diff --git a/examples/api_request_deckgl.ipynb b/examples/api_request_deckgl.ipynb
index 504d207..a6de395 100644
--- a/examples/api_request_deckgl.ipynb
+++ b/examples/api_request_deckgl.ipynb
@@ -47,404 +47,13 @@
"metadata": {},
"outputs": [
{
+ "output_type": "execute_result",
"data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " id \n",
- " time \n",
- " geometry \n",
- " GPS PDOP.value \n",
- " GPS PDOP.unit \n",
- " Speed.value \n",
- " Speed.unit \n",
- " GPS Altitude.value \n",
- " GPS Altitude.unit \n",
- " GPS Bearing.value \n",
- " ... \n",
- " Consumption.value \n",
- " Consumption.unit \n",
- " track.appVersion \n",
- " track.touVersion \n",
- " O2 Lambda Voltage ER.value \n",
- " O2 Lambda Voltage ER.unit \n",
- " MAF.value \n",
- " MAF.unit \n",
- " O2 Lambda Voltage.value \n",
- " O2 Lambda Voltage.unit \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 5e8b930965b80c5d6b4d7cd1 \n",
- " 2020-03-07T12:33:15 \n",
- " POINT (7.64069 51.95733) \n",
- " 1.090631 \n",
- " precision \n",
- " 28.999999 \n",
- " km/h \n",
- " 110.381939 \n",
- " m \n",
- " 124.858622 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 1 \n",
- " 5e8b930965b80c5d6b4d7cd3 \n",
- " 2020-03-07T12:33:20 \n",
- " POINT (7.64118 51.95712) \n",
- " 1.000000 \n",
- " precision \n",
- " 28.000000 \n",
- " km/h \n",
- " 108.260375 \n",
- " m \n",
- " 125.020801 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 2 \n",
- " 5e8b930965b80c5d6b4d7cd4 \n",
- " 2020-03-07T12:33:26 \n",
- " POINT (7.64162 51.95690) \n",
- " 1.257198 \n",
- " precision \n",
- " 28.000001 \n",
- " km/h \n",
- " 105.826028 \n",
- " m \n",
- " 121.203960 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 3 \n",
- " 5e8b930965b80c5d6b4d7cd5 \n",
- " 2020-03-07T12:33:31 \n",
- " POINT (7.64210 51.95672) \n",
- " 1.000000 \n",
- " precision \n",
- " 30.000000 \n",
- " km/h \n",
- " 104.395998 \n",
- " m \n",
- " 123.412759 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 4 \n",
- " 5e8b930965b80c5d6b4d7cd6 \n",
- " 2020-03-07T12:33:36 \n",
- " POINT (7.64264 51.95650) \n",
- " 1.026727 \n",
- " precision \n",
- " 31.409419 \n",
- " km/h \n",
- " 101.516865 \n",
- " m \n",
- " 122.170479 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 283 \n",
- " 5dc986e844ea856b702e3e0b \n",
- " 2019-10-28T16:34:55 \n",
- " POINT (7.59523 51.96505) \n",
- " 1.700000 \n",
- " precision \n",
- " 47.999999 \n",
- " km/h \n",
- " 109.652212 \n",
- " m \n",
- " 276.419653 \n",
- " ... \n",
- " 3.122268 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 284 \n",
- " 5dc986e844ea856b702e3e0c \n",
- " 2019-10-28T16:35:00 \n",
- " POINT (7.59425 51.96512) \n",
- " 1.497088 \n",
- " precision \n",
- " 48.297297 \n",
- " km/h \n",
- " 110.122771 \n",
- " m \n",
- " 276.271049 \n",
- " ... \n",
- " 2.853618 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 285 \n",
- " 5dc986e844ea856b702e3e0d \n",
- " 2019-10-28T16:35:05 \n",
- " POINT (7.59327 51.96518) \n",
- " 1.688911 \n",
- " precision \n",
- " 49.000001 \n",
- " km/h \n",
- " 110.573987 \n",
- " m \n",
- " 275.808021 \n",
- " ... \n",
- " 4.657916 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 286 \n",
- " 5dc986e844ea856b702e3e0e \n",
- " 2019-10-28T16:35:10 \n",
- " POINT (7.59225 51.96525) \n",
- " 1.300000 \n",
- " precision \n",
- " 51.000000 \n",
- " km/h \n",
- " 111.140661 \n",
- " m \n",
- " 275.411387 \n",
- " ... \n",
