From 4f1bb9aa865c2b51ca603aae3b6302ea2b7d8aa4 Mon Sep 17 00:00:00 2001
From: shiwakotisurendra <63626177+shiwakotisurendra@users.noreply.github.com>
Date: Fri, 17 Apr 2020 17:48:16 +0545
Subject: [PATCH 1/3] pydeck access token added
---
examples/shiwakotisurendra.ipynb | 727 +++++++++++++++++++++++++++++++
1 file changed, 727 insertions(+)
create mode 100644 examples/shiwakotisurendra.ipynb
diff --git a/examples/shiwakotisurendra.ipynb b/examples/shiwakotisurendra.ipynb
new file mode 100644
index 0000000..504d207
--- /dev/null
+++ b/examples/shiwakotisurendra.ipynb
@@ -0,0 +1,727 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Package loading and basic configurations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "# load dependencies'\n",
+ "import pandas as pd\n",
+ "import geopandas as gpd\n",
+ "\n",
+ "from envirocar import TrackAPI, DownloadClient, BboxSelector, ECConfig\n",
+ "\n",
+ "# create an initial but optional config and an api client\n",
+ "config = ECConfig()\n",
+ "track_api = TrackAPI(api_client=DownloadClient(config=config))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Querying enviroCar Tracks"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following cell queries tracks from the enviroCar API. It defines a bbox for the area of Münster (Germany) and requests 50 tracks. The result is a GeoDataFrame, which is a geo-extended Pandas dataframe from the GeoPandas library. It contains all information of the track in a flat dataframe format including a specific geometry column. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " id | \n",
+ " time | \n",
+ " geometry | \n",
+ " GPS PDOP.value | \n",
+ " GPS PDOP.unit | \n",
+ " Speed.value | \n",
+ " Speed.unit | \n",
+ " GPS Altitude.value | \n",
+ " GPS Altitude.unit | \n",
+ " GPS Bearing.value | \n",
+ " ... | \n",
+ " Consumption.value | \n",
+ " Consumption.unit | \n",
+ " track.appVersion | \n",
+ " track.touVersion | \n",
+ " O2 Lambda Voltage ER.value | \n",
+ " O2 Lambda Voltage ER.unit | \n",
+ " MAF.value | \n",
+ " MAF.unit | \n",
+ " O2 Lambda Voltage.value | \n",
+ " O2 Lambda Voltage.unit | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " 5e8b930965b80c5d6b4d7cd1 | \n",
+ " 2020-03-07T12:33:15 | \n",
+ " POINT (7.64069 51.95733) | \n",
+ " 1.090631 | \n",
+ " precision | \n",
+ " 28.999999 | \n",
+ " km/h | \n",
+ " 110.381939 | \n",
+ " m | \n",
+ " 124.858622 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " 5e8b930965b80c5d6b4d7cd3 | \n",
+ " 2020-03-07T12:33:20 | \n",
+ " POINT (7.64118 51.95712) | \n",
+ " 1.000000 | \n",
+ " precision | \n",
+ " 28.000000 | \n",
+ " km/h | \n",
+ " 108.260375 | \n",
+ " m | \n",
+ " 125.020801 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 5e8b930965b80c5d6b4d7cd4 | \n",
+ " 2020-03-07T12:33:26 | \n",
+ " POINT (7.64162 51.95690) | \n",
+ " 1.257198 | \n",
+ " precision | \n",
+ " 28.000001 | \n",
+ " km/h | \n",
