-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
unit.py
292 lines (241 loc) · 10.3 KB
/
unit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import os
import numpy as np
import math
import itertools
import datetime
import time
import sys
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
from models import *
from datasets import *
import torch.nn as nn
import torch.nn.functional as F
import torch
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="apple2orange", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_height", type=int, default=256, help="size of image height")
parser.add_argument("--img_width", type=int, default=256, help="size of image width")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator samples")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_downsample", type=int, default=2, help="number downsampling layers in encoder")
parser.add_argument("--dim", type=int, default=64, help="number of filters in first encoder layer")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
# Create sample and checkpoint directories
os.makedirs("images/%s" % opt.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % opt.dataset_name, exist_ok=True)
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_pixel = torch.nn.L1Loss()
input_shape = (opt.channels, opt.img_height, opt.img_width)
# Dimensionality (channel-wise) of image embedding
shared_dim = opt.dim * 2 ** opt.n_downsample
# Initialize generator and discriminator
shared_E = ResidualBlock(features=shared_dim)
E1 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, shared_block=shared_E)
E2 = Encoder(dim=opt.dim, n_downsample=opt.n_downsample, shared_block=shared_E)
shared_G = ResidualBlock(features=shared_dim)
G1 = Generator(dim=opt.dim, n_upsample=opt.n_downsample, shared_block=shared_G)
G2 = Generator(dim=opt.dim, n_upsample=opt.n_downsample, shared_block=shared_G)
D1 = Discriminator(input_shape)
D2 = Discriminator(input_shape)
if cuda:
E1 = E1.cuda()
E2 = E2.cuda()
G1 = G1.cuda()
G2 = G2.cuda()
D1 = D1.cuda()
D2 = D2.cuda()
criterion_GAN.cuda()
criterion_pixel.cuda()
if opt.epoch != 0:
# Load pretrained models
E1.load_state_dict(torch.load("saved_models/%s/E1_%d.pth" % (opt.dataset_name, opt.epoch)))
E2.load_state_dict(torch.load("saved_models/%s/E2_%d.pth" % (opt.dataset_name, opt.epoch)))
G1.load_state_dict(torch.load("saved_models/%s/G1_%d.pth" % (opt.dataset_name, opt.epoch)))
G2.load_state_dict(torch.load("saved_models/%s/G2_%d.pth" % (opt.dataset_name, opt.epoch)))
D1.load_state_dict(torch.load("saved_models/%s/D1_%d.pth" % (opt.dataset_name, opt.epoch)))
D2.load_state_dict(torch.load("saved_models/%s/D2_%d.pth" % (opt.dataset_name, opt.epoch)))
else:
# Initialize weights
E1.apply(weights_init_normal)
E2.apply(weights_init_normal)
G1.apply(weights_init_normal)
G2.apply(weights_init_normal)
D1.apply(weights_init_normal)
D2.apply(weights_init_normal)
# Loss weights
lambda_0 = 10 # GAN
lambda_1 = 0.1 # KL (encoded images)
lambda_2 = 100 # ID pixel-wise
lambda_3 = 0.1 # KL (encoded translated images)
lambda_4 = 100 # Cycle pixel-wise
# Optimizers
optimizer_G = torch.optim.Adam(
itertools.chain(E1.parameters(), E2.parameters(), G1.parameters(), G2.parameters()),
lr=opt.lr,
betas=(opt.b1, opt.b2),
)
optimizer_D1 = torch.optim.Adam(D1.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D2 = torch.optim.Adam(D2.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
# Learning rate update schedulers
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
optimizer_G, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
lr_scheduler_D1 = torch.optim.lr_scheduler.LambdaLR(
optimizer_D1, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
lr_scheduler_D2 = torch.optim.lr_scheduler.LambdaLR(
optimizer_D2, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step
)
Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor
# Image transformations
transforms_ = [