- " 3.445271 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 287 \n",
- " 5dc986e844ea856b702e3e0f \n",
- " 2019-10-28T16:35:15 \n",
- " POINT (7.59123 51.96531) \n",
- " 1.423253 \n",
- " precision \n",
- " 50.000001 \n",
- " km/h \n",
- " 111.891658 \n",
- " m \n",
- " 276.124438 \n",
- " ... \n",
- " 3.248333 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- "
\n",
- "
9944 rows × 54 columns
\n",
- "
"
- ],
- "text/plain": [
- " id time geometry \\\n",
- "0 5e8b930965b80c5d6b4d7cd1 2020-03-07T12:33:15 POINT (7.64069 51.95733) \n",
- "1 5e8b930965b80c5d6b4d7cd3 2020-03-07T12:33:20 POINT (7.64118 51.95712) \n",
- "2 5e8b930965b80c5d6b4d7cd4 2020-03-07T12:33:26 POINT (7.64162 51.95690) \n",
- "3 5e8b930965b80c5d6b4d7cd5 2020-03-07T12:33:31 POINT (7.64210 51.95672) \n",
- "4 5e8b930965b80c5d6b4d7cd6 2020-03-07T12:33:36 POINT (7.64264 51.95650) \n",
- ".. ... ... ... \n",
- "283 5dc986e844ea856b702e3e0b 2019-10-28T16:34:55 POINT (7.59523 51.96505) \n",
- "284 5dc986e844ea856b702e3e0c 2019-10-28T16:35:00 POINT (7.59425 51.96512) \n",
- "285 5dc986e844ea856b702e3e0d 2019-10-28T16:35:05 POINT (7.59327 51.96518) \n",
- "286 5dc986e844ea856b702e3e0e 2019-10-28T16:35:10 POINT (7.59225 51.96525) \n",
- "287 5dc986e844ea856b702e3e0f 2019-10-28T16:35:15 POINT (7.59123 51.96531) \n",
- "\n",
- " GPS PDOP.value GPS PDOP.unit Speed.value Speed.unit GPS Altitude.value \\\n",
- "0 1.090631 precision 28.999999 km/h 110.381939 \n",
- "1 1.000000 precision 28.000000 km/h 108.260375 \n",
- "2 1.257198 precision 28.000001 km/h 105.826028 \n",
- "3 1.000000 precision 30.000000 km/h 104.395998 \n",
- "4 1.026727 precision 31.409419 km/h 101.516865 \n",
- ".. ... ... ... ... ... \n",
- "283 1.700000 precision 47.999999 km/h 109.652212 \n",
- "284 1.497088 precision 48.297297 km/h 110.122771 \n",
- "285 1.688911 precision 49.000001 km/h 110.573987 \n",
- "286 1.300000 precision 51.000000 km/h 111.140661 \n",
- "287 1.423253 precision 50.000001 km/h 111.891658 \n",
- "\n",
- " GPS Altitude.unit GPS Bearing.value ... Consumption.value \\\n",
- "0 m 124.858622 ... NaN \n",
- "1 m 125.020801 ... NaN \n",
- "2 m 121.203960 ... NaN \n",
- "3 m 123.412759 ... NaN \n",
- "4 m 122.170479 ... NaN \n",
- ".. ... ... ... ... \n",
- "283 m 276.419653 ... 3.122268 \n",
- "284 m 276.271049 ... 2.853618 \n",
- "285 m 275.808021 ... 4.657916 \n",
- "286 m 275.411387 ... 3.445271 \n",
- "287 m 276.124438 ... 3.248333 \n",
- "\n",
- " Consumption.unit track.appVersion track.touVersion \\\n",
- "0 NaN NaN NaN \n",
- "1 NaN NaN NaN \n",
- "2 NaN NaN NaN \n",
- "3 NaN NaN NaN \n",
- "4 NaN NaN NaN \n",
- ".. ... ... ... \n",
- "283 l/h NaN NaN \n",
- "284 l/h NaN NaN \n",
- "285 l/h NaN NaN \n",
- "286 l/h NaN NaN \n",
- "287 l/h NaN NaN \n",
- "\n",
- " O2 Lambda Voltage ER.value O2 Lambda Voltage ER.unit MAF.value MAF.unit \\\n",
- "0 NaN NaN NaN NaN \n",
- "1 NaN NaN NaN NaN \n",
- "2 NaN NaN NaN NaN \n",
- "3 NaN NaN NaN NaN \n",
- "4 NaN NaN NaN NaN \n",
- ".. ... ... ... ... \n",
- "283 NaN NaN NaN NaN \n",
- "284 NaN NaN NaN NaN \n",
- "285 NaN NaN NaN NaN \n",
- "286 NaN NaN NaN NaN \n",
- "287 NaN NaN NaN NaN \n",
- "\n",
- " O2 Lambda Voltage.value O2 Lambda Voltage.unit \n",
- "0 NaN NaN \n",
- "1 NaN NaN \n",
- "2 NaN NaN \n",
- "3 NaN NaN \n",
- "4 NaN NaN \n",
- ".. ... ... \n",
- "283 NaN NaN \n",
- "284 NaN NaN \n",
- "285 NaN NaN \n",
- "286 NaN NaN \n",
- "287 NaN NaN \n",
- "\n",