+ " 105.826028 | \n",
+ " m | \n",
+ " 121.203960 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 5e8b930965b80c5d6b4d7cd5 | \n",
+ " 2020-03-07T12:33:31 | \n",
+ " POINT (7.64210 51.95672) | \n",
+ " 1.000000 | \n",
+ " precision | \n",
+ " 30.000000 | \n",
+ " km/h | \n",
+ " 104.395998 | \n",
+ " m | \n",
+ " 123.412759 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 5e8b930965b80c5d6b4d7cd6 | \n",
+ " 2020-03-07T12:33:36 | \n",
+ " POINT (7.64264 51.95650) | \n",
+ " 1.026727 | \n",
+ " precision | \n",
+ " 31.409419 | \n",
+ " km/h | \n",
+ " 101.516865 | \n",
+ " m | \n",
+ " 122.170479 | \n",
+ " ... | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 283 | \n",
+ " 5dc986e844ea856b702e3e0b | \n",
+ " 2019-10-28T16:34:55 | \n",
+ " POINT (7.59523 51.96505) | \n",
+ " 1.700000 | \n",
+ " precision | \n",
+ " 47.999999 | \n",
+ " km/h | \n",
+ " 109.652212 | \n",
+ " m | \n",
+ " 276.419653 | \n",
+ " ... | \n",
+ " 3.122268 | \n",
+ " l/h | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 284 | \n",
+ " 5dc986e844ea856b702e3e0c | \n",
+ " 2019-10-28T16:35:00 | \n",
+ " POINT (7.59425 51.96512) | \n",
+ " 1.497088 | \n",
+ " precision | \n",
+ " 48.297297 | \n",
+ " km/h | \n",
+ " 110.122771 | \n",
+ " m | \n",
+ " 276.271049 | \n",
+ " ... | \n",
+ " 2.853618 | \n",
+ " l/h | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 285 | \n",
+ " 5dc986e844ea856b702e3e0d | \n",
+ " 2019-10-28T16:35:05 | \n",
+ " POINT (7.59327 51.96518) | \n",
+ " 1.688911 | \n",
+ " precision | \n",
+ " 49.000001 | \n",
+ " km/h | \n",
+ " 110.573987 | \n",
+ " m | \n",
+ " 275.808021 | \n",
+ " ... | \n",
+ " 4.657916 | \n",
+ " l/h | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 286 | \n",
+ " 5dc986e844ea856b702e3e0e | \n",
+ " 2019-10-28T16:35:10 | \n",
+ " POINT (7.59225 51.96525) | \n",
+ " 1.300000 | \n",
+ " precision | \n",
+ " 51.000000 | \n",
+ " km/h | \n",
+ " 111.140661 | \n",
+ " m | \n",
+ " 275.411387 | \n",
+ " ... | \n",
+ " 3.445271 | \n",
+ " l/h | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " 287 | \n",
+ " 5dc986e844ea856b702e3e0f | \n",
+ " 2019-10-28T16:35:15 | \n",
+ " POINT (7.59123 51.96531) | \n",
+ " 1.423253 | \n",
+ " precision | \n",
+ " 50.000001 | \n",
+ " km/h | \n",
+ " 111.891658 | \n",
+ " m | \n",
+ " 276.124438 | \n",
+ " ... | \n",
+ " 3.248333 | \n",
+ " l/h | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
9944 rows × 54 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id time geometry \\\n",
+ "0 5e8b930965b80c5d6b4d7cd1 2020-03-07T12:33:15 POINT (7.64069 51.95733) \n",
+ "1 5e8b930965b80c5d6b4d7cd3 2020-03-07T12:33:20 POINT (7.64118 51.95712) \n",
+ "2 5e8b930965b80c5d6b4d7cd4 2020-03-07T12:33:26 POINT (7.64162 51.95690) \n",
+ "3 5e8b930965b80c5d6b4d7cd5 2020-03-07T12:33:31 POINT (7.64210 51.95672) \n",
+ "4 5e8b930965b80c5d6b4d7cd6 2020-03-07T12:33:36 POINT (7.64264 51.95650) \n",
