927f8ebb196a0bab043f6345ce070f412a59bf87b5", size = 575567 }, + { url = "https://files.pythonhosted.org/packages/92/ae/6cc4657148143412b5819b05e362ae7dd09fb9fe76e2a539dcff3d0386bc/pyzmq-26.2.0-cp313-cp313-win_amd64.whl", hash = "sha256:70fc7fcf0410d16ebdda9b26cbd8bf8d803d220a7f3522e060a69a9c87bf7bad", size = 637551 }, + { url = "https://files.pythonhosted.org/packages/6c/67/fbff102e201688f97c8092e4c3445d1c1068c2f27bbd45a578df97ed5f94/pyzmq-26.2.0-cp313-cp313-win_arm64.whl", hash = "sha256:c3789bd5768ab5618ebf09cef6ec2b35fed88709b104351748a63045f0ff9797", size = 540378 }, + { url = "https://files.pythonhosted.org/packages/3f/fe/2d998380b6e0122c6c4bdf9b6caf490831e5f5e2d08a203b5adff060c226/pyzmq-26.2.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:034da5fc55d9f8da09015d368f519478a52675e558c989bfcb5cf6d4e16a7d2a", size = 1007378 }, + { url = "https://files.pythonhosted.org/packages/4a/f4/30d6e7157f12b3a0390bde94d6a8567cdb88846ed068a6e17238a4ccf600/pyzmq-26.2.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:c92d73464b886931308ccc45b2744e5968cbaade0b1d6aeb40d8ab537765f5bc", size = 1329532 }, + { url = "https://files.pythonhosted.org/packages/82/86/3fe917870e15ee1c3ad48229a2a64458e36036e64b4afa9659045d82bfa8/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:794a4562dcb374f7dbbfb3f51d28fb40123b5a2abadee7b4091f93054909add5", size = 653242 }, + { url = "https://files.pythonhosted.org/packages/50/2d/242e7e6ef6c8c19e6cb52d095834508cd581ffb925699fd3c640cdc758f1/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aee22939bb6075e7afededabad1a56a905da0b3c4e3e0c45e75810ebe3a52672", size = 888404 }, + { url = "https://files.pythonhosted.org/packages/ac/11/7270566e1f31e4ea73c81ec821a4b1688fd551009a3d2bab11ec66cb1e8f/pyzmq-26.2.0-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2ae90ff9dad33a1cfe947d2c40cb9cb5e600d759ac4f0fd22616ce6540f72797", size = 845858 }, + { url = "https://files.pythonhosted.org/packages/91/d5/72b38fbc69867795c8711bdd735312f9fef1e3d9204e2f63ab57085434b9/pyzmq-26.2.0-cp313-cp313t-manylinux_2_28_x86_64.whl", hash = "sha256:43a47408ac52647dfabbc66a25b05b6a61700b5165807e3fbd40063fcaf46386", size = 847375 }, + { url = "https://files.pythonhosted.org/packages/dd/9a/10ed3c7f72b4c24e719c59359fbadd1a27556a28b36cdf1cd9e4fb7845d5/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_aarch64.whl", hash = "sha256:25bf2374a2a8433633c65ccb9553350d5e17e60c8eb4de4d92cc6bd60f01d306", size = 1183489 }, + { url = "https://files.pythonhosted.org/packages/72/2d/8660892543fabf1fe41861efa222455811adac9f3c0818d6c3170a1153e3/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_i686.whl", hash = "sha256:007137c9ac9ad5ea21e6ad97d3489af654381324d5d3ba614c323f60dab8fae6", size = 1492932 }, + { url = "https://files.pythonhosted.org/packages/7b/d6/32fd69744afb53995619bc5effa2a405ae0d343cd3e747d0fbc43fe894ee/pyzmq-26.2.0-cp313-cp313t-musllinux_1_1_x86_64.whl", hash = "sha256:470d4a4f6d48fb34e92d768b4e8a5cc3780db0d69107abf1cd7ff734b9766eb0", size = 1392485 }, + { url = "https://files.pythonhosted.org/packages/53/fb/36b2b2548286e9444e52fcd198760af99fd89102b5be50f0660fcfe902df/pyzmq-26.2.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:706e794564bec25819d21a41c31d4df2d48e1cc4b061e8d345d7fb4dd3e94072", size = 906955 }, + { url = "https://files.pythonhosted.org/packages/77/8f/6ce54f8979a01656e894946db6299e2273fcee21c8e5fa57c6295ef11f57/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8b435f2753621cd36e7c1762156815e21c985c72b19135dac43a7f4f31d28dd1", size = 565701 }, + { url = "https://files.pythonhosted.org/packages/ee/1c/bf8cd66730a866b16db8483286078892b7f6536f8c389fb46e4beba0a970/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:160c7e0a5eb178011e72892f99f918c04a131f36056d10d9c1afb223fc952c2d", size = 794312 }, + { url = "https://files.pythonhosted.org/packages/71/43/91fa4ff25bbfdc914ab6bafa0f03241d69370ef31a761d16bb859f346582/pyzmq-26.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2c4a71d5d6e7b28a47a394c0471b7e77a0661e2d651e7ae91e0cab0a587859ca", size = 752775 }, + { url = "https://files.pythonhosted.org/packages/ec/d2/3b2ab40f455a256cb6672186bea95cd97b459ce4594050132d71e76f0d6f/pyzmq-26.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:90412f2db8c02a3864cbfc67db0e3dcdbda336acf1c469526d3e869394fe001c", size = 550762 }, +] + +[[package]] +name = "referencing" +version = "0.35.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "rpds-py" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/73ca1f8e72fff6fa52119dbd185f73a907b1989428917b24cff660129b6d/referencing-0.35.1.tar.gz", hash = "sha256:25b42124a6c8b632a425174f24087783efb348a6f1e0008e63cd4466fedf703c", size = 62991 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/59/2056f61236782a2c86b33906c025d4f4a0b17be0161b63b70fd9e8775d36/referencing-0.35.1-py3-none-any.whl", hash = "sha256:eda6d3234d62814d1c64e305c1331c9a3a6132da475ab6382eaa997b21ee75de", size = 26684 }, +] + [[package]] name = "regex" version = "2024.7.24" @@ -1784,6 +2715,27 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/51/3a/60c77c2cea5b11609179cc6a172179d6ae900826b42438848255c43e38e0/requests_unixsocket2-0.4.0-py3-none-any.whl", hash = "sha256:8d3cafcc7b2feb18f85b0a5e37e4ff7b1a64777000ebd1a883df33012a07f16f", size = 7944 }, ] +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/ea/a9387748e2d111c3c2b275ba970b735e04e15cdb1eb30693b6b5708c4dbd/rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b", size = 5513 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa", size = 3490 }, +] + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/da/88/f270de456dd7d11dcc808abfa291ecdd3f45ff44e3b549ffa01b126464d0/rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055", size = 6760 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9", size = 4242 }, +] + [[package]] name = "rich" version = "13.8.0" @@ -1809,6 +2761,78 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e4/24/03e9b6f0c61e92ed27b1e16a5393034ae07b98c307e3b0e6be3e03183ba8/rlp-3.0.0-py2.py3-none-any.whl", hash = "sha256:d2a963225b3f26795c5b52310e0871df9824af56823d739511583ef459895a7d", size = 20154 }, ] +[[package]] +name = "rpds-py" +version = "0.20.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/25/cb/8e919951f55d109d658f81c9b49d0cc3b48637c50792c5d2e77032b8c5da/rpds_py-0.20.1.tar.gz", hash = "sha256:e1791c4aabd117653530dccd24108fa03cc6baf21f58b950d0a73c3b3b29a350", size = 25931 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ae/0e/d7e7e9280988a7bc56fd326042baca27f4f55fad27dc8aa64e5e0e894e5d/rpds_py-0.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:a649dfd735fff086e8a9d0503a9f0c7d01b7912a333c7ae77e1515c08c146dad", size = 327335 }, + { url = "https://files.pythonhosted.org/packages/4c/72/027185f213d53ae66765c575229829b202fbacf3d55fe2bd9ff4e29bb157/rpds_py-0.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f16bc1334853e91ddaaa1217045dd7be166170beec337576818461268a3de67f", size = 318250 }, + { url = "https://files.pythonhosted.org/packages/2b/e7/b4eb3e6ff541c83d3b46f45f855547e412ab60c45bef64520fafb00b9b42/rpds_py-0.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:14511a539afee6f9ab492b543060c7491c99924314977a55c98bfa2ee29ce78c", size = 361206 }, + { url = "https://files.pythonhosted.org/packages/e7/80/cb9a4b4cad31bcaa37f38dae7a8be861f767eb2ca4f07a146b5ffcfbee09/rpds_py-0.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:3ccb8ac2d3c71cda472b75af42818981bdacf48d2e21c36331b50b4f16930163", size = 369921 }, + { url = "https://files.pythonhosted.org/packages/95/1b/463b11e7039e18f9e778568dbf7338c29bbc1f8996381115201c668eb8c8/rpds_py-0.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c142b88039b92e7e0cb2552e8967077e3179b22359e945574f5e2764c3953dcf", size = 403673 }, + { url = "https://files.pythonhosted.org/packages/86/98/1ef4028e9d5b76470bf7f8f2459be07ac5c9621270a2a5e093f8d8a8cc2c/rpds_py-0.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f19169781dddae7478a32301b499b2858bc52fc45a112955e798ee307e294977", size = 430267 }, + { url = "https://files.pythonhosted.org/packages/25/8e/41d7e3e6d3a4a6c94375020477705a3fbb6515717901ab8f94821cf0a0d9/rpds_py-0.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13c56de6518e14b9bf6edde23c4c39dac5b48dcf04160ea7bce8fca8397cdf86", size = 360569 }, + { url = "https://files.pythonhosted.org/packages/4f/6a/8839340464d4e1bbfaf0482e9d9165a2309c2c17427e4dcb72ce3e5cc5d6/rpds_py-0.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:925d176a549f4832c6f69fa6026071294ab5910e82a0fe6c6228fce17b0706bd", size = 382584 }, + { url = "https://files.pythonhosted.org/packages/64/96/7a7f938d3796a6a3ec08ed0e8a5ecd436fbd516a3684ab1fa22d46d6f6cc/rpds_py-0.20.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:78f0b6877bfce7a3d1ff150391354a410c55d3cdce386f862926a4958ad5ab7e", size = 546560 }, + { url = "https://files.pythonhosted.org/packages/15/c7/19fb4f1247a3c90a99eca62909bf76ee988f9b663e47878a673d9854ec5c/rpds_py-0.20.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3dd645e2b0dcb0fd05bf58e2e54c13875847687d0b71941ad2e757e5d89d4356", size = 549359 }, + { url = "https://files.pythonhosted.org/packages/d2/4c/445eb597a39a883368ea2f341dd6e48a9d9681b12ebf32f38a827b30529b/rpds_py-0.20.