-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_synthetic.py
485 lines (413 loc) · 15.2 KB
/
make_synthetic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import os
import random
import yaml
import argparse
import json
import pandas as pd
import numpy as np
def read_taxonomy(path):
"""Reads the taxonomy from a csv file, keeps only the essential columns and
returns the taxonomy as a pandas dataframe.
Args:
path (str): path to the csv file
Returns:
dataframe: the taxonomy as a pandas dataframe
"""
taxonomy = pd.read_csv(path)
# remove all rows where the column 'ElementID' is null
taxonomy = taxonomy[taxonomy["ElementID"].notna()]
keep = [
"ElementID",
"Dimension FE",
"Type Level 1",
"Type Level 1 E",
"Type Level 2",
"Type Level 2 E",
"Type Level 3",
"Type Level 4",
]
# keep only the columns in the list 'keep'
taxonomy = taxonomy[keep]
names = ["Type Level 1", "Type Level 2", "Type Level 3", "Type Level 4"]
taxonomy["last_name"] = (taxonomy["ElementID"].str.len() - 1) // 2
taxonomy["last_name"] = taxonomy["last_name"].map(lambda x: names[x])
taxonomy["last_name"] = taxonomy.apply(lambda x: x[x["last_name"]], axis=1)
return taxonomy
def get_mastery_levels_proba(mastery_levels):
"""Returns a probability distribution over the mastery levels.
Args:
mastery_levels (list): list of mastery levels
Returns:
array: a probability distribution over the mastery levels
"""
nb_mastery_levels = len(mastery_levels)
mastery_levels_probabilities = [
1 / np.log(i + 1) for i in range(1, nb_mastery_levels + 1)
]
mastery_levels_normalized_probabilities = np.array(
mastery_levels_probabilities
) / sum(mastery_levels_probabilities)
return mastery_levels_normalized_probabilities
def get_skills(taxonomy):
"""Returns a list of skills and a probability distribution over the skills.
Args:
taxonomy (dataframe): the taxonomy
Returns:
list, array: a list of skills and a probability distribution over the skills
"""
levels_dict = taxonomy.set_index("last_name")["ElementID"].to_dict()
levels_dict = {
key: [int(level) for level in value.split(".")]
for key, value in levels_dict.items()
}
skills = list(levels_dict.keys())
random.shuffle(skills)
nb_skills = len(skills)
skills_probabilities = [1 / np.log(i + 1) for i in range(1, nb_skills + 1)]
skills_normalized_probabilities = np.array(skills_probabilities) / sum(
skills_probabilities
)
return skills, skills_normalized_probabilities
def get_years_proba(years):
"""Returns a probability distribution over the years.
Args:
years (list): list of years
Returns:
array: a probability distribution over the years
"""
years_probabilities = [1 / np.log(i + 1) for i in range(1, len(years) + 1)]
years_normalized_probabilities = np.array(years_probabilities) / sum(
years_probabilities
)
return years_normalized_probabilities
def get_random_learner(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills=5,
max_n_skills=10,
):
"""Creates a random learner with a random number of skills and mastery levels and a random year.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
years (list): list of years
skills_normalized_probabilities (array): a probability distribution over the skills
mastery_levels_normalized_probabilities (array): a probability distribution over the skills
years_normalized_probabilities (array): a probability distribution over the skills
min_n_skills (int, optional): minimum number of skills that a user has. Defaults to 5.
max_n_skills (int, optional): maximum number of skills that a user has. Defaults to 10.