- "[9944 rows x 54 columns]"
- ]
+ "text/plain": " id time geometry \\\n0 5e8b930965b80c5d6b4d7cd1 2020-03-07T12:33:15 POINT (7.64069 51.95733) \n1 5e8b930965b80c5d6b4d7cd3 2020-03-07T12:33:20 POINT (7.64118 51.95712) \n2 5e8b930965b80c5d6b4d7cd4 2020-03-07T12:33:26 POINT (7.64162 51.95690) \n3 5e8b930965b80c5d6b4d7cd5 2020-03-07T12:33:31 POINT (7.64210 51.95672) \n4 5e8b930965b80c5d6b4d7cd6 2020-03-07T12:33:36 POINT (7.64264 51.95650) \n.. ... ... ... \n283 5dc986e844ea856b702e3e0b 2019-10-28T16:34:55 POINT (7.59523 51.96505) \n284 5dc986e844ea856b702e3e0c 2019-10-28T16:35:00 POINT (7.59425 51.96512) \n285 5dc986e844ea856b702e3e0d 2019-10-28T16:35:05 POINT (7.59327 51.96518) \n286 5dc986e844ea856b702e3e0e 2019-10-28T16:35:10 POINT (7.59225 51.96525) \n287 5dc986e844ea856b702e3e0f 2019-10-28T16:35:15 POINT (7.59123 51.96531) \n\n GPS PDOP.value GPS PDOP.unit Speed.value Speed.unit GPS Altitude.value \\\n0 1.090631 precision 28.999999 km/h 110.381939 \n1 1.000000 precision 28.000000 km/h 108.260375 \n2 1.257198 precision 28.000001 km/h 105.826028 \n3 1.000000 precision 30.000000 km/h 104.395998 \n4 1.026727 precision 31.409419 km/h 101.516865 \n.. ... ... ... ... ... \n283 1.700000 precision 47.999999 km/h 109.652212 \n284 1.497088 precision 48.297297 km/h 110.122771 \n285 1.688911 precision 49.000001 km/h 110.573987 \n286 1.300000 precision 51.000000 km/h 111.140661 \n287 1.423253 precision 50.000001 km/h 111.891658 \n\n GPS Altitude.unit GPS Bearing.value ... Consumption.value \\\n0 m 124.858622 ... NaN \n1 m 125.020801 ... NaN \n2 m 121.203960 ... NaN \n3 m 123.412759 ... NaN \n4 m 122.170479 ... NaN \n.. ... ... ... ... \n283 m 276.419653 ... 3.122268 \n284 m 276.271049 ... 2.853618 \n285 m 275.808021 ... 4.657916 \n286 m 275.411387 ... 3.445271 \n287 m 276.124438 ... 3.248333 \n\n Consumption.unit track.appVersion track.touVersion \\\n0 NaN NaN NaN \n1 NaN NaN NaN \n2 NaN NaN NaN \n3 NaN NaN NaN \n4 NaN NaN NaN \n.. ... ... ... \n283 l/h NaN NaN \n284 l/h NaN NaN \n285 l/h NaN NaN \n286 l/h NaN NaN \n287 l/h NaN NaN \n\n O2 Lambda Voltage ER.value O2 Lambda Voltage ER.unit MAF.value MAF.unit \\\n0 NaN NaN NaN NaN \n1 NaN NaN NaN NaN \n2 NaN NaN NaN NaN \n3 NaN NaN NaN NaN \n4 NaN NaN NaN NaN \n.. ... ... ... ... \n283 NaN NaN NaN NaN \n284 NaN NaN NaN NaN \n285 NaN NaN NaN NaN \n286 NaN NaN NaN NaN \n287 NaN NaN NaN NaN \n\n O2 Lambda Voltage.value O2 Lambda Voltage.unit \n0 NaN NaN \n1 NaN NaN \n2 NaN NaN \n3 NaN NaN \n4 NaN NaN \n.. ... ... \n283 NaN NaN \n284 NaN NaN \n285 NaN NaN \n286 NaN NaN \n287 NaN NaN \n\n[9944 rows x 54 columns]",
+ "text/html": "\n\n
\n \n \n \n id \n time \n geometry \n GPS PDOP.value \n GPS PDOP.unit \n Speed.value \n Speed.unit \n GPS Altitude.value \n GPS Altitude.unit \n GPS Bearing.value \n ... \n Consumption.value \n Consumption.unit \n track.appVersion \n track.touVersion \n O2 Lambda Voltage ER.value \n O2 Lambda Voltage ER.unit \n MAF.value \n MAF.unit \n O2 Lambda Voltage.value \n O2 Lambda Voltage.unit \n \n \n \n \n 0 \n 5e8b930965b80c5d6b4d7cd1 \n 2020-03-07T12:33:15 \n POINT (7.64069 51.95733) \n 1.090631 \n precision \n 28.999999 \n km/h \n 110.381939 \n m \n 124.858622 \n ... \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 1 \n 5e8b930965b80c5d6b4d7cd3 \n 2020-03-07T12:33:20 \n POINT (7.64118 51.95712) \n 1.000000 \n precision \n 28.000000 \n km/h \n 108.260375 \n m \n 125.020801 \n ... \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 2 \n 5e8b930965b80c5d6b4d7cd4 \n 2020-03-07T12:33:26 \n POINT (7.64162 51.95690) \n 1.257198 \n precision \n 28.000001 \n km/h \n 105.826028 \n m \n 121.203960 \n ... \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 3 \n 5e8b930965b80c5d6b4d7cd5 \n 2020-03-07T12:33:31 \n POINT (7.64210 51.95672) \n 1.000000 \n precision \n 30.000000 \n km/h \n 104.395998 \n m \n 123.412759 \n ... \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 4 \n 5e8b930965b80c5d6b4d7cd6 \n 2020-03-07T12:33:36 \n POINT (7.64264 51.95650) \n 1.026727 \n precision \n 31.409419 \n km/h \n 101.516865 \n m \n 122.170479 \n ... \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n ... \n \n \n 283 \n 5dc986e844ea856b702e3e0b \n 2019-10-28T16:34:55 \n POINT (7.59523 51.96505) \n 1.700000 \n precision \n 47.999999 \n km/h \n 109.652212 \n m \n 276.419653 \n ... \n 3.122268 \n l/h \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 284 \n 5dc986e844ea856b702e3e0c \n 2019-10-28T16:35:00 \n POINT (7.59425 51.96512) \n 1.497088 \n precision \n 48.297297 \n km/h \n 110.122771 \n m \n 276.271049 \n ... \n 2.853618 \n l/h \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 285 \n 5dc986e844ea856b702e3e0d \n 2019-10-28T16:35:05 \n POINT (7.59327 51.96518) \n 1.688911 \n precision \n 49.000001 \n km/h \n 110.573987 \n m \n 275.808021 \n ... \n 4.657916 \n l/h \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 286 \n 5dc986e844ea856b702e3e0e \n 2019-10-28T16:35:10 \n POINT (7.59225 51.96525) \n 1.300000 \n precision \n 51.000000 \n km/h \n 111.140661 \n m \n 275.411387 \n ... \n 3.445271 \n l/h \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n 287 \n 5dc986e844ea856b702e3e0f \n 2019-10-28T16:35:15 \n POINT (7.59123 51.96531) \n 1.423253 \n precision \n 50.000001 \n km/h \n 111.891658 \n m \n 276.124438 \n ... \n 3.248333 \n l/h \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n NaN \n \n \n
\n
9944 rows × 54 columns
\n
"
},
- "execution_count": 2,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 2
}
],
"source": [
@@ -466,26 +75,23 @@
"metadata": {},
"outputs": [
{
+ "output_type": "execute_result",
"data": {
- "text/plain": [
- ""
- ]
+ "text/plain": ""
},
- "execution_count": 3,
"metadata": {},
- "output_type": "execute_result"
+ "execution_count": 3
},
{
+ "output_type": "display_data",
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAI/CAYAAABTSLRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df5RV5X0u8OcZxiHeKVZJhlmKUlKkpqsBBztX4OKy2HS8KrlmjDHUQBKbFq6rSW8prY2EudEkTIPVEu5dWddE0qyki0lCjXLSFiTMasvtCmVIh8zIaGKDWCROLJCQFC6x4sD3/nH22ONwzux3n7N/7+ez1izO2WfvPe8GnrPf/e53vy/NDCJSDE1JF0BE4qPAixSIAi9SIAq8SIEo8CIFosCLFEhz0gUI4i1veYvNnj076WKIpNKBAwd+ZGZtk62TqcDPnj0bg4ODSRdDJJVIvui3jqr0IgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIFkahDLPOgpjWDrwNELlq9cNAsbuuclUCIpEp3hY1Qr7ACwdeAo5j+wK+YSSdEo8DH66v4fTPr5qVfPoWvTnngKI4WkwMfonJnvOoeOn4mhJFJUCnyMppBO671t/c6ISyJFpcDH6O6FVzmt9+/nTNfzEgkFPkYbuudh5aJZTuueevUcFvb2R1wiKRqnwJM8QnKE5DDJQW/Zp0ge9JbtJnlFjW3PeesMk/yriuVvJbmf5PMkt5FsCeeQ0m1D9zwc2bjMad1jp88q9BKqIGf4m8ysw8w6vfcPm9l8M+sA8DcAPl5ju1e87TrM7PaK5Q8B+IyZXQ3gJwB+O3DpM8z1TK/QS5jqrtKb2amKt60A/JugPSQJ4NcBfN1b9GUA3fWWJYs2dM/DkjnTndZV6CUsroE3ALtJHiC5enwhyV6SPwCwArXP8G8iOUhygOR4qN8M4KdmNua9fwnAzDrKn2l9qxYHOtOrIU8a5Rr4G8zsOgC3AvgwyRsBwMzWm9lVAPoAfKTGtr/gXQa8D8BmknOCFJDkau8LY/DEiRNBNs2EoA15Cr00winwZjbq/XkcwHYA109YpQ/AnT7bvgBgD4AFAH4M4FKS4335rwQwWmP7x8ys08w629raXIqbOQq9xMU38CRbSU4bfw3gZgDPkJxbsdq7ADxXZdvLSE71Xr8FwBIA3zUzA/D3AN7jrfpBAN9o5ECyTqGXOLic4dsBfIvk0wC+DWCHme0CsJHkMyQPovwl8PsAQLKT5Be8bX8ZwKC37d8D2Ghm3/U++yiAtSSfR/ma/s9DO6qMChr62ffviLhEkjc0h/7dadHZ2WmDg4NJFyNypaFRrNk27LRuM4HnP+12X1/yjeSBitvmVamnXQp1L5iJzcs7nNYdy873taSABsBImZ7SCPoGjrp3ahAJQIFPgRVb9mHv4ZNJF0MKQIFPUGloFH+wbVhnc4mNAp+Qrk17QhnswrV7rgigwMdusnHtgloyZzr6Vi0OZV9SDAp8jBb29uPY6bMN7aMJwKblHeheULhHDyQECnwMwrhWv/iiJnz63fMVdGmIAh+xRlrgNVa9hE2Bj1A9DXPt01qwf31XRCWSolPgI1LP9brO6BI1BT4Cb1u/E/9+zv2KXa3tEhcFPkRBHnoZt1kt7hIjBT4kQRvndK0uSVDgQxC0cU5VeEmKAt+goI1zapiTJCnwdaqnM42u1yVpCnwdgjbOaVQaSQuNeFOHIGG/ZOoUhV1SQ4EPKMjAkXNntOLgJ26JsDQiwSjwAVy9LljY+9cuja4wInVQ4ANwHTByyZzpCrukkgIfsqnNTbir021seZG4KfAhe3XsPNZsG8Y1PU+hNFR19iyRxCjwERkP/oot+5IuisjrFPiI7T18UqGX1FDgY7D38ElV7yUV1NMuJvc9PuzcrbY0NIoH/+pZ/PSV1+r6XeqvL7VoMsmA8jBjKwGs0JdC7rhMJqnAh6A0NIq124ZxPumC1ElfAPmgwMcsrNlkkjS1uQkP3anhsLNI00XHLA+968ZvJ179sZ1qaMwhBT5kU5vz8Vc6dt7UjyCH8vG/M0UeunN+0kUI1d7DJ7Gwtz/pYkhIdFsuZOPXvuuePIhXXmu8Ga+1ZQp675jne00d5Rzzx06fxfwHdulR3xxQo11BlIZGG/4S0ki76aZWeqmp3i+AS6ZO0Zk+pRR4cVLPnPXqzZc+ui0nTjZ0z8ORjcswd0ar8zZbB46qMS+DFHh5Xf/apVgyZ7rz+sdOn8Uvrtuh+/UZosDLG/StWhwo9OetPIpvT2kkwlJJWBR4uUDQ0APlKr466aSfAi9V9a1ajM3LOwJts/fwSXRt2hNNgSQUCrzU1L1gJo5sXIb2aS3O2xw6fkaNeSmmwIuv/eu7sHKR+0i8x06fVehTSoEXJ0Fv3Sn06aTASyD9a5cGCr1u26WLAi+BBblfP37bTi346aDAS12CtuJruO50UOClbkFb8fcePqkOOglT4KVh+9d3OYd+68BRXdMnSIGXUAQJ/dptwxGXRmpR4CU0+9d3OTXmnQdUtU+IAi+h6lu12KmTTtDn7yUcCryEbkP3PKczvVrt46dBLKUhpaFRrN8+gjNnzwXeNqpBN6U2BV4C6ymNoG/gKLIzOJqMU+DFSSNnckkPp8CTPALgNIBzAMbMrJPkpwC8C+VG1+MA7jGzH07YrgPAowAu8bbtNbNt3mdfAvBrAP7NW/0eM9P9mhSKcsx7iVeQM/xNZvajivcPm9n/BACS/wPAxwHcO2GbnwH4gJkdInkFgAMkv2lmP/U+v8/Mvl5v4SVapaFRrP3LYZyPqO4eZNBMCUfdVXozO1XxthW48JLOzL5f8fqHJI8DaAPw04nrSrrUM3R1EO3TWnIx+WbWuAbeAOwmaQA+b2aPAQDJXgAfQLlaftNkOyB5PYAWAIcrFveS/DiAvwVwv5m9GrD8EoEoq/AXX9SET79b01EnxWkiCpIzzWyU5AwA/QB+z8z+oeLzdQDeZGYP1Nj+cgB7AHzQzAYqlv0ryl8CjwE4bGafrLLtagCrAWDWrFm/+uKLLwY7QnHWaBX+0osvwoO3/4rCnJBIZp4h+SCA/2dmj1QsmwVgp5m9vcr6l6Ac9j+pdb1OcimAPzKzd072uzXzTHTqOatf1AQ8fFeHAp4SLoH3rdKTbAXQZGanvdc3A/gkyblmdshb7V0AnquybQuA7QD+YmLYSV5uZi+TJIBuAM84HZWErqc0Ejjsm5cr6Fnkcg3fDmB7OZdoBvAVM9tF8gmS16B8W+5FeC30JDsB3GtmvwPgvQBuBPBmkvd4+xu//dZHsg0AAQzjwhZ+iUgj99Q1g2y2aTLJgugpjeAr+482dItt7oxWtaynWChVesmeMMI90ZI509G3anF4O5REKPAZF0eXV12v54cCnyFxP7SiOeDzR4FPubgfWlHI802BT7G4H1pR2PNPgU+phb39OHb6bOS/R11di0WBT6EVW/ZFFnYFvNgU+BQKqxqvcMtECnzK1Duwo8ItLhT4lHE9u6uBTeqhwKeIy+QM6gQjjdC49CniN8LMykWzFHZpiAKfEgt7+33XURVeGqXAp4DLbTiXmVxE/CjwCSsNjTo11OlJNQmDAp8wl6mTdXaXsCjwCeopjeC8zzqXTJ2is7uERoFPkMu47wc/cUsMJZGiUOATUhoa9V3HZZ51kSAU+ITc9/jk1+7NTdRtOAmdAp+Q13wu3h+569p4CiKFosAnwKU6rx51EgUFPgF+1Xldu0tUFPgE+FXnde0uUVHgY9a1ac+kn7e2TImnIFJICnyMSkOjOHT8zKTr9N6hs7tER4GP0RqHbrRqrJMoKfAx8avKA2qsk+gp8DFYsWWfb1W+iWqsk+gp8BFzffx103s7YiiNFJ0CHzGX6/a5M1p17S6xUOAj5DJsVROhOdclNgp8RLo27XGaPUZVeYmTAh+BntKIbyMdUB7JRlV5iZMCHwGXgS3mzmjVSDYSOwU+ZC5TRbVPa9F1uyRCgQ+Z3y24JgL713fFVBqRN1LgY6ZGOkmSAh8iv+q8GukkaQp8iPyq82qkk6Qp8DFh0gUQgQIfmxV6Ek5SQIGPiZ6EkzRQ4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAU+Ji7zyYlETYGPid98ciJxUOBj4jefnEgcFPgQaV44STsFPkR+88K5jIYjEiUFPkR+z7q7TEghEiUFPmR6DFbSTIEPmd9jsD2lkZhKInIhBT5kfo/BugxhLRIVBV6kQJwCT/IIyRGSwyQHvWWfInnQW7ab5BU1tv0gyUPezwcrlv+qt8/nSf5vkrm5/NXtOUmrIGf4m8ysw8w6vfcPm9l8M+sA8DcAPj5xA5LTATwAYCGA6wE8QPIy7+NHAawCMNf7uaXOY0gdv9tzIkmpu0pvZqcq3rYCsCqr/VcA/WZ20sx+AqAfwC0kLwdwiZkNmJkB+AsA3fWWJW00FLWkVbPjegZgN0kD8HkzewwASPYC+ACAfwNwU5XtZgL4QcX7l7xlM73XE5eLSIRcz/A3mNl1AG4F8GGSNwKAma03s6sA9AH4SBQFJLma5CDJwRMnTkTxK0QKwynwZjbq/XkcwHaUr8cr9QG4s8qmowCuqnh/pbds1Hs9cXm13/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxDcm7Fau8C8FyVzb8J4GaSl3mNdTcD+KaZvQzgFMlFXuv8BwB8o8FjEREfLtfw7QC2e3fNmgF8xcx2kXyC5DUAzgN4EcC9AECyE8C9ZvY7ZnaS5KcA/JO3r0+a2XiH8t8F8CUAFwN4yvsRkQj5Bt7MXgBwbZXl1arwMLNBAL9T8f6LAL5YY723BymsiDRGPe1ECkSBFykQBV6kQBR4kQJR4BOgoa4kKQp8AjTUlSRFgY9Ibp71lVxR4CPiN9SVSBIU+Ij4DXUlkgQFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBT4ipaGqY3KKJEqBj8jabcNJF0HkAgp8BEpDozifdCFEqlDgI3Df45Of3TXZpCRFgQ9ZT2kEr/mc3jXZpCRFgQ9RaWgUWweOTrpOcxM12aQkRoEPkUtD3SN3XTDEv0hsFPiQLOzt922om9rcpLO7JEqBD8HC3n4cO33Wd72H7pwfQ2lEalPgG9S1aY9T2JfMma6zuyROgW9AT2kEh46f8V1v7oxW9K1aHEOJRCanwDfAr0UeKIe9f+3S6Asj4kCBr5PLZBLt01oUdkkVBb5OfpNJNBHYv74rptKIuFHg69BTGvFdZ9N7O2IoiUgwCnwd/K7d1SIvaaXAR0At8pJWCnzIVmqKKUkxBT4gv+t3TTElaabAB+Ry710krRT4APzO7poiWtJOgQ/A7+yuKaIl7RR4Ry4963T9LmmnwDvoKY349qxbMmd6TKURqZ8C76OnNOLUUKd775IFzUkXIM1WbNnne2YHdO9dskOBr6Fr0x6nZ92bm6hrd8kMVemrcA07oEEpJVsU+AmChF0PyUjWqEpfwXUwSqAcdjXUSdboDO8JEvaVi2Yp7JJJOsOj3BrvGvbNyztUjZfMKvwZvjQ06nTrDVDYJfsKH/h1Tx70XacJCrvkQ+Gr9K/4TPXaPq1Fg1FKbhT6DO/3QIxGnpW8KXTg/a7dNfKs5E2hA+9H1+ySNwp8DXogRvKosIHXYJRSRIUNvAajlCJyCjzJIyRHSA6THPSWPUzyOZIHSW4neWmV7a7xthn/OUVyjffZgyRHKz67LdxDq58Go5S8CnKGv8nMOsys03vfD+DtZjYfwPcBrJu4gZn9s7dNB4BfBfAzANsrVvnM+OdmtrPOYwidBqOUvKq7Sm9mu81szHs7AOBKn03eAeCwmb1Y7++Mi67fJa9cA28AdpM8QHJ1lc8/BOApn338JoCvTlj2Ee+S4IskL3Msi4jUyTXwN5jZdQBuBfBhkjeOf0ByPYAxAH21NibZAuB2AI9XLH4UwBwAHQBeBvBnNbZdTXKQ5OCJEycciysi1TgF3sxGvT+Po3wNfj0AkLwHwDsBrDAzm2QXtwL4jpkdq9jnMTM7Z2bnAWwZ32eV3/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxD8hYAfwzgdjP7mc9u7saE6jzJyyve3gHgmSAFj1JpaDTpIohEwuUM3w7gWySfBvBtADvMbBeAzwKYBqDfu632OQAgeQXJ11vcvS+JLgBPTtjvn3q3+g4CuAnAHzR+OOFweWRWJIt8H481sxcAXDA0q5ldXWP9HwK4reL9GQBvrrLe+wOVNEZ+j8yKZFVhe9q1tkxJuggisSts4Hvv0L12KZ7CBl6PvkoRFTbwIkWkwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosDX4DeMtUgWKfA1aBhryaNCB95vOOr5D+yKpRwicSl04P2Goz716jks7O2PqTQi0St04F2Goz52+iy6Nu2JvjAiMSh04AG3SSMPHT+j0EsuFD7wG7rnoclhbqlDx89gxZZ90RdIJEKFDzwAbHpvh9N6ew+f1Ii2kmkKPMqj3yyZM91p3TXbhiMujUh0FHhP36rFmDuj1WldneUlqxT4Cv1rlzqF/r7HdZaXbFLgJ+hfuxTt01omXUfD1ktWKfBV7F/flXQRRCKhwIsUiAJfhZ6Uk7xS4Kvwe1LOpXeeSBop8HVw6YMvkkYKvEiBKPABqTovWabAB6TqvGSZAj+BWuglzxT4CTSWneSZAi9SIAp8BVXnJe8U+ArqcCN5p8AHoBZ6yToFXqRAFHhHqs5LHijwjlSdlzxQ4B1pHDvJAwXekcaxkzxQ4B29dl5neck+BT4AneUl6xT4Cn4t8TrLS9Yp8BVcWuLXPXkwhpKIREOBn8DvLP+KBqWXDFPgJ9jQPQ/NPtPJahZZySoFvopH7rp20s/3Hj4ZU0lEwqXAV9G9YGbSRRCJhAJfg9+1vFrrJYsU+Br8WuzVWi9ZpMDXSa31kkUK/CRaW6YkXQSRUCnwk+i9Q4/ESr4o8JNQa73kjQIvUiAKvEiBOAWe5BGSIySHSQ56yx4m+RzJgyS3k7zUdVtv+XSS/SQPeX9eFs4hxUf34iVrgpzhbzKzDjPr9N73A3i7mc0H8H0A6wJsCwD3A/hbM5sL4G+995mie/GSNXVX6c1st5mNeW8HAFwZcBfvAvBl7/WXAXTXW5ak6F68ZI1r4A3AbpIHSK6u8vmHADwVcNt2M3vZe/2vANodyxIrv3vxqtZLlrgG/gYzuw7ArQA+TPLG8Q9IrgcwBqAv6LbjzMxQ/mK4AMnVJAdJDp44ccKxuOHxuxevar1kiVPgzWzU+/M4gO0ArgcAkvcAeCeAFV5onbcFcIzk5d5+LgdwvMb2j5lZp5l1trW1OR5WePzuxataL1niG3iSrSSnjb8GcDOAZ0jeAuCPAdxuZj8Lsq338V8B+KD3+oMAvtHIgURpavPkf01dm/bEUxCRBrmc4dsBfIvk0wC+DWCHme0C8FkA0wD0e7fcPgcAJK8gudNnWwDYCKCL5CEAv+G9T6WH7pw/6eeHjp/RKDiSCaxRE0+lzs5OGxwc9F8xArPv3+G7zpI509G3anEMpRG5EMkDE259X0A97Ry5TCa59/BJVe8l1RR4Ry6DWwLl6v3VH9up23WSSgp8AH6DW44bO29Ys21Y1/WSOgp8AN0LZgaaJ15VfEkbBT6gDd3zAoVeVXxJEwW+Dhu652Hz8g7nv7zxKn5PaSTScon4UeDr1L1gJl7YuAxzZ7Q6b7N14KjO9JIoBb5B/WuXYsmc6c7rr9mmKaclOQp8CPpWLQ5UxV/Y2x9peURqUeBDEqSKf+z0WV3PSyIU+JC5VvG