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:4f676e21db2f8c72ff0936f895271e7a700aa1f8d31b40e4e43442ba94973899", size = 527567 }, + { url = "https://files.pythonhosted.org/packages/4f/71/4c44643bffbcb37311fc7fe221bcf139c8d660bc78f746dd3a05741372c8/rpds_py-0.20.1-cp310-none-win32.whl", hash = "sha256:648386ddd1e19b4a6abab69139b002bc49ebf065b596119f8f37c38e9ecee8ff", size = 200412 }, + { url = "https://files.pythonhosted.org/packages/f4/33/9d0529d74099e090ec9ab15eb0a049c56cca599eaaca71bfedbdbca656a9/rpds_py-0.20.1-cp310-none-win_amd64.whl", hash = "sha256:d9ecb51120de61e4604650666d1f2b68444d46ae18fd492245a08f53ad2b7711", size = 218563 }, + { url = "https://files.pythonhosted.org/packages/a0/2e/a6ded84019a05b8f23e0fe6a632f62ae438a8c5e5932d3dfc90c73418414/rpds_py-0.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:762703bdd2b30983c1d9e62b4c88664df4a8a4d5ec0e9253b0231171f18f6d75", size = 327194 }, + { url = "https://files.pythonhosted.org/packages/68/11/d3f84c69de2b2086be3d6bd5e9d172825c096b13842ab7e5f8f39f06035b/rpds_py-0.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0b581f47257a9fce535c4567782a8976002d6b8afa2c39ff616edf87cbeff712", size = 318126 }, + { url = "https://files.pythonhosted.org/packages/18/c0/13f1bce9c901511e5e4c0b77a99dbb946bb9a177ca88c6b480e9cb53e304/rpds_py-0.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:842c19a6ce894493563c3bd00d81d5100e8e57d70209e84d5491940fdb8b9e3a", size = 361119 }, + { url = "https://files.pythonhosted.org/packages/06/31/3bd721575671f22a37476c2d7b9e34bfa5185bdcee09f7fedde3b29f3adb/rpds_py-0.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:42cbde7789f5c0bcd6816cb29808e36c01b960fb5d29f11e052215aa85497c93", size = 369532 }, + { url = "https://files.pythonhosted.org/packages/20/22/3eeb0385f33251b4fd0f728e6a3801dc8acc05e714eb7867cefe635bf4ab/rpds_py-0.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6c8e9340ce5a52f95fa7d3b552b35c7e8f3874d74a03a8a69279fd5fca5dc751", size = 403703 }, + { url = "https://files.pythonhosted.org/packages/10/e1/8dde6174e7ac5b9acd3269afca2e17719bc7e5088c68f44874d2ad9e4560/rpds_py-0.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ba6f89cac95c0900d932c9efb7f0fb6ca47f6687feec41abcb1bd5e2bd45535", size = 429868 }, + { url = "https://files.pythonhosted.org/packages/19/51/a3cc1a5238acfc2582033e8934d034301f9d4931b9bf7c7ccfabc4ca0880/rpds_py-0.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4a916087371afd9648e1962e67403c53f9c49ca47b9680adbeef79da3a7811b0", size = 360539 }, + { url = "https://files.pythonhosted.org/packages/cd/8c/3c87471a44bd4114e2b0aec90f298f6caaac4e8db6af904d5dd2279f5c61/rpds_py-0.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:200a23239781f46149e6a415f1e870c5ef1e712939fe8fa63035cd053ac2638e", size = 382467 }, + { url = "https://files.pythonhosted.org/packages/d0/9b/95073fe3e0f130e6d561e106818b6568ef1f2df3352e7f162ab912da837c/rpds_py-0.20.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:58b1d5dd591973d426cbb2da5e27ba0339209832b2f3315928c9790e13f159e8", size = 546669 }, + { url = "https://files.pythonhosted.org/packages/de/4c/7ab3669e02bb06fedebcfd64d361b7168ba39dfdf385e4109440f2e7927b/rpds_py-0.20.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:6b73c67850ca7cae0f6c56f71e356d7e9fa25958d3e18a64927c2d930859b8e4", size = 549304 }, + { url = "https://files.pythonhosted.org/packages/f1/e8/ad5da336cd42adbdafe0ecd40dcecdae01fd3d703c621c7637615a008d3a/rpds_py-0.20.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:d8761c3c891cc51e90bc9926d6d2f59b27beaf86c74622c8979380a29cc23ac3", size = 527637 }, + { url = "https://files.pythonhosted.org/packages/02/f1/1b47b9e5b941c2659c9b7e4ef41b6f07385a6500c638fa10c066e4616ecb/rpds_py-0.20.1-cp311-none-win32.whl", hash = "sha256:cd945871335a639275eee904caef90041568ce3b42f402c6959b460d25ae8732", size = 200488 }, + { url = "https://files.pythonhosted.org/packages/85/f6/c751c1adfa31610055acfa1cc667cf2c2d7011a73070679c448cf5856905/rpds_py-0.20.1-cp311-none-win_amd64.whl", hash = "sha256:7e21b7031e17c6b0e445f42ccc77f79a97e2687023c5746bfb7a9e45e0921b84", size = 218475 }, + { url = "https://files.pythonhosted.org/packages/e7/10/4e8dcc08b58a548098dbcee67a4888751a25be7a6dde0a83d4300df48bfa/rpds_py-0.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:36785be22066966a27348444b40389f8444671630063edfb1a2eb04318721e17", size = 329749 }, + { url = "https://files.pythonhosted.org/packages/d2/e4/61144f3790e12fd89e6153d77f7915ad26779735fef8ee9c099cba6dfb4a/rpds_py-0.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:142c0a5124d9bd0e2976089484af5c74f47bd3298f2ed651ef54ea728d2ea42c", size = 321032 }, + { url = "https://files.pythonhosted.org/packages/fa/e0/99205aabbf3be29ef6c58ef9b08feed51ba6532fdd47461245cb58dd9897/rpds_py-0.