Returns:
dict: a dictionary containing the (skills,mastery levels) and the year of the learner
"""
n_skills = random.randint(min_n_skills, max_n_skills)
possessed = {
skill: level.item()
for skill, level in zip(
np.random.choice(
skills, n_skills, p=skills_normalized_probabilities, replace=False
),
np.random.choice(
mastery_levels,
n_skills,
p=mastery_levels_normalized_probabilities,
replace=True,
),
)
}
year = np.random.choice(years, 1, p=years_normalized_probabilities)[0].item()
return {"possessed_skills": possessed, "year": year}
def get_all_learners(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills=5,
max_n_skills=10,
n_learners=100,
):
"""Creates a list of random learners.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
years (list): list of yearsyears
skills_normalized_probabilities (array): a probability distribution over the skills
mastery_levels_normalized_probabilities (array): a probability distribution over the skills
years_normalized_probabilities (array): a probability distribution over the skills
min_n_skills (int, optional): minimum number of skills that a user has. Defaults to 5.
max_n_skills (int, optional): maximum number of skills that a user has. Defaults to 10.
n_learners (int, optional): number of learners to create. Defaults to 100.
Returns:
list: a list of random learners
"""
return [
get_random_learner(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills,
max_n_skills,
)
for _ in range(n_learners)
]
def get_random_job(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills=2,
max_n_skills=5,
):
"""Creates a random job with a random number of skills and mastery levels and a random year.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
years (list): list of years
skills_normalized_probabilities (array): a probability distribution over the skills
mastery_levels_normalized_probabilities (array): a probability distribution over the skills
years_normalized_probabilities (array): a probability distribution over the skills
min_n_skills (int, optional): . Defaults to 2.
max_n_skills (int, optional): . Defaults to 5.
Returns:
dict: a dictionary containing the (skills,mastery levels) and the year of the job
"""
n_skills = random.randint(min_n_skills, max_n_skills)
required = {
skill: level.item()
for skill, level in zip(
np.random.choice(
skills, n_skills, p=skills_normalized_probabilities, replace=False
),
np.random.choice(
mastery_levels,
n_skills,
p=mastery_levels_normalized_probabilities,
replace=True,
),
)
}
year = np.random.choice(years, 1, p=years_normalized_probabilities)[0]
return {"required_skills": required, "year": year.item()}
def get_all_jobs(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills=2,
max_n_skills=5,
n_jobs=1000,
):
"""Creates a list of random jobs.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
years (list): list of years
skills_normalized_probabilities (array): a probability distribution over the skills
mastery_levels_normalized_probabilities (array): a probability distribution over the skills
years_normalized_probabilities (array): a probability distribution over the skills
min_n_skills (int, optional): minimum number of skills that a job requires. Defaults to 2.
max_n_skills (int, optional): maximum number of skills that a job requires. Defaults to 5.
n_jobs (int, optional): number of jobs to create. Defaults to 100.
Returns:
dict: a dictionary containing the (skills,mastery levels) and the year of the job
"""
return [
get_random_job(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
min_n_skills,
max_n_skills,
)
for _ in range(n_jobs)
]
def get_random_provided_skills(
skills, mastery_levels, required_skills, n_provided_skills
):
"""Returns a dictionary of provided skills for a course.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
required_skills (dict): dictionary of required skills
n_provided_skills (int): number of provided skills
Returns:
dict: dictionary of provided skills
"""
provided_skills = dict()
while len(provided_skills) < n_provided_skills:
candidate_skill = random.choice(skills)
candidate_level = random.choice(mastery_levels)
if (
candidate_skill not in required_skills
and candidate_skill not in provided_skills
):
provided_skills[candidate_skill] = candidate_level
elif (
candidate_skill in required_skills
and candidate_level > required_skills[candidate_skill]
):
provided_skills[candidate_skill] = candidate_level
return provided_skills
def get_random_course(
skills,
mastery_levels,
min_n_required_skills=1,
max_n_required_skills=5,
min_n_provided_skills=1,
max_n_provided_skills=2,
):
"""Creates a random course with a random number of required and provided skills.
Args:
skills (list): list of skills
mastery_levels (list): list of mastery levels
min_n_required_skills (int, optional): minimum number of required skills. Defaults to 1.
max_n_required_skills (int, optional): maximum number of required skills. Defaults to 5.
min_n_provided_skills (int, optional): minimum number of provided skills. Defaults to 1.
max_n_provided_skills (int, optional): maximum number of provided skills. Defaults to 2.