+ ".. ... ... ... \n",
+ "283 5dc986e844ea856b702e3e0b 2019-10-28T16:34:55 POINT (7.59523 51.96505) \n",
+ "284 5dc986e844ea856b702e3e0c 2019-10-28T16:35:00 POINT (7.59425 51.96512) \n",
+ "285 5dc986e844ea856b702e3e0d 2019-10-28T16:35:05 POINT (7.59327 51.96518) \n",
+ "286 5dc986e844ea856b702e3e0e 2019-10-28T16:35:10 POINT (7.59225 51.96525) \n",
+ "287 5dc986e844ea856b702e3e0f 2019-10-28T16:35:15 POINT (7.59123 51.96531) \n",
+ "\n",
+ " GPS PDOP.value GPS PDOP.unit Speed.value Speed.unit GPS Altitude.value \\\n",
+ "0 1.090631 precision 28.999999 km/h 110.381939 \n",
+ "1 1.000000 precision 28.000000 km/h 108.260375 \n",
+ "2 1.257198 precision 28.000001 km/h 105.826028 \n",
+ "3 1.000000 precision 30.000000 km/h 104.395998 \n",
+ "4 1.026727 precision 31.409419 km/h 101.516865 \n",
+ ".. ... ... ... ... ... \n",
+ "283 1.700000 precision 47.999999 km/h 109.652212 \n",
+ "284 1.497088 precision 48.297297 km/h 110.122771 \n",
+ "285 1.688911 precision 49.000001 km/h 110.573987 \n",
+ "286 1.300000 precision 51.000000 km/h 111.140661 \n",
+ "287 1.423253 precision 50.000001 km/h 111.891658 \n",
+ "\n",
+ " GPS Altitude.unit GPS Bearing.value ... Consumption.value \\\n",
+ "0 m 124.858622 ... NaN \n",
+ "1 m 125.020801 ... NaN \n",
+ "2 m 121.203960 ... NaN \n",
+ "3 m 123.412759 ... NaN \n",
+ "4 m 122.170479 ... NaN \n",
+ ".. ... ... ... ... \n",
+ "283 m 276.419653 ... 3.122268 \n",
+ "284 m 276.271049 ... 2.853618 \n",
+ "285 m 275.808021 ... 4.657916 \n",
+ "286 m 275.411387 ... 3.445271 \n",
+ "287 m 276.124438 ... 3.248333 \n",
+ "\n",
+ " Consumption.unit track.appVersion track.touVersion \\\n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ ".. ... ... ... \n",
+ "283 l/h NaN NaN \n",
+ "284 l/h NaN NaN \n",
+ "285 l/h NaN NaN \n",
+ "286 l/h NaN NaN \n",
+ "287 l/h NaN NaN \n",
+ "\n",
+ " O2 Lambda Voltage ER.value O2 Lambda Voltage ER.unit MAF.value MAF.unit \\\n",
+ "0 NaN NaN NaN NaN \n",
+ "1 NaN NaN NaN NaN \n",
+ "2 NaN NaN NaN NaN \n",
+ "3 NaN NaN NaN NaN \n",
+ "4 NaN NaN NaN NaN \n",
+ ".. ... ... ... ... \n",
+ "283 NaN NaN NaN NaN \n",
+ "284 NaN NaN NaN NaN \n",
+ "285 NaN NaN NaN NaN \n",
+ "286 NaN NaN NaN NaN \n",
+ "287 NaN NaN NaN NaN \n",
+ "\n",
+ " O2 Lambda Voltage.value O2 Lambda Voltage.unit \n",
+ "0 NaN NaN \n",
+ "1 NaN NaN \n",
+ "2 NaN NaN \n",
+ "3 NaN NaN \n",
+ "4 NaN NaN \n",
+ ".. ... ... \n",
+ "283 NaN NaN \n",
+ "284 NaN NaN \n",
+ "285 NaN NaN \n",
+ "286 NaN NaN \n",
+ "287 NaN NaN \n",
+ "\n",
+ "[9944 rows x 54 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "bbox = BboxSelector([\n",
+ " 7.601165771484375, # min_x\n",
+ " 51.94807412325402, # min_y\n",
+ " 7.648200988769531, # max_x\n",
+ " 51.97261482608728 # max_y\n",
+ "])\n",
+ "\n",
+ "# issue a query\n",
+ "track_df = track_api.get_tracks(bbox=bbox, num_results=50) # requesting 50 tracks inside the bbox\n",