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbddc10776ca7ebf2a299c41a4dde8ea0d8e3547bfd731cb87af2e8f5bf8962d", size = 363931 }, + { url = "https://files.pythonhosted.org/packages/ac/bd/bce2dddb518b13a7e77eed4be234c9af0c9c6d403d01c5e6ae8eb447ab62/rpds_py-0.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:15a842bb369e00295392e7ce192de9dcbf136954614124a667f9f9f17d6a216f", size = 373343 }, + { url = "https://files.pythonhosted.org/packages/43/15/112b7c553066cb91264691ba7fb119579c440a0ae889da222fa6fc0d411a/rpds_py-0.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be5ef2f1fc586a7372bfc355986226484e06d1dc4f9402539872c8bb99e34b01", size = 406304 }, + { url = "https://files.pythonhosted.org/packages/af/8d/2da52aef8ae5494a382b0c0025ba5b68f2952db0f2a4c7534580e8ca83cc/rpds_py-0.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbcf360c9e3399b056a238523146ea77eeb2a596ce263b8814c900263e46031a", size = 423022 }, + { url = "https://files.pythonhosted.org/packages/c8/1b/f23015cb293927c93bdb4b94a48bfe77ad9d57359c75db51f0ff0cf482ff/rpds_py-0.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ecd27a66740ffd621d20b9a2f2b5ee4129a56e27bfb9458a3bcc2e45794c96cb", size = 364937 }, + { url = "https://files.pythonhosted.org/packages/7b/8b/6da8636b2ea2e2f709e56656e663b6a71ecd9a9f9d9dc21488aade122026/rpds_py-0.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d0b937b2a1988f184a3e9e577adaa8aede21ec0b38320d6009e02bd026db04fa", size = 386301 }, + { url = "https://files.pythonhosted.org/packages/20/af/2ae192797bffd0d6d558145b5a36e7245346ff3e44f6ddcb82f0eb8512d4/rpds_py-0.20.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6889469bfdc1eddf489729b471303739bf04555bb151fe8875931f8564309afc", size = 549452 }, + { url = "https://files.pythonhosted.org/packages/07/dd/9f6520712a5108cd7d407c9db44a3d59011b385c58e320d58ebf67757a9e/rpds_py-0.20.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:19b73643c802f4eaf13d97f7855d0fb527fbc92ab7013c4ad0e13a6ae0ed23bd", size = 554370 }, + { url = "https://files.pythonhosted.org/packages/5e/0e/b1bdc7ea0db0946d640ab8965146099093391bb5d265832994c47461e3c5/rpds_py-0.20.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:3c6afcf2338e7f374e8edc765c79fbcb4061d02b15dd5f8f314a4af2bdc7feb5", size = 530940 }, + { url = "https://files.pythonhosted.org/packages/ae/d3/ffe907084299484fab60a7955f7c0e8a295c04249090218c59437010f9f4/rpds_py-0.20.1-cp312-none-win32.whl", hash = "sha256:dc73505153798c6f74854aba69cc75953888cf9866465196889c7cdd351e720c", size = 203164 }, + { url = "https://files.pythonhosted.org/packages/1f/ba/9cbb57423c4bfbd81c473913bebaed151ad4158ee2590a4e4b3e70238b48/rpds_py-0.20.1-cp312-none-win_amd64.whl", hash = "sha256:8bbe951244a838a51289ee53a6bae3a07f26d4e179b96fc7ddd3301caf0518eb", size = 220750 }, + { url = "https://files.pythonhosted.org/packages/b5/01/fee2e1d1274c92fff04aa47d805a28d62c2aa971d1f49f5baea1c6e670d9/rpds_py-0.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:6ca91093a4a8da4afae7fe6a222c3b53ee4eef433ebfee4d54978a103435159e", size = 329359 }, + { url = "https://files.pythonhosted.org/packages/b0/cf/4aeffb02b7090029d7aeecbffb9a10e1c80f6f56d7e9a30e15481dc4099c/rpds_py-0.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:b9c2fe36d1f758b28121bef29ed1dee9b7a2453e997528e7d1ac99b94892527c", size = 320543 }, + { url = "https://files.pythonhosted.org/packages/17/69/85cf3429e9ccda684ba63ff36b5866d5f9451e921cc99819341e19880334/rpds_py-0.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f009c69bc8c53db5dfab72ac760895dc1f2bc1b62ab7408b253c8d1ec52459fc", size = 363107 }, + { url = "https://files.pythonhosted.org/packages/ef/de/7df88dea9c3eeb832196d23b41f0f6fc5f9a2ee9b2080bbb1db8731ead9c/rpds_py-0.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6740a3e8d43a32629bb9b009017ea5b9e713b7210ba48ac8d4cb6d99d86c8ee8", size = 372027 }, + { url = "https://files.pythonhosted.org/packages/d1/b8/88675399d2038580743c570a809c43a900e7090edc6553f8ffb66b23c965/rpds_py-0.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:32b922e13d4c0080d03e7b62991ad7f5007d9cd74e239c4b16bc85ae8b70252d", size = 405031 }, + { url = "https://files.pythonhosted.org/packages/e1/aa/cca639f6d17caf00bab51bdc70fcc0bdda3063e5662665c4fdf60443c474/rpds_py-0.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe00a9057d100e69b4ae4a094203a708d65b0f345ed546fdef86498bf5390982", size = 422271 }, + { url = "https://files.pythonhosted.org/packages/c4/07/bf8a949d2ec4626c285579c9d6b356c692325f1a4126e947736b416e1fc4/rpds_py-0.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:49fe9b04b6fa685bd39237d45fad89ba19e9163a1ccaa16611a812e682913496", size = 363625 }, + { url = "https://files.pythonhosted.org/packages/11/f0/06675c6a58d6ce34547879138810eb9aab0c10e5607ea6c2e4dc56b703c8/rpds_py-0.