Returns:
dict: a dictionary containing the required and provided skills of the course
"""
n_required_skills = random.randint(min_n_required_skills, max_n_required_skills)
required = {
skill: level.item()
for skill, level in zip(
np.random.choice(skills, n_required_skills, replace=False),
np.random.choice(mastery_levels, n_required_skills, replace=True),
)
}
n_provided_skills = random.randint(min_n_provided_skills, max_n_provided_skills)
provided = get_random_provided_skills(
skills, mastery_levels, required, n_provided_skills
)
return {"required_skills": required, "provided_skills": provided}
def get_all_courses(
skills,
mastery_levels,
min_n_required_skills=1,
max_n_required_skills=5,
min_n_provided_skills=1,
max_n_provided_skills=2,
n_courses=1000,
):
"""
Args:
skills (_type_): _description_
mastery_levels (_type_): _description_
min_n_required_skills (int, optional): _description_. Defaults to 1.
max_n_required_skills (int, optional): _description_. Defaults to 5.
min_n_provided_skills (int, optional): _description_. Defaults to 1.
max_n_provided_skills (int, optional): _description_. Defaults to 2.
n_courses (int, optional): _description_. Defaults to 1000.
Returns:
_type_: _description_
"""
return [
get_random_course(
skills,
mastery_levels,
min_n_required_skills,
max_n_required_skills,
min_n_provided_skills,
max_n_provided_skills,
)
for _ in range(n_courses)
]
def get_job_market(
taxonomy_path="../data/taxonomy/taxonomy_V4.csv",
mastery_levels=[1, 2, 3, 4],
years=[i for i in range(2023, 2017, -1)],
learner_min_n_skills=5,
learner_max_n_skills=10,
n_learners=1000,
job_min_n_skills=2,
job_max_n_skills=5,
job_n_jobs=1000,
course_min_n_required_skills=1,
course_max_n_required_skills=5,
course_min_n_provided_skills=1,
course_max_n_provided_skills=2,
n_courses=1000,
):
"""Creates a job market with random learners and jobs.
Args:
taxonomy_path (str, optional): path of the taxonomy. Defaults to "../data/taxonomy/taxonomy_V4.csv".
mastery_levels (list, optional): list of mastery levels. Defaults to [1, 2, 3, 4].
years (list, optional): list of years. Defaults to [i for i in range(2023, 2017, -1)].
Returns:
list, list, list: a list of skills, a list of learners and a list of jobs
"""
taxonomy = read_taxonomy(taxonomy_path)
mastery_levels_normalized_probabilities = get_mastery_levels_proba(mastery_levels)
skills, skills_normalized_probabilities = get_skills(taxonomy)
years_normalized_probabilities = get_years_proba(years)
learners = get_all_learners(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
learner_min_n_skills,
learner_max_n_skills,
n_learners,
)
jobs = get_all_jobs(
skills,
mastery_levels,
years,
skills_normalized_probabilities,
mastery_levels_normalized_probabilities,
years_normalized_probabilities,
job_min_n_skills,
job_max_n_skills,
job_n_jobs,
)
courses = get_all_courses(
skills,
mastery_levels,
course_min_n_required_skills,
course_max_n_required_skills,
course_min_n_provided_skills,
course_max_n_provided_skills,
n_courses,
)
return skills, learners, jobs, courses
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config")
args = parser.parse_args()
config = args.config
with open(config, "r") as f:
config = yaml.load(f, Loader=yaml.FullLoader)
dataset_path = config.pop("dataset_path")
seed = config.pop("seed")
random.seed(seed)
skills, learners, jobs, courses = get_job_market(**config)
data_to_save = {
"skills.json": skills,
"mastery_levels.json": config["mastery_levels"],
"years.json": config["years"],
"learners.json": learners,
"jobs.json": jobs,
"courses.json": courses,
}
for json_file, data in data_to_save.items():
with open(os.path.join(dataset_path, json_file), "w") as f:
json.dump(data, f, indent=4)
if __name__ == "__main__":
main()