transforms.Resize(int(opt.img_height * 1.12), Image.BICUBIC),
transforms.RandomCrop((opt.img_height, opt.img_width)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
# Training data loader
dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, unaligned=True),
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
)
# Test data loader
val_dataloader = DataLoader(
ImageDataset("../../data/%s" % opt.dataset_name, transforms_=transforms_, unaligned=True, mode="test"),
batch_size=5,
shuffle=True,
num_workers=1,
)
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
X1 = Variable(imgs["A"].type(Tensor))
X2 = Variable(imgs["B"].type(Tensor))
_, Z1 = E1(X1)
_, Z2 = E2(X2)
fake_X1 = G1(Z2)
fake_X2 = G2(Z1)
img_sample = torch.cat((X1.data, fake_X2.data, X2.data, fake_X1.data), 0)
save_image(img_sample, "images/%s/%s.png" % (opt.dataset_name, batches_done), nrow=5, normalize=True)
def compute_kl(mu):
mu_2 = torch.pow(mu, 2)
loss = torch.mean(mu_2)
return loss
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(opt.epoch, opt.n_epochs):
for i, batch in enumerate(dataloader):
# Set model input
X1 = Variable(batch["A"].type(Tensor))
X2 = Variable(batch["B"].type(Tensor))
# Adversarial ground truths
valid = Variable(Tensor(np.ones((X1.size(0), *D1.output_shape))), requires_grad=False)
fake = Variable(Tensor(np.zeros((X1.size(0), *D1.output_shape))), requires_grad=False)
# -------------------------------
# Train Encoders and Generators
# -------------------------------
optimizer_G.zero_grad()
# Get shared latent representation
mu1, Z1 = E1(X1)
mu2, Z2 = E2(X2)
# Reconstruct images
recon_X1 = G1(Z1)
recon_X2 = G2(Z2)
# Translate images
fake_X1 = G1(Z2)
fake_X2 = G2(Z1)
# Cycle translation
mu1_, Z1_ = E1(fake_X1)
mu2_, Z2_ = E2(fake_X2)
cycle_X1 = G1(Z2_)
cycle_X2 = G2(Z1_)
# Losses
loss_GAN_1 = lambda_0 * criterion_GAN(D1(fake_X1), valid)
loss_GAN_2 = lambda_0 * criterion_GAN(D2(fake_X2), valid)
loss_KL_1 = lambda_1 * compute_kl(mu1)
loss_KL_2 = lambda_1 * compute_kl(mu2)
loss_ID_1 = lambda_2 * criterion_pixel(recon_X1, X1)
loss_ID_2 = lambda_2 * criterion_pixel(recon_X2, X2)
loss_KL_1_ = lambda_3 * compute_kl(mu1_)
loss_KL_2_ = lambda_3 * compute_kl(mu2_)
loss_cyc_1 = lambda_4 * criterion_pixel(cycle_X1, X1)
loss_cyc_2 = lambda_4 * criterion_pixel(cycle_X2, X2)
# Total loss
loss_G = (
loss_KL_1
+ loss_KL_2
+ loss_ID_1
+ loss_ID_2
+ loss_GAN_1
+ loss_GAN_2
+ loss_KL_1_
+ loss_KL_2_
+ loss_cyc_1
+ loss_cyc_2
)
loss_G.backward()
optimizer_G.step()
# -----------------------
# Train Discriminator 1
# -----------------------
optimizer_D1.zero_grad()
loss_D1 = criterion_GAN(D1(X1), valid) + criterion_GAN(D1(fake_X1.detach()), fake)
loss_D1.backward()
optimizer_D1.step()
# -----------------------
# Train Discriminator 2
# -----------------------
optimizer_D2.zero_grad()
loss_D2 = criterion_GAN(D2(X2), valid) + criterion_GAN(D2(fake_X2.detach()), fake)
loss_D2.backward()
optimizer_D2.step()
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = opt.n_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] ETA: %s"
% (epoch, opt.n_epochs, i, len(dataloader), (loss_D1 + loss_D2).item(), loss_G.item(), time_left)
)
# If at sample interval save image
if batches_done % opt.sample_interval == 0:
sample_images(batches_done)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D1.step()
lr_scheduler_D2.step()
if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0:
# Save model checkpoints
torch.save(E1.state_dict(), "saved_models/%s/E1_%d.pth" % (opt.dataset_name, epoch))
torch.save(E2.state_dict(), "saved_models/%s/E2_%d.pth" % (opt.dataset_name, epoch))
torch.save(G1.state_dict(), "saved_models/%s/G1_%d.pth" % (opt.dataset_name, epoch))
torch.save(G2.state_dict(), "saved_models/%s/G2_%d.pth" % (opt.dataset_name, epoch))
torch.save(D1.state_dict(), "saved_models/%s/D1_%d.pth" % (opt.dataset_name, epoch))
torch.save(D2.state_dict(), "saved_models/%s/D2_%d.pth" % (opt.dataset_name, epoch))