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:aa7ac11e294304e615b43f8c441fee5d40094275ed7311f3420d805fde9b07b4", size = 385906 }, + { url = "https://files.pythonhosted.org/packages/bf/ac/2d1f50374eb8e41030fad4e87f81751e1c39e3b5d4bee8c5618830d8a6ac/rpds_py-0.20.1-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6aa97af1558a9bef4025f8f5d8c60d712e0a3b13a2fe875511defc6ee77a1ab7", size = 549021 }, + { url = "https://files.pythonhosted.org/packages/f7/d4/a7d70a7cc71df772eeadf4bce05e32e780a9fe44a511a5b091c7a85cb767/rpds_py-0.20.1-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:483b29f6f7ffa6af845107d4efe2e3fa8fb2693de8657bc1849f674296ff6a5a", size = 553800 }, + { url = "https://files.pythonhosted.org/packages/87/81/dc30bc449ccba63ad23a0f6633486d4e0e6955f45f3715a130dacabd6ad0/rpds_py-0.20.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:37fe0f12aebb6a0e3e17bb4cd356b1286d2d18d2e93b2d39fe647138458b4bcb", size = 531076 }, + { url = "https://files.pythonhosted.org/packages/50/80/fb62ab48f3b5cfe704ead6ad372da1922ddaa76397055e02eb507054c979/rpds_py-0.20.1-cp313-none-win32.whl", hash = "sha256:a624cc00ef2158e04188df5e3016385b9353638139a06fb77057b3498f794782", size = 202804 }, + { url = "https://files.pythonhosted.org/packages/d9/30/a3391e76d0b3313f33bdedd394a519decae3a953d2943e3dabf80ae32447/rpds_py-0.20.1-cp313-none-win_amd64.whl", hash = "sha256:b71b8666eeea69d6363248822078c075bac6ed135faa9216aa85f295ff009b1e", size = 220502 }, + { url = "https://files.pythonhosted.org/packages/b6/fa/7959429e69569d0f6e7d27f80451402da0409349dd2b07f6bcbdd5fad2d3/rpds_py-0.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:7a07ced2b22f0cf0b55a6a510078174c31b6d8544f3bc00c2bcee52b3d613f74", size = 328209 }, + { url = "https://files.pythonhosted.org/packages/25/97/5dfdb091c30267ff404d2fd9e70c7a6d6ffc65ca77fffe9456e13b719066/rpds_py-0.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:68cb0a499f2c4a088fd2f521453e22ed3527154136a855c62e148b7883b99f9a", size = 319499 }, + { url = "https://files.pythonhosted.org/packages/7c/98/cf2608722400f5f9bb4c82aa5ac09026f3ac2ebea9d4059d3533589ed0b6/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fa3060d885657abc549b2a0f8e1b79699290e5d83845141717c6c90c2df38311", size = 361795 }, + { url = "https://files.pythonhosted.org/packages/89/de/0e13dd43c785c60e63933e96fbddda0b019df6862f4d3019bb49c3861131/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:95f3b65d2392e1c5cec27cff08fdc0080270d5a1a4b2ea1d51d5f4a2620ff08d", size = 370604 }, + { url = "https://files.pythonhosted.org/packages/8a/fc/fe3c83c77f82b8059eeec4e998064913d66212b69b3653df48f58ad33d3d/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2cc3712a4b0b76a1d45a9302dd2f53ff339614b1c29603a911318f2357b04dd2", size = 404177 }, + { url = "https://files.pythonhosted.org/packages/94/30/5189518bfb80a41f664daf32b46645c7fbdcc89028a0f1bfa82e806e0fbb/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d4eea0761e37485c9b81400437adb11c40e13ef513375bbd6973e34100aeb06", size = 430108 }, + { url = "https://files.pythonhosted.org/packages/67/0e/6f069feaff5c298375cd8c55e00ecd9bd79c792ce0893d39448dc0097857/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7f5179583d7a6cdb981151dd349786cbc318bab54963a192692d945dd3f6435d", size = 361184 }, + { url = "https://files.pythonhosted.org/packages/27/9f/ce3e2ae36f392c3ef1988c06e9e0b4c74f64267dad7c223003c34da11adb/rpds_py-0.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2fbb0ffc754490aff6dabbf28064be47f0f9ca0b9755976f945214965b3ace7e", size = 384140 }, + { url = "https://files.pythonhosted.org/packages/5f/d5/89d44504d0bc7a1135062cb520a17903ff002f458371b8d9160af3b71e52/rpds_py-0.20.1-pp310-pypy310_pp73-musllinux_1_2_aarch64.whl", hash = "sha256:a94e52537a0e0a85429eda9e49f272ada715506d3b2431f64b8a3e34eb5f3e75", size = 546589 }, + { url = "https://files.pythonhosted.org/packages/8f/8f/e1c2db4fcca3947d9a28ec9553700b4dc8038f0eff575f579e75885b0661/rpds_py-0.20.1-pp310-pypy310_pp73-musllinux_1_2_i686.whl", hash = "sha256:92b68b79c0da2a980b1c4197e56ac3dd0c8a149b4603747c4378914a68706979", size = 550059 }, + { url = "https://files.pythonhosted.org/packages/67/29/00a9e986df36721b5def82fff60995c1ee8827a7d909a6ec8929fb4cc668/rpds_py-0.20.1-pp310-pypy310_pp73-musllinux_1_2_x86_64.whl", hash = "sha256:93da1d3db08a827eda74356f9f58884adb254e59b6664f64cc04cdff2cc19b0d", size = 529131 }, + { url = "https://files.pythonhosted.org/packages/a3/32/95364440560ec476b19c6a2704259e710c223bf767632ebaa72cc2a1760f/rpds_py-0.