-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathbpy_face_detect.py
46 lines (32 loc) · 1.1 KB
/
bpy_face_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import sys
cv2_path = r"/Applications/Pineapple.app/Contents/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/cv2" #it depend on your OS but just paste the path where is scipy
if not cv2_path in sys.path:
sys.path.append(cv2_path)
import cv2
#print(cv2)
import bpy
import os
filepath = bpy.data.filepath
directory = os.path.dirname(filepath)
# Get user supplied values
imagePath = directory + "/chinesetroop_0001.jpg"
cascPath = directory + "/cascade/haarcascade_frontalface_alt2.xml"
# Create the haar cascade
faceCascade = cv2.CascadeClassifier(cascPath)
# Read the image
image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Detect faces in the image
faces = faceCascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=1,
minSize=(1, 1),
#flags = cv2.cv.CV_HAAR_SCALE_IMAGE
flags = cv2.CASCADE_SCALE_IMAGE
)
print ( "Found {0} faces!".format(len(faces)) )
# Draw a rectangle around the faces
for num, (x, y, w, h) in enumerate(faces):
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
print(num, ":", x,y,w,h)