-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_noise_defended_networks.py
99 lines (74 loc) · 3.44 KB
/
train_noise_defended_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import utils
import models
from defenses import dp_defense
from models import FullyConnected
from datasets import ADULT, German, Lawschool, HealthHeritage
import numpy as np
from utils import Timer, get_acc_and_bac
import os
import argparse
parser = argparse.ArgumentParser('noise_defended_training_parser')
parser.add_argument('--dataset', type=str, default='ADULT', help='Select the dataset')
parser.add_argument('--random_seed', type=int, default=42, help='Set the random state for reproducibility')
parser.add_argument('--force', action='store_true', help='If set to true, this will force the program to redo a given experiment')
args = parser.parse_args()
random_seed = args.random_seed
n_samples = 10
batch_size = 32
n_epochs = 10
noise_scales = [0.0, 0.001, 0.01, 0.1]
lr = 0.01
# set the random seed
np.random.seed(random_seed)
torch.manual_seed(random_seed)
datasets = {
'ADULT': ADULT,
'German': German,
'Lawschool': Lawschool,
'HealthHeritage': HealthHeritage
}
training_data = {}
dataset_name = args.dataset
dataset_class = datasets[args.dataset]
base_path = f'experiment_data/DP_experiments/{dataset_name}/'
os.makedirs(base_path, exist_ok=True)
save_path = base_path + f'trained_model_accuracies_{dataset_name}_{random_seed}.npy'
if os.path.isfile(save_path) and not args.force:
print('experiment already conducted')
training_data[dataset_name] = np.load(save_path)
else:
dataset = dataset_class()
dataset.standardize()
X_train, y_train = dataset.get_Xtrain(), dataset.get_ytrain()
X_test, y_test = dataset.get_Xtest(), dataset.get_ytest()
criterion = torch.nn.CrossEntropyLoss()
timer = Timer(len(noise_scales) * n_samples * n_epochs)
collected_data = np.zeros((len(noise_scales), n_samples, n_epochs, 2))
for i, noise_scale in enumerate(noise_scales):
for j in range(n_samples):
net = FullyConnected(X_train.size()[1], [100, 100, 2])
n_batches = np.ceil(len(X_train)/batch_size).astype(int)
acc, bac = 0.0, 0.0
for l in range(n_epochs):
timer.start()
print(f'Noise Scale: {noise_scale} Sample: {j+1} Epoch: {l+1} Acc: {100*acc:.1f}% Bac: {100*bac:.1f}% {timer}', end='\r')
permutation_indices = np.random.permutation(len(X_train))
X_train_permuted, y_train_permuted = X_train[permutation_indices].detach().clone(), y_train[permutation_indices].detach().clone()
for k in range(n_batches):
# optimizer.zero_grad()
net.zero_grad()
X_batch, y_batch = X_train_permuted[k*batch_size:max(len(X_train_permuted), (k+1)*batch_size)], y_train_permuted[k*batch_size:max(len(X_train_permuted), (k+1)*batch_size)]
loss = criterion(net(X_batch), y_batch)
# defense
grad = [g.detach() for g in torch.autograd.grad(loss, net.parameters())]
perturbed_grad = dp_defense(grad, noise_scale) if noise_scale > 0 else grad
with torch.no_grad():
# make the update
for p, g in zip(net.parameters(), perturbed_grad):
p.data = p.data - lr * g
acc, bac = get_acc_and_bac(net, X_test, y_test)
collected_data[i, j, l] = acc, bac
timer.end()
timer.duration()
np.save(save_path, collected_data)