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:754bbed1a4ca48479e9d4182a561d001bbf81543876cdded6f695ec3d465846b", size = 219677 }, +] + [[package]] name = "semver" version = "3.0.2" @@ -1818,6 +2842,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/9a/77/0cc7a8a3bc7e53d07e8f47f147b92b0960e902b8254859f4aee5c4d7866b/semver-3.0.2-py3-none-any.whl", hash = "sha256:b1ea4686fe70b981f85359eda33199d60c53964284e0cfb4977d243e37cf4bf4", size = 17099 }, ] +[[package]] +name = "send2trash" +version = "1.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fd/3a/aec9b02217bb79b87bbc1a21bc6abc51e3d5dcf65c30487ac96c0908c722/Send2Trash-1.8.3.tar.gz", hash = "sha256:b18e7a3966d99871aefeb00cfbcfdced55ce4871194810fc71f4aa484b953abf", size = 17394 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/b0/4562db6223154aa4e22f939003cb92514c79f3d4dccca3444253fd17f902/Send2Trash-1.8.3-py3-none-any.whl", hash = "sha256:0c31227e0bd08961c7665474a3d1ef7193929fedda4233843689baa056be46c9", size = 18072 }, +] + [[package]] name = "setuptools" version = "74.0.0" @@ -1845,6 +2878,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/a7/a5/10f97f73544edcdef54409f1d839f6049a0d79df68adbc1ceb24d1aaca42/smmap-5.0.1-py3-none-any.whl", hash = "sha256:e6d8668fa5f93e706934a62d7b4db19c8d9eb8cf2adbb75ef1b675aa332b69da", size = 24282 }, ] +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235 }, +] + [[package]] name = "snowballstemmer" version = "2.2.0" @@ -1885,6 +2927,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/d1/c2/fe97d779f3ef3b15f05c94a2f1e3d21732574ed441687474db9d342a7315/soupsieve-2.6-py3-none-any.whl", hash = "sha256:e72c4ff06e4fb6e4b5a9f0f55fe6e81514581fca1515028625d0f299c602ccc9", size = 36186 }, ] +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521 }, +] + [[package]] name = "tenacity" version = "8.5.0" @@ -1894,6 +2950,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/d2/3f/8ba87d9e287b9d385a02a7114ddcef61b26f86411e121c9003eb509a1773/tenacity-8.5.0-py3-none-any.whl", hash = "sha256:b594c2a5945830c267ce6b79a166228323ed52718f30302c1359836112346687", size = 28165 }, ] +[[package]] +name = "terminado" +version = "0.18.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess", marker = "os_name != 'nt'" }, + { name = "pywinpty", marker = "os_name == 'nt'" }, + { name = "tornado" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8a/11/965c6fd8e5cc254f1fe142d547387da17a8ebfd75a3455f637c663fb38a0/terminado-0.18.1.tar.gz", hash = "sha256:de09f2c4b85de4765f7714688fff57d3e75bad1f909b589fde880460c753fd2e", size = 32701 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl", hash = "sha256:a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0", size = 14154 }, +] + [[package]] name = "tinycss2" version = "1.3.0" @@ -1924,6 +2994,33 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/b7/8a/d82202c9f89eab30f9fc05380daae87d617e2ad11571ab23d7c13a29bb54/toolz-0.12.1-py3-none-any.whl", hash = "sha256:d22731364c07d72eea0a0ad45bafb2c2937ab6fd38a3507bf55eae8744aa7d85", size = 56121 }, ] +[[package]] +name = "tornado" +version = "6.4.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ee/66/398ac7167f1c7835406888a386f6d0d26ee5dbf197d8a571300be57662d3/tornado-6.4.1.tar.gz", hash = "sha256:92d3ab53183d8c50f8204a51e6f91d18a15d5ef261e84d452800d4ff6fc504e9", size = 500623 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/d9/c33be3c1a7564f7d42d87a8d186371a75fd142097076767a5c27da941fef/tornado-6.4.1-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:163b0aafc8e23d8cdc3c9dfb24c5368af84a81e3364745ccb4427669bf84aec8", size = 435924 }, + { url = "https://files.pythonhosted.org/packages/2e/0f/721e113a2fac2f1d7d124b3279a1da4c77622e104084f56119875019ffab/tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl", hash = "sha256:6d5ce3437e18a2b66fbadb183c1d3364fb03f2be71299e7d10dbeeb69f4b2a14", size = 433883 }, + { url = "https://files.pythonhosted.org/packages/13/cf/786b8f1e6fe1c7c675e79657448178ad65e41c1c9765ef82e7f6f765c4c5/tornado-6.4.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2e20b9113cd7293f164dc46fffb13535266e713cdb87bd2d15ddb336e96cfc4", size = 437224 }, + { url = "https://files.pythonhosted.org/packages/e4/8e/a6ce4b8d5935558828b0f30f3afcb2d980566718837b3365d98e34f6067e/tornado-6.4.1-cp38-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ae50a504a740365267b2a8d1a90c9fbc86b780a39170feca9bcc1787ff80842", size = 436597 }, + { url = "https://files.pythonhosted.org/packages/22/d4/54f9d12668b58336bd30defe0307e6c61589a3e687b05c366f804b7faaf0/tornado-6.4.1-cp38-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:613bf4ddf5c7a95509218b149b555621497a6cc0d46ac341b30bd9ec19eac7f3", size = 436797 }, + { url = "https://files.pythonhosted.org/packages/cf/3f/2c792e7afa7dd8b24fad7a2ed3c2f24a5ec5110c7b43a64cb6095cc106b8/tornado-6.4.1-cp38-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:25486eb223babe3eed4b8aecbac33b37e3dd6d776bc730ca14e1bf93888b979f", size = 437516 }, + { url = "https://files.pythonhosted.org/packages/71/63/c8fc62745e669ac9009044b889fc531b6f88ac0f5f183cac79eaa950bb23/tornado-6.4.1-cp38-abi3-musllinux_1_2_i686.whl", hash = "sha256:454db8a7ecfcf2ff6042dde58404164d969b6f5d58b926da15e6b23817950fc4", size = 436958 }, + { url = "https://files.pythonhosted.org/packages/94/d4/f8ac1f5bd22c15fad3b527e025ce219bd526acdbd903f52053df2baecc8b/tornado-6.4.1-cp38-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:a02a08cc7a9314b006f653ce40483b9b3c12cda222d6a46d4ac63bb6c9057698", size = 436882 }, + { url = "https://files.pythonhosted.org/packages/4b/3e/a8124c21cc0bbf144d7903d2a0cadab15cadaf683fa39a0f92bc567f0d4d/tornado-6.4.1-cp38-abi3-win32.whl", hash = "sha256:d9a566c40b89757c9aa8e6f032bcdb8ca8795d7c1a9762910c722b1635c9de4d", size = 438092 }, + { url = "https://files.pythonhosted.org/packages/d9/2f/3f2f05e84a7aff787a96d5fb06821323feb370fe0baed4db6ea7b1088f32/tornado-6.4.1-cp38-abi3-win_amd64.whl", hash = "sha256:b24b8982ed444378d7f21d563f4180a2de31ced9d8d84443907a0a64da2072e7", size = 438532 }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359 }, +] + [[package]] name = "trie" version = "2.0.2" @@ -1940,6 +3037,37 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/36/a6/2f2ee141c4fbf517a823aa17446a4368d030e3ce629568d08e7c01da6210/trie-2.0.2-py3-none-any.whl", hash = "sha256:edef6b392f49f80be31c167236c6569aa07d7926138d5fe23d327d65d62b7201", size = 38583 }, ] +[[package]] +name = "typed-ast" +version = "1.5.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/7e/a424029f350aa8078b75fd0d360a787a273ca753a678d1104c5fa4f3072a/typed_ast-1.5.5.tar.gz", hash = "sha256:94282f7a354f36ef5dbce0ef3467ebf6a258e370ab33d5b40c249fa996e590dd", size = 252841 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/88/07/5defe18d4fc16281cd18c4374270abc430c3d852d8ac29b5db6599d45cfe/typed_ast-1.5.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4bc1efe0ce3ffb74784e06460f01a223ac1f6ab31c6bc0376a21184bf5aabe3b", size = 223267 }, + { url = "https://files.pythonhosted.org/packages/a0/5c/e379b00028680bfcd267d845cf46b60e76d8ac6f7009fd440d6ce030cc92/typed_ast-1.5.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5f7a8c46a8b333f71abd61d7ab9255440d4a588f34a21f126bbfc95f6049e686", size = 208260 }, + { url = "https://files.pythonhosted.org/packages/3b/99/5cc31ef4f3c80e1ceb03ed2690c7085571e3fbf119cbd67a111ec0b6622f/typed_ast-1.5.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:597fc66b4162f959ee6a96b978c0435bd63791e31e4f410622d19f1686d5e769", size = 842272 }, + { url = "https://files.pythonhosted.org/packages/e2/ed/b9b8b794b37b55c9247b1e8d38b0361e8158795c181636d34d6c11b506e7/typed_ast-1.5.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d41b7a686ce653e06c2609075d397ebd5b969d821b9797d029fccd71fdec8e04", size = 824651 }, + { url = "https://files.pythonhosted.org/packages/ca/59/dbbbe5a0e91c15d14a0896b539a5ed01326b0d468e75c1a33274d128d2d1/typed_ast-1.5.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5fe83a9a44c4ce67c796a1b466c270c1272e176603d5e06f6afbc101a572859d", size = 854960 }, + { url = "https://files.pythonhosted.org/packages/90/f0/0956d925f87bd81f6e0f8cf119eac5e5c8f4da50ca25bb9f5904148d4611/typed_ast-1.5.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d5c0c112a74c0e5db2c75882a0adf3133adedcdbfd8cf7c9d6ed77365ab90a1d", size = 839321 }, + { url = "https://files.pythonhosted.org/packages/43/17/4bdece9795da6f3345c4da5667ac64bc25863617f19c28d81f350f515be6/typed_ast-1.5.5-cp310-cp310-win_amd64.whl", hash = "sha256:e1a976ed4cc2d71bb073e1b2a250892a6e968ff02aa14c1f40eba4f365ffec02", size = 139380 }, + { url = "https://files.pythonhosted.org/packages/75/53/b685e10da535c7b3572735f8bea0d4abb35a04722a7d44ca9c163a0cf822/typed_ast-1.5.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c631da9710271cb67b08bd3f3813b7af7f4c69c319b75475436fcab8c3d21bee", size = 223264 }, + { url = "https://files.pythonhosted.org/packages/96/fd/fc8ccf19fc16a40a23e7c7802d0abc78c1f38f1abb6e2447c474f8a076d8/typed_ast-1.5.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b445c2abfecab89a932b20bd8261488d574591173d07827c1eda32c457358b18", size = 208158 }, + { url = "https://files.pythonhosted.org/packages/bf/9a/598e47f2c3ecd19d7f1bb66854d0d3ba23ffd93c846448790a92524b0a8d/typed_ast-1.5.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cc95ffaaab2be3b25eb938779e43f513e0e538a84dd14a5d844b8f2932593d88", size = 878366 }, + { url = "https://files.pythonhosted.org/packages/60/ca/765e8bf8b24d0ed7b9fc669f6826c5bc3eb7412fc765691f59b83ae195b2/typed_ast-1.5.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61443214d9b4c660dcf4b5307f15c12cb30bdfe9588ce6158f4a005baeb167b2", size = 860314 }, + { url = "https://files.pythonhosted.org/packages/d9/3c/4af750e6c673a0dd6c7b9f5b5e5ed58ec51a2e4e744081781c664d369dfa/typed_ast-1.5.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:6eb936d107e4d474940469e8ec5b380c9b329b5f08b78282d46baeebd3692dc9", size = 898108 }, + { url = "https://files.pythonhosted.org/packages/03/8d/d0a4d1e060e1e8dda2408131a0cc7633fc4bc99fca5941dcb86c461dfe01/typed_ast-1.5.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e48bf27022897577d8479eaed64701ecaf0467182448bd95759883300ca818c8", size = 881971 }, + { url = "https://files.pythonhosted.org/packages/90/83/f28d2c912cd010a09b3677ac69d23181045eb17e358914ab739b7fdee530/typed_ast-1.5.5-cp311-cp311-win_amd64.whl", hash = "sha256:83509f9324011c9a39faaef0922c6f720f9623afe3fe220b6d0b15638247206b", size = 139286 }, +] + +[[package]] +name = "types-python-dateutil" +version = "2.9.0.20241003" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/f8/f6ee4c803a7beccffee21bb29a71573b39f7037c224843eff53e5308c16e/types-python-dateutil-2.9.0.20241003.tar.gz", hash = "sha256:58cb85449b2a56d6684e41aeefb4c4280631246a0da1a719bdbe6f3fb0317446", size = 9210 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/35/d6/ba5f61958f358028f2e2ba1b8e225b8e263053bd57d3a79e2d2db64c807b/types_python_dateutil-2.9.0.20241003-py3-none-any.whl", hash = "sha256:250e1d8e80e7bbc3a6c99b907762711d1a1cdd00e978ad39cb5940f6f0a87f3d", size = 9693 }, +] + [[package]] name = "types-pyyaml" version = "6.0.12.20240917" @@ -1988,6 +3116,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/26/9f/ad63fc0248c5379346306f8668cda6e2e2e9c95e01216d2b8ffd9ff037d0/typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d", size = 37438 }, ] +[[package]] +name = "uri-template" +version = "1.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/31/c7/0336f2bd0bcbada6ccef7aaa25e443c118a704f828a0620c6fa0207c1b64/uri-template-1.3.0.tar.gz", hash = "sha256:0e00f8eb65e18c7de20d595a14336e9f337ead580c70934141624b6d1ffdacc7", size = 21678 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl", hash = "sha256:a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363", size = 11140 }, +] + [[package]] name = "urllib3" version = "1.26.20" @@ -2050,6 +3187,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/ea/da/0633223f30f5db6e52236567e09c28e37ff455b3dfbe0843029206e609e6/wcmatch-9.0-py3-none-any.whl", hash = "sha256:af25922e2b6dbd1550fa37a4c8de7dd558d6c1bb330c641de9b907b9776cb3c4", size = 39139 }, ] +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166 }, +] + +[[package]] +name = "webcolors" +version = "24.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/f8/53150a5bda7e042840b14f0236e1c0a4819d403658e3d453237983addfac/webcolors-24.8.0.tar.gz", hash = "sha256:08b07af286a01bcd30d583a7acadf629583d1f79bfef27dd2c2c5c263817277d", size = 42392 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f0/33/12020ba99beaff91682b28dc0bbf0345bbc3244a4afbae7644e4fa348f23/webcolors-24.8.0-py3-none-any.whl", hash = "sha256:fc4c3b59358ada164552084a8ebee637c221e4059267d0f8325b3b560f6c7f0a", size = 15027 }, +] + [[package]] name = "webencodings" version = "0.5.1" @@ -2058,3 +3213,21 @@ sdist = { url = "https://files.pythonhosted.org/packages/0b/02/ae6ceac1baeda5308 wheels = [ { url = "https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78", size = 11774 }, ] + +[[package]] +name = "websocket-client" +version = "1.8.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e6/30/fba0d96b4b5fbf5948ed3f4681f7da2f9f64512e1d303f94b4cc174c24a5/websocket_client-1.8.0.tar.gz", hash = "sha256:3239df9f44da632f96012472805d40a23281a991027ce11d2f45a6f24ac4c3da", size = 54648 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5a/84/44687a29792a70e111c5c477230a72c4b957d88d16141199bf9acb7537a3/websocket_client-1.8.0-py3-none-any.whl", hash = "sha256:17b44cc997f5c498e809b22cdf2d9c7a9e71c02c8cc2b6c56e7c2d1239bfa526", size = 58826 }, +] + +[[package]] +name = "widgetsnbextension" +version = "4.0.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/56/fc/238c424fd7f4ebb25f8b1da9a934a3ad7c848286732ae04263661eb0fc03/widgetsnbextension-4.0.13.tar.gz", hash = "sha256:ffcb67bc9febd10234a362795f643927f4e0c05d9342c727b65d2384f8feacb6", size = 1164730 } +wheels = [ + { url = "https://files.pythonhosted.org/packages/21/02/88b65cc394961a60c43c70517066b6b679738caf78506a5da7b88ffcb643/widgetsnbextension-4.0.13-py3-none-any.whl", hash = "sha256:74b2692e8500525cc38c2b877236ba51d34541e6385eeed5aec15a70f88a6c71", size = 2335872 }, +]