3DhyNoTQib6TAR6Bv1WKn0KsBT+KmwEekb9VitE9rmXQdDZ4hcVPgI7R/fdekn2vwDImbAh8xzU8naaLAR+yO6zRdlaSHAh+xJw68lHQRRF6nwEdM1+mSJgp8hPyeh/cfTkMkXAp8REpDo9h7+OSk66wI8JitSBgU+IisdXhIZkP35JNciIRNgY9AT2kEflfuQQbREAmLAh8Bv37yzU3U2V0SocAnwHUwTJGwKfAxm9rc5DtfnUhUFPiY+U1bJRIlBT5mOrtLkhT4mGmcekmSAh+zQ8fPaHgrSYwCnwANbyVJUeAj4NKpRsNbSRIU+Ai4zDR73+Man17ip8BHxK9zjZ6alSQo8BHpXjATU5v11yvpov+REVInG0kbBT5C6mQjaaPAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIfIb+ppkTipsBHpKc04jvVlEjcmpMuQB6t2LLPN+yaSFKSoMCHqDQ0ij96/GmMnTffdTWRpCRBgW9QaWgUn/jrZ/GTn70WaDtNNSVJUODr0FMawVf2H4XDibwqTSQpSVHgHZSGRrF++wjOnD3X8L6WzJmus7skRoGfRGloFB994iBeHQtnALqVi2Yp7JIoBb4Gl5Z2V00ANi3v0Ag4kjgFfoIgLe0udFaXNFHgK5SGRrFmWzjjxSvokkYKfIW1DYb90osvwoO3/4qq7pJaCrxnxZZ9CNo0p4BL1ijwCNbvfcmc6ehbtTjiEolEw+nhGZJHSI6QHCY56C17mORzJA+S3E7y0irbXUXy70l+l+SzJH+/4rMHSY56+xwmeVt4h+WuNDTqNJtrE4DNyzsUdsm0IGf4m8zsRxXv+wGsM7Mxkg8BWAfgoxO2GQPwh2b2HZLTABwg2W9m3/U+/4yZPVJ36UPgct0+d0Yr+tcujb4wIhGr+/FYM9ttZmPe2wEAV1ZZ52Uz+473+jSA7wFIzQVv16Y9vtftzU1U2CU3XANvAHaTPEBydZXPPwTgqcl2QHI2gAUA9lcs/oh3SfBFkpc5liUUXZv24NDxM77r+c0CK5IlroG/wcyuA3ArgA+TvHH8A5LrUa6699XamOTPAXgCwBozO+UtfhTAHAAdAF4G8Gc1tl1NcpDk4IkTJxyLOznXsC+ZM10t8JIrToE3s1Hvz+MAtgO4HgBI3gPgnQBWmFnVrmkkL0I57H1m9mTFPo+Z2TkzOw9gy/g+q/zux8ys08w629ranA+smtLQKK7+2E6nsM+d0aoGOskd38CTbPUa3ECyFcDNAJ4heQuAPwZwu5n9rMa2BPDnAL5nZpsmfHZ5xds7ADxT3yG46SmNYM22Yacus2qkk7xyaaVvB7C9nF00A/iKme0i+TyAqQD6vc8GzOxeklcA+IKZ3QZgCYD3AxghOd4c/jEz2wngT0l2oNw+cATAfw/xuN6gpzTidOsNUCOd5Jtv4M3sBQAXtFyZ2dU11v8hgNu8199CjeHbzOz9gUpapyBhB9RIJ/mW61Frg4R9vGONGukkz3LbtTZI2HXNLkWRyzO8a3dZoHzrTWGXoshl4F2fadeDMFI0uQt816Y9Tusp7FJEuQp8aWjUuQedwi5FlKtGO9eq/N7DJzH7/h1VP2ttmYLeO+aptV5yiTV6xKZSZ2enDQ4OVv1sYW8/jp0+G3OJyp0MVmj8OkkBkgfMrHOydXJxhl+xZV8iYQfK3QS3Dhx9/a6AvgAkzXIR+DRNy1z5BaDLA0mbXDXapc2Zs+ewZtuw850Dkagp8DE4dPwMZt+/Az2lkaSLIgWnwMdo68BRBV8SlYtr+JWLZgV6Im7itXVpaBTrnjyIV14LZ9JIP5WNfLU0EXjfQjX+Sbhyc1uupzSCr+7/Ac6ZYQqJuxdeFWlYgj522wi1/IsLl9tyuQl80uL6AlDLv9SiwCcgzAkpg1JNoNgU+ASFOb98PfS8QPG4BF6t9BHpW7UYm5d34KKE/obHnxfQHQGppMBHqHvBTBz6k2XYvLwDFyeU/K0DR7Gwtz+R3y3poyp9ykTV+Nc+rQX713eFvl9JD1XpM2hD9zwc2bgMRzYuw5I500Pb77HTZ1W9FwU+zfpWLcaRjctCawuIq9+ApFcuetrlXfeCmZPed4+zE5Bkm87wOTB+GeByCbBiy74YSiRppcDnSN+qxVi5aNak66Rp7ACJnwKfM+plJ5NR4HMozNZ9yRcFPof8utSWhkZjKomkjQJfQEk93CPJU+ALav4Du5IugiRAgS+oU6+ew+z7d+BXPr5LVfwCUeBzyu/23LjxkXUV/mJQ4HNqQ/c8tE9rCbTNePiv/thOBT+nFPgc27++C6xju7HzhjXbhtUrL4cU+Jz7zPKOurfde/iknqXPGQU+57oXzMTmBkJ/7PRZnelzRIEvgO4FM3Fk4zLnhryJ1P8+PxT4Ahl/qq6eIbc0P14+aIirggsyrHZzE/HIXddqTPyU0hBX4mu8uu/ywM14672GysouBV4AlB+4aW5yu4m3deCo7tNnlAIvr3vkrmud19UDONmkwMvruhfMDPQsvW7XZY8CL2/Qt2qxc+h1uy57FHi5wPg0WS7/OXSWzxYFXqrqXjATL2xchkumTpl0PZ3ls0X34cXX7Pt31LXdkY3LQi6JTEb34SUU9Q6KWe8XhURHgRdfjcwz/1aFPlUUeHEytbm+/yoGaJ76FFHgxclDd85vaHvNU58OCrw46V4ws+7Ha8cdO31WZ/uEKfDibEP3vIYG0xi3deCohslOiG7LSV1WbNkX2j34lYtmaU68ELjcllPgpSFhzk1/8UVN+PS75+t5+zop8BKrMMOvs35wCrwkIsgoOn4uagIevqtDZ30HoQWe5BEApwGcAzBmZp0kHwbw3wCcBXAYwG+Z2U+rbHsLgP8FYAqAL5jZRm/5WwF8DcCbARwA8H4zOztZORT4bAnzOh9Q+P2EHfhOM/tRxbKbAfydmY2RfAgAzOyjE7abAuD7ALoAvATgnwDcbWbfJfmXAJ40s6+R/ByAp83s0cnKocBnT9ihr+Ra7b963Q6MVflvnre+/pH2pTez3WY25r0dAHBlldWuB/C8mb3gnb2/BuBdJAng1wF83VvvywC66y2LpFffqsWYO6M1kn1vHTjqe1+/VtiBYvb1dw28AdhN8gDJ1VU+/xCAp6osnwngBxXvX/KWvRnAT6zjwnIAAAoxSURBVCu+MMaXSw71r10aWeiB/wh+taG0a4V9XNH6+jc7rneDmY2SnAGgn+RzZvYPAEByPYAxAH1RFND7glkNALNmNdbTS5LTv3ZppNV7ADh0/Axm378DS+ZMd37gxwDMf2AXDn7ilsjKVY+uTXtw6PiZC5a3T2vB/vVdde/X6QxvZqPen8cBbEe5qg6S9wB4J4AVVr0xYBTAVRXvr/SW/RjApSSbJyyv9rsfM7NOM+tsa2tzKa6kVN+qxQ13z3Wx9/BJzL5/h/PIuqdePYfZ9+9ITRV/9v07qoYdKHdPbuSZBN9GO5KtAJrM7LT3uh/AJ72PNwH4NTM7UWPbZpQb7d6BcqD/CcD7zOxZko8DeKKi0e6gmf2fycqiRrt8KA2N4r7Hh/Ha+aRLUl3YjXm1ztaNqFZGl0Y7lyp9O4Dt5XY2NAP4ipntIvk8gKkoV/EBYMDM7iV5Bcq3327zWvA/AuCbKN+W+6KZPevt96MAvkZyA4AhAH/ucqCSfd0LZqJ7wczUBn/Fln2BxwAIs9NRlNTxRhJXGhrF2m3DSFnuJz3Tz39gF069ei7G0rxRlGd4kUhVnvHXPXkQr6TklJ+Wa/qJ2qe11L2tAi+pMR78cVmpJsep0VZ6Vekl89J6Jg7T5uX+XYpVpRfJgTDvGijwIjFzOVtHRYEXicCbphDP9d6WdDEuoMCLNKiZwPOfzsaTdwq8SABpPXO7UuAl845sXBZ5S31enp3XMNUiBaLASy74TWvdqLzc61fgJReS7NeeJQq8SIEo8CIFosBLLkR9DZ8XCrzkwsFP3BJp6BnZnuOlwEtuzLvy5xvafsmc6VWXE8C/5OQ+vDreSG64jojbPq0Fx06ffcP7Rp4xzxIFXnLhbet3Oq03d0Yr+tcujbYwKaYqvWTewt5+/Ps5hynTgEKHHVDgJeO6Nu15Q/W8lkumTsnNdXgjFHjJrJ7SiNN473NntKZuZpmkKPCSWS4DXL5pCgtfja+kwEsmuU63lOVn16OgVnrJHNdJIDYv74ihNNmiM7xkyoot+5zCvmTO9MQGikwzBV4yxbVzTdC54YpCVXpJtdLQKNZvH8GZs+7Pu9fqIisKvKRYaWgUa7YNB9rmkqlTdHafhKr0klpBw75kznTdb/ehwEsuNDdRZ3YHCrzkwiN3XZt0ETJBgZdU6tq0x3ndJOdqyxo12kkqufSRX7loFjZ0z4uhNPmhwEsm5WUmmLipSi+p41ednzujNZ6C5JACL6njV53X02/1U+BFCkSBl0xRt9nGKPCSKn6TNqpzTWMUeEmNt+ZkhtY0U+AlFXpKI/Afd1YapcBLKnx1/w+SLkIhKPCSCufM//y+ctGsGEqSbwq8pMIU+k/XqG60jVPgJRXuXnhV0kUoBAVeUmFD9zy0T2tJuhi5p8BLarhMGSWNUeBFCkSBFykQBV4yozQ0mnQRMk+Bl9Twu88edBRbuZACL6mh++zRU+AlU1xnjZXqFHhJFb9qvW7dNUaBl1RRtT5aCrykytvW70y6CLmmYaolcfXMECv1UeAlUfXMECv1c6rSkzxCcoTkMMlBb9ldJJ8leZ5kZ43trvG2Gf85RXKN99mDJEcrPrstvMOSrFgbMOx6Jr4xQc7wN5nZjyrePwPg3QA+X2sDM/tnAB0AQHIKgFEA2ytW+YyZPRKgDJIz5wOsu2TOdDXqNajuKr2ZfQ8A6DBwgecdAA6b2Yv1/k7Jl57SiPO6mjAyHK6BNwC7SRqAz5vZY3X8rt8E8NUJyz5C8gMABgH8oZn9pI79Ssas2LIPew+fdFr3TVOI53p1tRcW19tyN5jZdQBuBfBhkjcG+SUkWwDcDuDxisWPApiDcpX/ZQB/VmPb1SQHSQ6eOHEiyK+VFAoSdgAKe8icAm9mo96fx1G+Br8+4O+5FcB3zOxYxT6Pmdk5MzsPYEutfZrZY2bWaWadbW1tAX+tpE2QsEv4fANPspXktPHXAG5GucEuiLsxoTpP8vKKt3fUsU8RCcjlDN8O4FsknwbwbQA7zGwXyTtIvgRgMYAdJL8JACSvIPl6dynvS6ILwJMT9vun3q2+gwBuAvAHIRyP5IjGuAsfzWE88LTo7Oy0wcHBpIshAZSGRvHRJw7i1bEgN+DKYd+/viuiUuUTyQNmVrVPzDj1tJNIBG2cq3Rk47KQSyPjFHgJhfrDZ4MCL3Xr2rQHh46fCXWfmv89Wno8VuoSRdjbp7Vo/veIKfBSl7DDvnLRLDXSxUBVeknMxRc14dPvnq8+8jFS4CU2CnjyFHiJ3MpFs/RYa0roGl4ip7CnhwIvdXnTFOdxECRFFHipy3O9tzmF/pKpU2IojbjSNbzUbfxZ9VoDUV4ydQoOfuKWuIslk1DgpWHdC2aq5T0jVKUXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBV6kQBR4kQJR4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCoRmlnQZnJE8AeDFhIvxFgA/SrgMUdBxZUu14/oFM2ubbKNMBT4NSA6aWWfS5Qibjitb6j0uVelFCkSBFykQBT64x5IuQER0XNlS13HpGl6kQHSGFykQBX4CkteQHK74OUVyzYR1VpA8SHKE5D+SvDap8rpyOa6Kdf8zyTGS74m7nEG5HhfJpd7nz5L8v0mUNSjH/4s/T/KvST7tHdtvTbpTM9NPjR8AUwD8K8r3NyuX/xcAl3mvbwWwP+myhnFcFZ/9HYCdAN6TdFlD+ve6FMB3Aczy3s9IuqwhHtvHADzkvW4DcBJAS6396Aw/uXcAOGxmb+jsY2b/aGY/8d4OALgy9pI1pupxeX4PwBMAjsdbpFDUOq73AXjSzI4CgJnl6dgMwDSSBPBzKAd+rNZOFPjJ/SaAr/qs89sAnoqhLGGqelwkZwK4A8CjsZcoHLX+vX4JwGUk95A8QPIDMZcrDLWO7bMAfhnADwGMAPh9Mztfcy9JV1XS+gOgBeWui+2TrHMTgO8BeHPS5Q3juAA8DmCR9/pLyFCV3ue4PotyTawV5S6phwD8UtJlDunY3gPgMwAI4GoA/wLgklr7ag7yFVMwtwL4jpkdq/YhyfkAvgDgVjP7cawla8xkx9UJ4Gvl2iHeAuA2kmNmVoqzgHWa7LheAvBjMzsD4AzJfwBwLYDvx1nABkx2bL8FYKOV0/88yX8B8DYA3662I1Xpa7sbNarzJGcBeBLA+80sK/9pxtU8LjN7q5nNNrPZAL4O4HczEnZgkuMC8A0AN5BsJvmfACxEuWaWFZMd21GUr+9Bsh3ANQBeqLUjdbypgmQryn+Rv2hm/+YtuxcAzOxzJL8A4E78x5N7Y5aBBzT8jmvCul8C8Ddm9vW4yxmUy3GRvA/ls+F5AF8ws80JFTcQh/+LV6B8+XU5ytX6jWa2teb+FHiR4lCVXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFymQ/w8mmGO+lQWCQwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
+ "text/plain": "",
+ "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n