+ "track_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAI/CAYAAABTSLRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df5RV5X0u8OcZxiHeKVZJhlmKUlKkpqsBBztX4OKy2HS8KrlmjDHUQBKbFq6rSW8prY2EudEkTIPVEu5dWddE0qyki0lCjXLSFiTMasvtCmVIh8zIaGKDWCROLJCQFC6x4sD3/nH22ONwzux3n7N/7+ez1izO2WfvPe8GnrPf/e53vy/NDCJSDE1JF0BE4qPAixSIAi9SIAq8SIEo8CIFosCLFEhz0gUI4i1veYvNnj076WKIpNKBAwd+ZGZtk62TqcDPnj0bg4ODSRdDJJVIvui3jqr0IgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIFkahDLPOgpjWDrwNELlq9cNAsbuuclUCIpEp3hY1Qr7ACwdeAo5j+wK+YSSdEo8DH66v4fTPr5qVfPoWvTnngKI4WkwMfonJnvOoeOn4mhJFJUCnyMppBO671t/c6ISyJFpcDH6O6FVzmt9+/nTNfzEgkFPkYbuudh5aJZTuueevUcFvb2R1wiKRqnwJM8QnKE5DDJQW/Zp0ge9JbtJnlFjW3PeesMk/yriuVvJbmf5PMkt5FsCeeQ0m1D9zwc2bjMad1jp88q9BKqIGf4m8ysw8w6vfcPm9l8M+sA8DcAPl5ju1e87TrM7PaK5Q8B+IyZXQ3gJwB+O3DpM8z1TK/QS5jqrtKb2amKt60A/JugPSQJ4NcBfN1b9GUA3fWWJYs2dM/DkjnTndZV6CUsroE3ALtJHiC5enwhyV6SPwCwArXP8G8iOUhygOR4qN8M4KdmNua9fwnAzDrKn2l9qxYHOtOrIU8a5Rr4G8zsOgC3AvgwyRsBwMzWm9lVAPoAfKTGtr/gXQa8D8BmknOCFJDkau8LY/DEiRNBNs2EoA15Cr00winwZjbq/XkcwHYA109YpQ/AnT7bvgBgD4AFAH4M4FKS4335rwQwWmP7x8ys08w629raXIqbOQq9xMU38CRbSU4bfw3gZgDPkJxbsdq7ADxXZdvLSE71Xr8FwBIA3zUzA/D3AN7jrfpBAN9o5ECyTqGXOLic4dsBfIvk0wC+DWCHme0CsJHkMyQPovwl8PsAQLKT5Be8bX8ZwKC37d8D2Ghm3/U++yiAtSSfR/ma/s9DO6qMChr62ffviLhEkjc0h/7dadHZ2WmDg4NJFyNypaFRrNk27LRuM4HnP+12X1/yjeSBitvmVamnXQp1L5iJzcs7nNYdy873taSABsBImZ7SCPoGjrp3ahAJQIFPgRVb9mHv4ZNJF0MKQIFPUGloFH+wbVhnc4mNAp+Qrk17QhnswrV7rgigwMdusnHtgloyZzr6Vi0OZV9SDAp8jBb29uPY6bMN7aMJwKblHeheULhHDyQECnwMwrhWv/iiJnz63fMVdGmIAh+xRlrgNVa9hE2Bj1A9DXPt01qwf31XRCWSolPgI1LP9brO6BI1BT4Cb1u/E/9+zv2KXa3tEhcFPkRBHnoZt1kt7hIjBT4kQRvndK0uSVDgQxC0cU5VeEmKAt+goI1zapiTJCnwdaqnM42u1yVpCnwdgjbOaVQaSQuNeFOHIGG/ZOoUhV1SQ4EPKMjAkXNntOLgJ26JsDQiwSjwAVy9LljY+9cuja4wInVQ4ANwHTByyZzpCrukkgIfsqnNTbir021seZG4KfAhe3XsPNZsG8Y1PU+hNFR19iyRxCjwERkP/oot+5IuisjrFPiI7T18UqGX1FDgY7D38ElV7yUV1NMuJvc9PuzcrbY0NIoH/+pZ/PSV1+r6XeqvL7VoMsmA8jBjKwGs0JdC7rhMJqnAh6A0NIq124ZxPumC1ElfAPmgwMcsrNlkkjS1uQkP3anhsLNI00XHLA+968ZvJ179sZ1qaMwhBT5kU5vz8Vc6dt7UjyCH8vG/M0UeunN+0kUI1d7DJ7Gwtz/pYkhIdFsuZOPXvuuePIhXXmu8Ga+1ZQp675jne00d5Rzzx06fxfwHdulR3xxQo11BlIZGG/4S0ki76aZWeqmp3i+AS6ZO0Zk+pRR4cVLPnPXqzZc+ui0nTjZ0z8ORjcswd0ar8zZbB46qMS+DFHh5Xf/apVgyZ7rz+sdOn8Uvrtuh+/UZosDLG/StWhwo9OetPIpvT2kkwlJJWBR4uUDQ0APlKr466aSfAi9V9a1ajM3LOwJts/fwSXRt2hNNgSQUCrzU1L1gJo5sXIb2aS3O2xw6fkaNeSmmwIuv/eu7sHKR+0i8x06fVehTSoEXJ0Fv3Sn06aTASyD9a5cGCr1u26WLAi+BBblfP37bTi346aDAS12CtuJruO50UOClbkFb8fcePqkOOglT4KVh+9d3OYd+68BRXdMnSIGXUAQJ/dptwxGXRmpR4CU0+9d3OTXmnQdUtU+IAi+h6lu12KmTTtDn7yUcCryEbkP3PKczvVrt46dBLKUhpaFRrN8+gjNnzwXeNqpBN6U2BV4C6ymNoG/gKLIzOJqMU+DFSSNnckkPp8CTPALgNIBzAMbMrJPkpwC8C+VG1+MA7jGzH07YrgPAowAu8bbtNbNt3mdfAvBrAP7NW/0eM9P9mhSKcsx7iVeQM/xNZvajivcPm9n/BACS/wPAxwHcO2GbnwH4gJkdInkFgAMkv2lmP/U+v8/Mvl5v4SVapaFRrP3LYZyPqO4eZNBMCUfdVXozO1XxthW48JLOzL5f8fqHJI8DaAPw04nrSrrUM3R1EO3TWnIx+WbWuAbeAOwmaQA+b2aPAQDJXgAfQLlaftNkOyB5PYAWAIcrFveS/DiAvwVwv5m9GrD8EoEoq/AXX9SET79b01EnxWkiCpIzzWyU5AwA/QB+z8z+oeLzdQDeZGYP1Nj+cgB7AHzQzAYqlv0ryl8CjwE4bGafrLLtagCrAWDWrFm/+uKLLwY7QnHWaBX+0osvwoO3/4rCnJBIZp4h+SCA/2dmj1QsmwVgp5m9vcr6l6Ac9j+pdb1OcimAPzKzd072uzXzTHTqOatf1AQ8fFeHAp4SLoH3rdKTbAXQZGanvdc3A/gkyblmdshb7V0AnquybQuA7QD+YmLYSV5uZi+TJIBuAM84HZWErqc0Ejjsm5cr6Fnkcg3fDmB7OZdoBvAVM9tF8gmS16B8W+5FeC30JDsB3GtmvwPgvQBuBPBmkvd4+xu//dZHsg0AAQzjwhZ+iUgj99Q1g2y2aTLJgugpjeAr+482dItt7oxWtaynWChVesmeMMI90ZI509G3anF4O5REKPAZF0eXV12v54cCnyFxP7SiOeDzR4FPubgfWlHI802BT7G4H1pR2PNPgU+phb39OHb6bOS/R11di0WBT6EVW/ZFFnYFvNgU+BQKqxqvcMtECnzK1Duwo8ItLhT4lHE9u6uBTeqhwKeIy+QM6gQjjdC49CniN8LMykWzFHZpiAKfEgt7+33XURVeGqXAp4DLbTiXmVxE/CjwCSsNjTo11OlJNQmDAp8wl6mTdXaXsCjwCeopjeC8zzqXTJ2is7uERoFPkMu47wc/cUsMJZGiUOATUhoa9V3HZZ51kSAU+ITc9/jk1+7NTdRtOAmdAp+Q13wu3h+569p4CiKFosAnwKU6rx51EgUFPgF+1Xldu0tUFPgE+FXnde0uUVHgY9a1ac+kn7e2TImnIFJICnyMSkOjOHT8zKTr9N6hs7tER4GP0RqHbrRqrJMoKfAx8avKA2qsk+gp8DFYsWWfb1W+iWqsk+gp8BFzffx103s7YiiNFJ0CHzGX6/a5M1p17S6xUOAj5DJsVROhOdclNgp8RLo27XGaPUZVeYmTAh+BntKIbyMdUB7JRlV5iZMCHwGXgS3mzmjVSDYSOwU+ZC5TRbVPa9F1uyRCgQ+Z3y24JgL713fFVBqRN1LgY6ZGOkmSAh8iv+q8GukkaQp8iPyq82qkk6Qp8DFh0gUQgQIfmxV6Ek5SQIGPiZ6EkzRQ4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAU+Ji7zyYlETYGPid98ciJxUOBj4jefnEgcFPgQaV44STsFPkR+88K5jIYjEiUFPkR+z7q7TEghEiUFPmR6DFbSTIEPmd9jsD2lkZhKInIhBT5kfo/BugxhLRIVBV6kQJwCT/IIyRGSwyQHvWWfInnQW7ab5BU1tv0gyUPezwcrlv+qt8/nSf5vkrm5/NXtOUmrIGf4m8ysw8w6vfcPm9l8M+sA8DcAPj5xA5LTATwAYCGA6wE8QPIy7+NHAawCMNf7uaXOY0gdv9tzIkmpu0pvZqcq3rYCsCqr/VcA/WZ20sx+AqAfwC0kLwdwiZkNmJkB+AsA3fWWJW00FLWkVbPjegZgN0kD8HkzewwASPYC+ACAfwNwU5XtZgL4QcX7l7xlM73XE5eLSIRcz/A3mNl1AG4F8GGSNwKAma03s6sA9AH4SBQFJLma5CDJwRMnTkTxK0QKwynwZjbq/XkcwHaUr8cr9QG4s8qmowCuqnh/pbds1Hs9cXm13/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxDcm7Fau8C8FyVzb8J4GaSl3mNdTcD+KaZvQzgFMlFXuv8BwB8o8FjEREfLtfw7QC2e3fNmgF8xcx2kXyC5DUAzgN4EcC9AECyE8C9ZvY7ZnaS5KcA/JO3r0+a2XiH8t8F8CUAFwN4yvsRkQj5Bt7MXgBwbZXl1arwMLNBAL9T8f6LAL5YY723BymsiDRGPe1ECkSBFykQBV6kQBR4kQJR4BOgoa4kKQp8AjTUlSRFgY9Ibp71lVxR4CPiN9SVSBIU+Ij4DXUlkgQFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBT4ipaGqY3KKJEqBj8jabcNJF0HkAgp8BEpDozifdCFEqlDgI3Df45Of3TXZpCRFgQ9ZT2kEr/mc3jXZpCRFgQ9RaWgUWweOTrpOcxM12aQkRoEPkUtD3SN3XTDEv0hsFPiQLOzt922om9rcpLO7JEqBD8HC3n4cO33Wd72H7pwfQ2lEalPgG9S1aY9T2JfMma6zuyROgW9AT2kEh46f8V1v7oxW9K1aHEOJRCanwDfAr0UeKIe9f+3S6Asj4kCBr5PLZBLt01oUdkkVBb5OfpNJNBHYv74rptKIuFHg69BTGvFdZ9N7O2IoiUgwCnwd/K7d1SIvaaXAR0At8pJWCnzIVmqKKUkxBT4gv+t3TTElaabAB+Ry710krRT4APzO7poiWtJOgQ/A7+yuKaIl7RR4Ry4963T9LmmnwDvoKY349qxbMmd6TKURqZ8C76OnNOLUUKd775IFzUkXIM1WbNnne2YHdO9dskOBr6Fr0x6nZ92bm6hrd8kMVemrcA07oEEpJVsU+AmChF0PyUjWqEpfwXUwSqAcdjXUSdboDO8JEvaVi2Yp7JJJOsOj3BrvGvbNyztUjZfMKvwZvjQ06nTrDVDYJfsKH/h1Tx70XacJCrvkQ+Gr9K/4TPXaPq1Fg1FKbhT6DO/3QIxGnpW8KXTg/a7dNfKs5E2hA+9H1+ySNwp8DXogRvKosIHXYJRSRIUNvAajlCJyCjzJIyRHSA6THPSWPUzyOZIHSW4neWmV7a7xthn/OUVyjffZgyRHKz67LdxDq58Go5S8CnKGv8nMOsys03vfD+DtZjYfwPcBrJu4gZn9s7dNB4BfBfAzANsrVvnM+OdmtrPOYwidBqOUvKq7Sm9mu81szHs7AOBKn03eAeCwmb1Y7++Mi67fJa9cA28AdpM8QHJ1lc8/BOApn338JoCvTlj2Ee+S4IskL3Msi4jUyTXwN5jZdQBuBfBhkjeOf0ByPYAxAH21NibZAuB2AI9XLH4UwBwAHQBeBvBnNbZdTXKQ5OCJEycciysi1TgF3sxGvT+Po3wNfj0AkLwHwDsBrDAzm2QXtwL4jpkdq9jnMTM7Z2bnAWwZ32eV3/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxD8hYAfwzgdjP7mc9u7saE6jzJyyve3gHgmSAFj1JpaDTpIohEwuUM3w7gWySfBvBtADvMbBeAzwKYBqDfu632OQAgeQXJ11vcvS+JLgBPTtjvn3q3+g4CuAnAHzR+OOFweWRWJIt8H481sxcAXDA0q5ldXWP9HwK4reL9GQBvrrLe+wOVNEZ+j8yKZFVhe9q1tkxJuggisSts4Hvv0L12KZ7CBl6PvkoRFTbwIkWkwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosDX4DeMtUgWKfA1aBhryaNCB95vOOr5D+yKpRwicSl04P2Goz716jks7O2PqTQi0St04F2Goz52+iy6Nu2JvjAiMSh04AG3SSMPHT+j0EsuFD7wG7rnoclhbqlDx89gxZZ90RdIJEKFDzwAbHpvh9N6ew+f1Ii2kmkKPMqj3yyZM91p3TXbhiMujUh0FHhP36rFmDuj1WldneUlqxT4Cv1rlzqF/r7HdZaXbFLgJ+hfuxTt01omXUfD1ktWKfBV7F/flXQRRCKhwIsUiAJfhZ6Uk7xS4Kvwe1LOpXeeSBop8HVw6YMvkkYKvEiBKPABqTovWabAB6TqvGSZAj+BWuglzxT4CTSWneSZAi9SIAp8BVXnJe8U+ArqcCN5p8AHoBZ6yToFXqRAFHhHqs5LHijwjlSdlzxQ4B1pHDvJAwXekcaxkzxQ4B29dl5neck+BT4AneUl6xT4Cn4t8TrLS9Yp8BVcWuLXPXkwhpKIREOBn8DvLP+KBqWXDFPgJ9jQPQ/NPtPJahZZySoFvopH7rp20s/3Hj4ZU0lEwqXAV9G9YGbSRRCJhAJfg9+1vFrrJYsU+Br8WuzVWi9ZpMDXSa31kkUK/CRaW6YkXQSRUCnwk+i9Q4/ESr4o8JNQa73kjQIvUiAKvEiBOAWe5BGSIySHSQ56yx4m+RzJgyS3k7zUdVtv+XSS/SQPeX9eFs4hxUf34iVrgpzhbzKzDjPr9N73A3i7mc0H8H0A6wJsCwD3A/hbM5sL4G+995mie/GSNXVX6c1st5mNeW8HAFwZcBfvAvBl7/WXAXTXW5ak6F68ZI1r4A3AbpIHSK6u8vmHADwVcNt2M3vZe/2vANodyxIrv3vxqtZLlrgG/gYzuw7ArQA+TPLG8Q9IrgcwBqAv6LbjzMxQ/mK4AMnVJAdJDp44ccKxuOHxuxevar1kiVPgzWzU+/M4gO0ArgcAkvcAeCeAFV5onbcFcIzk5d5+LgdwvMb2j5lZp5l1trW1OR5WePzuxataL1niG3iSrSSnjb8GcDOAZ0jeAuCPAdxuZj8Lsq338V8B+KD3+oMAvtHIgURpavPkf01dm/bEUxCRBrmc4dsBfIvk0wC+DWCHme0C8FkA0wD0e7fcPgcAJK8gudNnWwDYCKCL5CEAv+G9T6WH7pw/6eeHjp/RKDiSCaxRE0+lzs5OGxwc9F8xArPv3+G7zpI509G3anEMpRG5EMkDE259X0A97Ry5TCa59/BJVe8l1RR4Ry6DWwLl6v3VH9up23WSSgp8AH6DW44bO29Ys21Y1/WSOgp8AN0LZgaaJ15VfEkbBT6gDd3zAoVeVXxJEwW+Dhu652Hz8g7nv7zxKn5PaSTScon4UeDr1L1gJl7YuAxzZ7Q6b7N14KjO9JIoBb5B/WuXYsmc6c7rr9mmKaclOQp8CPpWLQ5UxV/Y2x9peURqUeBDEqSKf+z0WV3PSyIU+JC5VvG3DhyNoTQib6TAR6Bv1WKn0KsBT+KmwEekb9VitE9rmXQdDZ4hcVPgI7R/fdekn2vwDImbAh8xzU8naaLAR+yO6zRdlaSHAh+xJw68lHQRRF6nwEdM1+mSJgp8hPyeh/cfTkMkXAp8REpDo9h7+OSk66wI8JitSBgU+IisdXhIZkP35JNciIRNgY9AT2kEflfuQQbREAmLAh8Bv37yzU3U2V0SocAnwHUwTJGwKfAxm9rc5DtfnUhUFPiY+U1bJRIlBT5mOrtLkhT4mGmcekmSAh+zQ8fPaHgrSYwCnwANbyVJUeAj4NKpRsNbSRIU+Ai4zDR73+Man17ip8BHxK9zjZ6alSQo8BHpXjATU5v11yvpov+REVInG0kbBT5C6mQjaaPAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIfIb+ppkTipsBHpKc04jvVlEjcmpMuQB6t2LLPN+yaSFKSoMCHqDQ0ij96/GmMnTffdTWRpCRBgW9QaWgUn/jrZ/GTn70WaDtNNSVJUODr0FMawVf2H4XDibwqTSQpSVHgHZSGRrF++wjOnD3X8L6WzJmus7skRoGfRGloFB994iBeHQtnALqVi2Yp7JIoBb4Gl5Z2V00ANi3v0Ag4kjgFfoIgLe0udFaXNFHgK5SGRrFmWzjjxSvokkYKfIW1DYb90osvwoO3/4qq7pJaCrxnxZZ9CNo0p4BL1ijwCNbvfcmc6ehbtTjiEolEw+nhGZJHSI6QHCY56C17mORzJA+S3E7y0irbXUXy70l+l+SzJH+/4rMHSY56+xwmeVt4h+WuNDTqNJtrE4DNyzsUdsm0IGf4m8zsRxXv+wGsM7Mxkg8BWAfgoxO2GQPwh2b2HZLTABwg2W9m3/U+/4yZPVJ36UPgct0+d0Yr+tcujb4wIhGr+/FYM9ttZmPe2wEAV1ZZ52Uz+473+jSA7wFIzQVv16Y9vtftzU1U2CU3XANvAHaTPEBydZXPPwTgqcl2QHI2gAUA9lcs/oh3SfBFkpc5liUUXZv24NDxM77r+c0CK5IlroG/wcyuA3ArgA+TvHH8A5LrUa6699XamOTPAXgCwBozO+UtfhTAHAAdAF4G8Gc1tl1NcpDk4IkTJxyLOznXsC+ZM10t8JIrToE3s1Hvz+MAtgO4HgBI3gPgnQBWmFnVrmkkL0I57H1m9mTFPo+Z2TkzOw9gy/g+q/zux8ys08w629ranA+smtLQKK7+2E6nsM+d0aoGOskd38CTbPUa3ECyFcDNAJ4heQuAPwZwu5n9rMa2BPDnAL5nZpsmfHZ5xds7ADxT3yG46SmNYM22Yacus2qkk7xyaaVvB7C9nF00A/iKme0i+TyAqQD6vc8GzOxeklcA+IKZ3QZgCYD3AxghOd4c/jEz2wngT0l2oNw+cATAfw/xuN6gpzTidOsNUCOd5Jtv4M3sBQAXtFyZ2dU11v8hgNu8199CjeHbzOz9gUpapyBhB9RIJ/mW61Frg4R9vGONGukkz3LbtTZI2HXNLkWRyzO8a3dZoHzrTWGXoshl4F2fadeDMFI0uQt816Y9Tusp7FJEuQp8aWjUuQedwi5FlKtGO9eq/N7DJzH7/h1VP2ttmYLeO+aptV5yiTV6xKZSZ2enDQ4OVv1sYW8/jp0+G3OJyp0MVmj8OkkBkgfMrHOydXJxhl+xZV8iYQfK3QS3Dhx9/a6AvgAkzXIR+DRNy1z5BaDLA0mbXDXapc2Zs+ewZtuw850Dkagp8DE4dPwMZt+/Az2lkaSLIgWnwMdo68BRBV8SlYtr+JWLZgV6Im7itXVpaBTrnjyIV14LZ9JIP5WNfLU0EXjfQjX+Sbhyc1uupzSCr+7/Ac6ZYQqJuxdeFWlYgj522wi1/IsLl9tyuQl80uL6AlDLv9SiwCcgzAkpg1JNoNgU+ASFOb98PfS8QPG4BF6t9BHpW7UYm5d34KKE/obHnxfQHQGppMBHqHvBTBz6k2XYvLwDFyeU/K0DR7Gwtz+R3y3poyp9ykTV+Nc+rQX713eFvl9JD1XpM2hD9zwc2bgMRzYuw5I500Pb77HTZ1W9FwU+zfpWLcaRjctCawuIq9+ApFcuetrlXfeCmZPed4+zE5Bkm87wOTB+GeByCbBiy74YSiRppcDnSN+qxVi5aNak66Rp7ACJnwKfM+plJ5NR4HMozNZ9yRcFPof8utSWhkZjKomkjQJfQEk93CPJU+ALav4Du5IugiRAgS+oU6+ew+z7d+BXPr5LVfwCUeBzyu/23LjxkXUV/mJQ4HNqQ/c8tE9rCbTNePiv/thOBT+nFPgc27++C6xju7HzhjXbhtUrL4cU+Jz7zPKOurfde/iknqXPGQU+57oXzMTmBkJ/7PRZnelzRIEvgO4FM3Fk4zLnhryJ1P8+PxT4Ahl/qq6eIbc0P14+aIirggsyrHZzE/HIXddqTPyU0hBX4mu8uu/ywM14672GysouBV4AlB+4aW5yu4m3deCo7tNnlAIvr3vkrmud19UDONmkwMvruhfMDPQsvW7XZY8CL2/Qt2qxc+h1uy57FHi5wPg0WS7/OXSWzxYFXqrqXjATL2xchkumTpl0PZ3ls0X34cXX7Pt31LXdkY3LQi6JTEb34SUU9Q6KWe8XhURHgRdfjcwz/1aFPlUUeHEytbm+/yoGaJ76FFHgxclDd85vaHvNU58OCrw46V4ws+7Ha8cdO31WZ/uEKfDibEP3vIYG0xi3deCohslOiG7LSV1WbNkX2j34lYtmaU68ELjcllPgpSFhzk1/8UVN+PS75+t5+zop8BKrMMOvs35wCrwkIsgoOn4uagIevqtDZ30HoQWe5BEApwGcAzBmZp0kHwbw3wCcBXAYwG+Z2U+rbHsLgP8FYAqAL5jZRm/5WwF8DcCbARwA8H4zOztZORT4bAnzOh9Q+P2EHfhOM/tRxbKbAfydmY2RfAgAzOyjE7abAuD7ALoAvATgnwDcbWbfJfmXAJ40s6+R/ByAp83s0cnKocBnT9ihr+Ra7b963Q6MVflvnre+/pH2pTez3WY25r0dAHBlldWuB/C8mb3gnb2/BuBdJAng1wF83VvvywC66y2LpFffqsWYO6M1kn1vHTjqe1+/VtiBYvb1dw28AdhN8gDJ1VU+/xCAp6osnwngBxXvX/KWvRnAT6zjwnIAAAoxSURBVCu+MMaXSw71r10aWeiB/wh+taG0a4V9XNH6+jc7rneDmY2SnAGgn+RzZvYPAEByPYAxAH1RFND7glkNALNmNdbTS5LTv3ZppNV7ADh0/Axm378DS+ZMd37gxwDMf2AXDn7ilsjKVY+uTXtw6PiZC5a3T2vB/vVdde/X6QxvZqPen8cBbEe5qg6S9wB4J4AVVr0xYBTAVRXvr/SW/RjApSSbJyyv9rsfM7NOM+tsa2tzKa6kVN+qxQ13z3Wx9/BJzL5/h/PIuqdePYfZ9+9ITRV/9v07qoYdKHdPbuSZBN9GO5KtAJrM7LT3uh/AJ72PNwH4NTM7UWPbZpQb7d6BcqD/CcD7zOxZko8DeKKi0e6gmf2fycqiRrt8KA2N4r7Hh/Ha+aRLUl3YjXm1ztaNqFZGl0Y7lyp9O4Dt5XY2NAP4ipntIvk8gKkoV/EBYMDM7iV5Bcq3327zWvA/AuCbKN+W+6KZPevt96MAvkZyA4AhAH/ucqCSfd0LZqJ7wczUBn/Fln2BxwAIs9NRlNTxRhJXGhrF2m3DSFnuJz3Tz39gF069ei7G0rxRlGd4kUhVnvHXPXkQr6TklJ+Wa/qJ2qe11L2tAi+pMR78cVmpJsep0VZ6Vekl89J6Jg7T5uX+XYpVpRfJgTDvGijwIjFzOVtHRYEXicCbphDP9d6WdDEuoMCLNKiZwPOfzsaTdwq8SABpPXO7UuAl845sXBZ5S31enp3XMNUiBaLASy74TWvdqLzc61fgJReS7NeeJQq8SIEo8CIFosBLLkR9DZ8XCrzkwsFP3BJp6BnZnuOlwEtuzLvy5xvafsmc6VWXE8C/5OQ+vDreSG64jojbPq0Fx06ffcP7Rp4xzxIFXnLhbet3Oq03d0Yr+tcujbYwKaYqvWTewt5+/Ps5hynTgEKHHVDgJeO6Nu15Q/W8lkumTsnNdXgjFHjJrJ7SiNN473NntKZuZpmkKPCSWS4DXL5pCgtfja+kwEsmuU63lOVn16OgVnrJHNdJIDYv74ihNNmiM7xkyoot+5zCvmTO9MQGikwzBV4yxbVzTdC54YpCVXpJtdLQKNZvH8GZs+7Pu9fqIisKvKRYaWgUa7YNB9rmkqlTdHafhKr0klpBw75kznTdb/ehwEsuNDdRZ3YHCrzkwiN3XZt0ETJBgZdU6tq0x3ndJOdqyxo12kkqufSRX7loFjZ0z4uhNPmhwEsm5WUmmLipSi+p41ednzujNZ6C5JACL6njV53X02/1U+BFCkSBl0xRt9nGKPCSKn6TNqpzTWMUeEmNt+ZkhtY0U+AlFXpKI/Afd1YapcBLKnx1/w+SLkIhKPCSCufM//y+ctGsGEqSbwq8pMIU+k/XqG60jVPgJRXuXnhV0kUoBAVeUmFD9zy0T2tJuhi5p8BLarhMGSWNUeBFCkSBFykQBV4yozQ0mnQRMk+Bl9Twu88edBRbuZACL6mh++zRU+AlU1xnjZXqFHhJFb9qvW7dNUaBl1RRtT5aCrykytvW70y6CLmmYaolcfXMECv1UeAlUfXMECv1c6rSkzxCcoTkMMlBb9ldJJ8leZ5kZ43trvG2Gf85RXKN99mDJEcrPrstvMOSrFgbMOx6Jr4xQc7wN5nZjyrePwPg3QA+X2sDM/tnAB0AQHIKgFEA2ytW+YyZPRKgDJIz5wOsu2TOdDXqNajuKr2ZfQ8A6DBwgecdAA6b2Yv1/k7Jl57SiPO6mjAyHK6BNwC7SRqAz5vZY3X8rt8E8NUJyz5C8gMABgH8oZn9pI79Ssas2LIPew+fdFr3TVOI53p1tRcW19tyN5jZdQBuBfBhkjcG+SUkWwDcDuDxisWPApiDcpX/ZQB/VmPb1SQHSQ6eOHEiyK+VFAoSdgAKe8icAm9mo96fx1G+Br8+4O+5FcB3zOxYxT6Pmdk5MzsPYEutfZrZY2bWaWadbW1tAX+tpE2QsEv4fANPspXktPHXAG5GucEuiLsxoTpP8vKKt3fUsU8RCcjlDN8O4FsknwbwbQA7zGwXyTtIvgRgMYAdJL8JACSvIPl6dynvS6ILwJMT9vun3q2+gwBuAvAHIRyP5IjGuAsfzWE88LTo7Oy0wcHBpIshAZSGRvHRJw7i1bEgN+DKYd+/viuiUuUTyQNmVrVPzDj1tJNIBG2cq3Rk47KQSyPjFHgJhfrDZ4MCL3Xr2rQHh46fCXWfmv89Wno8VuoSRdjbp7Vo/veIKfBSl7DDvnLRLDXSxUBVeknMxRc14dPvnq8+8jFS4CU2CnjyFHiJ3MpFs/RYa0roGl4ip7CnhwIvdXnTFOdxECRFFHipy3O9tzmF/pKpU2IojbjSNbzUbfxZ9VoDUV4ydQoOfuKWuIslk1DgpWHdC2aq5T0jVKUXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBV6kQBR4kQJR4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCoRmlnQZnJE8AeDFhIvxFgA/SrgMUdBxZUu14/oFM2ubbKNMBT4NSA6aWWfS5Qibjitb6j0uVelFCkSBFykQBT64x5IuQER0XNlS13HpGl6kQHSGFykQBX4CkteQHK74OUVyzYR1VpA8SHKE5D+SvDap8rpyOa6Kdf8zyTGS74m7nEG5HhfJpd7nz5L8v0mUNSjH/4s/T/KvST7tHdtvTbpTM9NPjR8AUwD8K8r3NyuX/xcAl3mvbwWwP+myhnFcFZ/9HYCdAN6TdFlD+ve6FMB3Aczy3s9IuqwhHtvHADzkvW4DcBJAS6396Aw/uXcAOGxmb+jsY2b/aGY/8d4OALgy9pI1pupxeX4PwBMAjsdbpFDUOq73AXjSzI4CgJnl6dgMwDSSBPBzKAd+rNZOFPjJ/SaAr/qs89sAnoqhLGGqelwkZwK4A8CjsZcoHLX+vX4JwGUk95A8QPIDMZcrDLWO7bMAfhnADwGMAPh9Mztfcy9JV1XS+gOgBeWui+2TrHMTgO8BeHPS5Q3juAA8DmCR9/pLyFCV3ue4PotyTawV5S6phwD8UtJlDunY3gPgMwAI4GoA/wLgklr7ag7yFVMwtwL4jpkdq/YhyfkAvgDgVjP7cawla8xkx9UJ4Gvl2iHeAuA2kmNmVoqzgHWa7LheAvBjMzsD4AzJfwBwLYDvx1nABkx2bL8FYKOV0/88yX8B8DYA3662I1Xpa7sbNarzJGcBeBLA+80sK/9pxtU8LjN7q5nNNrPZAL4O4HczEnZgkuMC8A0AN5BsJvmfACxEuWaWFZMd21GUr+9Bsh3ANQBeqLUjdbypgmQryn+Rv2hm/+YtuxcAzOxzJL8A4E78x5N7Y5aBBzT8jmvCul8C8Ddm9vW4yxmUy3GRvA/ls+F5AF8ws80JFTcQh/+LV6B8+XU5ytX6jWa2teb+FHiR4lCVXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFymQ/w8mmGO+lQWCQwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "