diff --git a/envirocar/client/api/track_api.py b/envirocar/client/api/track_api.py
index 993e33a..8558405 100644
--- a/envirocar/client/api/track_api.py
+++ b/envirocar/client/api/track_api.py
@@ -40,6 +40,8 @@ def get_tracks(self, username=None, bbox:BboxSelector=None, time_interval:TimeSe
}
if bbox:
request_params.update(bbox.param)
+ if time_interval:
+ request_params.update(time_interval.param)
request = RequestParam(path=path, params=request_params)
download_requests.append(request)
@@ -113,4 +115,4 @@ def _parse_track_df(track_jsons):
def __rename_track_columns(x):
if not x.startswith('sensor'):
return 'track.' + x
- return x
\ No newline at end of file
+ return x
diff --git a/examples/.ipynb b/examples/.ipynb
new file mode 100644
index 0000000..14eae3d
--- /dev/null
+++ b/examples/.ipynb
@@ -0,0 +1,67 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Welcome to my first jupyter notebook"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "'hello world'"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def say_hello(recipient):\n",
+ " return 'Hello, {}!'.format(recipient)\n",
+ "say_hello('Tim')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Heading01"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/Untitled.ipynb b/examples/Untitled.ipynb
new file mode 100644
index 0000000..a3ac9f5
--- /dev/null
+++ b/examples/Untitled.ipynb
@@ -0,0 +1,63 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hello everybody\n"
+ ]
+ }
+ ],
+ "source": [
+ "print (\"hello everybody\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This is the very first code"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/Untitled1.ipynb b/examples/Untitled1.ipynb
new file mode 100644
index 0000000..6e16142
--- /dev/null
+++ b/examples/Untitled1.ipynb
@@ -0,0 +1,613 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Welcome to my first jupyter notebook\n",
+ "from https://www.dataquest.io/blog/jupyter-notebook-tutorial/"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "sns.set(style='darkgrid')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df=pd.read_csv('fortune500.csv')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Rank \n",
+ " Company \n",
+ " Revenue (in millions) \n",
+ " Profit (in millions) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 1955 \n",
+ " 1 \n",
+ " General Motors \n",
+ " 9823.5 \n",
+ " 806 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 1955 \n",
+ " 2 \n",
+ " Exxon Mobil \n",
+ " 5661.4 \n",
+ " 584.8 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 1955 \n",
+ " 3 \n",
+ " U.S. Steel \n",
+ " 3250.4 \n",
+ " 195.4 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 1955 \n",
+ " 4 \n",
+ " General Electric \n",
+ " 2959.1 \n",
+ " 212.6 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 1955 \n",
+ " 5 \n",
+ " Esmark \n",
+ " 2510.8 \n",
+ " 19.1 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Rank Company Revenue (in millions) Profit (in millions)\n",
+ "0 1955 1 General Motors 9823.5 806\n",
+ "1 1955 2 Exxon Mobil 5661.4 584.8\n",
+ "2 1955 3 U.S. Steel 3250.4 195.4\n",
+ "3 1955 4 General Electric 2959.1 212.6\n",
+ "4 1955 5 Esmark 2510.8 19.1"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Year \n",
+ " Rank \n",
+ " Company \n",
+ " Revenue (in millions) \n",
+ " Profit (in millions) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 25495 \n",
+ " 2005 \n",
+ " 496 \n",
+ " Wm. Wrigley Jr. \n",
+ " 3648.6 \n",
+ " 493 \n",
+ " \n",
+ " \n",
+ " 25496 \n",
+ " 2005 \n",
+ " 497 \n",
+ " Peabody Energy \n",
+ " 3631.6 \n",
+ " 175.4 \n",
+ " \n",
+ " \n",
+ " 25497 \n",
+ " 2005 \n",
+ " 498 \n",
+ " Wendy's International \n",
+ " 3630.4 \n",
+ " 57.8 \n",
+ " \n",
+ " \n",
+ " 25498 \n",
+ " 2005 \n",
+ " 499 \n",
+ " Kindred Healthcare \n",
+ " 3616.6 \n",
+ " 70.6 \n",
+ " \n",
+ " \n",
+ " 25499 \n",
+ " 2005 \n",
+ " 500 \n",
+ " Cincinnati Financial \n",
+ " 3614.0 \n",
+ " 584 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Year Rank Company Revenue (in millions) \\\n",
+ "25495 2005 496 Wm. Wrigley Jr. 3648.6 \n",
+ "25496 2005 497 Peabody Energy 3631.6 \n",
+ "25497 2005 498 Wendy's International 3630.4 \n",
+ "25498 2005 499 Kindred Healthcare 3616.6 \n",
+ "25499 2005 500 Cincinnati Financial 3614.0 \n",
+ "\n",
+ " Profit (in millions) \n",
+ "25495 493 \n",
+ "25496 175.4 \n",
+ "25497 57.8 \n",
+ "25498 70.6 \n",
+ "25499 584 "
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.tail()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.columns=['year','rank','company','revenue','profit']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "25500"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "year int64\n",
+ "rank int64\n",
+ "company object\n",
+ "revenue float64\n",
+ "profit object\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " year \n",
+ " rank \n",
+ " company \n",
+ " revenue \n",
+ " profit \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 228 \n",
+ " 1955 \n",
+ " 229 \n",
+ " Norton \n",
+ " 135.0 \n",
+ " N.A. \n",
+ " \n",
+ " \n",
+ " 290 \n",
+ " 1955 \n",
+ " 291 \n",
+ " Schlitz Brewing \n",
+ " 100.0 \n",
+ " N.A. \n",
+ " \n",
+ " \n",
+ " 294 \n",
+ " 1955 \n",
+ " 295 \n",
+ " Pacific Vegetable Oil \n",
+ " 97.9 \n",
+ " N.A. \n",
+ " \n",
+ " \n",
+ " 296 \n",
+ " 1955 \n",
+ " 297 \n",
+ " Liebmann Breweries \n",
+ " 96.0 \n",
+ " N.A. \n",
+ " \n",
+ " \n",
+ " 352 \n",
+ " 1955 \n",
+ " 353 \n",
+ " Minneapolis-Moline \n",
+ " 77.4 \n",
+ " N.A. \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " year rank company revenue profit\n",
+ "228 1955 229 Norton 135.0 N.A.\n",
+ "290 1955 291 Schlitz Brewing 100.0 N.A.\n",
+ "294 1955 295 Pacific Vegetable Oil 97.9 N.A.\n",
+ "296 1955 297 Liebmann Breweries 96.0 N.A.\n",
+ "352 1955 353 Minneapolis-Moline 77.4 N.A."
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "non_numberic_profits = df.profit.str.contains('[^0-9.-]')\n",
+ "df.loc[non_numberic_profits].head()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'N.A.'}"
+ ]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "set(df.profit[non_numberic_profits])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "369"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(df.profit[non_numberic_profits])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD9CAYAAAChtfywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAVDElEQVR4nO3dfWxT1/3H8Y9DHspKJihyQJ0yVjHUSpV4kJhGNzUR20ggjkkorIQFWIW2RBUPpcvGIKOK2g4UISokRKshrd20AVqztgRIIRpVW1YWJEa0BqXrEKKYkYYFk2QlaYnj2Of3B6p/C8SJbZzYJ36/JCR8bV9/v7H94XJyzr0OY4wRAMBaaYkuAABwbwhyALAcQQ4AliPIAcByBDkAWI4gBwDLpUfyoH379unEiROSpPz8fG3ZskXbtm1Tc3OzJk6cKEnasGGDFi1aNHqVAgCGNGKQNzU16fTp0zp8+LAcDod+8pOf6OTJk2ptbdWBAweUk5MzFnUCAMIYcWjF6XRq69atyszMVEZGhmbOnKn29na1t7erurpabrdbe/fuVTAYHIt6AQB3GPGIfNasWaG/ezwenThxQgcPHtTZs2dVU1Oj7OxsVVZW6o033tCTTz4Z8Qt3d3+uYNCuRaVTp05SZ2dvossYM6nWr0TPqcLGntPSHJoy5f4h73NEukT/4sWLqqys1MaNG7Vs2bJB9508eVL19fV6+eWX771aAEBUIvplZ3NzszZt2qTq6mq5XC5duHBBHo9HhYWFkiRjjNLTI9pVSGdnr3VH5E5ntrzenkSXMWZSrV+JnlOFjT2npTk0deqkoe8b6cnXrl3T+vXrtXv3brlcLkm3g3vnzp367LPP5Pf79frrrzNjBQASZMTD6FdffVU+n0+1tbWhbWVlZaqoqNCqVas0MDCggoICFRcXj2qhAIChRTxGHm8MrSS/VOtXoudUYWPP9zS0AgBIbgQ5AFiOIAcAy0U3ZxCAtbK/OlH3Zd39le/3BxJQDeKJIAdSxH1Z6XJXHblr+7GXShJQDeKJoRUAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACzHPHIgyYVbyOPrDygrc8Jd2/t8A+q5eWssSkOSIMiBJDfcQp5w2+06rx/uFUMrAGA5ghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWI7zkQOISrgLXXBBi8QhyAFEZbgLXXBBi8RgaAUALEeQA4DlCHIAsFxEQb5v3z65XC65XC7t2rVLktTU1CS3262CggLt2bNnVIsEAIQ3YpA3NTXp9OnTOnz4sOrr6/XRRx+poaFB1dXVeuWVV3T8+HG1trbq1KlTY1EvAOAOIwa50+nU1q1blZmZqYyMDM2cOVMej0czZsxQbm6u0tPT5Xa71djYOBb1AgDuMGKQz5o1S3PnzpUkeTwenThxQg6HQ06nM/SYnJwcdXR0jF6VAICwIp5HfvHiRVVWVmrLli2aMGGCPB5P6D5jjBwOR1QvPHXqpKgenyyczuxElzCmUq1fyf6e+/2BqHsY6vH9/oAyMybc836SlU21jiSiIG9ubtamTZtUXV0tl8uls2fPyuv1hu73er3KycmJ6oU7O3sVDJroqk0wpzNbXm/qLHlItX6l5Ow52sDJzJgQdsFOOEP17HRmx2U/ySgZ3+eRpKU5wh4Ajzi0cu3aNa1fv167d++Wy+WSJM2ZM0eXL1/WlStXFAgE1NDQoLy8vPhWDQCIyIhH5K+++qp8Pp9qa2tD28rKylRbW6uNGzfK5/MpPz9fixcvHtVCAQBDGzHIt2/fru3btw9539GjR+NeEAAgOqzsBADLEeQAYDmCHAAsx/nIgRQXy7xzJBeCHEhxscw7R3JhaAUALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AliPIAcByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGC59EQXAGB86PcH5HRmD3mfrz+grMwJd23v8w2o5+at0S5t3CPIAcRFZsYEuauODHnfsZdKhrzv2Esl6hntwlIAQysAYDmCHAAsR5ADgOUiDvLe3l4VFxerra1NkrRt2zYVFBSopKREJSUlOnny5KgVCQAIL6Jfdra0tGj79u3yeDyhba2trTpw4IBycnJGqzYAQAQiOiKvq6tTTU1NKLRv3bql9vZ2VVdXy+12a+/evQoGg6NaKABgaBEF+Y4dOzR//vzQ7Rs3bmjBggXauXOn6urqdO7cOb3xxhujViQAILyY5pHn5ubq5ZdfDt1es2aN6uvr9eSTT0a8j6lTJ8Xy0gkXbsHDeJVq/Uqp2XMiJernPZ7e55iC/MKFC/J4PCosLJQkGWOUnh7drjo7exUMmlhePmGczmx5vamzfCHV+pWSs+fxFDhDScTPOxnf55GkpTnCHgDHNP3QGKOdO3fqs88+k9/v1+uvv65FixbdU5EAgNjEdET+yCOPqKKiQqtWrdLAwIAKCgpUXFwc79oAABGIKsjffffd0N/Ly8tVXl4e94IAANFhZScAWI4gBwDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALBfT2Q8BxF/2Vyfqviy+kogenxogSdyXlS531ZG7th97qSQB1cAmDK0AgOUIcgCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALEeQA4DlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOc5HDowxLiCBeOPTBIwxLiCBeGNoBQAsR5ADgOUIcgCwHEEOAJaLKMh7e3tVXFystrY2SVJTU5PcbrcKCgq0Z8+eUS0QADC8EYO8paVFq1atksfjkST19fWpurpar7zyio4fP67W1ladOnVqtOsEAIQxYpDX1dWppqZGOTk5kqTz589rxowZys3NVXp6utxutxobG0e9UADA0EacR75jx45Bt69fvy6n0xm6nZOTo46OjqhfeOrUSVE/Jxk4ndmJLmFMpVq/UvQ99/sDysyYEPF2DJaoz9h4+mxHvSAoGAzK4XCEbhtjBt2OVGdnr4JBE/XzEsnpzJbX25PoMsZMqvUrxdaz05kddoHPUPsaTwESD4n4jNn42U5Lc4Q9AI561sr06dPl9XpDt71eb2jYBQAw9qIO8jlz5ujy5cu6cuWKAoGAGhoalJeXNxq1AQAiEPXQSlZWlmpra7Vx40b5fD7l5+dr8eLFo1EbACACEQf5u+++G/r7Y489pqNHj45KQQCA6LCyEwAsR5ADgOUIcgCwHBeWwLgW7mo8vv6AsjKHXsQTL/3+AHPGMSYIcoxrw12NZ7Sv0pOZMYErAWFMMLQCAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALMf0Q8RVuHnbfb4B9dy8lYCK4iNcX0Ay4JOJuBpu3rZdp/EfLFxfEvPCkXgMrQCA5QhyALAcQQ4AliPIAcByBDkAWI4gBwDLEeQAYDnmkSMm0S6QCXeRhXAXeAi3gCjaC0VEi4tBwEYEOWIy3MKfoQx3kYVoFhCN9oUiuBgEbMTQCgBYjiAHAMsR5ABgOYIcACxHkAOA5QhyALAcQQ4AlrNuHvl4vQINBmNhTmqI10KxVGddkI/XK9BgMBbmpIZ4LRRLdQytAIDlCHIAsBxBDgCWu6cx8jVr1qirq0vp6bd388ILL2jOnDlxKQwAEJmYg9wYI4/Ho/feey8U5ACAsRfz0Monn3wiSVq3bp2WLl2qAwcOxK0oAEDkYj6Uvnnzph577DE999xz8vv9Wrt2rR566CF997vfjej5U6dOivWlwxqLecepNrc51fpF8ovXZzIe++n3B5SZcfd893DbR0vMQT5v3jzNmzcvdHvFihU6depUxEHe2dmrYNBE/brD/fC93tGdYep0Zo/6ayST4fol4JEo8fgOxuu77HRmh53vHu+sSEtzhD0Ajnlo5dy5czpz5kzotjGGsXIASICYg7ynp0e7du2Sz+dTb2+vDh8+rEWLFsWzNgBABGI+hF64cKFaWlpUWlqqYDCoH/3oR4OGWgAAY+OexkI2b96szZs3x6sWAEAMWNkJAJYjyAHAcgQ5AFiO+YIArBHuQhTRXnAi2v2Eu6BNskjeygDgDsNdiCKa5TfR7me4C9okA4ZWAMByBDkAWI4gBwDLEeQAYDmCHAAsR5ADgOXG/fTDcPM/ff0BZWUOfeL3cPf1+wNxrw/AvQs3L3y473k0+0l24z7Ih5v/OdT24e5LljmjAAYbbl54NN/l4faTzBhaAQDLEeQAYDmCHAAsR5ADgOUIcgCwHEEOAJYjyAHAcuNmHnkiJ/JHu+go2pPgA8Bwxk2QJ3Iif7SLjqI9CT4ADIehFQCwHEEOAJYjyAHAcgQ5AFiOIAcAyxHkAGA5ghwALDdu5pGPhUQtOgq34IiFRUByGi4rRuN7S5BHIVGLjoZbcMTCIiD5hMsKaXS+twytAIDlCHIAsBxBDgCWu6cgP3bsmIqKilRQUKCDBw/GqyYAQBRi/mVnR0eH9uzZo7feekuZmZkqKyvTt7/9bX3zm9+MZ30AgBHEHORNTU1asGCBJk+eLEkqLCxUY2OjNmzYENHz09Icsb60cqZMHNXtY/Ea0fYfr/1Ea7j9j/bPyJbtyVhTsm1PxpoS+bOI5Xs73HMcxhgT9R4l7d+/X1988YWeffZZSdKf//xnnT9/Xi+++GIsuwMAxCjmMfJgMCiH4///hTDGDLoNABgbMQf59OnT5fV6Q7e9Xq9ycnLiUhQAIHIxB/l3vvMdnTlzRl1dXbp165b+8pe/KC8vL561AQAiEPMvO6dNm6Znn31Wa9euld/v14oVKzR79ux41gYAiEDMv+wEACQHVnYCgOUIcgCwHEEOAJYjyAHAcikf5L29vSouLlZbW5sk6a233lJRUZHcbrd+/etfa2BgQJJ0/fp1VVRUqLS0VGVlZaHH37x5UxUVFVqyZInKy8sHza1PVpH03NnZqZKSktCf733ve5o3b56k8duzJLW1tam8vFwlJSVas2aNPv30U0lSf3+/fvGLX2jJkiVatmyZLl26lLBeIhVpz+fPn9fy5cvldrtVWVkZej9t63nfvn1yuVxyuVzatWuXpNunEnG73SooKNCePXtCj/3444/1xBNPqLCwUL/61a9CP4v29naVl5dr8eLFevrpp/X5558npJeomRT24YcfmuLiYvPoo4+aq1evmkuXLpnHH3/cdHR0GGOMqampMa+99poxxpgf//jH5tChQ8YYYw4dOmSeeeYZY4wxzz//vNm/f78xxpjDhw+HtieraHr+UiAQMKtXrzZHjx41xozvnn/+85+bgwcPGmOM+cMf/mCqqqqMMcb89re/Nc8995wxxpizZ8+aH/7whwnoJHKR9hwMBk1+fr45c+aMMcaYt99+21RWVhpj7Or5b3/7m1m5cqXx+Xymv7/frF271hw7dszk5+ebf//738bv95t169aZ999/3xhjjMvlMv/4xz+MMcZs27Yt9J5XVFSYhoYGY4wx+/btM7t27UpMQ1FK6SPyuro61dTUhFakXrhwQXPnzg3dXrhwod555x11dXXpX//6l8rKyiRJy5cv1+bNmyVJ77//vtxutySpuLhYf/3rX+X3+xPQTWQi7fl/vfnmm5o4cWKoz/HcczAYVG9vryTp1q1buu+++yTd7nnp0qWSpG9961vq6upSe3v7WLcSsUh77u7uVl9fnxYsWBDafvr0afX391vVs9Pp1NatW5WZmamMjAzNnDlTHo9HM2bMUG5urtLT0+V2u9XY2KhPP/1UfX19mjt3riTpiSeeUGNjo/x+v/7+97+rsLBw0HYbpHSQ79ixQ/Pnzw/dfuSRR9TS0qJr164pEAiosbFRN27c0NWrV/Xggw+qtrZWy5cv16ZNm5SRkSHp9pCL0+mUJKWnp2vSpEnq6upKSD+RiLTnLwUCAf3mN79RVVVVaNt47vmZZ57R73//ez3++ON67bXX9NOf/lTS4J6l28Hxn//8Z2wbiUKkPU+ZMkVf+cpXdPr0aUnS22+/Lb/fr+7ubqt6njVrViiYPR6PTpw4IYfDMaj+nJwcdXR0DNlXR0eHuru7NWnSJKWnpw/aboOUDvI7PfTQQ6qqqtLTTz+t8vJyPfzww8rIyNDAwID++c9/asGCBXrzzTf1/e9/X1u3bh1yH8YYpaXZ82MN1/OXPvjgA33jG9/Qww8/HHYf46nnX/7yl3rhhRf0wQcf6Pnnn9eGDRtkjLnrpHDjpWeHw6G9e/dq//79Ki0tVU9PjyZPnqyMjAwre7548aLWrVunLVu2KDc3d8gT+4U74d+d/Uqy5kSAyf2ujDGfz6fZs2ervr5ef/rTnzRt2jTl5ubK6XTq/vvv18KFCyXdHk44f/68pNv/yn95NDcwMKDPP/88dI52G4Tr+UvvvPOOioqKBj1nvPbc1dWlTz75RD/4wQ8k3T7HvtfrVXd3t6ZNm6br16+H9nHjxg2rThI33Pucnp6uP/7xj6qvr9fSpUsVDAY1efJk63pubm7WU089paqqKi1btizsif3u3P5lXw888IB6enoUCAQGPd4GBPn/+OKLL/TUU0+pt7dX/f39OnDggIqKivT1r39d06dP16lTpyRJ7733nh599FFJUn5+vurr6yVJx48f1/z58wcd0Sa7cD1/6cMPPxz0X3Rp/PY8ZcoUZWVl6dy5c5JuB8P999+vBx54QPn5+Tpy5Igk6dy5c8rKytKDDz6YyDaiMtz7XF1dHTow+d3vfqfFixcrLS3Nqp6vXbum9evXa/fu3XK5XJKkOXPm6PLly7py5YoCgYAaGhqUl5enr33ta8rKylJzc7Mk6ciRI8rLy1NGRobmz5+v48ePS5Lq6+vtORFgon7LmkwWLlxorl69aowxpq6uzhQVFZmCggKzd+/e0GMuXbpkVq9ebVwul1m5cqW5fPmyMcaY7u5uU1lZaYqKiszKlStD+0l2kfRsjDGzZ882fX19g7aN555bWlrMihUrTHFxsVm5cqX56KOPjDHG9PX1mS1btpiioiJTWlpqWltbE9JDtCLtubS01BQWFppNmzaZnp4eY4xdPb/44otm7ty5ZunSpaE/hw4dMk1NTcbtdpuCggKzY8cOEwwGjTHGfPzxx2b58uWmsLDQ/OxnPzM+n88YY0xbW5tZvXq1WbJkiVm3bp3573//m8i2IsZJswDAcgytAIDlCHIAsBxBDgCWI8gBwHIEOQBYjiAHAMsR5ABgOYIcACz3f8qyuwct8T7YAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "bin_sizes, _, _ = plt.hist(df.year[non_numberic_profits], bins=range(1955, 2006))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [],
+ "source": [
+ "df = df.loc[~non_numberic_profits]\n",
+ "df.profit = df.profit.apply(pd.to_numeric)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "25131"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(df)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "year int64\n",
+ "rank int64\n",
+ "company object\n",
+ "revenue float64\n",
+ "profit float64\n",
+ "dtype: object"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dtypes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "group_by_year = df.loc[:, ['year', 'revenue', 'profit']].groupby('year')\n",
+ "avgs = group_by_year.mean()\n",
+ "x = avgs.index\n",
+ "y1 = avgs.profit\n",
+ "def plot(x, y, ax, title, y_label):\n",
+ " ax.set_title(title)\n",
+ " ax.set_ylabel(y_label)\n",
+ " ax.plot(x, y)\n",
+ " ax.margins(x=0, y=0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEJCAYAAACzPdE9AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeVzUdf7A8dcwM9yggiCI4pEH5YVHlqmYVuJFFvUrtcO2zGrd2rXNXSvTDi0tH2ptanfbuq1lmtmaWZqbZ6WpqXibIILc5wzHnJ/fH8gIIvcMILyfj4cP9Tvf+X7f82GY93xujVJKIYQQQtSTW2MHIIQQonmQhCKEEMIpJKEIIYRwCkkoQgghnEISihBCCKeQhCKEEMIpmkVCGTVqFEeOHGnsMOrl0Ucf5cyZM40dRq3Nnj2b4cOHM3HixHJ/0tLSanWdt99+m61bt7ooyvJWrVrF0KFDHbFOmTLF8djatWsZN24co0ePZt68eVgsFgCKior461//ytixY4mOjm6wWJuDlJQUJkyYwMSJE/n111956qmnADh8+DBz586t1bV27drFyJEjufvuuykuLnZFuBXk5+cTExNT7jPmxIkTTJo0iQkTJjBp0iR++uknx2MLFy7k5ptvdry//vKXvzgei42NZdy4cY7HPvjggwr3MxgMPPjgg7WO8/Dhw0yaNImJEycSExPDhg0bHI/9+OOPxMTEEB0dzVNPPYXRaATAZrOxYMECxowZw2233cbq1asdz9m2bRuDBw8u93td+rxKqWZg5MiR6vDhw40dRov097//XX3wwQf1vs7999+vvv32WydEVL2ZM2eqr7/+usLxkydPqqioKJWVlaVsNpuaOXOmeu+995RSSi1atEjNmTNHKaVUcnKyGjZsmEpJSWmQeK9269evV1OnTq1wfN26dWr69Om1utbs2bPV8uXLnRRZ9X788Uc1evRo1atXr3KfMSNHjlRr165VSimVnp6uRo8erdLT05VSSt1zzz1q//79Fa5VUFCgBg4cqMxmc5X3PH/+vIqMjKxVnHa7XY0YMULt3r1bKaVUSkqKuvHGG1V8fLzKyspy/FsppV5//XU1b948pZRS//73v9W0adOUxWJRubm5Kjo6Wh06dEgppdTixYvVypUraxWHrtZpsInr06cP06dPZ/fu3aSnpzNt2jTHN9B3332X9evXo9Pp6NSpEwsXLmTLli2sXbuWoqIifH19WbVqFV988QWrV6/GbrfTunVrXnjhBa655hri4+N5+eWXKSgoICMjg4iICJYtW4aHhwdvvfUWW7ZsQa/X06ZNG1577TWCg4P5/fffWbBgAbm5udhsNh544AHuvvvuCnGPGjWKN998k8LCQpYuXUrHjh05ffo0VquVl156iYEDB5Y7/5dffmHJkiWEhoYSHx+Pl5cX06dPZ9WqVcTHxzN69Giee+45oOSbxsqVK7FYLHh6evL3v/+d/v37k5mZydy5c8nKyiIjI4OwsDCWLVtGYGAgo0aN4s477+Snn34iJSWlwjetmjAYDLz00kucOHECjUbD8OHDefrpp9HpdPTu3ZtbbrmFEydOEBMTQ1xcHK+//jparZYffviB7t2788gjjwAltaDS/1cVV2Wv83IHDx7EaDTy3nvvERwczN/+9jd69uzJDz/8wKhRowgICADg3nvvZf78+Tz66KNs3bqVxYsXA9C+fXuGDh3Kt99+yx/+8Idy187IyGDevHmcPXsWNzc3Jk2axIMPPkhqaiovvvgiycnJKKW44447mDZtGklJSUydOpWhQ4cSFxeHzWbjqaee4vPPP+fs2bP07t2bJUuWcOHCBR544AGGDx/OoUOHUEoxd+5cBg0aVKef45w5cwgMDGTmzJkAbNiwge+//57ly5dXeF+OHz+e3bt3YzAY+MMf/sCUKVP45ZdfWLBgAd7e3hQUFLBu3TrWr1/PqlWrcHNzo23btrzwwgukpaWxbNkyDAYDDzzwAH/605945ZVXeP/993nrrbcwGAw8++yzzJkzh2effZZz587h5uZGr169ePnll3Fzu9SI8sEHH/DDDz/g4eGBwWDA29ub3377jfT0dHr27Mlrr73GwoUL+emnn9BqtfTt25dnn30WX19fRo0axYQJE/j555/Jy8tj2rRpHDhwgKNHj6LT6Vi5ciXt2rWr8F7517/+xRtvvFHuvZ+dnU1KSgp33HEHAEFBQfTs2ZOdO3cyYcIEjh07xgcffMD58+fp3Lkzzz77LO3bt+fw4cN4e3szbdo0srOzGTJkCE8//TSenp7l7vnss89SXFzMxIkT+fLLLzl48CCvv/46RUVF6PV6/vKXvxAVFVXuOWazmRkzZnDTTTcBEBISQkBAAKmpqRw+fJg+ffrQuXNnACZPnszEiROZN28eW7du5Z577kGn09GqVSvGjx/P119/Td++fTl48CA6nY5Nmzbh6+vLzJkzuf766yuUUTm1Sj9NVNkaSo8ePdSqVauUUkodOXJE9e7dWxUXF6utW7eq0aNHq9zcXKWUUq+++qpasWKFWrdunbr++uuVwWBQSin1yy+/qClTpqjCwkKllFI7d+5UY8aMUUoptXDhQvXVV18ppZQym81qwoQJavPmzerChQtqwIABymQyKaWU+vDDD9WWLVuUxWJR48aNU3FxcUoppfLz89XYsWPVwYMHK30NP//8s7r22mvVsWPHHNe67777Kpxfet7Ro0eVUko98sgj6t5771Umk0llZWWpXr16qdTUVBUfH68mTJigsrOzlVJKnTp1Sg0dOlQVFBSof/7zn+rdd99VSpV8w5k2bZr68MMPHfEsXLhQKaVUamqq6tOnj0pMTKwQx9///nc1bNgwdfvttzv+rFmzRiml1N/+9jf1yiuvKLvdrkwmk3r44Ycd9+vRo4dav3694zplayiX13rK/r+yuKp6nWUVFBSohx9+WO3du1cppdQ333yjhg8froxGo3rhhRcc8SmlVEJCgrr++uuVUkr17t3b8Q1UKaWWLFmiXn311QrlMWPGDLVo0SKlVMnPe/z48SohIUHdd9996qOPPnIcj4mJURs3blTnz59XPXr0UFu3blVKKTV37lw1cuRIZTAYVHFxsRo6dKjav3+/47zSmtWPP/6ohg4dqsxmc51+jseOHVNDhw5VFotFKaXUlClT1I4dOyq8npEjR6oXXnhB2e12lZKSom644QZ14sQJ9fPPP6uIiAiVlJSklFJqz5496tZbb1VZWVlKqZLax9ixY5Xdbi9XE/n555/V+PHjHeeUHl+/fr16+OGHlVJKWa1W9fzzz6uEhIQK8ZR9L7z11lsqOjra8RrefPNN9ac//UmZzWZls9nU7Nmz1QsvvOB4HaU/r2+++UZFRESo48ePK6WU+uMf/1jtN/HLW0FuvfVW9cUXXyillEpMTFQ33XSTeuedd1RiYqKaNm2aOnnypLLb7er9999XEydOVHa7XW3dulU988wzKicnRxUXF6s//elPav78+RXuVbaGkp2drYYMGaJ+++03pVTJ+3rw4MFX/F0s67PPPlMjRoxQRUVF6t1333WUg1JKWSwW1aNHD2UwGFR0dHS5z6M1a9aoGTNmKKVK3svffvutstvtat++fWrw4MHV1sqbXQ0F4JZbbgGgV69emM1mCgsL+emnnxgzZgytWrUCSr4FAHz55Zf07NkTX19foKSt8dy5c0yaNMlxvfz8fHJzc5k1axa7d+/m/fffJyEhgfT0dAoLC2nXrh0RERHceeedREVFERUVxZAhQzhz5gyJiYmOmgJAcXExx44dIzIystL427dvz7XXXgvAddddx/r16694XocOHbjuuusACA8Px8/PD3d3dwICAvDx8SEvL499+/aRnp7OQw895HieRqMhMTGRqVOn8uuvv/Lxxx+TkJDA6dOn6devX4VybNeuHYGBgeTl5dGxY8cKcTz00EOO2kRZO3bsYPXq1Wg0Gtzd3Zk0aRKffPIJ06dPB2DQoEGVlkFVrhTXoUOHKn2dERERjmPe3t58+OGHjv+PGzeOlStXcuTIEdRlqxAppRzfkJVSaDSaco+X/fZcas+ePcyaNQsAPz8/Nm7cSGFhIQcOHOCjjz5yHI+NjWXHjh3069cPvV7PqFGjgJKfY//+/R3vx+DgYPLy8ggODqZVq1bExMQAMGLECLRaLSdPnqzTz7F379506NCBH3/8kS5dupCens6wYcOuWN5TpkxBo9EQEhLC8OHD2b17N7169SI0NJSwsDAAdu7cybhx4xy1u9jYWBYsWEBSUtIVr3m5gQMHsnTpUh544AFuuukmpk6dSqdOnap9XmRkJDpdycfYjh07mDlzJnq9HoAHHniAGTNmOM4dPXo0AB07dqRt27aO90V4eDh5eXk1irPUypUrWbRoEZ988gk9e/ZkxIgR6PV6OnbsyPvvv+8475FHHmHFihUkJSVxyy23OH4WAI899hhPPvkkzz//fKX3OXz4MOHh4Y6fZ/fu3RkwYAB79+694u8iwHvvvce//vUvPvjgAzw9PbHb7RXeu1Dy/r38fV32Pf/22287jg8aNIj+/fuze/du7rrrrkrjbZYJxcPDA8BRUEoptFptuYLLz88nPz8fKPmQKWW325k4caLjQ8Fut5Oenk6rVq2YOXMmNpuNsWPHcvPNN5OSkuL4Afz73//myJEj/PTTT7z66quOjmo/P79ynWOZmZn4+flVGX/ZKrBGo6nwQVfK3d293P9Lf7HKstvtDBkyhGXLljmOpaSkEBwczBtvvMHhw4e56667uOGGG7BareXuVVqO1cVRmcvfyHa7HavV6vh/2XIv6/J7lXaMVxVXVa+zrOTkZLZt28YDDzzgOKaUQqfTERoaSnp6uuN4eno6ISEhAI7H2rZt63isbKIqpdPpyr3m8+fP07p16wplV7Ys9Hp9ueeUfiBeTqvVVriGVqut88/xvvvuY926dXTu3Jl77rnnih86pa+p7D1LP3Au/725nFKq3M+7Kh07dmTLli388ssv/Pzzz/zhD3/g5ZdfdiTaylwew+Xvt7LvnbK/L5WVcU3Z7XZWrlzpKJuHH36YUaNGceLECU6cOOFoDoOSctDr9Wzbtg0/Pz9Hs1Hp+64qNputws+lsnI1m83Mnj2bM2fO8Nlnn9GhQweg5L176NAhx3lpaWm0atUKb2/vSt/z+fn5/Oc//+Gxxx4r9zlaXbzNYpRXTdx0001s2bLFMUrhH//4B//85z8rnDds2DC++eYbRyGvXr2aqVOnAiUjTGbMmMG4ceMAOHToEDabjRMnTjBhwgSuueYaHnvsMR566CGOHDlCly5d8PT0dCSU0tEucXFxDfCKSwwZMoTdu3fz+++/A7B9+3Zuv/12iouL2bVrF1OnTuWOO+4gMDCQPXv2YLPZnHbvYcOG8e9//xulFGazmTVr1jjaeC+n1WodvyRt2rRxlFFaWhp79+6t9l5Vvc6yvLy8WLZsGYcPH3acV1RURN++fRk1ahTbtm0jKysLpRSff/45t956K1DyLf/zzz8HIDU1lZ07dzJy5MgrxrFu3TqgpA9p6tSpnDt3jn79+vHpp586jn/11VeVlkVlsrOz2bFjB1DSX6TX6+nRo0edf47R0dEcP36c7777rspvnV999RUAFy5cYPfu3RXa7wGGDx/Opk2byM7OBmDdunW0bt26ylpG2Z/5f/7zH5599lmGDRvGrFmzGDZsGMeOHav2NVwew+rVq7FYLNjtdj799FOGDh1aq2vU1Ny5cx0j/Q4cOMDp06e56aabcHNzY8GCBZw/fx4oeV09e/YkJCSE1NRUFi1aRHFxMTabjX/+85+Oz5KydDodNpsNpRSRkZGcPXvW8X49ffo0+/btY/DgwRWe98wzz2A0GsslEyj5PTx06BAJCQkAfPbZZ46a0i233MK6deuwWq3k5+fzzTffcOutt+Lj48Onn37K999/D8CxY8c4fPgww4cPr7JcmmUN5UpGjBjBmTNnmDx5MgDdunXjlVdecRRYqWHDhvHoo4/y8MMPo9Fo8PX15e2330aj0TBz5kxmzJiBt7c3vr6+XH/99SQmJvJ///d/jB07lrvuugtvb288PT2ZM2cO7u7urFixggULFvDBBx9gtVr585//XKGD3ZW6devGyy+/zNNPP+34hrFy5Up8fHyYMWMGr7/+Om+++SZ6vZ4BAwaQmJjotHvPmTOH+fPnExMTg8ViYfjw4Tz++ONXPHfUqFEsWbIEi8XCAw88wDPPPEN0dDQdOnTgxhtvrNfrLCsgIIBly5Yxd+5cLBYLvr6+LF++HHd3dyIiIpgxYwZTp07FYrHQr18/Hn30UQCefPJJXnzxRcaPH4/NZmPWrFmEh4dXiGPu3Lm8+OKLxMTEoJTiscceo3fv3ixevJiXX36ZL7/8ErPZTExMDLGxsSQnJ9e4PD08PNiwYQOLFy/G09OT5cuXo9Vq6/xzdHd3Jzo6mszMTEdT1ZUkJSURGxtLcXExc+bMoWvXrmRkZJQ7Z+jQoTz00ENMnToVu91OQEAA77777hWbBUtFRkayfPly/vSnP/H666+zd+9exo0bh5eXF6GhoeVqkTXxxBNPsGjRIu644w6sVit9+/blhRdeqNU1aurll19mzpw5LF++HG9vb1auXIm3tzc9evRgzpw5PPHEE9hsNkJCQliyZAkAkyZN4vz589x5553YbDZuuOGGck1ypYKCgujbty/jx4/n008/5c033+SVV16huLgYjUbDa6+9RpcuXco95+DBg3z33Xd07tzZ8RkHJUlm+PDhvPbaazz11FNYLBbCw8NZtGgRUNJBn5iYyMSJE7FYLNx7772OZLVixQrmz5/PP/7xD7RaLUuXLq3yfQKgUbVtxxBCNLikpCRiYmI4ePCg065ZWFjI/fffz9y5cyvt0ysdfdinTx+n3Vc0Xy2myUsIccnOnTu5+eabGT58eJUDRISoDamhCCGEcAqpoQghhHAKSShCCCGcQhKKEEIIp5CEIoQQwima/TyUnJwC7PbGHXcQGOhLVlY1yz63EFIWl0hZXCJlcUljlkVegZl3NsTx+pMVJ6/WhEsTitFoZNKkSbzzzjt06NCBPXv28Nprr2EymRg7dqxjpdPjx4/z/PPPU1BQwKBBg3jppZfQ6XRcuHCBWbNmkZWVRZcuXVi8eHGFiWrVsdtVoyeU0jhECSmLS6QsLpGyuKSxyuLEuRyy8uq+z4zLmrwOHTrE5MmTHdP9i4uLee6551ixYgWbNm0iLi6O7du3AzBr1izmzp3Ld999h1KKNWvWAPDSSy8xZcoUNm/eTO/evVmxYoWrwhVCiBbvdFIuel3d04LLEsqaNWuYN2+eY3G+w4cP06lTJzp27IhOpyMmJobNmzeTnJxMcXGxY3JVbGwsmzdvxmKxsG/fPqKjo8sdF0II4RpnkvLoGOxb5+e7rMlrwYIF5f6fnp5OUFCQ4//BwcGkpaVVOB4UFERaWho5OTn4+vo6VrcsPS6EEML5TGYbiWlGbuwVUudrNFin/OVLS5euw1/Z8SvtP1HZ8tpVCQyse7Z1pqCgqpesb0mkLC6RsrhEyuKSxiiLw2cysCtFnx5B1Z9ciQZLKCEhIeVWKM3IyCA4OLjC8czMTIKDgwkICMBgMGCz2dBqtY7zaysry9jonX1BQX5kZBgaNYamQsriEimLS6QsLmmssvg1LgWAAO+67xXTYPNQ+vXrR3x8POfOncNms7Fx40aioqIICwvDw8OD/fv3AyV7W0dFRaHX6xk0aBCbNm0CSvZkuNI+DEIIIervTHI+YW198PKoez2jwWooHh4eLFy4kCeffBKTycSIESMYM2YMAIsXL2bOnDkYjUZ69erFgw8+CMC8efOYPXs2K1euJDQ01LGvgBBCCOexK8XvyXlcf23tW4HKavarDUuTV9MiZXGJlMUlUhaXNEZZJGUYmfvhXh4Zfy3D+7Wvc9+zLL0ihBAt3JmkPAC6dWhVr+tIQhFCiBbudFIe/t56glt71es6klCEEKKFO5OcS7cOres0NaMsSShCCNGC5RlNZOQW0y2sfs1dIAlFCCFatNMX+0+617P/BCShCCFEi3YmOQ+9zo1OIfWfnS8JRQghWrAzyXl0CfFDp61/OpCEIoQQLZTZYuNcqoFuHVo75XqSUIQQooWKT8nHZlf1nn9SShKKEEK0UGeSL05odMIIL5CEIoQQLdbppDxCA73x9ar7CsNlSUIRQogWqHRBSGfVTkASihBCtEgpWYUUFFud1n8CklCEEKJFOpOUC0B3J43wAkkoQgjRIp1JysPPW0+7NvVbELIsSShCCNECnbnYf1LfBSHLkoQihBBNnF0pjEUWp10vv8BMWk6RU/tPQBKKEEI0eV/tjOfZd3/CZrc75Xq/O3n+SSlJKEII0YQVFlvY+ut5CoqtFBZbnXLNrPxiANoFeDvleqUkoQghRBO27UAyxWYbgNMSislScj1PvdYp1yslCUUIIZook8XGll/P4+WhA6DAaQnFjgbQ65ybAiShCCFEE7XrcAqGQgvjbgwHSpq/nMFsseGu1zp1hBdIQhFCiCbJarOz+ZdEuoW1IrJ7EOC8GorZYsND7/yPf0koQgjRBO09nkZWfjHjbuyEj2dJk5ezaiimizUUZ9M5/YpCCCHqxa4U3/6cSFiQD327BWKzlQwXdmYfioe78xOK1FCEEKKJOXQmk+TMAsbd0Ak3jQa9Tote5+bUUV7uOkkoQgjRrCml2PTTOdq28mTwdcGO496eOgqc2CkvfShCCNHMxZ3N4vcL+Yy5IRyt26WPaB9PvVNrKB4u6EORhCKEEE3I2h9O4++tZ1if0HLHnVlDkT4UIYRo5s6lGjhwMp3bru9YYRSWj4fOaTUUs4tGeUlCEUKIJmLTz+fw8tAxsn9Yhce8PfXOG+VlliYvIYRotrLyivn1ZDrjbuqMt6e+wuM+njoKTc6chyKd8kII0SydTspFKYjq3+GKj3t76igy2bDbVb3uY7XZsdmV1FCEEKK5ik8xoNe5ER7id8XHfS7WWgpN9Wv2MltKJkk2m4SyYcMGxo8fz/jx41m0aBEAx48fJzY2lujoaJ5//nms1pJCu3DhAvfddx9jxozhiSeeoKCgoDFCFkIIl4pPzSe8nS867ZU/lr09S1ccrl+zV+nS9c0ioRQVFbFgwQJWrVrFhg0b+PXXX9mzZw+zZs1i7ty5fPfddyilWLNmDQAvvfQSU6ZMYfPmzfTu3ZsVK1Y0dMhCCOFSNrudxFQDXUL8Kz3HUUOpZ8e8uTklFJvNht1up6ioCKvVitVqRafTUVxcTGRkJACxsbFs3rwZi8XCvn37iI6OLndcCCGakwuZhZitdrqEVp5QnF1DcUWnfIMvDunr68uf//xnxo4di5eXF9dffz16vZ6goCDHOUFBQaSlpZGTk4Ovry86na7c8doIDPR1avx1FRR05XbRlkjK4hIpi0taclkcPJsNwIBeIcCVy6LQVtIZr9Pr61VWmcaShBTc1s/pZd7gCeXEiROsW7eO//3vf/j5+fHMM8+we/fuchu9KKXQaDSOv8uq7YYwWVnGeo+KqK+gID8yMgyNGkNTIWVxiZTFJS29LI6cSsfLQ4ueks+qK5WFqdAMQEqGoV5llXbxuUWFpitex81NU+cv4g3e5LVr1y6GDBlCYGAg7u7uxMbG8ssvv5CRkeE4JzMzk+DgYAICAjAYDNhsJVW0jIwMgoODK7u0EEJcleJTDHQO8cetii/MztoTpVl1ykdERLBnzx4KCwtRSrFt2zYGDx6Mh4cH+/fvB0pGgUVFRaHX6xk0aBCbNm0C4KuvviIqKqqhQxZCCJexWG0kZRir7D8BcNdr0Wnd6j1b3pFQXLCWV4M3eQ0bNoxjx44RGxuLXq+nT58+TJ8+ndtuu405c+ZgNBrp1asXDz74IADz5s1j9uzZrFy5ktDQUJYsWdLQIQshhMskphux2RVdQqvvz/Dx1DmthuKuawad8gDTp09n+vTp5Y5FRESwdu3aCueGhYWxatWqhgpNCCEaVEJKST9GdTUUKF1x2EkTG2W1YSGEaF7iU/Lx93GnjZ9Htec6Y0+UZtWHIoQQ4pL4lHy6hPjVaASrM/ZEMVtsaN00lc7Irw9JKEII0UiKTFZSswpr1NwFpX0o9ayhmF2zFwpIQhFCiEZzLtWAAjrXMKE4Y08Uk4v2kwdJKEII0WjiU/MBajTCC0pqKEUma70ma5utdqmhCCFEcxOfYqBtK0/8vN1rdL63E5awd9VujSAJRQghGk1CSn6Nm7vAObPlS5q8JKEIIUSzkV9oJjOvuMbNXVB2xeG611DM0ocihBDNi2NCYxV7oFzOGXuilOwnLzUUIYRoNhJS8tEAnSrZ8vdKnLEnijR5CSFEMxOfkk9IoDdeHjVfAcsZNRSzRUZ5CSFEs6GUIj7VUOMJjaWkhiKEEKKc7HwT+QXmWicUd50bOq2mzjUUpVRJQnGXTnkhhGgW4lNKJjR2rsUILyjZsbY+s+WtNjtKuWZhSJCEIoQQDS4+NR+tm4bw4NpvtVufPVFMF5eulz4UIYRoJhJSDHQI8kWvq/0He332RDG7cOl6qMEGW9nZ2Wzfvp34+Hjc3Nzo2rUro0aNwte3bpvYCyFES2ZXioTUfG64tl2dnu/jqSfPaK7Tcx27NTb0xEaz2cyiRYu4/fbb+f777ykqKsJkMrF161bGjx/PG2+8QXFxsUuCEkKI5iotu5Aik61WS66UVZ89UVy5uRZUUUOZMWMGEyZMYObMmbi7l1+4zGKxsHHjRmbMmMGHH37oksCEEKI5qs2Wv1fi41H3XRtN5kZKKMuWLcPHx+eKj+n1eu68806io6NdEpQQQjRX8Sn5uOvcaN/Wu07P9y5dwl4p3Gqwy2NZpZ3yDT7Kq2wyOX/+PAA//vgjy5cvx2AoybDe3nUrECGEaIlMFhsnEnMJD/FD61a3fgwfTx2Kkt0ea8vs6ENppFFec+fO5f333+f3339nzpw5JCUl8dxzz7kkGCGEaK6OJWQz98NfSMowMuS6unXIw6U9Ueoy0utSH4prOuWrHeUVFxfH2rVree+997jzzjv561//SmxsrEuCEUKI5sZYZCZaI98AACAASURBVGHNtjPsOpJCcBsvZk3uz7Wd2tT5euX3RPGq1XMbfdiwUgo3Nzd2797N448/DiCju4QQohpKKX49mcGnW05hLLQw9sZwJg7tUu/mpvrsieLqiY3VJpTw8HAeffRRkpKSGDx4MH/961/p2bOnS4IRQojmIM9o4pPNJ/ntTCad2vkx8//61WqZ+qrUZ8XhRhs2XOq1115jy5YtDBw4EL1ez6BBg7jjjjtcEowQQlztrDY7b607TFJGAfeM7MZt13eocwf8ldRnxWGTxYZO64abW+1Gh9VUta/S29ubQYMGkZ+fz9GjR+nbty9nz551STBCCHG1++anc8SnGHhk/LWMuSHcqckE6ldDceX2v1CDGsqbb77JRx99RGBgoOOYRqPhhx9+cFlQQghxNYpPyee/uxO4sVc7BtdxaZXquOvd0Lpp6lxD8XB3TXMX1CChbNiwge+//5527VxTOEII0RyYLDbe++8xWvm6c/9tPVx2H41Gc3HF4bp1yruq/wRq0OQVGhoqyUQIIarxxf/OkJZdyCPjr3XMFXGVuu6JYrbYXDbCC2pQQxkyZAivv/46t9xyC56eno7jvXr1cllQQghxNYk7m8W2A8ncNqgj13UOcPn96ronisnsuu1/oQYJ5csvvwRg8+bNjmPShyKEECWMRRY+3HSc0EBv7hrRtUHu6e2pJ7+w9kvYm602fLxcV3uqNqFs27bNZTcXQoirmVKKVd+dxFho4S9393Npc1JZPp46UrMLav08k8VOgH8j9qEUFhby4osvMmrUKKKionj22WcxGo31uum2bduIjY1l7NixzJ8/H4A9e/YQExPD6NGjWbp0qePc48ePExsbS3R0NM8//zxWa92WbRZCCGf75Vga+06kM3FYF6dNXKwJ77p2yru4yavahPLaa69hNptZvnw5K1asQKPR8Morr9T5hufPn2fevHmsWLGCr7/+mmPHjrF9+3aee+45VqxYwaZNm4iLi2P79u0AzJo1i7lz5/Ldd9+hlGLNmjV1vrcQQjhLntHEv78/xTVh/oy9MbxB7+3tWbInil2pWj3PZGnkhHLo0CFeffVVrr32Wnr37s38+fM5fPhwnW+4ZcsWxo0bR0hICHq9nqVLl+Ll5UWnTp3o2LEjOp2OmJgYNm/eTHJyMsXFxURGRgIQGxtbri9HCCEay68nMyg0WZk6JsLpkxerU7qEfXEtl7A3uzihVNuHYrPZsNvtuF0sMLvdjlZb94DOnTuHXq/n8ccfJyUlhZtvvpnu3bsTFBTkOCc4OJi0tDTS09PLHQ8KCiItLa1W9wsM9K1zrM4UFNRw1eGmTsriEimLS662sjiZlEdoWx/6Xxfq9GtXVxYhQSWfax7eHgQFXnkjxMvZ7Qqz1U7rVl4uK+saDRv+y1/+wuTJkwFYvXo1N9xwQ51vaLPZ+PXXX1m1ahXe3t488cQTeHp6oimz85hSCo1Gg91uv+Lx2sjKMmK3165a6GxBQX5kZBgaNYamQsriEimLS662srBYbRw+k8HwPu2dHndNysJ2cZHHpAt5aO32Gl23dPtfm8Va5fXd3DR1/iJebUKZPXs2K1asYMmSJdhsNoYPH84f//jHOt0MoG3btgwZMoSAgJKx2rfeeiubN28uV+vJyMggODiYkJAQMjIyHMczMzMJDg6u872FEMIZTiXlYbbY6d3V9XNOrsSnDgtEmly8WyPUoA9Fp9Px1FNP8cUXX/Dll18yc+ZMPDw86nzDkSNHsmvXLvLz87HZbOzcuZMxY8YQHx/PuXPnsNlsbNy4kaioKMLCwvDw8GD//v1AyTIwUVFRdb63EEI4Q9zZLHRaDRHhdd8oqz6867BApKuXrocqaiiTJ09m9erV9O/f/4rNTAcOHKjTDfv168e0adOYMmUKFouFoUOHMnnyZLp27cqTTz6JyWRixIgRjBkzBoDFixczZ84cjEYjvXr14sEHH6zTfYUQwlnizmbTo2Nrly60WJX61FAaZXHIN998E4CNGzc6/aZ33303d999d7ljQ4YM4euvv65wbkREBGvXrnV6DEIIURfZ+cUkZxYwtI/zO+NrytuxDXDNayjmi7s1Nsry9b/99luVTwwLC3N6MEII0dTFxWcD0KeR+k+gpNmqZAn72jd5uesaoYayatWqSp+k0WgYPXq0SwISQoim7MjvWbTx86B925oN13UFjUZzcbb8VdLkVVVCEUKIlshqs3PsXDbXRwTXegqDs9V2CXtzA4zyqjShPP7441U+8Z133nF6MEII0ZSdvZBPkclG7y6B1Z/sYrVdwr50Hkqj9KFER0e77KZCCHE1OnI2CzeNhus6N85w4bK8PXUYC+vQ5NUYNZTbbrsNX19fcnNzXXZzIYS4msSdzeaaMH+X78hYEz6eetKzi2p8vtlaMsqrUZq8HnjgAdavX8+NN96IRqNxLHtS+vfx48ddFpQQQjQ1eQVmzqUZuDOqYTbRqo63p65281DMNjSAu64RmrzWr18PwIkTJ1x2cyGEuFocjc8CoG/Xxu8/gYt9KKaSJezdajBAwHRxP3lXDiaodi2v4uJifvjhhwpNX/fdd5/LghJCiKYm7mw2/t56OrZrGiuYe3voUQqKTTbHRMeqlCxd79pl9quN4rHHHsNgMNChQwfHMY1GIwlFCNFi2O2KuPhs+nQNrFFtoCH4OGbLW2qUUEprKK5UbRTp6el8++23Lg1CCCGasnNpBoxFlkadHX+50oEBBcVW2tbgfLPF7tIRXlCD1YZ79OhRbgl5IYRoaY6czUIDXNel6SSUsjWUmmgSNZQxY8YwduxYevTogU536fR//etfLg1MCCGairiz2XQO9cPf272xQ3Hwdqw4XLPZ8qam0IeyfPlyHnvsMcLDw10aiBBCNEUFxRZ+v5DHhCGdGzuUcnxK90Sp4b7yJouNNr5138uqJqpNKF5eXjz66KMuDUIIIZqqYwk5KAV9mshw4VLetdwTxWSxu3z/lmrrPzfddBOffvop6enp5ObmOv4IIURLcORsFt4eOrq092vsUMrxdNfiptHUeE8Uc1PoQ/n4448xm8288sorjmMyU14I0RJYbXaOnM3iui4BaN1c2/9QW6VL2Ne0D8VsseHhwr1QoAYJ5fDhwy4NQAghmqodhy6QZzRzU++Qxg7limqz4rDJYsPd3bVJsdKrL1u2DJPJVOkTTSYTS5cudUlQQgjR2IpMVr7eFU+Pjq3pd03T6j8pVdM9UWx2O1abcvk8lEprKAMGDODuu+9m+PDhjBw5kvDwcJRSJCYmsmPHDn788UeefvpplwYnhBCN5bu9ieQXWnjq7m6NvplWZXxquECkyVy6n3wjJZSoqCgGDhzIp59+ysKFCzl79ixarZbOnTsTHR3NZ599hq9v01jTRgghnCnPaOK7vecZFBFM1/b+jR1Opbw9daTnVr+Evdnq+r1QoJo+FB8fH6ZPn8706dNdGoQQQjQlG3YnYLXZuWtE01iqvjI+nvoajfIyObb/baQ+FCGEaIlSsgrY8dsFbo4Mo10b78YOp0renjoKi60opao879L2v408D0UIIVqSddvP4q53I2Zo58YOpVo+nnrsSlF8MWFUxmxpmD4USShCCHHRmaQ8DpzKYOwN4fj7NJ11uypT09nyl5q8GjmhLFu2rMKx+fPnuyQYIYRoLEop1vzvDK183Rl9/dWxduGlFYer7kcpTSiN1in/1ltvkZ+fz6ZNmzAajY7jFouFXbt2MWfOHJcGJoQQDeng6UzOJOcxdUxPl6955Sxl90Spirk0obj4dVWaUPr168eRI0dwc3OjdevWjuNarZbFixe7NCghhGhINrudtT/+TmigN8P6hjZ2ODVW0z1RHE1eukZavn7EiBGMGDGCqKgo+vbt69IghBCiMe08nEJqdiFP3tWnya3ZVZWa7oliKu2Ub6wayoIFC3j++edZsWLFFR9/5513XBaUEEI0pN9OZxIa6E1kt5psptt0OPZEaep9KJ06dQIgOjrapQEIIURjyzWYCGrt1WSXWKlM6RL21Y3yMltsaN006LSN1OS1fv167r//fvbs2cMbb7zh0iCEEKIx5RpNdGnCS6xUpnQJ+5rUUFw9ZBiqSCj5+fm88MIL7N69+4rDhGWUlxCiObDa7OQXWmjt4u1xXcW7BgtElmyu5fq+oUrv8I9//IOQkBDHKK/L/9TXokWLmD17NgDHjx8nNjaW6Ohonn/+eazWkmx74cIF7rvvPsaMGcMTTzxBQUFBve8rhBBl5RnNALTxuzoTiq+XHmNRdaO87C7vP4EqaigRERFEREQQHh5OTEwMVmvJejF6vb7eN/3pp59Yv349N998MwCzZs1i/vz5REZG8txzz7FmzRqmTJnCSy+9xJQpUxg/fjzLly9nxYoVzJo1q973F0KIUjnGkn2fWvs2/ZnxV9LGz4MLmVV/2TaZbQ2SUKqtAw0ZMoRp06YRGRlJ3759efDBB0lLS6vzDXNzc1m6dCmPP/44AMnJyRQXFxMZGQlAbGwsmzdvxmKxsG/fPseggNLjQgjhTLmG0oRyddZQAvw8ycovrnKBSJOliSSUV155hcjISPbs2cOePXsYNGgQL774Yp1vOHfuXGbOnIm/f0kHWHp6OkFBQY7Hg4KCSEtLIycnB19fX3Q6XbnjQgjhTI4aylXa5BXo74HZYq9yLorZasOjAfpQqt1TPiEhgTfffNPx/6eeeorx48fX6WZffPEFoaGhDBkyhC+//BIAu91ebqieUgqNRuP4u6y6DOkLDGwam4AFBfk1dghNhpTFJVIWlzRWWZhtCp1WQ9fwgCYzbLg2ZdG5QxsAlFZb6fNsdvD18XB5GVebUKxWKyaTCQ+PkuxdVFRU50LftGkTGRkZTJw4kby8PAoLC9FoNGRkZDjOyczMJDg4mICAAAwGAzabDa1WS0ZGBsHBwbW+Z1aWEbu96r0CXC0oyI+MDEOjxtBUSFlcImVxSWOWxYV0A618PMjMNFZ/cgOobVnoKPl8+/1cNn7uV66FFBZZ0ChVo+u6uWnq/EW82oQybtw4HnroIWJjY9FoNKxbt67Okx0//vhjx7+//PJL9u7dy2uvvcaECRPYv38/AwcOZMOGDURFRaHX6xk0aBCbNm0iJiaGr776iqioqDrdVwghKpNrNF+1I7wAAvxLYs/KL670nEafh1JqxowZhISEsHPnTux2O7Gxsdx9991ODWLx4sXMmTMHo9FIr169ePDBBwGYN28es2fPZuXKlYSGhrJkyRKn3lcIIXIMJjoE+TR2GHXm7+OO1k1DtqHqhNKow4ZLTZ06lU8++YS77rrLqTeOjY0lNjYWKBmivHbt2grnhIWFsWrVKqfeVwghyso1mujdNaCxw6gzN42GNn4eZOebrvi4UqokoVTSHObUWKo7wWAwUFhY6PJAhBCioRWZrBSbbbS5SocMlwr09yS7kiYvq02hlOsXhoQa1FC8vLwYOXIkPXv2xNvb23FcVhsWQlztcq/yIcOlAvw9OHU+94qPXdoLpQkkFGf3lwghRFNxtU9qLBXg70mOwYzdrnBzKz8Kt6F2a4RqEsqpU6fw8fGhX79+tGvXzuXBCCFEQ8q9ytfxKhXg74ldKXKNJgL8Pcs95qihNObikOvWreP+++/n/fff5/bbb2fXrl0uD0YIIRrS1b6OV6nAi0OHsw0VO+YbanMtqKKGsmrVKv773//Srl07Dh48yNKlSxk2bJjLAxJCiIaSazDh5aHF073a1v8mLcCvpFaSnV8MYa3KPWYu3f63sdfyKm3m6t+/Pzk5OS4PRgghGlKO0XTV958AjmauKw0dvtTk1YgJ5fLlVbRa1wcjhBANKbeZJBRvTx2e7torzpY3mRuuyavGvTRNZdE0IYRwllxD80goUPlclEt9KI242vDJkycZMGCA4//FxcUMGDDAsQrwgQMHXB6cEEK4SsmoqKt7Ha+y2vhfeba8uSl0ym/ZssXlNxdCiMZiLLRgs6urfoRXqUB/T86lVlxN2HSxU75RF4cMCwtz+c2FEKKxlM6Sby41lAA/DwyFFsyXrSzckDUU1zeqCSFEE5TTTGbJlyod6ZVz2VwUk8WGTutWYQa9K0hCEUK0SM2uhuJfZi5KGSVL1zfMR70kFCFEi5RjMKGhZD+R5iDQsdFWxRpKQ6zjBZJQhBAtVK7RjJ+POzpt8/gYbFM6W/6yjbbMFnuD9J+AJBQhRAtVMqmxedROAPQ6N/x93K/Y5NUQI7xAEooQooXKNZiu+o21LhdwhZ0bzRYbHjrpQxFCCJfJMZqu+o21Lhfo71lh+RWTxYa79KEIIYRrWG12DIWWZjNkuFQbfw+yDSaUUo5jJulDEUII12luQ4ZLBfp7YjLbKDRZHcdMZpskFCGEcJXSnRqbU6c8XHkZe7NVEooQQrhMc9lL/nIBjrkol/pRSkZ5Sae8EEK4hGPr32bW5FW6c2POxYRiV0rmoQghhCvlGkxo3TT4eekbOxSnauXrjtZN45gtb2nA7X9BEooQogUq3amxuW0c6KbR0MbPwzFbviG3/wVJKEKIFijHYGp2I7xKBfh7kp1XklAacul6kIQihGgAB05lcORsVmOH4ZBrNDe7EV6lAi7ORYEy2/820MTGSjfYEkIIZ0jOMLLyqzhsdsWwPqFMvrU7Xh6N+9GTYzTRu2tAo8bgKoH+nuwzpGO3q0u7NcrSK0KIq51Sik+3nMLTXcuYG8LZHZfC3A/3cuJcTqPFVGSyYjLbmt06XqUC/Dyw2RV5BeZLNRRp8hJCXO1+OZ7GicRcYkdcwz0ju/Hc/QPRaTW8vvogn/1w2tHG35Bym+mQ4VJlN9pq6CYvSShCCJcoMln5fNsZOoX4MaJfewCuCWvFi38YzKgBYXy/7zwv/XMfCan5DRpXc53UWMqRUAwmR8KWUV5CiKva17vjyTeaeWB0z3L7mXu4a7l/dE+evrcfxWYbC/61n/U/nim3oKEr5TTTdbxKOXZuzCtTQ2nOM+Xffvttxo8fz/jx43n99dcB2LNnDzExMYwePZqlS5c6zj1+/DixsbFER0fz/PPPY7VaK7usEKKJSM4wsmVfEsP7tadre/8rntO7SyAvPzKYyG5t+ei/R3n366OYzK5vAmuu63iV8vLQ4eGuJdtQjLm0U7651lD27NnDrl27WL9+PV999RVHjx5l48aNPPfcc6xYsYJNmzYRFxfH9u3bAZg1axZz587lu+++QynFmjVrGjpkIUQtlHbEe3louWtE1yrP9fHU88c7ezN1/HXsO5HO/FW/kpZd6NL4cgwmvDy0eLo3z0GuGo2GQH9PsvNNzb9TPigoiNmzZ+Pu7o5er+eaa64hISGBTp060bFjR3Q6HTExMWzevJnk5GSKi4uJjIwEIDY2ls2bNzd0yEKIWijtiL9rxDX4eVdfC9BoNNw9qjtP3xNJrsHEy5/8ym9nMl0WX+ks+easZOfGYkxmGxqa8bDh7t27OxJEQkIC3377LRqNhqCgIMc5wcHBpKWlkZ6eXu54UFAQaWlpDR2yEKKGSjviO4f4EXWxI76menUJYN5D1xPU2pO31h7mq51nsbugXyXX0AISin9JQjFbS/aTb6glZhqtznf69Gkee+wx/va3v6HVaklISHA8ppRCo9Fgt9vLFUTp8doIDPR1Vsj1EhTk19ghNBlSFpc0t7L48Os48gvMzH3kRtq1u3LfSWWCgvwICvJjycybWbH2EF/vTiAtt5jnHhpcrlO/vvKLLPQO9W/SZV/f2DqGtmLHoRRsSoOXh67BXmujJJT9+/fz1FNP8dxzzzF+/Hj27t1LRkaG4/GMjAyCg4MJCQkpdzwzM5Pg4OBa3Ssry4jd3jCjRyoTFORHRoahUWNoKqQsLmluZZGcYeTrHWcZ3rc9bbx0tXptl5fFfbd0o5W3nvU7zrLj10R6dXHOrHa7UmTnFeOl1zbZsnfG+8LjYgJOuJCHTqup1fXc3DR1/iLe4E1eKSkpzJgxg8WLFzN+/HgA+vXrR3x8POfOncNms7Fx40aioqIICwvDw8OD/fv3A7BhwwaioqIaOmQhRDVq0xFfExqNhjGDO+LrpWf7b8lOiLCEsdCCza6a7QivUqVDh1OyChqsQx4aoYby4YcfYjKZWLhwoePYpEmTWLhwIU8++SQmk4kRI0YwZswYABYvXsycOXMwGo306tWLBx98sKFDFkJUY//JDE4k5nL/6B416oivCb1Oy029Q/hhfxJ5BWZa+dT/ujmG5j0HpVTp5MaCYivBbbwb7L4NnlDmzJnDnDlzrvjY119/XeFYREQEa9eudXVYQrQ4W349T2KagftH96zXt1izxcbn287QIciXEZG164ivzojI9ny/7zx7jqQw9sZO9b6eY9mVZt4pXzZhNtSkRpDVhoVo0nIMJs5eyOP3C/mcvZBPhyAf7rutR71H7ew8fIHVW08DJTOqn7yrb51XAN78SyJZ+cX8fUp/tG7O/fAKDfShR4dWbD90gegbwnGr5+tu7rPkS7nrtfh56zEUWpp3k5cQ4soKiy0kphlJSDVw9kIeZ1Pyyb64latOqyGwlRenzufSLawVN/YKqfN94s5m8cm3J+nVuQ039grh400nWLLmN2b+Xz+8PWu3JW5WXjGbfj7HoIhgeoa3qXNMVRkRGcb7G49x8lwO13auX+d8rsGEBvB3QvNZUxfg71mSUBpoYUiQhCJEo8gvNHPueBqHT6WTmGbgXKqBzIu77AG0beVJt7BWXHN9K7qG+RMe7IfWTcNrn+7n0y2n6Bnepk7fss+lGli+Po4OQT788c4+eHno8HTX8c6GON5Y/Rt/nRSJby32WV/zvzMA3DPymlrHUlMDewbxn606th+6UP+EYjTh5+OOTtv8lzEM8PPgXKoBd50kFCGarbizWby17ghWW8k6S8FtvOgc6s+IyPaEt/OjUzu/Sr9BPzL+Ol78aC+fbD7Bn+/uW6umr4zcIpZ+cQhfLx1/uaefo4lrYM8gnryrL8vXH2HRfw7wzKT+NeoAP3Euh30n0pk4rAttW3nVOI7actdrGdI7hB8PJpNfaMa/Hp3+zXmnxssFXuyYlyYvIZqpU+dzefvLI7QP9OaJu/vh76GtVd9FSIA3d918Dau3nmbX4RSG13A2urHIwtI1h7DZ7Pxt8sAKndJ9rwnkL3f35c11h1n46QFmTYp0jBS6Epvdzn+2nibQ35OxN4TXOP66GtGvPVt/TWLPkVTG1ON+OQYTAc28/6RU6c/P3b3hamPNv94nRBMRn5LPsi8OEdjKk6cnRdL7mrZ16gi/ZWAHIsJbs/qH02SVaSarjNli4621h8m82Pnevq3PFc+7tnMAf703kjyjiYWfHiAxrfLJcNt/u0BShpF7R3VrkJVsw4J86RZW0jlfn2Xuc42mZrux1uUCLs5FacgaiiQUIRpAcmYBS9ccwsdTz1/vjaxXs42bRsMfxl2LAj7+9niV613Z7Hbe++8xfk/OY3rMdfTo2LrKa3fv0JpZk/tTZLLy4sf7ePGjvXy3N5G8i6OjoKS2s37HWSLCWzOwZ1AVV3OuEZHtScsu5NT53Do932K1Yyi0NNutfy8X0AhNXpJQhHCx9NwiFn92EK1Ww6zJVTcl1VRQay/uHdWNYwk5/Hiw4kxyq83OjkMXeO69nzlwKoNJt3ZnUETNli3qEurPq9Nv5L7beqDVavh82xmeXr6bJWt+4+ejqaz98XcKTVam3Fr/4cu1MSgiGC8PHdt/u1Cn5+cVNO+tfy8X3NoLrZvGKRNCa0r6UIRwoRyDicWrD2K12pl93wCnzloe0a89B05msOZ/Z+jdJYDgNt5YrHZ2HUlh008JZOWb6BLqx5Rbe9CvW9taXdvP251bBnbgloEdSMkqYE9cKj8fTeW9/x4D4JYBHegQ3LALr3rotdzUK4Tthy4wpchSq9FoALmG0o21WkZC8fdxZ/6jN9C2Vf2/wNSUJBQhXCS/0Mzizw5iLLIwa3J/woKc+wGs0Wh4aGwEL3y4l4++Oc6giGC+/SWRHIOJa8L8eXBMBL27BNS7FhEa6MNdI67hzqiunErM5eT5XG4b1NFJr6J2oiLb88OBJPbEpTL6+trFkOOYJd8yRnkBtGvAZVdAEooQTqeU4tCZLD774TQ5RhNP39OPLqG1W8q9pgL8PZlya3c+/OY4p5Ly6NGhFY+Mv5ZrO7VxenOUm0ZDRKc2RHRyzQTGmugY7EvX9v5s/y2Z2wZ1qNVrTEjJR+umoV1Aw37ItiSSUIRwouQMI5/9cJqjCTmEBnrz9D39XDaDvNRNvUOw2uyEBHi7/F5NwYh+7fn42xOcTsqrdpBBWSfP59Il1L9BO6lbGkkoQjiBscjChp3x/O9gMp7uWibf0p2RA8IaZEa2RqNhRGSYy+/TVAy+th2rfzjNjkMXapxQis1WzqUa6jWHRVRPEooQ9WCy2Nh1OIWvdp6l0GTl5v5h3DGsi9OWcBcVebhrGdAjiENnMrHbVY12c/w9OR+bXdWqRiNqTxKKEDWklCIjt4jfk/P5/eIKwEnpRmx2xbWd2jD51u50cHLHu7iy3l0C2BOXyrk0Q436p06ez0WjgW5hrRogupZLEooQ1UjLLmTtj79zKikXQ6EFKPmW3DXUnzE3hHPdxY7qhpyT0dJdd3GRyLj47BollFOJOXRq51fnJfpFzUjpClGFn+JS+df3J9G5aYjs3pZr2rfimrBWhLX1qVFTi3ANfx93wtv5cjQ+m5ibOld5rsVq42xKPrcM7NAwwbVgklBEi1JkslJstlW79LvJbOPfW06y+0gq3Tu04rHbezllhrtwnt5dAvlubyJFJmuVNY+zF/Kx2qT/pCFIQhHNXq7RxG+nMzlwOoPjCTnY7IruHVoxpHcIgyOCK2wqdT7dyDsb4kjNKmTCTZ2ZOKyz03ciFPXXq0sAm34+x4nEHPp3r3xNsZPnc9GAJJQGoy+FagAADq9JREFUIAlFNEspWQUcOJXBwdOZnL2QD5SsbXTboI54eer4+Wgq/9p8kv9sOU1k97bc1CuE3l0D2Hk4hdVbT+PjqeOZSZH13tBJuE63sFa46904Gp9ddUJJzKVDsC8+tdyNUtSeJBTRrBSZrHy+7TQ7DqUA0DnEjzujujKge1vat/VxdJxPGNKJhFQDP8Wl8vOxNH49kY6HXovJYqN3lwCmTbiuRWwTezXT69yICG9DXHx2pedYbXZ+T86r8b4xon4koYhm40xSHu9vPEpmbjFjBodz66AOlfZ7aDQauoT60yXUn3tGdSMuPpv9J9IJb+fHLYM64CYjtq4KvboEcPj3LNJziwhuXXHXyIRUA2arnZ7S3NUgJKGIq57VZmfDrng2/XyOQH9P/n7fgFq1l+u0bkR2a0tkLVfkFY2vd5eSJsmj8dkE96+4WkDp3inSf9IwJKGIq1pyhpH3Nx4jMc3IsL6hTL6lu8w1aEFCArwJ9PfgaHw2I6+QUE4m5hIa6C3Nlw1EfvPEVSk9p5Bfjqfz390JeLpr+VNsHwb0aLjdA0XToNFo6NUlgH0n0rHZ7eVG49ntitNJudx4XbtGjLBlkYQirgoms43jiTkcPZvNkfgs0nOKAIjs1papYyMadFc60bT07hLIjkMpnL2QT/cOl5q2EtMNFJtt9AiX5q6GIglF1IvNbic9p4ikjAKS0o0kZRjJLzBjsdqx2OyOv61WO1a7IriNF+3aeBPW1qfkT5APwW280Lq5oZSioNhKdn4x2fkmsg0lf8en5HM6KRerTeGuLxnZc9ugjvTuEiB7Wwiu7dwGjaakH6VsQjmVWNJ/0rNj81/Sv6mQhNLCKaUwFlnIzCsmI7eIjNwiMvOKycwtIivfhNZNg7tei4feDQ+9Fg93Le56LTabIjnTyIXMQqw2OwAaTckOcQH+Hvh5u6PTatDr3Er+aLW4uWnIL7IQn5zH/hPpqIsx6LQa2vh5kFdgxmyxl4tP66YhNNCbWwd2pHfXALp3aI1eJ5MMxSU+nnq6hvpzND6bO4Z3dRw/eT6X4NZe1a6KIJxHEkoLYiyykJxhJDmzgKSMgpJ/ZxRQaLKWO8/XS09Qa0/CgnxAlSzRbrLYyDGaMFnsmC02ANq39eGWgW3oEORLhyBfQgO9ca9m86KgID8yMgyYLDZSsgpIziggObOA7PxiWvt6EODnQYC/58U/Hvj7uMsQXlGtXl0C+O+eBAqKLfh46rErxanzufSXfrUGJQmlmbErRXZeManZhaRkF5KaXUhqViEXsgrIM5od53l56OgQ5MPg69oR0saLoNZetG3tRdtWng0ySspDr6VziD+dQ1yzNa5oWXp1CeDr3QkcT8hhUEQwFzIKKCi2yvyTBiYJ5SqhlMJQaCErv5j8AjP5hWYMhRbyC8wYCs3kF1rIM5pIzynCbL3UbOTloSM00JvenQMIC/IlLKik76KNn4csty6aja7t/fHy0BIXn82giGBOni/tP5GE0pBaXEIpMllJzizAUGjGZlNY7XZsNoXNrrDaSv5tVwqlSj7E7Uphv/hvrZuGwFaeBLUu+Ubv56Wv8KFss9vJzCsmLbuQ1Owi0nMK0bvrsJptaLUatFoNOje3kn+7aSr9UC822y52Tpd2UP9/e3cf09S9xgH829JSedNS1oIuIMYYvJeN4R0mxBshTEOlpYigwaQohESIGdFtzPcY41tijImJMVGTxRlfiJqo9b0x3ojvicoVjYpOEbYi2lZbroCUvj33D+Q4VEyVzpbu+SQN6ck5h9/v25M+PW+/0yOcq/gzmTQMMZFSxESG44sREfhnsgIJcZEYqYhEQlwUhke+20bGQk2YWIx/jFbgbvMLEBEemNqhGC5D3AgeIfpzCvmCcqfZhoemdpgsnWi1dMLS3u23dcukYVDKewsMEWC2v4LF3g2Pl4R5ImQSyMLD4HJ54PZSbxF7T2F4m1gkgjwmHIrhw5A8Mgb/SlEK5xfk0TIMf11EZOEfPmfB2N/FV2MU+O9vVjyzvcJvpnakJvNDzz63kC8ou433YbV3Q6WIRFJCDP79dQISVTGQx4S/2VMIE0Mi7v0bJhZBLBJBJOr9UheLe2+eEokAl9uLF/9zwNre/4oos70bIgAj46IwYZwS8YoIJCgikaCIRHSEFCrVcFitHUKb+vZ8PB4asN2SMDE/wImxj5D6ehiW/9S34mWXk4dbCYAhUVCOHz+Obdu2we12o6ysDHq93udlq4u+hnJEhF9+yYeFi1+fhxjcc8NFIhHCRCKE8dWvjPmNUh4BVWwEzje0AQBSkvj+k88t6L/SzGYzNm/ejNraWhgMBhw4cACPHj3yefmk+Bg+LMTY38RXYxTweAnDo8IRH/vu6MPsrxX0eyhXrlxBZmYm5PLe3Ve1Wg2j0Yjq6mqflg+Ww0bB0o5gwFm8wVm84Y8svh2vwp1mG9LGfoGwIXwIIJDbxWD+d9AXFIvFAqXyzc1JKpUKt2/f9nn52Niov6JZHy0ubnCHyUIJZ/EGZ/GGP7LIiotG1rdJfmhNYA3V7SLoS7jX6+13pQYR8ZUbjDEWhIK+oCQkJMBqtQrvrVYrVCpVAFvEGGPsfYK+oEyaNAlXr16FzWZDd3c3zpw5g6ysrEA3izHG2FuC/hxKfHw8fvzxR8ydOxculwszZ85EWlpaoJvFGGPsLSIiGvjuOsYYY8xHQX/IizHG2NDABYUxxphfcEFhjDHmF1xQGGOM+QUXlEHo7OxEfn4+WltbAQCHDx+GRqOBTqfDunXr4Hb3PlrXYrGgsrIShYWFmD17tjD/y5cvUVlZiby8POj1+n732ww1vmTx4sULTJ8+XXh99913mDBhAoDQycLXbaK1tRV6vR7Tp0/HnDlz8OTJEwCA0+nEokWLkJeXhxkzZqCpqSlgfRksX7O4ffs2iouLodPpUFVVJXz2oZTF1q1bodVqodVqsXHjRgC9w0rpdDrk5uZi8+bNwryNjY0oKiqCWq3GihUrhJza2tqg1+sxbdo0zJ8/H11dXQHpywcR+yQNDQ2Un59PqampZDKZqKmpiSZPnkxms5mIiFatWkU7d+4kIqKysjKqra0lIqLa2lpauHAhERGtXr2aduzYQURER44cEaYPNR+TRR+Px0OlpaV07NgxIgqNLD4mh59//pn27dtHRES7d++mmpoaIiL65ZdfaOXKlUREdO3aNZo1a1YAejJ4vmbh9XopOzubrl69SkREJ0+epKqqKiIKnSwuX75MJSUl1NPTQ06nk+bOnUvHjx+n7Oxs+uOPP8jlclFFRQXV1dUREZFWq6WbN28SEdGyZcuE7aSyspJOnDhBRERbt26ljRs3BqZDH8B7KJ/o4MGDWLVqlXDX/oMHD5Ceni68z8nJwdmzZ2Gz2XD//n3Mnj0bAFBcXIwffvgBAFBXVwedTgcAyM/Px4ULF+ByuQLQm8HxNYs/O3ToECIiIoT+h0IWH5OD1+tFZ2cnAKC7uxvDhvU+WbCurg4FBQUAgIkTJ8Jms6Gtre1zd2XQfM3CbrfD4XAgMzNTmH7p0iU4nc6QyUKpVGLp0qUIDw+HVCrF2LFj0dLSgtGjRyMxMRESiQQ6nQ5GoxFPnjyBw+FAeno6AKCoqAhGoxEulwvXr1+HWq3uNz3YcEH5ROvXr0dGRobwfvz48bh16xaePn0Kj8cDo9GI58+fw2QyYdSoUdiwYQOKi4uxYMECSKVSAP0HvpRIJIiOjobNZgtIfwbD1yz6eDwebN++HTU1NcK0UMjiY3JYuHAhdu3ahcmTJ2Pnzp2YN28egHcHQ1UqlXj27Nnn7Ygf+JpFbGwsIiMjcenSJQDAyZMn4XK5YLfbQyaLcePGCQWipaUFp0+fhkgkemfQW7PZ/N4+m81m2O12REdHQyKR9JsebLig+MmYMWNQU1OD+fPnQ6/XIyUlBVKpFG63G/fu3UNmZiYOHTqEKVOmYOnSpe9dBxFBLB76H8lAWfS5ePEikpOTkZKSMuA6QiGLD+WwZMkSrFmzBhcvXsTq1atRXV0NInpn8NNQyAEYOAuRSIQtW7Zgx44dKCwsREdHB+RyOaRSachl8fDhQ1RUVGDx4sVITEx876C3Aw2G+3YWAIJykNyh++kEmZ6eHqSlpcFgMGD//v2Ij49HYmIilEoloqKikJOTA6D3cE7f8PsqlUr4xep2u9HV1SU892UoGyiLPmfPnoVGo+m3TChmMVAONpsNjx8/xtSpUwH0PuPHarXCbrcjPj4eFotFWMfz589DYjDUD20TEokEe/bsgcFgQEFBAbxeL+RyeUhlUV9fj/LyctTU1GDGjBkDDnr79vS+PisUCnR0dMDj8fSbP9hwQfGTV69eoby8HJ2dnXA6ndi7dy80Gg2SkpKQkJCA8+fPAwDOnTuH1NRUAEB2djYMBgMA4NSpU8jIyOj3S36oGiiLPg0NDf0OhwChmcVAOcTGxkImk+HGjRsAer9soqKioFAokJ2djaNHjwIAbty4AZlMhlGjRgWyG37xoW1i+fLlwo+sX3/9FdOmTYNYLA6ZLJ4+fYrvv/8emzZtglarBQB88803aG5uxu+//w6Px4MTJ04gKysLX375JWQyGerr6wEAR48eRVZWFqRSKTIyMnDq1CkAgMFgCM5BcgN1NUCoyMnJIZPJREREBw8eJI1GQ7m5ubRlyxZhnqamJiotLSWtVkslJSXU3NxMRER2u52qqqpIo9FQSUmJsJ6hypcsiIjS0tLI4XD0mxZKWfiSw61bt2jmzJmUn59PJSUldPfuXSIicjgctHjxYtJoNFRYWEh37twJSB/8xdcsCgsLSa1W04IFC6ijo4OIQieLtWvXUnp6OhUUFAiv2tpaunLlCul0OsrNzaX169eT1+slIqLGxkYqLi4mtVpNP/30E/X09BARUWtrK5WWllJeXh5VVFRQe3t7ILv1Xjw4JGOMMb/gQ16MMcb8ggsKY4wxv+CCwhhjzC+4oDDGGPMLLiiMMcb8ggsKY4wxv+CCwhhjzC+4oDDGGPOL/wM19aqYz/sDdwAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "fig, ax = plt.subplots()\n",
+ "plot(x, y1, ax, 'Increase in mean Fortune 500 company profits from 1955 to 2005', 'Profit (millions)')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEJCAYAAAA5Ekh8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzde1xU1f74/9cAA14gFBwExVvehdQUNW+QViIKqZimktUpMz1WHjtRmIRH07zE16xTeDK7fI6ZRanQScSjefBeXkPNu4IXRBhA7iDDzPr9wY9BUkRNZhDfz8ejh81mz+z3fs/e85699pq1NEophRBCCGFFNtYOQAghhJBiJIQQwuqkGAkhhLA6KUZCCCGsToqREEIIq5NiJIQQwuru6WI0ePBgDh8+bO0w/pSXXnqJ06dPWzuM2xYWFsbAgQMZMWJEpf/S0tJu63U+/vhjNm/eXENRVrZy5Ur69+9vjnXChAnmv/3www8MGzaMIUOGMHv2bAwGAwBFRUX8/e9/JyAgAH9/f4vFKu6+HTt2MGjQIJ566imKi4stss3c3FyCgoIqfU4dP36ccePGERgYyLhx49i9e7f5bwsXLuTRRx81H6N/+9vfzH8LDg5m2LBh5r+tWLHiuu3l5eXx7LPP3nachw4dYty4cYwYMYKgoCBiY2PNf0tISCAoKAh/f39ee+018vPzATAajcyfP5+hQ4fyxBNPsHr1avNztmzZQu/evSt9NpQ/r0rqHjZo0CB16NAha4dxX3rrrbfUihUr/vTrPPPMM2rDhg13IaLqzZgxQ/3444/XLT9x4oTy9fVVmZmZymg0qhkzZqjly5crpZRatGiRCg8PV0oplZKSogYMGKBSU1MtEq+4u8LCwtQnn3xise0lJCSoIUOGKC8vr0qfU4MGDVI//PCDUkqp9PR0NWTIEJWenq6UUmrs2LFq//79171WQUGB6tmzpyopKbnpNi9cuKC6d+9+W3GaTCbl5+endu7cqZRSKjU1VT3yyCMqKSlJZWZmmv9fKaUWL16sZs+erZRS6uuvv1aTJk1SBoNBZWdnK39/f5WYmKiUUioyMlItW7bstuKwu+0SWks99NBDTJ48mZ07d5Kens6kSZPM33w//fRT1q1bh52dHa1atWLhwoVs2rSJH374gaKiIhwdHVm5ciXff/89q1evxmQy0ahRI9555x3atm1LUlISc+fOpaCgAL1eT6dOnVi6dCkODg589NFHbNq0Ca1WS+PGjVmwYAFubm6cOXOG+fPnk52djdFoZOLEiTz11FPXxT148GA+/PBDCgsL+eCDD2jRogWnTp2itLSUOXPm0LNnz0rr//rrryxZsgQPDw+SkpKoX78+kydPZuXKlSQlJTFkyBDefvttoOzbybJlyzAYDNSrV4+33nqLhx9+mIyMDCIiIsjMzESv19O8eXOWLl2Kq6srgwcPZtSoUezevZvU1NTrvp3diry8PObMmcPx48fRaDQMHDiQ119/HTs7O7y9vXnsscc4fvw4QUFBHDlyhMWLF2Nra8vPP/9M+/btefHFF4Gyq6/yxzeLq6r9/KODBw+Sn5/P8uXLcXNz480336Rjx478/PPPDB48GBcXFwCefvpp5s2bx0svvcTmzZuJjIwEoFmzZvTv358NGzbwl7/8pdJr6/V6Zs+ezdmzZ7GxsWHcuHE8++yzXL58mX/84x+kpKSglGLkyJFMmjSJixcv8txzz9G/f3+OHDmC0Wjktdde47vvvuPs2bN4e3uzZMkSLl26xMSJExk4cCCJiYkopYiIiMDHx+eO3sfw8HBcXV2ZMWMGALGxsfz3v//lk08+ue647Nq1KydOnOD111+na9euzJ07l9TUVAwGA8OHD2fKlCksWbKEgoIC3nnnHQC2bt3Kxx9/zPfff8+BAweIjIykqKgIGxsbXnnlFQYNGsTatWvZtGkTNjY2nDt3jnr16rFo0SLatm3LxIkTCQkJYejQoQCVHld1ThUUFDBz5kzOnTuHjY0NXl5ezJ07FxubioafFStW8PPPP+Pg4EBeXh4NGjTgt99+Iz09nY4dO7JgwQIWLlzI7t27sbW1pWvXrsycORNHR0cGDx5MYGAgv/zyCzk5OUyaNIkDBw7w+++/Y2dnx7Jly2jatOl1x9u///1v3n///UrnT1ZWFqmpqYwcORIAnU5Hx44d2b59O4GBgRw9epQVK1Zw4cIFWrduzcyZM2nWrBmHDh2iQYMGTJo0iaysLPr27cvrr79OvXr1Km1z5syZFBcXM2LECNauXcvBgwdZvHgxRUVFaLVa/va3v+Hr61vpOSUlJUybNo1+/foB4O7ujouLC5cvX+bQoUM89NBDtG7dGoDx48czYsQIZs+ezebNmxk7dix2dnY4OzszfPhwfvzxR7p27crBgwexs7MjLi4OR0dHZsyYQa9eva7LUSW3VbpqmWuvjDp06KBWrlyplFLq8OHDytvbWxUXF6vNmzerIUOGqOzsbKWUUu+9956KiopSa9asUb169VJ5eXlKKaV+/fVXNWHCBFVYWKiUUmr79u1q6NChSimlFi5cqGJiYpRSSpWUlKjAwEAVHx+vLl26pHr06KGuXr2qlFLq888/V5s2bVIGg0ENGzZMHTlyRCmlVG5urgoICFAHDx6sch9++eUX1blzZ3X06FHza4WEhFy3fvl6v//+u1JKqRdffFE9/fTT6urVqyozM1N5eXmpy5cvq6SkJBUYGKiysrKUUkqdPHlS9e/fXxUUFKivvvpKffrpp0qpsm9FkyZNUp9//rk5noULFyqllLp8+bJ66KGH1Pnz56+L46233lIDBgxQTz75pPm/6OhopZRSb775pnr33XeVyWRSV69eVS+88IJ5ex06dFDr1q0zv861V0Z/vNq69nFVcd1sP69VUFCgXnjhBbVnzx6llFLr169XAwcOVPn5+eqdd94xx6eUUsnJyapXr15KKaW8vb3N31qVUmrJkiXqvffeuy4f06ZNU4sWLVJKlb3fw4cPV8nJySokJER98cUX5uVBQUHqp59+UhcuXFAdOnRQmzdvVkopFRERoQYNGqTy8vJUcXGx6t+/v9q/f795vfIruoSEBNW/f39VUlJyR+/j0aNHVf/+/ZXBYFBKKTVhwgS1bdu26/Zn0KBB6uOPPzY/njhxovr555+VUkoVFxeriRMnqvXr16vz58+rPn36mM+B6dOnq+joaJWdna2GDBmiLly4YI7B19dXpaSkqDVr1qiePXuarzDnzp2r3nzzzeuOh2sf3+ycWrdunXrhhReUUkqVlpaqWbNmqeTk5Ov26drj6aOPPlL+/v7mPHz44YfqlVdeUSUlJcpoNKqwsDD1zjvvmHNR/p6vX79ederUSR07dkwppdRf//rXaq8A/tiC8/jjj6vvv/9eKaXU+fPnVb9+/dS//vUvdf78eTVp0iR14sQJZTKZ1GeffaZGjBihTCaT2rx5s3rjjTfUlStXVHFxsXrllVfUvHnzrtvWtVdGWVlZqm/fvuq3335TSpWdG717977h+Xytb7/9Vvn5+amioiL16aefmvOglFIGg0F16NBB5eXlKX9//0qfadHR0WratGlKqbLzYcOGDcpkMqm9e/eq3r17V9uiUGeujAAee+wxALy8vCgpKaGwsJDdu3czdOhQnJ2dgbJvDgBr166lY8eOODo6AmXtoufOnWPcuHHm18vNzSU7O5vQ0FB27tzJZ599RnJyMunp6RQWFtK0aVM6derEqFGj8PX1xdfXl759+3L69GnOnz9vvkIBKC4u5ujRo3Tv3r3K+Js1a0bnzp0B6NKlC+vWrbvhep6ennTp0gWAli1b4uTkhL29PS4uLjRs2JCcnBz27t1Leno6zz//vPl5Go2G8+fP89xzz7Fv3z6+/PJLkpOTOXXqFN26dbsuj02bNsXV1ZWcnBxatGhxXRzPP/+8+SrmWtu2bWP16tVoNBrs7e0ZN24c//d//8fkyZMB8PHxqTIHN3OjuBITE6vcz06dOpmXNWjQgM8//9z8eNiwYSxbtozDhw+j/jAillLK/K1aKYVGo6n092u/cZfbtWsXoaGhADg5OfHTTz9RWFjIgQMH+OKLL8zLg4OD2bZtG926dUOr1TJ48GCg7H18+OGHzcejm5sbOTk5uLm54ezsTFBQEAB+fn7Y2tpy4sSJO3ofvb298fT0JCEhgTZt2pCens6AAQNumO/y96mwsJC9e/eSk5PDhx9+aF52/Phxhg0bRseOHdmyZQt9+/bll19+Yf78+ezbtw+9Xs+0adMqvS8nTpwAys5Rd3d3oOxY37Rp0w1jKJecnFzlOTVw4EA++OADJk6cSL9+/Xjuuedo1arVTV8PoHv37tjZlX0Ebtu2jRkzZqDVaoGyK7JrYx8yZAgALVq0oEmTJuZjq2XLluTk5FS7rWstW7aMRYsW8X//93907NgRPz8/tFotLVq04LPPPjOv9+KLLxIVFcXFixd57LHHzO8nwMsvv8yrr77KrFmzqtzOoUOHaNmypfmYaN++PT169GDPnj03PJ8Bli9fzr///W9WrFhBvXr1MJlM1x3/UHYO/PHcuPa8+fjjj83LfXx8ePjhh9m5cyejR4+uMt46VYwcHBwAzAlSSmFra1spYbm5ueTm5gJlH1DlTCYTI0aMMH+gmEwm0tPTcXZ2ZsaMGRiNRgICAnj00UdJTU01J/7rr7/m8OHD7N69m/fee898U9/JyanSTcCMjAycnJxuGv+1l9wajea6D8ly9vb2lR6Xn1DXMplM9O3bl6VLl5qXpaam4ubmxvvvv8+hQ4cYPXo0ffr0obS0tNK2yvNYXRxV+eMBbDKZKC0tNT++Nu/X+uO2yjsR3Cyum+3ntVJSUtiyZQsTJ040L1NKYWdnh4eHB+np6ebl6enp5g/K8r81adLE/Ldri1w5Ozu7Svt84cIFGjVqdF3urs2FVqut9JzyD8I/srW1ve41bG1t7/h9DAkJYc2aNbRu3ZqxY8fe8MMGKt4nk8mEUopvv/2W+vXrA2XNTeWvP3bsWGJiYsjMzOTxxx+nYcOGGI1G2rZty/fff29+vbS0NFxcXPjPf/5z02P9RseA0Wis8pxycHBg06ZN/Prrr/zyyy/85S9/Ye7cueZCX5U/nv9/PGavPf6uPeeqep9ulclkYtmyZebz9oUXXmDw4MEcP36c48ePm5vwoCwXWq2WLVu24OTkZG7qKj92b8ZoNF733iqlKp2L5UpKSggLC+P06dN8++23eHp6AmXHf2Jionm9tLQ0nJ2dadCgQZXnTW5uLt988w0vv/xypc/i6uK9p3vT3Yp+/fqxadMmc0+Of/7zn3z11VfXrTdgwADWr19vTu7q1at57rnngLJeONOmTWPYsGEAJCYmYjQaOX78OIGBgbRt25aXX36Z559/nsOHD9OmTRvq1atnPnFSU1MJDAzkyJEjFtjjMn379mXnzp2cOXMGKGvLf/LJJykuLmbHjh0899xzjBw5EldXV3bt2oXRaLxr2x4wYABff/01SilKSkqIjo42t0f/ka2trfnkaNy4sTlHaWlp7Nmzp9pt3Ww/r1W/fn2WLl3KoUOHzOsVFRXRtWtXBg8ezJYtW8jMzEQpxXfffcfjjz8OlF1dfPfddwBcvnyZ7du3M2jQoBvGsWbNGqDsntlzzz3HuXPn6NatG6tWrTIvj4mJqTIXVcnKymLbtm1A2f0xrVZLhw4d7vh99Pf359ixY2zcuPGm31TLOTo60r17d7788kug7Avd+PHj+fnnnwF44okn+P3334mOjmbs2LFA2VXHuXPn2Lt3LwDHjh3D39+/2t6WLi4u5mPg9OnT5iupm51T33zzDTNnzmTAgAGEhoYyYMAAjh49Wu1+XWvgwIGsXr0ag8GAyWRi1apV9O/f/7Ze41ZFRESYe2UeOHCAU6dO0a9fP2xsbJg/fz4XLlwA4JtvvqFjx464u7tz+fJlFi1aRHFxMUajka+++sr8eXQtOzs7jEYjSim6d+/O2bNnzcf8qVOn2Lt3L717977ueW+88Qb5+fmVChGUncuJiYkkJycD8O2335qv0B577DHWrFlDaWkpubm5rF+/3vxlZNWqVfz3v/8F4OjRoxw6dIiBAwfeNC916sroRvz8/Dh9+jTjx48HoF27drz77rvmRJUbMGAAL730Ei+88AIajQZHR0c+/vhjNBoNM2bMYNq0aTRo0ABHR0d69erF+fPnGTNmDAEBAYwePZoGDRpQr149wsPDsbe3Jyoqivnz57NixQpKS0uZPn36dZ0RalK7du2YO3cur7/+uvlbybJly2jYsCHTpk1j8eLFfPjhh2i1Wnr06MH58+fv2rbDw8OZN28eQUFBGAwGBg4cyJQpU2647uDBg1myZAkGg4GJEyfyxhtv4O/vj6enJ4888sif2s9rubi4sHTpUiIiIjAYDDg6OvLJJ59gb29Pp06dmDZtGs899xwGg4Fu3brx0ksvAfDqq6/yj3/8g+HDh2M0GgkNDaVly5bXxREREcE//vEPgoKCUErx8ssv4+3tTWRkJHPnzmXt2rWUlJQQFBREcHAwKSkpt5xPBwcHYmNjiYyMpF69enzyySfY2tre8ftob2+Pv78/GRkZ5k4b1YmMjOTdd98lKCiIkpISAgMDefLJJ82vN2zYMHbt2kXXrl2Bsnx/9NFHLF68mKtXr6KUYvHixXh6et70S8bUqVMJCwtj69atPPjgg+amwpudU507d2bPnj0MGzaM+vXr4+HhUekK+FZMnTqVRYsWMXLkSEpLS+natau5U8bdNnfuXMLDw/nkk09o0KABy5Yto0GDBnTo0IHw8HCmTp2K0WjE3d2dJUuWADBu3DguXLjAqFGjMBqN9OnTp1IzYjmdTkfXrl0ZPnw4q1at4sMPP+Tdd9+luLgYjUbDggULaNOmTaXnHDx4kI0bN9K6dWvz5ySUFaiBAweyYMECXnvtNQwGAy1btmTRokVAWWeG8+fPM2LECAwGA08//bS50EVFRTFv3jz++c9/YmtrywcffFDtsaZRt9sGI4SwmIsXLxIUFMTBgwfv2msWFhbyzDPPEBERcdN7mEJYUp1vphNCVNi+fTuPPvooAwcOlEIkahW5MhJCCGF1cmUkhBDC6qQYCSGEsDopRkIIIaxOipEQQgirq/O/M6rKlSsFmEzW7bvh6upIZmY1w6rfJyQXFSQXFSQXFayZi8LiUj5Zd5iFr9z8h6t/xn1bjEwmZfViVB6HKCO5qCC5qCC5qGCtXOw/kY4+u6hGt1HjzXT5+fkEBgZy8eJFoOzXvmPHjmX48OG8/vrrlJSUAGXDhQQHB+Pv78+sWbPMQ8RcunTJPIT81KlTKSgoAMqGJJk8eTIBAQGEhISg1+treleEEOK+dOCkHmdHh+pX/BNqtBglJiYyfvx487hG+fn5vPrqq8ydO5f169cDZTNsAoSGhhIREcHGjRtRShEdHQ3AnDlzmDBhAvHx8Xh7exMVFQXA0qVL8fHxYcOGDYwZM4b58+fX5K4IIcR96arByO9JWXi1blyj26nRYhQdHc3s2bPNIyjv3LmT7t27m0c9Dg8P54knniAlJYXi4mLzL8KDg4OJj4/HYDCwd+9e/P39Ky2HiqlwAQIDA9m2bdt1ozwLIYT4c35PyqKk1IRXm1sbx/BO1eg9oz9erZw7d44GDRowY8YMzp49S48ePQgLC+Po0aPodDrzejqdjrS0NK5cuYKjo6N56PHy5VA2XHn5c+zs7HB0dCQrK+uGMy4KIYS4MwdO6mlYz44Hmz1Qo9uxaAcGo9HIjh07+O6772jWrBmzZs1i+fLl9OvX77pJmsrnOPnjfBxVzb1y7cROt8LV1fHOduIu0+luPsfR/URyUUFyUUFyUcHSuTAaTRw6k0lvL3fcdHWoGDVp0oRu3bqZZxkMCAjg66+/Jjg4uFIHhIyMDNzc3HBxcSEvLw+j0YitrS16vd7c5Ofm5kZGRgbu7u6UlpZSUFBAo0aNbjmWzMx8q/fS0emc0OvzrBpDbSG5qCC5qCC5qGCNXBxLziK/yECXlo3IzMyv0S/xFv3R64ABA/j9999JTU0F4H//+x9eXl40b94cBwcH9u/fD0BsbCy+vr5otVp8fHyIi4sDICYmBl9fX6BsnqKYmBgA4uLi8PHx+dMzMAohhKhw4FQGWjsbvNu41vi2LHpl5OHhwdy5c5kyZQpXr16lc+fOvPXWW0DZ5F3h4eHk5+fj5eXFs88+C8Ds2bMJCwtj2bJleHh4mCebmj59OmFhYQwfPhwnJyciIyMtuStCCFGnKaU4eEqPV2sXHOxta3x79+0UEtJMV7tILipILipILipYOhfJl3OZ+9U+XhjWmQFdPbCx0dSdZjohhBD3hgMn9Wg00K1dzTfRgRQjIYQQN3DwZAYdWzTCqYG9RbYnxUgIIUQlaVmFpGQU8HB7XfUr3yVSjIQQQlRy4FTZT20e7tDEYtuUYiSEEKKSAyf1tGzqSBPn+hbbphQjIYQQZtn5VzmbkkuPDpZrogMpRkIIIa7x26kMFNDDgveLQIqREEKIaxw4pcetUX2a6xpadLtSjIQQQgBl04sfS77Cwx2aVDkodU2RYiSEEAKAn/dfwGhS9Oli+al4pBgJIYQgr7CEDb+e5+H2TWjtXrPTRdyIFCMhhBCs332OqwYjo/3aWmX7UoyEEKKOMZQa2fpbChv3nOdWxsLOyCliy4GL9H/Ig2ZNLNtxoZxFp5AQQghRc4qulpLwWwr/3XOBnIISAOztbBjUw/Omz4vdngRoGDmgjQWivDEpRkIIcY/LLSxh876LbNl/kcKrpXRp3ZhJQV3YtPcC32w+RYumTrRr7nzD517U57PryGX8e7fE5YF6Fo68ghQjIYS4R5UaTUT/7zTbfruEodREjw46hvVtRRuPsg4Ird2dmPvVXqLWHWb2X3rj3PD6EbjXbj1LPQc7hvVtZenwK5F7RkIIcY/afeQym/ddxKeTG/Ne6sO04IfMhQigYT0t00Y9REFxKZ/GHsFoMlV6/skL2fx2OoNhj7TEsb7W0uFXIsVICCHuUYlnMmns5MCLwzvj4Xrjjgctmzrx3NCOHD+fzZqEs+blSil+2HoGZ0d7HvdpYamQq1SjxSg/P5/AwEAuXrxYafnXX3/NxIkTzY8vXbpESEgIQ4cOZerUqRQUFACQm5vL5MmTCQgIICQkBL2+bFjzkpISQkNDCQgIYNSoUZw5c6Ymd0MIIWodQ6mJ35Oz6Nau+tES+nl7MLhHc+L3nGfv8XQAEk9ncvpiDk/2b4OD1tYSId9UjRWjxMRExo8fT3JycqXlp0+fZvny5ZWWzZkzhwkTJhAfH4+3tzdRUVEALF26FB8fHzZs2MCYMWOYP38+ACtXrqR+/fps2LCBt99+m5kzZ9bUbgghRK108kI2V0uMdG17a9OCj3usPW2bP8AX649xUZ/Pmq1naNq4PgO7etRwpLemxopRdHQ0s2fPxs3NzbyspKSEiIgIXnvtNfMyg8HA3r178ff3ByA4OJj4+HgAEhISCAoKAiAwMJBt27ZhMBhISEjgySefBKBXr15kZWVx6dKlmtoVIYSodRLPZKC1s6Fzq8a3tL6drQ1/HfkQDlobFny9n5SMAkb5Poidbe24W1NjUcyfPx8fH59Ky/7f//t/jB49mhYtKtonr1y5gqOjI3Z2ZR37dDodaWlpAKSnp6PTlQ1jbmdnh6OjI1lZWZWWlz/n8uXLNbUrQghRqyilOHQ6k86tGt9WE1tjJwemjvTmaomJVu5O+HRyq/5JFmKxrt07d+4kNTWVmTNn8uuvv5qXK6Wua++sqv1TKYWNjc11zylffjtcXR1va/2aotM5WTuEWkNyUUFyUUFyUaE8FxfT80jPLmL0Y+1vOz86nRNNmjiia1QfVwvO5FodixWjn376iVOnTjFixAgKCwvJyMjgb3/7G++//z55eXkYjUZsbW3R6/Xmpj03NzcyMjJwd3entLSUgoICGjVqRNOmTUlPT6dly5YAZGRkVGoOvBWZmfmYTNUPk1GTdDon9Po8q8ZQW0guKkguKkguKlybi//tOQ/Ag26Od5Qf1wZaTCWlt/VcGxtNjX6Jt1hj4YIFC9iwYQOxsbHMmzcPb29vli5dilarxcfHh7i4OABiYmLw9fUFwM/Pj5iYGADi4uLw8fFBq9Xi5+dHbGwsAPv27cPBwYFmzZpZaleEEMKqDp3JwFPXEFdn642YcLfVijtXs2fPJjo6mmHDhrFv3z7+9re/ATB9+nR+++03hg8fzjfffENERAQAEydOpKSkhOHDhzN//nwWL15szfCFEMJiCotLOXUxh65tm1g7lLtKo25lSNc6SJrpahfJRQXJRQXJRYXyXOw9ns6ymCPMfKYH7T0bWWz7daaZTgghxJ+XeDqDhvXsaNvsxgOf3qukGAkhxD3CZFIcPpvJQ21dsbG5+agL9xopRkIIcY9ISs0lr9Bwy6Mu3EukGAkhxD0i8UwmNhoN3m2kGAkhhLCSQ6czaNf8AatP91ATpBgJIcQ9IDOniPPp+XRrV7e6dJeTYiSEEPeAvUfLxuysi/eLQIqREELcE/YdS6OJcz2aNbnxJHr3OilGQghRyxlKjfx2Sk/Xtq7VTqR3r5JiJIQQtdzx82UT6dXV+0UgxUgIIWq9xNMZONjb0qml5Yb/sTQpRkIIUYsppUg8nUn39jq0drc+kd69RoqREELUYkfPXSEzt5h+Xev2NDlSjIQQohbbsv8ijvW1DOgmxUgIIYQVZOQU8dvpDPy6N8NeW3eb6ECKkRBC1FoJBy8B8Gj35laOpOZJMRJCiFrIUGpkW+IlHm6vq1PTi1dFipEQQtRCe46lk19kYHCPun9VBBYoRvn5+QQGBnLx4kUAvvvuOwIDAwkKCmLmzJmUlJQAcOzYMYKDg/H392fWrFmUlpYCcOnSJUJCQhg6dChTp06loKAAgNzcXCZPnkxAQAAhISHo9fqa3hUhhLCYLQcu4uHagM6tGls7FIuo0WKUmJjI+PHjSU5OBiApKYnPP/+cb7/9lh9//BGTycQ333wDQGhoKBEREWzcuBGlFNHR0QDMmTOHCRMmEB8fj7e3N1FRUQAsXTXtkggAACAASURBVLoUHx8fNmzYwJgxY5g/f35N7ooQQljM2Uu5JKXmMbiHZ50d/ueParQYRUdHM3v2bNzc3ACwt7dn9uzZODo6otFo6NChA5cuXSIlJYXi4mK6d+8OQHBwMPHx8RgMBvbu3Yu/v3+l5QAJCQkEBQUBEBgYyLZt2zAYDDW5O0IIYRFbDlzEwd6Wft7u1g7FYuxudcWSkhJsbGyws7vlp1x3tdK8eXOaNy9r/8zKymLVqlUsWLCA9PR0dDqdeT2dTkdaWhpXrlzB0dHRvM3y5UCl59jZ2eHo6EhWVhZNmza9pdhcXR1veT9qkk7nZO0Qag3JRQXJRYX7LRc5+VfZcywd/0da0dKzchNdXc7FTStLZmYmy5cvZ9OmTaSmpqLRaPD09GTo0KE8//zzuLi43NFG09LSmDRpEqNHj6ZPnz7s37+/0qWoUgqNRmP+91pVXbIqpbCxufULvczMfEwmdUfx3y06nRN6fZ5VY6gtJBcVJBcV7sdcrN+dTKnRRN/ObpX23dq5sLHR1OiX+Co/vWNiYnjppZdwdXXl448/5tdff2X//v18/PHHODs785e//IV169bd9gbPnDnDuHHjGDVqFNOmTQPA3d29UgeEjIwM3NzccHFxIS8vD6PRCIBerzc3+bm5uZGRkQFAaWkpBQUFNGpUdwcRFELUfUaTiYSDKXRu1bjOzltUlSqLUU5ODj/88AOTJ0+mS5cuPPDAA9SvX58OHTrw4osvsnbtWnJycm5rY/n5+bz44otMnz6dF154wby8efPmODg4sH//fgBiY2Px9fVFq9Xi4+NDXFwcUFYgfX19AfDz8yMmJgaAuLg4fHx80Grr3rzwQoj7R+LpTDJzrzK4h6e1Q7E4jVLqttqqDAbDbX/oDx48mH//+99s3ryZyMhI2rZtW+lv06dP5/jx44SHh5Ofn4+XlxcLFizA3t6elJQUwsLCyMzMxMPDgyVLluDs7Ex2djZhYWFcuHABJycnIiMj8fS89TdQmulqF8lFBclFhfstF++vPkjalUIWTemL7R9uO1g7FzXdTFdtMdq3bx979uxh0qRJhISEcPLkSRYsWMCwYcNqLChLkGJUu0guKkguKtxPubiUUUD4il8Z7fcgw/u2vu7v1s6F1e4ZlXv//ffp3r07mzdvplGjRqxfv54vvviixgISQoj7jdFkYt32s9jZahhYx0fnrkq1xchoNNKvXz927drF448/jqenJyaTyRKxCSFEnVdcUso/1xxm/wk9T/ZvwwMN7K0dklVUW4xMJhOHDh0iISGBfv36cfLkSflxqRBC3AU5+VdZ9M1BDp/N5Fn/jgT2a23tkKym2l+wTpkyhb///e889dRTtGjRgsGDBzNr1ixLxCaEEHVWamYBH0QnkltYwmuju9KtXRNrh2RV1RajIUOGMGTIEPPjTZs2YWtbtyd5EkKImnTyQjb/XHMIWxsNb03oQRuPB6wdktVVW4zOnj3LZ599RnZ2Ntd2vPvXv/5Vo4EJIURdtPd4Op/95yiuzvWYMbYbbo3qWzukWqHaYhQWFkbXrl3p1avXfTN6rBBC1ITfTmXwr5gjtPV05rXRXXGsLz/UL1dtMSoqKiI8PNwSsQghRJ1VajTx7c+naNakIW883R17rdzuuFa1velatWpFenq6JWIRQog6a8v+i6RnF/H04HZSiG6g2isjk8lEYGAgXl5eODg4mJfLPSMhhLg1+UUGftyZjHcbF7wfdLV2OLVStcXoiSee4IknnrBELEIIUSf9uDOJopJSxg5uZ+1Qaq1qi9GoUaNISUlhz549lJaW0rt3b1q1amWJ2IQQ4p6XllXI/w6kMLBrMzx1tWNSz9qo2ntG27dvZ/To0WzevJmff/6Zp556is2bN1siNiGEuOd9n3AGOzsbRg1sY+1QarVqr4w+/PBDvv76a9q1K7u8PHXqFKGhoTz++OM1HpwQQtzLTpy/woGTekYNbIOzo0P1T7iPVXtlZDAYzIUIoH379uaZV4UQQtyYSSm+23Kaxk4ODOnd0trh1HrVFqN69epx+PBh8+PDhw9Tv778YlgIIW7m16NpJF/OY7TfgzhIV+5qVdtMFxoaypQpU8ydFpKSkvjwww9rPDAhhLhXlRiMrNl6hlbuTjzi5W7tcO4J1RYjHx8f1q9fT2JiIiaTie7du9O4cWNLxCaEEPek/+69QFbuVV4K7IKNDKN2S6pspouNjQXgyy+/ZN26dZw9e5bk5GRiYmL48ssvb3kD+fn5BAYGcvHiRQB27dpFUFAQQ4YM4YMPPjCvd+zYMYKDg/H392fWrFmUlpYCcOnSJUJCQhg6dChTp06loKAAgNzcXCZPnkxAQAAhISHo9frb33shhLjLsnKLWf/LOR5u34SOLeWL+62qshidO3cOgJMnT97wv1uRmJjI+PHjSU5OBqC4uJi3336bqKgo4uLiOHLkCFu3bgXKmgMjIiLYuHEjSimio6MBmDNnDhMmTCA+Ph5vb2+ioqIAWLp0KT4+PmzYsIExY8Ywf/78O06CEELcDUopvog7Bgqefqy9tcO5p1TZTPfaa68BsGDBgjt+8ejoaGbPns2bb74JwKFDh2jVqhUtWrQAICgoiPj4eNq1a0dxcTHdu3cHIDg4mI8++ogxY8awd+9ePvnkE/PyZ555htDQUBISEli1ahUAgYGBzJ07F4PBgFYro+AKIazjfwdTOJp8hWf9O8rUELepymIUFBR00yf+5z//qfbF/3i1kp6ejk6nMz92c3MjLS3tuuU6nY60tDSuXLmCo6MjdnZ2lZb/8bXs7OxwdHQkKyuLpk2bVhsXgKtr7fgltE7nZO0Qag3JRQXJRYV7JReXMvL5PuEMD3fQ8dQTHWtkyp17JRd3ospi9M4779z1jZlMpkpvkFIKjUZT5fLyf69V1RuslMLGptqe6maZmfmYTKr6FWuQTueEXp9n1RhqC8lFBclFhXslFyaT4v1vDmCj0RDyeHsyMvLv+jasnQsbG02Nfomvshg1bNjwrm/M3d29UkcDvV6Pm5vbdcszMjJwc3PDxcWFvLw8jEYjtra25vWh7KoqIyMDd3d3SktLKSgooFGjRnc9ZiGEqM7Gvec5fTGHlwK74PJAPWuHc0+qshi9+uqrVT5Jo9Hw888/3/bGunXrRlJSEufOncPT05OffvqJ0aNH07x5cxwcHNi/fz89e/YkNjYWX19ftFotPj4+xMXFERQURExMDL6+vgD4+fkRExPDlClTiIuLw8fHR+4XCSEsLkWfz7ptZ+nRQccjXrd2m0Bcr8pitGXLlru+MQcHBxYuXMirr77K1atX8fPzY+jQoQBERkYSHh5Ofn4+Xl5ePPvsswDMnj2bsLAwli1bhoeHB0uWLAFg+vTphIWFMXz4cJycnIiMjLzr8QohxM2UGk2s+OkY9R3seNa/Zu4T3S80Sqkb3jj57LPPeOmll5g3b94Nn3ivT0Uu94xqF8lFBclFhdqei5jtZ/lxZzLTRnnTs6NbjW7L2rmw2j0jJ6eyXhtyH0YIIa6XlJrLT7vO0deraY0XovtBlcVo3LhxALzyyisWC0YIIe4FRpOJL+OO4exoz4QnOlg7nDqh2rHp4uLi+Oijj8jJyam0fPfu3TUWlBBC1GZbDqRwUV/AtFHeNKwnHafuhmqL0fvvv094eDgtW8p8HEIIkVtQQsz2JLxaN6ZHB131TxC3pNpi1Lx5cx577DFLxCKEELXemq1nKDEYmfBEB+k9dxdVW4xGjhzJokWL8PX1NQ/LA9CrV68aDUwIIWqbs5dy2X4olaG9W+LhevcHBrifVVuMfv31V7Zt28aOHTsqLb+VsemEEKKuMCnFqk0ncG5oT1D/1tYOp86pthgdPXqUbdu24eDgYIl4hBCiVtpxKJWk1DxeCuxCfYdqPzrFbap2ZNEmTZqYJ7oTQoj7UWGxgTVbz9DO01mG/Kkh1Zb3pk2bMmLECPr164e9vb15+b0+AoMQQtyqmO1J5BcZ+Lt0Wqgx1Rajli1bSrduIcR962J6PlsOpPBo9+a0bFp35xOytiqLUVZWFi4uLjcdgSEzMxNXV9caCUwIIaxNKcWqTSdpUM+OUb4PWjucOq3Ke0Zvv/02X3755XUjLwDk5+ezYsUKwsLCajQ4IYSwpoOnMjhxIZtg3wdxrC8jLdSkKq+MoqKi+OKLLwgMDKRNmza0atUKk8nE+fPnSUpK4tlnnyUqKsqSsQohhEWdupiN1s4G327NrB1KnVdlMbKxsWHSpEk888wz/PLLL5w9exaNRsMTTzxxXWcGIYSoi/TZxega1cfGRjot1LRqOzDUq1ePRx99lEcffdQC4QghRO2hzy5C5yzTiFtCtb8zEkKI+5FSqqwYNapv7VDuC1YpRrGxsQwfPpzhw4ezaNEiAI4dO0ZwcDD+/v7MmjXL/EPbS5cuERISwtChQ5k6dSoFBQUA5ObmMnnyZAICAggJCUGv11tjV4QQdVRekYHiEiO6xlKMLMHixaioqIj58+ezcuVKYmNj2bdvH7t27SI0NJSIiAg2btyIUoro6GgA5syZw4QJE4iPj8fb29vcaWLp0qX4+PiwYcMGxowZw/z58y29K0KIOkyfXQQgV0YWUm0xKigoYM6cOTz33HNkZ2cTERFhvjq5E0ajEZPJRFFREaWlpZSWlmJnZ0dxcTHdu3cHIDg4mPj4eAwGA3v37sXf37/ScoCEhASCgoIACAwMZNu2bRgMhjuOSwghriXFyLKqLUbz5s3jgQceIDMzEwcHB/Lz84mIiLjjDTo6OjJ9+nQCAgLw8/OjefPmaLVadLqKSap0Oh1paWlcuXIFR0dH89QV5csB0tPTzc+xs7PD0dGRrKysO45LCCGupc8uBqCJdGCwiGp70x07dowFCxawdetW6tevT2RkJIGBgXe8wePHj7NmzRr+97//4eTkxBtvvMHOnTsrjfeklEKj0Zj/vVZV40IppbCxufVWR1dXxzvbgbtMp5PhRcpJLipILipYKxf5xaW4POCAZ7NGVtn+jdTl46LaYvTHD3ij0XhbH/p/tGPHDvr27WseRig4OJjPP/+8UgeEjIwM3NzccHFxIS8vD6PRiK2tLXq9Hjc3NwDc3NzIyMjA3d2d0tJSCgoKaNTo1g+azMx8TCZ1x/txN+h0Tuj1eVaNobaQXFSQXFSwZi4uXM7F5YF6tea9sPZxYWOjqdEv8dVWlV69evH+++9TXFzM9u3befXVV+nTp88db7BTp07s2rWLwsJClFJs2bKF3r174+DgwP79+4Gy3na+vr5otVp8fHyIi4sDICYmBl9fXwD8/PyIiYkBIC4uDh8fH7RaGa5DCHF3lP3GSO4XWYpGKXXTywODwcDy5ctJSEjAaDQycOBA/vrXv/6pyfaWL1/O2rVr0Wq1PPTQQ8yePZukpCTCw8PJz8/Hy8uLBQsWYG9vT0pKCmFhYWRmZuLh4cGSJUtwdnYmOzubsLAwLly4gJOTE5GRkXh6et5yDHJlVLtILipILipYKxelRhMvv59AUP/WjBxYOwZItfZxUdNXRtUWo7pKilHtIrmoILmoYK1cpGUVMnP5L0wK7Ew/bw+Lb/9GrH1c1HQxqvae0ZQpU264/F//+tddD0YIIWqDdOnWbXHVFqPy3/hAWZPdxo0b8fb2rtGghBDCmuQ3RpZXbTEaNWrUdY8nTpxYYwEJIYS16bOL0NrZ4NxQZiewlNvuo62UIj09vSZiEUKIWqF86oiqftco7r7bvmd08uRJevfuXWMBCSGEtcnUEZZ3W/eMNBoN48ePZ8CAATUalBBCWEv51BEdW9SekRfuB7d0z6ikpISioiLKe4Hn5eXd1mgHQghxr8gvnzpCOi9YVLXF6Ntvv+W9994zj4hdPl7csWPHajw4IYSwtPIBUmUeI8uqthitWLGC1atX4+XlZYl4hBDCqtKzCwHp1m1p1fama9KkiRQiIcR9Q6aOsI5qi9GAAQP45ptvSEtLIzs72/yfEELURfrsIpwd7XHQ2lo7lPtKtc10y5cvp6SkhLlz55qXyT0jIURdlZFdJE10VlBtMTp06JAl4hBCiFpBn11EhxaNrR3GfafaZjqTycTnn39OWFgY+fn5fPrppxiNRkvEJoQQFlVqNJGVexVdI7lfZGnVFqPFixdz4sQJEhMTUUqxfft2FixYYInYhBDCojJzilFITzprqLYY7d69m4ULF+Lg4ICTkxNffPEFO3futERsQghhUeWjdbvJb4wsrtpiZGdnh41NxWr29vbY2VV7q0kIIe45Mo+R9VRbVTp06MCqVaswGo2cPXuWr776ik6dOlkiNiGEsCiZOsJ6qr0ymjVrFr///juZmZlMmDCBwsJC3n777T+10S1bthAcHExAQADz5s0DYNeuXQQFBTFkyBA++OAD87rHjh0jODgYf39/Zs2aRWlpKQCXLl0iJCSEoUOHMnXqVAoKCv5UTEIIIVNHWE+1xSg9PZ333nuPXbt28csvvxAZGUnjxnfe7fHChQvMnj2bqKgofvzxR44ePcrWrVt5++23iYqKIi4ujiNHjrB161YAQkNDiYiIYOPGjSiliI6OBmDOnDlMmDCB+Ph4vL29iYqKuuOYhBACZOoIa6q2GD3//POEhIQQGxtLSUnJn97gpk2bGDZsGO7u7mi1Wj744APq169Pq1ataNGiBXZ2dgQFBREfH09KSgrFxcV0794dgODgYOLj4zEYDOzdu9c8vUX5ciGEuFPlU0fI/SLrqPaeUUJCAtu3b2fdunW8//77DBkyhLFjx97xfaNz586h1WqZMmUKqampPProo7Rv3x6dTmdex83NjbS0NNLT0yst1+l0pKWlceXKFRwdHc0dKcqXCyHEnZKpI6yr2mJkY2ODn58ffn5+nDlzhpkzZ7J69eo7Hg7IaDSyb98+Vq5cSYMGDZg6dSr16tWr1EZbPk2FyWS64fLyf691u228rq6OdxT/3abTOVk7hFpDclFBclHBUrm4cv4KAO1audTa/NfWuO6GaotRaWkpW7ZsYe3atRw6dIhhw4bx7rvv3vEGmzRpQt++fXFxcQHg8ccfJz4+HlvbikEJ9Xo9bm5uuLu7o9frzcszMjJwc3PDxcWFvLw8jEYjtra25vVvR2ZmPiaTuuP9uBt0Oif0+jyrxlBbSC4qSC4qWDIXJ5MyAbC3oVbm39rHhY2Npka/xN/SqN0rV64kICCAhIQEwsPD6dix4x1vcNCgQezYsYPc3FyMRiPbt29n6NChJCUlce7cOYxGIz/99BO+vr40b94cBwcH9u/fD0BsbCy+vr5otVp8fHyIi4sDICYmBl9f3zuOSQghyn9jJFNHWMctzfTaunXru7bBbt26MWnSJCZMmIDBYKB///6MHz+eBx98kFdffZWrV6/i5+fH0KFDAYiMjCQ8PJz8/Hy8vLx49tlnAZg9ezZhYWEsW7YMDw8PlixZctdiFELcf2TqCOvSKKVu2lal1+uZNWsW586dY9WqVbz11lssWLDgtpvFahtppqtdJBcVJBcVLJmLxd8coNSkePuZnhbZ3u2y9nFh9Wa6OXPm8Pjjj+Pg4ICzszOdOnUiPDy8xgISQghrKPuNkfSks5Zqi1FKSgpjx47FxsYGrVZLaGgoqamplohNCCEsQqaOsL5qi1F5F+ty+fn5lR4LIcS9TqaOsL5qOzAMGTKEN954g7y8PL799lu+//57AgICLBGbEEJYhF5G67a6aovRlClTiImJwWQysWvXLp5++mnGjh1ridiEEMIiZB4j67uliYlGjhzJyJEjzY937txJ//79aywoIYSwpHSZOsLqqrxndOTIEcaNG8eUKVPIysoCyqZteOWVV5g6darFAhRCiJomU0dYX5XFaM6cOQwZMgRPT0+WLVvG5s2befLJJykqKiI2NtaSMQohRI2SqSOsr8pmury8PF544QWMRiP+/v5s2LCBOXPmMHz4cEvGJ4QQNap86oiOLRpZO5T7WpXFqH79sht5tra2XL16leXLl9OlSxeLBSaEEHdLTv5V9hxLJzO3GJNSKIX531KjSaaOqAWqLEbXjhLUuHFjKURCiFojK7cYpwZatHZVjyNXajSReDqDnYcvc+hMJialcLC3xUajwUZT9htKGw1obDToGtWjY0u5MrKmKouRyWQiJyfHXJSu/X+ARo3kjRNCWFZaViGrfz7FoTOZ2Gg0uDWuT3NdQ5o3aYinzpHmuoaUGEzsPJzKL0fTyC8y4Oxoj3+fFgx4yAMP14bW3gVRhSqL0cmTJ3nkkUfMBahPnz7mv2k0mjueXE8IIW5X0dVSftqdzH/3XEBrZ8OIAW0wmRQpGQVcTM/nwAk91w57bGdrQ48OTej/kAddWjfG1qbawWaElVVZjI4fP27JOIQQ4jomk2LXkVS+TzhDTn4JAx7yYLTfgzg7OlRar8RgJDWzkJSMfIxGRY+OOhrW01opanEnbulHr0IIYWlJqbksXn2Q4+eu0MbjAV4N7sqDzR644br2WltauTvRyr3uTstd10kxEkLUKin6fGJ2JLH/hJ5GTg68MKwz/R5yx0Z+kFqnSTESQtQK6VcKid2RxC+/p+Fgb8uT/VsTMqwLBXnF1g5NWIAUIyGEVWXlFvPjzmR2HErFzlbD0D4tCXikFY71tTSop5VidJ+wajFatGgRV65cYeHChRw7doxZs2ZRUFCAj48Pc+bMwc7OjkuXLhEaGkpmZiZt2rQhMjKShg0bkpubyxtvvMGFCxdwcXFh6dKl6HQ6a+6OEOI2lBpN/LgzmfhfzwEwqEdzhvdtRaM/dE4Q9wer9XfcvXs369atMz8ODQ0lIiKCjRs3opQiOjoaKBsjb8KECcTHx+Pt7U1UVBQAS5cuxcfHhw0bNjBmzBjmz59vlf0QQty+y1mFvLdyPz/tSqZXJzfem/wIIU90kEJ0H7NKMcrOzuaDDz5gypQpQNnU5sXFxXTv3h2A4OBg4uPjMRgM7N27F39//0rLARISEggKCgIgMDCQbdu2YTAYrLA3QohbpZRi628p/OPLPeizi/jrSG9eCvKiibMMxXO/s0ozXUREBDNmzCA1NRWA9PT0Sk1sOp2OtLQ0rly5gqOjI3Z2dpWW//E5dnZ2ODo6kpWVRdOmTW8pBldXx7u5S3dMp5OuqOUkFxXqYi5y8q/y8fe/8cuRy3Rr34QZ43vgegtFqC7m4k7V5VxYvBh9//33eHh40LdvX9auXQuUDT107TwiSik0Go3532tVNd+IUgqb2/iVdWZmPiaTqn7FGqTTOaHX51k1htpCclGhLubiSFImn68/RkGRgbGD2jGkdwtMJaXV7mddzMWdsnYubGw0Nfol3uLFKC4uDr1ez4gRI8jJyaGwsBCNRoNerzevk5GRgZubGy4uLuTl5WE0GrG1tUWv1+Pm5gaAm5sbGRkZuLu7U1paSkFBgYyXJ0Qtk5VbzJqtZ9n9+2U8XBswY0w3Wjatu9/uxZ2zeDH68ssvzf+/du1a9uzZw4IFCwgMDGT//v307NmT2NhYfH190Wq1+Pj4EBcXR1BQEDExMfj6+gLg5+dHTEwMU6ZMIS4uDh8fH7RaGf5DiJqglCLtShFHzmai0Wjo0UFHY6eqOxsUl5QS98t5Nu45j1Iw7JFWPNm/NfbaqkfZFve3WvM7o8jISMLDw8nPz8fLy4tnn30WgNmzZxMWFsayZcvw8PBgyZIlAEyfPp2wsDCGDx+Ok5MTkZGR1gxfiDqnuKSUY+eucORsFofPZpKRU/F7n282naR9i0b07uxGz45uODe0B8rGkttxOJV1286SU1BCny5NGe37IE1kriBRDY26dl6I+4jcM6pdJBcVbicXJpPil6OXuZCeT+/OTWnjceOx225VZk4xB07q+e10BicvZGM0lc0B1KVVY7wfdMW7jQulRhN7j6Wz53g6lzIK0GigU8vGeD/owu4jl7moL6Bt8wcYN7g9bZs7/6l45LioYO1c1PQ9IylGVmTtg6s2kVxUuJVcmJRi77F0YnckcTmrEI0GlIJW7k482r0Zfbo0pZ79rTV8pGUVsu9EOgdO6klKLdtuc11Duj7oiveDrrT3dMbO9sadg1L0+ez5/wtTWlYhTZzrMWZQO3w66qrsbHQ75LioYO1cSDGqIVKMahfJRYWb5cKkFAdO6IndkURKRgHNdQ0ZOaANnVs1ZvfvaST8lkKKvoB69rb09XLHr3szPHWO5BcbyCs0kF9YQm6hgbzCErJyr5J4JoMUfQEAbTweoGdHHT076Gjq0uC2YlZKkZFTTCNHB7R2d+/ni3JcVLB2LupcbzohxJ357XQGMdvOcj49H3eXBrz8pBe9OruZR7N+rKcng3s050xKLgm/pbD9UCr/O5hivmr6I40G2ns2Yvxj7enZUYfLA/XuODaNRoNO7guJP0GKkRC1XKnRxOrNp/jfwRTcGtVnUmBn+nRpesPZSzUaDe08nWnn6cy4x9rz69E0cgtKcGqg5YGG9jjV1+LUwB6nhvY41reTGVBFrSHFSIhaLL/IQNS6wxw/n01An5aM8n2wyvs3f+RYX8tjPT1rOEIh7g4pRkLUUpcyCvjoh0Nk5RUzKbAz/bw9rB2SEDVGipEQtdChM5l8+uMRtLY2vDmhB+3+ZBdpIWo7KUZC1CJKKWK2nuGL/xyhhc6RV0d3xdX5zjsWCHGvkGIkRC1RajTx9X9PsC0xlZ4ddEwK7IKDvQyfI+4PUoyEqAWulhhZFnuEQ2cyGft4B4b0bG7usi3E/UD6dQphZXmFJbz/7UEOn81kon9HJgZ0lkIk7jtyZSSEFWXkFLHku0Qycor568iH6NlRV/2ThKiDpBgJYSUX0/NZEv0bVw0m/v50Nzq2bGztkISwGilGQljBifNX+GjNYRy0NswM6YGnW82N+SXEvUCKkRAWZDSZ2J6YyjebT6FrVI8ZY7vRxFnGdBNCipEQFqCUYv8JPWu3cZlxfwAAD8NJREFUneVyViEdWzRiWvBDONaX2YmFAClGQtS435OzWJNwhuTLeTRr0pBXgh/i4fZN7sp8P0LUFVKMhKghZy/lsmbrGY6du4LrAw68OLwzfb3csbGRIiTEH1mlGH388cds2LABAD8/P95880127drFggULuHr1KgEBAcyYMQOAY8eOMWvWLAoKCvDx8WHOnDnY2dlx6dIlQkNDyczMpE2bNkRGRtKwYUNr7I4QlZy8kM1Pu5M5cjYLpwZaxj/Wnkcfbn5XJ50Toq6x+Nmxa9cuduzYwbp164iJieH333/np59+4u233yYqKoq4uDiOHDnC1q1bAQgNDSUiIoKNGzeilCI6OhqAOXPmMGHCBOLj4/H29iYqKsrSuyKEmVKKxNMZvPf1fhauOkByah6jfB9k4ct9eaJXCylEQlTD4meITqcjLCwMe3t7tFotbdu2JTk5mVat/r/27j4mqnvNA/h3Xs68AwM4IyD4WlZv7VW80l3brBBrVxQYRWkDWWjruinEtdGmtFZtG9dW08Ztatb4R00abfpiGndpsVUkWRu1WptVuVVjq10vgsKAvAwDzPvLOc/+wWVw9rYuXl4ODM8nOZmZH2eGeb4z8Jxz5sw5M5CRkQG1Wg2bzYa6ujrY7Xb4/X5kZWUBANatW4e6ujqEQiFcunQJeXl5UeOMjTVJIvz3z+3418OX8O//eQ3OPj/+8elM/Nu/PAnbkzOh1/KWcMaGYsz/UjIzMyPXm5qacPLkSZSXl8NiGfzmudVqRXt7Ozo6OqLGLRYL2tvb4XQ6YTKZoFaro8Yfxmiey/1hWCxxcj+FcWMiZeH2hXDq4l2c+P427jm8SLea8HLpIuT+IX3IJ797kImUxWjjLAbFchayLbbdunULlZWV2Lp1K1QqFZqamiI/IyIoFApIkhS1x9HA+MDl/R52zySHww1JomHVMFwWSxw6O12yPofxYqJkYe9049s/2nHhehuCIQmPpCdg09rHsOhvLFAqFHB2e4b9OyZKFmOBsxgkdxZKpWJUF+JlaUb19fXYvHkzduzYgYKCAly8eBGdnZ2Rn3d2dsJqtSIlJSVqvKurC1arFUlJSXC5XBBFESqVKjI/Y6NBlCRc/ZMD39a34MYdJ9QqJZY8OhXLF6djRkrsLqkyNpbGvBm1tbVh06ZN2LdvH5544gkAwMKFC9HY2Ig7d+4gPT0dx48fR3FxMaZNmwatVov6+nosXrwYx44dQ05ODgRBQHZ2Nmpra2Gz2VBTU4OcnJyxLoXFEIkILR1udDh96Oy5f/LD0eeHKBGS4rUozp2NnIVpiDNo5H7KjMUUBRGN6baq3bt3o7q6GtOnT4+MlZaWYubMmZFdu3Nzc7F9+3YoFArcvHkTb775JtxuN+bPn493330XGo0Gdrsd27Ztg8PhQGpqKj744AMkJAz91My8mW58kTOLjh4fPq69gZt3eyJjJr0Ai1kHi1kPi1mPWanxWPhIMlTK0d/nh98XgziLQXJnMdqb6ca8GY0X3IzGFzmykIhw+o92/MeZP0GpUGBtzmzMzTDDYtbLuhccvy8GcRaD5M4iJj8zYkxu7U4vDtfexP809+Cx2UlYv3IekuJ1cj8txiYtbkZsUpGI8O3lFlSfbYBKpcQ/5c/D3/8+lY8Tx5jMuBmxSUEiwvXbDnxzoQkN9j4smJOMF1bOQ2KcVu6nxhgDNyMW4wJBEReut+G/LrfgXrcXZpMG/1zwOzz5WAqvDTE2jnAzYjHJ6Qrg2/oWnL1ih8cfxsyUOFTYHkX2POuIHCGBMTayuBmxmOD1h9F4rw+37b1oaO3DT43dkIjwh0wL/uHxDGSmJ/CaEGPjGDcjNuH4AmG0Oby42+HC7dY+3G7tQ1uXBwM76qcmG7B8cTqWL06Hxcyn9GZsIuBmxMYdIkIgJMLlDaHXE0Sbw4PWLg9au7xo7XLD0ReIzGvSC5idFo+//Z0Vc9ISMCs1DgYdn8qbsYmGmxEbc6IkoavXj7YuL9q6PWhzeOHxh+Ho9cHtC8HlDSEUlqLuo1YpkZZsQGa6GblTjJg2xYhpFiMsZj1vfmMsBnAzYqOGiODo9aO5w427HW7YO91oc3jR7vQiLA4e/SLeIGBqshFmkxYZFhPiDBrEGQSYDALiDRqkJBlgMev5dN2MxTBuRmxYiAi+gAinO4AeVwCOPj9a/tx8mjvc8AXCAAAFAEuiHmnJRvx+TjJSkw1ITTYiNdkAo06Q/VAnjDF5cTNiD0REcPtC6Ojx9R/R2ulDR48P3X1+ON1B9LgCCITEqPtoBRXSrUb83aNTMd1qQobVhHSLCVqNSqYqGGPjHTcjBl8gDEevH119/v7LXh+6ev3o6vGjo8cLXyC62STGaZEcr0OG1YQFs5ORGKeFOU6DRJMWifE6TEnQQcmf4zDGHgI3oxhDRPAHRXj9YXj8IfgCYXj8Ybi8QfR5Q+jzBPuve/pv97oD8PjDUY8hqJWYkqBDcoIOj0xLhSVRD6tZD2uiHhazDoKa13AYYyOLm5FMwqIEtzeIHncAobA0OIn9l6IkQRQJkkQQJUJYkiBJhGBYgscXgtsXgtsbgmvgui8Ejy8EbyCMB50URK9VI94gIN6oQWqSAXMzzJHGMyVBj+QEHeINAu+hxhgbU9yM7hMMiXD7+tcm/EERvmAY/oB43/UwfEER/kAY3oF5AmEEgiIEtRJajQpaQTV4KaigVCjg8gUHG8efLwc+2P9raQQl4vQCjHoBcXoBFrMeRp0aBp0Ag1YNg04Ng1YdGYsz9E+8VsMYG48mbTM6/aMdrV0euLxBuLwhuLxB+IPi/3s/tVoJnUYNnaCEVqPGlAQdNIIKoighEO7/smavO4hAWEIwJEIiglEnwKhTIy3ZAGO6BgadGka9GklmA4L+MAS1AmqVMjKpVAqoVQooFUqolAqolAooVQooFf3ftzHoBGjUsXd8Nd51exBnMYizGCRnFqP9uyftmV4ZY4yNH7G3eM0YY2zC4WbEGGNMdtyMGGOMyY6bEWOMMdlxM2KMMSY7bkaMMcZkx82IMcaY7LgZMcYYkx03I8YYY7LjZjQK3G43CgsL0dLSAgD48ssvkZ+fD5vNht27dyMc7j8uXUdHByoqKlBUVITS0tLI/H19faioqMCqVatQVlaGzs5O2WoZrqFk4XA4sGbNmsj01FNPYdGiRQAmXxYA0NLSgrKyMqxZswbPPfcc7HY7ACAYDOK1117DqlWrsHbtWjQ0NMhWy3ANNYtr166huLgYNpsNlZWVkdc/VrI4cOAACgoKUFBQgL179wIALly4AJvNhhUrVmDfvn2ReW/cuIF169YhLy8Pb7zxRiSj1tZWlJWVYeXKldi4cSM8Ho8stQwbsRF15coVKiwspPnz51NzczM1NDTQ0qVLqb29nYiIdu7cSYcOHSIiohdeeIGOHDlCRERHjhyhLVu2EBHRrl276ODBg0RE9NVXX0XGJ5qHyWKAKIpUXl5OX3/9NRFNzixeffVV+vzzz4mI6JNPPqGqqioiIvroo4/orbfeIiKiixcv0rPPPitDJcM31CwkSaLc3Fz64YcfiIjoxIkTVFlZSUSxkcX3339PJSUlFAgEKBgM0vPPP0/ffPMN5ebm0t27dykUCtGGDRvozJkzRERUUFBAP/74IxERbd++PfIeqaiooOPHjxMR0YEDB2jv3r3yFDRMvGY0wo4ePYqdO3fCarUCAH755RdkZWVFbi9btgynTp1Cd3c3bt68idLSUgBAcXExXn75ZQDAmTNnYLPZAACFhYX47rvvEAqFZKhmeIaaxf2qq6uh1+sj9U/GLCRJgtvtBgD4fD7odDoA/VmsXr0aAPD444+ju7sbra2tY13KsA01C6fTCb/fjyVLlkTGz58/j2AwGBNZWCwWbNu2DRqNBoIgYM6cOWhqasKMGTOQkZEBtVoNm82Guro62O12+P1+ZGVlAQDWrVuHuro6hEIhXLp0CXl5eVHjExE3oxG2Z88eZGdnR27PmzcPV69eRVtbG0RRRF1dHbq6utDc3Iy0tDS89957KC4uxubNmyEIAoD+zXcWiwUAoFarYTKZ0N3dLUs9wzHULAaIoogPP/wQVVVVkbHJmMWWLVvw8ccfY+nSpTh06BBefPFFANFZAP3/zO7duze2hYyAoWaRmJgIg8GA8+fPAwBOnDiBUCgEp9MZE1lkZmZGmktTUxNOnjwJhUIRVZfVakV7e/uv1tve3g6n0wmTyQS1Wh01PhFxMxpls2bNQlVVFTZu3IiysjLMnTsXgiAgHA7j559/xpIlS1BdXY3ly5dj27Ztv/oYRASlcuK/VL+VxYBz585h5syZmDt37m8+xmTI4vXXX8fbb7+Nc+fOYdeuXXjppZdARCCiqJMexnoWCoUC+/fvx8GDB1FUVASXywWz2QxBEGIqi1u3bmHDhg3YunUrMjIy/qIuhUIBSZJ+dfz/5gBgwp4Yc2K+ehNIIBDAggULUFNTgy+++AJTp05FRkYGLBYLjEYjli1bBqB/E9S1a9cA9C8NDSwlh8NheDwemM1m2WoYKb+VxYBTp04hPz8/6j6TLYvu7m7cvn0bTz/9NAAgLy8PnZ2dcDqdmDp1Kjo6OiKP0dXVFdm0NZE96H2hVqvx6aefoqamBqtXr4YkSTCbzTGTRX19PdavX4+qqiqsXbsWKSkpUTvpdHZ2wmq1/sX4QL1JSUlwuVwQRTFq/omIm9Eo83q9WL9+PdxuN4LBID777DPk5+dj+vTpSElJwdmzZwEAp0+fxvz58wEAubm5qKmpAQDU1tYiOzs7ag1iovqtLAZcuXIlavMNMPmySExMhFarxeXLlwH0/7MyGo1ISkpCbm4ujh07BgC4fPkytFot0tLS5CxjRDzofbFjx47IQtrhw4excuVKKJXKmMiira0NmzZtwvvvv4+CggIAwMKFC9HY2Ig7d+5AFEUcP34cOTk5mDZtGrRaLerr6wEAx44dQ05ODgRBQHZ2NmprawEANTU1yMnJka2mYZFrz4lYt2zZMmpubiYioqNHj1J+fj6tWLGC9u/fH5mnoaGBysvLqaCggEpKSqixsZGIiJxOJ1VWVlJ+fj6VlJREHmeiGkoWREQLFiwgv98fNTYZs7h69So988wzVFhYSCUlJfTTTz8REZHf76etW7dSfn4+FRUV0fXr12WpYaQMNYuioiLKy8ujzZs3k8vlIqLYyOKdd96hrKwsWr16dWQ6cuQIXbhwgWw2G61YsYL27NlDkiQREdGNGzeouLiY8vLy6JVXXqFAIEBERC0tLVReXk6rVq2iDRs2UE9Pj5xl/dX4TK+MMcZkx5vpGGOMyY6bEWOMMdlxM2KMMSY7bkaMMcZkx82IMcaY7LgZMcYYkx03I8YYY7LjZsQYY0x2/wuu3/txHv6NigAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "y2 = avgs.revenue\n",
+ "fig, ax = plt.subplots()\n",
+ "plot(x, y2, ax, 'Increase in mean Fortune 500 company revenues from 1955 to 2005', 'Revenue (millions)')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8oAAAEUCAYAAADzxM9CAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOzdeXgUVfbw8W+lOwsQtkDCDqMgoCCgBBWURFEJEBgERBEEHUcQBRGXCALCACLIMGwiOuM4zrzo+BsUAY0QBRU3EAE3VFBEFtmyr51earnvHzEtIXvSSWc5n+fhCamqrj51U+mbU3fTlFIKIYQQQgghhBBCABDg7wCEEEIIIYQQQoiaRBJlIYQQQgghhBDiPJIoCyGEEEIIIYQQ55FEWQghhBBCCCGEOI8kykIIIYQQQgghxHkkURZCCCGEEEIIIc4jiXIJBg0axMGDB/0dRqVMnjyZn3/+2d9h+MV9993Hm2++Webjv/32W+bPn1/kvoSEBCZOnFjkvm7dujFixAhGjhzp/Td37txyxZqdnc2kSZPK9ZrKGD16NMOGDfPG+89//hMAp9PJo48+ytChQ4mJiWHnzp3e13zzzTeMGTOGoUOHctddd5GUlFRt8dZ2b775Jtdffz1//vOfWbNmDVu2bAFg3bp1Bcq4LBYsWMCgQYNYtWpVVYRapE8//ZSRI0cW2LZhwwZiYmIYOXIkjzzyCBkZGd59V199dYHfh7feeguAH3/8kSuuuKLAvl9++aXQ++3atYs1a9aUO85//etfxMbG8sc//pG7776bkydPAmCaJkuWLGHIkCHcfPPNvPbaa97XHD9+nAkTJjBs2DBuvfVWjh496t334IMPcvPNN3tjffrpp8sdk/ANqY9rN6mPiyf1cf0mdXrxakSdrkSxbrjhBvXtt9/6OwxRQVOmTFGbNm0q8/GbNm1SU6ZMKXLf9u3b1Z133lnkvq5du6rU1NQKxZjv119/VX369KnUOcrK4XCovn37Ko/HU2jfM888o+bNm6eUUur06dPquuuuU2fPnlVut1tFRUWp/fv3K6WUevXVV9W9995bLfHWBRMnTlRbtmwptP3OO+9U27dvL9e5unXrps6ePeur0ErkdDrVypUrVWRkpIqNjfVu37Nnjxo4cKA3js2bN6sHH3xQKaXU0aNH1eDBg4s832uvvea9v0qydu1atXDhwnLF+tlnn6mhQ4eq7OxspZRSr7zyiho/frz3//fee6/SdV1lZGSomJgY9c033yillBozZox66623lFJK7dq1S8XGxirLspRSSl177bXq3Llz5YpDVA2pj2s3qY+LJvWxkDq9aDWlTreXO72vpy6//HKmTJnCZ599RlJSEvfeey/jx48H4O9//zubN2/GbrfTqVMnli1bxo4dO3jjjTdwOp2EhoayYcMGXn/9dV577TUsy6JZs2Y8+eSTdO7cmWPHjrFo0SIcDgfJycl0796d1atXExwczNq1a9mxYweBgYE0b96cpUuXEhERwdGjR1myZAkZGRmYpsnEiRO59dZbC8U9aNAg1qxZQ25uLqtWraJDhw4cOXIEwzBYuHAhffv2LXD83r17WblyJW3atOHYsWM0aNCAKVOmsGHDBo4dO8bgwYOZM2cOAB988AHPP/88uq4TEhLCrFmzuOKKK0hJSWH+/PmkpqaSnJxMu3btWL16NS1atGDQoEGMGjWKPXv2cPbsWUaOHMnMmTMLxf3hhx/y97//HY/HQ1paGrfccgszZ85k7969xV5HYmIis2fPJikpibZt25Kamlrkz3L//v0sW7YMy7KAvCfdvXr1Yu3atWRnZ/PEE0+wdOlS1qxZw9tvv02zZs3o1KlThe6b/fv3s3z5cpxOJ4GBgcycOZOoqCjefPPNAvcHgMvlYuTIkbz55ptcdtll7Nmzh7CwMCDvKfmePXs4cuRIsdfv8XhYsWIF+/btwzRNLrvsMubNm+c9f75vv/2Whg0bcu+995KWlkb//v155JFHCAkJYefOnaxYsQKAtm3bcu2117J9+3Z69epFaGio93659dZbefrpp0lPT6d58+aFfnarV6/GsiwaNmzIwoUL6d69Ozt37mTdunVYlkWjRo144okn6NWrF88++ywnT54kMTGR5ORkevTowdVXX82WLVs4deoUcXFxDB8+nGeffZYTJ05w7tw57+/JkiVLCA0NLff9cumllxIdHc3GjRu56KKLALj77ru58847uemmm7zXsnfvXlasWEHbtm355ZdfCAkJYdmyZXTu3JnZs2eTkZHBr7/+yvXXX8/UqVNZuHAhhw8fRtM0Bg4cyCOPPMLy5cs5ePAgp06dIj09ncOHD3PJJZcQEhLCd999x/Lly7HZbDRv3rzQfRkTE1OgbMePH49SismTJ7NgwQIef/xxevXqxY8//sgjjzzCH/7wBxYtWkRGRgaapnHPPfdwyy23lOv3+nyffvopTqeTZcuWFXja/f333zNgwABat24NwODBg5k3bx4ej4evvvqKgIAAxo8fT3Z2NjExMdx///3YbDa++uorfv31V0aNGoXNZmPKlCkMHjy4wHt+8803/N///R+madK4cWMefvhhnnvuOd555x1sNhsXXXQRTz75JOHh4QVe17JlS/7yl7947/fLL7/c2zKzc+dObrvtNux2O02bNiU2Npa33nqLVq1a8csvvxAbGwtAdHQ0Cxcu5IcffqBJkyY4HA6efPJJzp49S8+ePZk1axbNmjUrVE6iekl9LPVxRUh9XPvr4yVLltCwYUMcDgebNm3i008/LXTf9+rVi0GDBvHcc8/Rs2dPAGbOnMlVV13F+PHjef7553nvvfewLIt27dqxYMECWrVqxcSJE+nTpw9ffvklZ8+epX///ixevJgzZ84wYsQIvvrqKwBOnTpV4PviPkuKurelTq+FdXq50up65vwn2F27dlUbNmxQSil18OBB1bNnT+VyudTOnTvV4MGDVUZGhlJKqaefflqtX79ebdq0SfXr18/7JGTv3r1q/PjxKjc3Vyml1CeffKKGDBmilFJq2bJl3tYmj8ejhg8frhISEtSZM2fUlVdeqdxut1JKqZdeeknt2LFD6bquhg0bpr777jullFJZWVlq6NCh6quvvir2Gj7//HN16aWXqh9++MF7rgkTJhQ6Pv+477//Ximl1J///Gd1++23K7fbrVJTU1WPHj3UuXPn1LFjx9Tw4cNVWlqaUkqpn376SV177bXK4XCof//73+rvf/+7Ukopy7LUvffeq1566SVvPMuWLVNKKXXu3Dl1+eWXq5MnTxaIwbIsdeedd6pjx455j7v00ktVampqidfxwAMPqFWrVimllDp+/Ljq06dPkU+wJ02apOLj45VSSh06dEj95S9/UUoVfIK9Y8cONWzYMJWdna10XVdTpkwp8Qn28OHD1R//+Efvv5SUFJWWlqb69++vvv76a28ZXXXVVerkyZOF7o8Ln2Bf+FQ8//uSrv/ZZ59Vy5Yt8z45+9vf/qYWLFhQKN6dO3eqxx57TKWnpyuXy6WmT5+unnrqKaWUUj179lRJSUneY1euXKmefvppFR8fr+65554C5xk4cKA6dOhQgW3Jycmqb9++3vvn3XffVX/+85/Vzz//rAYMGOD9We/evVtde+21Kjs7W61du1bdcMMNKisrSzmdTtWvXz+1dOlS788h/0nm2rVrVVRUlEpOTlamaapHHnnEe70VuV+eeuop9cwzzyillDpx4oSKjo5WhmEUuJ7PP/9cde/eXe3bt08ppdR///tfNWrUKKWUUrNmzVJ33XWX99jHH39cLV68WFmWpdxut7rnnnu8vwfntxzPmjVL/fOf/yy0vbj78kLn3xs33HCDWrdunVJKKV3X1Y033qjeffddbzkMHDhQffnll2X+vS7O559/XuDp8759+1R0dLQ6deqUUkqpDRs2qK5du6rExET1v//9Ty1atEg5HA6VmZmpbr/9dvXyyy8rpZRasGCBeuWVV5RhGOrnn39W11xzTZGthOc/fX7jjTfU7bffrhwOh3ffhffihdxut5o4caL3syYmJqbA5+PGjRvVtGnT1FdffaViYmIKvHbcuHFq586d6uuvv1YPPPCAOnPmjDIMQy1atEjdf//9Jb6vqDpSH0t9LPWx1Mfdu3f31jsl3fdr1qzx1iEZGRnqqquuUllZWWrz5s1q5syZStd1pZRS//d//+dtjb/zzjvVjBkzlGmaKjs7W1133XVqz549he6H878v6bNE6vTf1eY6XVqUy+HGG28EoEePHng8HnJzc9mzZw9DhgyhadOmADzxxBNA3pjEbt26eZ+E7Nq1ixMnTjBu3Djv+bKyssjIyCAuLo7PPvuMF198kePHj5OUlERubi6tWrWie/fujBo1iqioKKKioujfvz8///wzJ0+eLPC0yOVy8cMPP9CnT59i42/bti2XXnopAJdddhmbN28u8rj27dtz2WWXAdCxY0caN25MUFAQYWFhNGrUiMzMTPbt20dSUhJ3332393WapnHy5Enuuusu9u/fz8svv8zx48c5cuQIvXv3LlSOrVq1okWLFmRmZtKhQ4cC53nhhRfYtWsX8fHxHD16FKUUTqezxOvYvXs3s2bNAqBTp05cffXVRV7f0KFDWbRoER988AEDBgzgkUceKXTMnj17uPnmm70/vzFjxrBhw4Ziy/Y///mP92lzvo8++oiOHTt6r/2SSy7hyiuv5IsvvkDTtAL3R3kUd/27du0iOzub3bt3A6DrOi1atCj0+htvvNH7M4C8p5wPPvggc+fORSmFpmkFjg8ICMCyrELblVLYbLYC27788ksuueQS7/0zePBgBg8ezKuvvso111zj/Tn379+fsLAwvvvuOwAGDBhA48aNAYiIiGDgwIFA3v13/jiZIUOG0LJlS+D3p+izZs2q0P0yfvx47rzzTh5++GH+97//ceuttxa6HoDu3bsTGRkJ5N0HixYtIj09HaBAC9DHH3/Ma6+9hqZpBAUFMW7cOP7zn/8wZcqUQucsSlnuy6Lkx3b8+HHcbrf3aW6rVq0YPHgwn3zyCVdffXWZfq9btWpV5vecNm0a06dPR9M0xowZQ7NmzQgMDOS2224rcOyf/vQnNmzYwN13381f/vIX7/bOnTszbNgwPvzwQy6//PJi3+vjjz9m9OjRNGzYEIBJkybxwgsv4PF4CAoKKnR8WloaM2bMIDQ0lIcffhig0H2tlCr1vu7duzfPPfecd/v06dO57rrrin1fUb2kPpb6uDhSH+epi/VxmzZtaNeuHYC3R0lR9/2YMWO49dZbmT17NvHx8QwaNIjGjRvz4YcfcvDgQcaMGQOAZVne2ABuuOEGAgICCA0NpVOnTmRmZtK+fftCceQr6bNE6vSi1bY6XRLlcggODgbw/hDyC//8H0pWVhZZWVkA3psA8n4ZR44cSVxcnPf7pKQkmjZtysMPP4xpmgwdOpTrr7+es2fPen/or7zyCgcPHmTPnj08/fTTDBw4kJEjR9K4cWO2bt3qPX9KSor3g604ISEh3v9rmoZSqsjjLrxh7PbCt4llWfTv35/Vq1d7t509e5aIiAj++te/8u233zJmzBiuvvpqDMMo8F755VhcHLm5uYwaNYqbbrqJyMhIxowZw86dO73HFXcdF56rqLgBxo0bxw033MBnn33GJ598wrp160hISCh03PnnKuoDuzSmaRb5C2sYBoGBgQXuj5J4PJ4C3xd3/ZZlMWfOHKKjowFwOBy43e5C5/vggw9o3Lgx/fr188aUX1Zt2rQhKSnJW/klJSXRvXt37/Z8uq6TkZFR6EP4wt8HpRQ//vhjsR9ehmEAZbvn8s+fz7IsAgICKny/XHTRRXTr1o3333+f+Ph4Nm7cWOp7Xrjtwt/x86/Rsizv9ZVFcffl+b8vRcmPoaT7DcpexmWRk5PDVVddxdixYwFITExk7dq1NGvWjC1bttC9e3e6d+/ujcFut2OaJv/4xz+YOHGi9w/S8++94pSnXA8fPswDDzzATTfdxKxZs7w/pwvv36SkJFq3bk3btm1JTk4uUOnm79u/fz+ZmZneP2Lzj6nIZ4HwPamPfyf1cemkPq4b9fGFv8fF3fc2m43LLruMXbt28eabb3ofZFmWVWCohsfjITMz0/v6ouK78F7Wdb1ADMV9lkidXrTaVqfLrNeVNGDAAHbs2EFOTg4Azz77LP/+978LHXfdddfxzjvveH+wr732GnfddReQN2Zg2rRpDBs2DMjrz2+aJocPH2b48OF07tyZ++67j7vvvpuDBw9y0UUXERIS4q2Yz549y/Dhw71PA6tD//79+eyzz7yzyX300Uf88Y9/xOVy8emnn3LXXXdxyy230KJFC3bv3o1pmmU+94kTJ8jJyWHmzJkMGjSIvXv34vF4vOM8ijNw4ED+97//AXDmzBn27t1b5HHjxo3j0KFDjB49msWLF5OVlUVycjI2m837yxoVFUVCQgJZWVlYllXgj6Cy6tOnD7/88gvffvstAEeOHGHfvn1cddVVhY7N/9DJ/zAOCwvzzvAaHx9fpve77rrrePXVV71l9eSTT7Jy5cpCx507d45nnnkGl8uFaZr8+9//9t57N954o7cMz507xyeffMINN9xA7969ycjI4MsvvwRg06ZN9OnThyZNmhQ4d+/evTl69ChHjhwB4P333ycuLo7+/fvz6aef8uuvvwJ4x8Sd37JRFu+//z7Z2dlYlsXGjRu54YYbKny/QN5T7OXLl9OrV69in7wePnyYw4cPA/C///2PK664otB1Q175v/LKKyil8Hg8bNy4kQEDBpT4/uffc8Xdl2V18cUXY7fbee+994C8iu7dd98tNYaKSEpKYuLEid7Pveeff57Y2Fg0TePIkSOsXbsW0zRxuVy8+uqrDBs2DJvNxgcffOD9A+j06dO89957hcZsQcFyGThwIJs2bSI3NxfIm5mzX79+hf5IOHfuHHfddRcPPPAAc+bMKVD53XjjjWzatAnDMMjKyuKdd97hpptuonXr1nTs2JFt27YB8MknnxAQEEDXrl1xOBw89dRT3haUl156iZiYGEmUazCpj6U+Lo7Ux3WjPj5fSfc9wG233caLL76I0+n09v667rrreOONN7yfEWvWrOHxxx8v8X2aNGmCruveGevfeecd776SPkukTv9dba7TpUW5kqKjo/n555+54447AOjSpQuLFy/23tj5rrvuOiZPnsw999yDpmmEhoaybt06NE3j4YcfZtq0aTRs2JDQ0FD69evHyZMnGTt2LEOHDmXMmDE0bNiQkJAQ5s2bR1BQEOvXr2fJkiX885//xDAMHnrooUITgVSlLl26sGjRIh555BHvE6Tnn3+eRo0aMW3aNJYvX86aNWsIDAzkyiuv9E7pXhbdunXj+uuvZ+jQoQQFBdG1a1e6dOnCiRMnSuwesWDBAp544gmGDh1K69atvU+/LvTYY4/x9NNPs3r1ajRNY/r06bRv3x7TNHnuueeYPn0669at48cff2TMmDE0adKE7t27e7vbllVYWBhr1qxh8eLFuFwuNE1j6dKlXHTRRd5JIPKFh4fTq1cvYmNjefXVV5k3bx6LFi2iSZMmDBgwoNAkB0V54IEHeOaZZxg1ahSmaXLppZcye/bsQseNGzfOO/mCaZpcffXVTJs2DcibOv8vf/kLsbGxmKZJXFwcHTt2BPKWMlq0aBFOp5NmzZrxzDPPFDp3y5YtWbFiBbNmzcI0TUJDQ1m1ahVdunRhwYIFTJ8+HdM0CQkJ4YUXXii11aWo80+ePJn09HT69evH1KlTCQoKqtD9AnndrObNm1eg21RR77l69WpOnz5NWFgYy5cvL/K4efPm8dRTTzFixAh0XWfgwIFMnTq1xPcfNGgQK1euRNf1Yu/LsgoMDGT9+vU89dRTPPvss5imybRp07jmmmuK/SO1oi6++GKmTJnC2LFjsSyLvn37epdymT59OosWLWLEiBEYhsGQIUO8T6lXrFjBggUL2Lx5M6ZpMmfOHDp37lzo/Ndccw2PPfYYixcvZu7cuZw9e9b7Xp06dfJOcHO+9evX43Q62bBhg7dbZlBQEK+//jp33HEHJ0+eZOTIkei6zu233+79A3nlypU8+eSTPP/88wQFBbFmzRoCAgKIjo5m4sSJ3HHHHViWRbdu3Vi8eLFPy1H4ltTHUh8XR+rjulEfn6+k+x7y6teFCxcyefJk72vGjh1LYmIit912G5qm0aZNG5YtW1bi+zRu3Ji4uDgmT55MWFgYQ4YM8e4r6bNE6vTf1eY6XVPF9fcRQoga5NlnnyU9Pb3YtTUr4quvvmLevHnEx8cX6uIEebNsLl68uMytCEIIIURd54/6WAh/kBZlIUS9NGvWLL744gtWrVollbIQQgjhJ1Ifi5pKWpSFEEIIIYQQQojzyGReQgghhBBCCCHEeSRRFkIIIYQQQgghziOJshBCCCGEEEIIcR5JlIUQQgghhBBCiPPU61mv09MdWFbNncusRYtQUlNz/B1GrSZl6BtSjpUnZegbVV2ObsMiJDCAikxzGRCg0bx5I98HJQCps+sDKUPfkHKsPClD36jp5ahbFq3DmxS7v14nypalanSlC9T4+GoDKUPfkHKsPClD36iqctQ0jexcD0GNQ5AFIWoeqbPrBylD35ByrDwpQ9+oqeWoaRqOXL3EY6TrtRBCCAFYloVHN7Esy9+hCCGEEKIKeXQTj1FyfS+JshBCCAEYppX3r4Y+/RZCCCGEbzjceqm9xyRRFkIIIQDdVJimhSmJshBCCFFnKRQOp1HqcZIoCyGEqPc0Ddy6iVJglNIVSwghhBC1l9NtohtmqcdJoiyEEEKg4fLkPV3WTUmUhRBCiLoqu5RJvPJJoiyEEKLeM6288ckAHt1C0zQ/RySEEEIIX9MNC7deerdrkERZCCGEQDd/X3pIN816vTzUM888w+zZswE4dOgQo0ePJiYmhrlz52IYeX9cnDlzhgkTJjBkyBDuv/9+HA4HAFlZWUyZMoWhQ4cyYcIEkpOTAfB4PMTFxTF06FBGjRrF0aNH/XNxQggh6i1Ny5vEq6xLVkmiLIQQot7TfxufDKAshWnWz0R5z549bN682ft9XFwc8+fP591330UpxcaNGwFYuHAh48ePJyEhgZ49e7J+/XoAVq9eTWRkJNu3b2fs2LEsWbIEgA0bNtCgQQO2b9/OnDlzeOKJJ6r/4oQQQtRrllLklLHbNUiiLIQQop7TNHB5fp/Uw1IKox62KGdkZLBq1SqmTp0KwOnTp3G5XPTp0weA0aNHk5CQgK7r7Nu3j5iYmALbAXbt2sWIESMAGD58OB9//DG6rrNr1y7++Mc/AtCvXz/S0tI4c+ZMdV+iEEKIeszpNr3DrMpCEmUhhBD1nkf/PVFWCsx6OKHX/Pnzefjhh2nSpAkASUlJhIeHe/eHh4eTmJhIeno6oaGh2O32AtsvfI3dbic0NJS0tLQiz3Xu3LnqujQhhBCizJN45bNXURxCCCFErWAYCtMqmBjrhgnB9aeKfP3112nTpg39+/fnzTffBMCyCk5qppRC0zTv1/MVN/mZUoqAgIBCr8nfXh4tWoSW63h/CA9v7O8Qaj0pQ9+Qcqw8KUPfqCnlmOvSaeA2CWkQ5N0WHFhyPVR//goQQgghiqBbFuYFE3u4dQtNg/rSA3vbtm0kJyczcuRIMjMzyc3NRdM072RcACkpKURERBAWFkZ2djamaWKz2UhOTiYiIgKAiIgIUlJSaN26NYZh4HA4aNasGa1atSIpKYmOHTsWOFd5pKbmlHkCFn8ID29McnK2v8Oo1aQMfUPKsfKkDH2jppSjpkF6tpuMHHeB7Y0aBAJNin2ddL0WQghRr53f7TqfYdSvrtcvv/wy8fHxbN26lRkzZjBo0CCWLl1KcHAwBw4cAGDr1q1ERUURGBhIZGQk27ZtA2DLli1ERUUBEB0dzZYtW4C85DsyMpLAwECio6PZunUrAPv37yc4OJi2bdv64UqFEELUN6alyHGWr9s1SKIshBCiHrtwIq98eesq19zWy+qyYsUKli5dypAhQ8jNzWXSpEkALFiwgI0bNzJs2DD279/PzJkzAXjooYf4+uuviY2N5b///S/z588HYOLEiXg8HmJjY1myZAnLly/32zUJIYSoX1ye8k3ilU9T9XixSOnGVfdJGfqGlGPlSRn6RlWU46mUnEItyJoGbVqEEmQv+/PkgACtVoyjra2kzq77pAx9Q8qx8qQMfaMmlKOmwdnUXFweo9C+Rg0CuaxL8cOApEVZCCFEvaWbVpHJl1IUmuBLCCGEELWL27CKHGJVFpIoCyGEqLeMYhJlAL2ejVMWQggh6hJNA4dTx6pgB2pJlIUQQtRb7hKeMnt+m/laCCGEELWPYSocFZjEK58kykIIIeolTdNwuUtKlE1AMmUhhBCi1tEgLdtVoUm88kmiLIQQol6ylFViBWoqJeOUhRBCiFpG0yDL4alUazJIoiyEEKKe0o2SE2FlKVkiSgghhKhlXB6TjBx3pc8jibIQQoh6STdMSprfw1IKs/6uoCiEEELUOpalSM10+WQ5QUmUhRBC1DualvfEuTSGUbElJYQQQghRzTRIzXbh8VHdLYmyEEKIesldhkRZZr4WQgghaj5Ng2yHh9xKjks+n18T5WeeeYbZs2cDcOjQIUaPHk1MTAxz587FMAwAzpw5w4QJExgyZAj3338/DocDgKysLKZMmcLQoUOZMGECycnJfrsOIYQQtYthlm2iLo9hITNfCyGEEDWby2OSnuPGlwOm/JYo79mzh82bN3u/j4uLY/78+bz77rsopdi4cSMACxcuZPz48SQkJNCzZ0/Wr18PwOrVq4mMjGT79u2MHTuWJUuW+OU6hBBC1D6GaWGVYfyxaVpYSma+FkIIIWoqX45LPp9fEuWMjAxWrVrF1KlTATh9+jQul4s+ffoAMHr0aBISEtB1nX379hETE1NgO8CuXbsYMWIEAMOHD+fjjz9G133X1C6EEKLu8pQykVc+SylMH1e8QgghhPidpuX9s5RCN0ycukm200OGw02u20A3SxgG5eNxyeez+/yMZTB//nwefvhhzp49C0BSUhLh4XD7TncAACAASURBVOHe/eHh4SQmJpKenk5oaCh2u73A9gtfY7fbCQ0NJS0tjVatWpU5jhYtQn11SVUmPLyxv0Oo9aQMfUPKsfKkDH3DF+WoJ2fTXLOV6djQxg1o3DCo0u8phBBCiN+5dBOn20A3LAzDwlQWyqJQj6+AAA17QAANQ+wEB9sJsgVgt+W192Y53D4dl3y+ak+UX3/9ddq0aUP//v158803AbAsC+28xwRKKTRN834934Xfn/+agIDyNZCnpub4vInel8LDG5OcnO3vMGo1KUPfkHKsPClD3/BJOWqQlOJAL+PTZzsWLkdgqccFBGi14gGsEEIIUROkZZatJdiyFB7LxJNjQo4bW4CG3W4jJMhGdq7Hp+OSz1ftifK2bdtITk5m5MiRZGZmkpubi6ZpBSbjSklJISIigrCwMLKzszFNE5vNRnJyMhEREQBERESQkpJC69atMQwDh8NBs2bNqvtyhBBC1DKGaZVpIq98HsOiURXGI4QQQtQ3Lo+Jblasu7RpKUyPgdtj+Diqgqp9jPLLL79MfHw8W7duZcaMGQwaNIilS5cSHBzMgQMHANi6dStRUVEEBgYSGRnJtm3bANiyZQtRUVEAREdHs2XLFiAv+Y6MjCQwsPQn/kIIIeo33VTl6k2k61axvZmEEEIIUT6aBtlOvUxzhfhTjVlHecWKFSxdupQhQ4aQm5vLpEmTAFiwYAEbN25k2LBh7N+/n5kzZwLw0EMP8fXXXxMbG8t///tf5s+f78/whRBC1BIevXxPsD2miaqyjl1CCCFE/aKbFi53zZ+EWVOqpufyVUfGKNd9Uoa+IeVYeVKGvlHZctQ0jcS0XHLLUUHbAjTatAzFHlByq7KMUa5aUmfXfVKGviHlWHlShr5RXDlm53pIzXL5IaKCGjUI5LIuEcXurzEtykIIIURVsyyr3EtIyBJRQgghhO9k59b81mSQRFkIIUQ9YpRzfDKAUmCaZZ/8SwghhBBFq8wkXtVNEmUhhBD1hm5ahdZnLNPrytkKLYQQQoiCNC2v23VtGfgribIQQoh6QdM0cirY3cujW8jE10IIIUTF6aaFq4qXdPIlSZSFEELUCx7dxKVXrILWjdK7XsswZiGEEKJ4uS6jVs35IYmyEEKIOk/TwOHSKzxrsqmsEiv3vDUhPRUNTwghhKjTFKrCvbr8RRJlIYQQdZ5pKXKcFa+glVXyhF5Oj4mjlv0BIIQQQlQXl27Vmkm88kmiLIQQos5zug2MSsxcbSmFUUyLskKRlumq0CRhQgghRF2naRo5jtoziVc+SZSFEELUeVmOyneLNooYp6xpkJnjKffazEIIIUR94THMWjWJVz5JlIUQQtRpLt30SSLrLmLma5fH9EkSLoQQQtRVTnftmsQrnyTKQggh6ixN08j2UXcvj24Cv2fKCkValnS5FkIIIYpTGyfxyieJshBCiDrLY5g4fdTdy1IKS+V1v9Y0yHR4cOvS5VoIIYQojku30Gvp8CRJlIUQQtRZuZVYEupCllIYZt65XLolXa6FEEKIUmQ7PNTWfleSKAshhKiT8rp7+W7yEMtSmJb6vct1LRxvJYQQQlQXp1uvlZN45bP7OwAhhBCiKjjdps/XbDQMC7du4q7FFb8QQghRHRxO3/Xq8gdJlIUQQtQ9v40h9rVsp15rx1oJIYQQ1aU2T+KVT7peCyGEqHPcuoVH932rr9tj1Oqn4yVZs2YNw4YNIzY2lpdffhmA3bt3M2LECAYPHsyqVau8xx46dIjRo0cTExPD3LlzMYy8sj5z5gwTJkxgyJAh3H///TgcDgCysrKYMmUKQ4cOZcKECSQnJ1f/BQohhKg2uS4D06zd9aUkykIIIeoUTYPsXN8sCVVffPHFF3z++ee89dZbbNq0iQ0bNnD48GHmzJnD+vXr2bZtG9999x0fffQRAHFxccyfP593330XpRQbN24EYOHChYwfP56EhAR69uzJ+vXrAVi9ejWRkZFs376dsWPHsmTJEr9dqxBCiKqlUGTm1P4JLyVRFkIIUacYpsLpqt3dvarbVVddxf/7f/8Pu91OamoqpmmSlZVFp06d6NChA3a7nREjRpCQkMDp06dxuVz06dMHgNGjR5OQkICu6+zbt4+YmJgC2wF27drFiBEjABg+fDgff/wxui4/IyGEqIucbhNPHRimJImyEEKIOsXh0jHraPfoqhQYGMjatWuJjY2lf//+JCUlER4e7t0fERFBYmJioe3h4eEkJiaSnp5OaGgodru9wHagwGvsdjuhoaGkpaVV49UJIYSoFlU0R4g/yGReQggh6oy6MHmIP82YMYPJkyczdepUjh8/jqZp3n1KKTRNw7KsIrfnfz3fhd+f/5qAgPI9q2/RIrRcx/tDeHhjf4dQ60kZ+oaUY+VJGVZMlsNDw4YmDRsGA9C8WSM/R1S84MCS6yFJlIUQQtQZTk/d6O5V3Y4ePYrH4+HSSy+lQYMGDB48mISEBGw2m/eY5ORkIiIiaN26dYHJuFJSUoiIiCAsLIzs7GxM08Rms3mPh7zW6JSUFFq3bo1hGDgcDpo1a1auGFNTc2r0RGrh4Y1JTs72dxi1mpShb0g5Vp6UYcUlpTvJdec9sG7erBHpGQ4/R1S8Rg0CgSbF7peu10IIIeoEy1JkZrv9HUatdOrUKebNm4fH48Hj8fD+++8zbtw4jh07xokTJzBNk/j4eKKiomjXrh3BwcEcOHAAgK1btxIVFUVgYCCRkZFs27YNgC1bthAVFQVAdHQ0W7ZsAWDbtm1ERkYSGBjon4sVQghRJdyGhcvj+xUn/EValIUQQtR6CkVKpgu3Lq3JFREdHc23337LLbfcgs1mY/DgwcTGxhIWFsaDDz6I2+0mOjqaIUOGALBixQrmzZtHTk4OPXr0YNKkSQAsWLCA2bNn8/zzz9OmTRtWrlwJwEMPPcTs2bOJjY2lcePGrFixwm/XKoQQwvc0La/btVWHlpzQlKpDV1NO0o2r7pMy9A0px8qTMvSN4soxJctFTq5/Jw8JCrTRu3trv8ZQl0mdXfdJGfqGlGPlSRmWn25YnE1zFPicrg1dry/rElHsful6LYQQolbLyHH7PUkWQggh6itNg2ynp0Y/zKwISZSFEELUSpoG2bkeMh0yLlkIIYTwF8NUOJx1b8UJSZSFEELUSg63QXq2m/o7gEgIIYTwvxynB7OOtSaDJMpCCCFqIbdhkZrhrFOThgghhBC1jaUU2bl1rzUZJFEWQghRyximRUq6s04+vfYlj8eDYdSdZTqEEELUPA6XjmFa/g6jSsjyUEIIIWoNj26SnOFEN2UZqKKkpqbyj3/8gx07dnD27Fk0TaN9+/YMGTKEu+++m7CwMH+HKIQQoo5QKLIddbM1GaRFWQghRC3h0k0S0xyyVnIxtmzZwuTJk2nRogXr1q1j7969HDhwgHXr1tG0aVP+9Kc/sXnzZn+HKYQQoo5wuk08Rt2tk6VFWQghRI2kaRoewyTXbeDI1dFNk2ZNG/k7rBorMzOTN954g4CAgs/Au3btSteuXbn77rvZsGGDn6ITQghRW2kagIalLAxTYVgKwzDJqsOtySCJshBCiBpE08C0wOUxyMnVcelGnVuXsarcddddRW7XdZ3AwEBsNht333139QYlhBCiVlIoXB4Tw7DwGBYe3cS0FJZS9aZe9kvX63Xr1hEbG0tsbCzLly8HYPfu3YwYMYLBgwezatUq77GHDh1i9OjRxMTEMHfuXO/EJGfOnGHChAkMGTKE+++/H4fD4Y9LEUII4SOWpUjNcnEmJYek9Fxy3Xq9qYx9af/+/axfvx6Px8PYsWOJjIxk27Zt/g5LCCFELWFZiuR0F4lpuaRmucjO9eDWTQzTqlf1crUnyrt37+bTTz9l8+bNbNmyhe+//574+HjmzJnD+vXr2bZtG9999x0fffQRAHFxccyfP593330XpRQbN24EYOHChYwfP56EhAR69uzJ+vXrq/tShBBC+IilFEkZTrIcnjo7e2Z1+etf/0qfPn3YuXMnzZo145133uFf//qXv8MSQghRC+imReJvD6vru2pPlMPDw5k9ezZBQUEEBgbSuXNnjh8/TqdOnejQoQN2u50RI0aQkJDA6dOncblc9OnTB4DRo0eTkJCAruvs27ePmJiYAtuFEELUPpZSJGe4cHlkKSNfME2TAQMGsHv3bm666Sbat2+PZcnDByGEECVz6SZJaU6ZNPM31Z4oX3LJJd7E9/jx42zfvh1N0wgPD/ceExERQWJiIklJSQW2h4eHk5iYSHp6OqGhodjt9gLbhRBC1C75SbJTnlz7jGVZfPvtt+zatYsBAwbw008/oetSvkIIIYqmaXnrISel58ryi+fx22ReR44c4b777uPxxx/HZrNx/Phx7z6lFJqmYVkWWt40awW2538934Xfl0WLFqEVjr+6hIc39ncItZ6UoW9IOVaelGFBumFyLtVBSIMgQhoElfl1zZvVzJmv7baaseLi1KlTefTRR7n11lvp0KEDgwYNYu7cuf4OSwghRE2kQUaOh4wcF6r+DD8uE78kygcOHGDGjBnMmTOH2NhYvvjiC5KTk737k5OTiYiIoHXr1gW2p6SkEBERQVhYGNnZ2Zimic1m8x5fXqmpOTV6QHp4eGOSk7P9HUatJmXoG1KOlSdlWJClICXDWe4xUM2bNSI9o2ZO3hgUaIO2TfwdBoMHD2bw4MHe73fs2IHNZvNjREIIIWoihSI9y022w0PNzYj8p9REOS0tjY8++ohjx44REBDAxRdfzKBBgwgNrVhr7NmzZ5k2bRqrVq2if//+APTu3Ztjx45x4sQJ2rdvT3x8PGPGjKFdu3YEBwdz4MAB+vbty9atW4mKiiIwMNA7i+eIESPYsmULUVFRFYpHCCFE9VJULEkWZfPLL7/w4osvkpGRgTqveeCFF17wY1RCCCFqEstSpGS6pC4uQbGJssfjYdWqVbz99ttcfvnltG/fHrvdzs6dO/nb3/7G8OHDefDBBwkJCSnXG7700ku43W6WLVvm3TZu3DiWLVvGgw8+iNvtJjo6miFDhgCwYsUK5s2bR05ODj169GDSpEkALFiwgNmzZ/P888/Tpk0bVq5cWZHrF0IIUY0UkJwuSXJVmj17Nr169aJfv34VGpYkhBCibtNNi+R0Jx5DxiOXRFOq6N7okydPZvjw4QwdOpSgoIJjx3RdJz4+nvj4eF566aVqCbQqSNfruk/K0DekHCtPyjBv4q6UTBe5roonyTW963Xv7q39HQYjRozg7bff9ncYPid1dt0nZegbUo6VV1fLUNMgx2WQlunErIbP05pcZwM0ahDIZV2KH75bbIvy6tWradSo6AlTAgMDGTVqlHd5JiGEEKIomgaGqchxesjO1WWN5GrQqVMnkpKSKjR3hxBCiLorPcdNZo5bJu0qo2IT5fOT5F9//ZUOHTqwa9cuvv/+eyZNmkTjxo1p2LBhtQQphBCidtE08BgWOU6dHKcH05RaubpYlsXw4cPp0aMHwcHB3u0yRlkIIeonSylSs1w4nDLsqTxKncxr/vz5ANx1113MmzePgQMHMmfOHJ599tkqD04IIUTtomkabsMky+Eh16XX6K6yddXNN9/MzTff7O8whBBC1AC6aZGS4cSty3jk8io1Uf7uu+944403+Mc//sGoUaN49NFHGT16dHXEJoQQopbQNHDpFpk5blxuA0v6dfnNqFGjOH36NF988QWGYXDVVVfRqVMnf4clhBCiGmkaONwGqZlO6dVVQQGlHaCUIiAggM8++4xrrrkGAJfLVeWBCSGEqB0UiowcD4lpjrxWZEmS/eqTTz5hzJgx7Ny5k/fff59bb72VnTt3+jssIYQQ1SjT4SElXZLkyii1Rbljx45MnjyZU6dOcdVVV/Hoo4/SrVu36ohNCCFEDZY/Djk104XLY/g7HPGbNWvW8Morr9ClSxcAjhw5QlxcHDfddJOfIxNCCFEdMh0eMnJcMmlXJZWaKC9dupQdO3bQt29fAgMDiYyM5JZbbqmO2IQQQtRgWQ4PGTnualliQpSdruveJBngkksuwTRlbJoQQtR5GmRku8l0yMzWvlBq1+uGDRsSGRlJVlYW33//Pb169eKXX36pjtiEEELUQIZpkZTuJDXLJUlyDRQSEsLBgwe93x88eJAGDRr4MSIhhBBVToP0bFn+yZdKbVFes2YN//rXv2jRooV3m6ZpvP/++1UamBBCiBpGg5xcnfRsSZBrsri4OKZOneqdwOvYsWOsWbPGz1EJIYSoSmlZLrIcHn+HUaeUmihv3bqV9957j1atWlVHPEIIIWogp8cgy6HjcutIilyzRUZG8s477/DNN99gWRZ9+vShefPm/g5LCCFEFVAo0rLcZOdKkuxrpSbKbdq0kSRZCCFqOE3D512tLAW5Lp0shwfdMCVBruG2bt3KyJEjefnllwtsP378OAB/+tOf/BCVEEKIqqJQpGa6yHHq/g6lTio1Ue7fvz/Lly/nxhtvJCQkxLu9R48eVRqYEEKIsnPpFm6PSdNGgZVKmPNnss516WTn6him5bsgRZU6ceIEAD/99JOfIxFCCFHVFIqUTBcOSZKrTKmJ8ptvvglAQkKCd5uMURZCiJolI9uN22MQaA+gQZCtQufQTYtMhwenS5cxyLXQjBkzgLzVKoQQQtRtWbm6JMlVrNRE+YMPPqiOOIQQQlSQw6XjdOdVlimZTtqENcRuK3VRgwKcHpOUjFxJkGuxESNGlLj/7bffrqZIhBBCVCkNHLmSJFe1UhPl3Nxcli9fzscff4xhGFx77bXMnTuX0NDQ6ohPCCFECSxLkZH9+wQepmmRnOmkVfOGBGhamc4hSXLd8OSTT/o7BCGEENVA1y0ZGlUNSm1yWLp0KR6Ph+eee47169ejaRqLFy+ujtiEEEKUQNMgw+FGN80C290ek9QsV5nO4fQYJEuSXCkut8GXPyXz+odH/RpHo0aNSvwnhBCibnB5DCxZLLnKldqi/M033/DWW295v3/qqaeIjY2t0qCEEEKUzqVbxc506XDqBNoDaB4aXOzkXnlJshNLkuRyMy2Lo6ez+PZoKj+ezMC0FN06NvNrTA8++GCx+2RuESGEqBs0DXJc0u26OpSaKJumiWVZBATkNT5bloXNVrGJYoQQQvhORra7xCQ3M8dNoN1Go+DCH/W5HoOUOpYk64aF3aahlbHLeXkppTiX5uTboyl890saDpdBg2A7V3YNp1eXFvyhdeMqed+yquycIuvWrWP79u0AREdH8/jjj7N7926WLl2K2+1m6NChPPzwwwAcOnSIuXPn4nA4iIyMZOHChdjtds6cOUNcXBypqalcdNFFrFixgkaNGpGVlcVjjz3Gr7/+SlhYGKtXryY8PLzS1yyEEPWNx7DQDel2XR3KtDzUzJkzueOOOwB47bXXuPrqq6s8MCGEEMVzuHRc7pKfKCsFaZlO7GGNCLbnPezUNHC4a3eSbFmK9Gw3iem5JKY7SUpzkpieS0aOh77dwont36lK3nfP94ns3H+KgACNrh2a0rtzC7q0a4rNll+2VZOgl9WLL77I5MmTeeqpp4rcP2/evGJfu3v3bj799FM2b96Mpmnce++9xMfHs2LFCjZs2ECbNm247777+Oijj4iOjiYuLo6nnnqKPn36MGfOHDZu3Mj48eNZuHAh48ePJzY21jtkKy4ujtWrVxMZGck//vEPtmzZwpIlS1i9enVVFYUQQtRZLo9Za+vv2qbURHn27NmsX7+elStXYpomAwcO5IEHHqiO2IQQolbQNA1LWQRoWqXWMC4rSykycjyU5a1MS5Ga4aRVi4bYAzRyXAapmbUrSVZKcSrZwbdHU0nOcHEmxeGdxETToEWTENq2bETrsIYc+DGZti0ackVX37ZWutwGn3xzlovbNmF01MU0DCm1+qx2jRvntWg3a1b+LuDh4eHMnj2boKAgADp37szx48fp1KkTHTp0APJm1U5ISKBLly64XC769OkDwOjRo1m7di1jx45l3759PPfcc97td955J3FxcezatYtXX30VgOHDh7No0SJ0XScwMLDS1y2EEPWFpmnkugx/h1FvlFrT2+12ZsyY4V2fUQghRF5l5TFMPLqJw2ngMUyCA200ahBIcKANuy0AVQVZs6ZBZo4H3TBLP/g3HsMkNcNFowaBpGbVniTZrZscPJrKgR+TSUx3EmQPoFObJvTtFk6r5g1oFdaAlk0bEGjPHxqkeHXHT2z7/CStwhrStqXvJrDaeygJt25yY9/2NTJJBhg3bhwA06dPL/drL7nkEu//jx8/zvbt27nzzjsLdI+OiIggMTGRpKSkAtvDw8NJTEwkPT2d0NBQ7HZ7ge1AgdfY7XZCQ0NJS0ujVatWZY6xRYuav9pGeLh/u9/XBVKGviHlWHk1sQxdHoOGLoOQBkH+DqXMmjeruZNJBgeWPK91sbX9HXfcwWuvvcYVV1xRZHeyL7/8svLRCSFELaJp4NYt3LqJw6njMQp2fzJMC4dLxxagERxkp1GInZAge6lrGud/xJYlr3YbFtm5ntIPvECuW8fp0aulxbuyEtNy2f9jMgePpuIxLFqHNSC2fyd6XhxG6/AmpGc4inxdQIDGmOiLefHtQ7z+4VEmj7iUhiGVb7F0uQ0+/z6Rbh2b0aZFw0qfr6pt27aNtWvXkpmZWWD7nj17Sn3tkSNHuO+++3j88cex2WwcP37cu08pldd7wrIK/F2Qvz3/6/mK646ulPLOfVJWqak5NfohT3h4Y5KTs/0dRq0mZegbUo6VV1PL0OHSSc1w+juMMmverFGxdXZN0KhBINCk2P3FJspr1qwBID4+3udBCSFEraHlrVfo9Bg4XDq6YZX6x7ppKXJdOrn5SXOgnYAgGw5XXqKqlEKR99VSeLcFB9oIDrQRGBiARhGJswYZWSVP4FWSmpQkm2beA4f8Bw9u3SQ9y82XPyVzKtmB3abR4w9h9O0eTruWjco8/rdhSCBjb+jMy9sOs+mjX5hwc1cCAio3dji/NTmqd9tKnae6/PWvf2XevHl07NixXK87cOAAM2bMYM6cOcTGxvLFF1+QnJzs3Z+cnExERAStW7cusD0lJYWIiAjCwsLIzs7GNE1sNpv3eMhrjU5JSaF169YYhoHD4ahQF3EhhKivNE3D4ZRu19Wp2ET566+/LvGF7dq183kwQghRVpqWl5B6DAu3J6/isNts2G0aNptGgKZhCwgAVPkTxPOTY+dvyXEFs0zTUuS6ddIy3aSX8hQ4GwjQNOy2AEKCbTQIthNkt/3WIq3IcRk4S5nAy98MwyIz10NGjpvMHE/eP0fe99m5el5S7DGLXbe5RZNgBvdrT+8uLWlQxGzdZdG2ZSOG9e/E258d54MvT3NTZPsKX09ta02GvPr5xhtvLNdrzp49y7Rp01i1ahX9+/cHoHfv3hw7dowTJ07Qvn174uPjGTNmDO3atSM4OJgDBw7Qt29ftm7dSlRUFIGBgURGRrJt2zZGjBjBli1biIqKAvJm0d6yZQtTp05l27ZtREZGyvhkIYQoB8O0cOuSKFenYv8K2bBhQ7Ev0jSNwYMHV0lAQghRLA08uoVumDhcBh7dxLSsAomwpuV9RgVoeQlzkN1GoD0Auy2AgADtt315CWmAxm+tjRqKvKTb6TZw5OoYZsWT48qwlMob+2yYZDk82AI07HYbDUPs5Dj0Mk3gVZ1ycnWOnMrgp18zOZ3iKLSus6ZBk4ZBNA0Nol3LRoQE2QgKtBEcGEBwkM3bih4UaKNhsJ1WYQ18Mnv0FZe05HRyDru/O0e78EZc2ql5hc5T21qTAW655RaeeeYZoqKivOOFAfr161fsa1566SXcbjfLli3zbhs3bhzLli3jwQcfxO12Ex0dzZAhQwBYsWIF8+bNIycnhx49ejBp0iQAFixYwOzZs3n++edp06YNK1euBOChhx5i9uzZxMbG0rhxY1asWFEVly6EEHWWWy/+IbOoGpqqitlmagkZ71T3SRn6xoXlqGl53Xh1w8JjmOimhUZegqr9loTm/x9NIwCw2wLKNcFVfq5kGAqPZeF2G+S6DAyr9K7PpZ1X07SC8QZoKIsqTY5r+jidslJKkZjm5KdTGfz0awZnUnIBaNooiD+0aUzzxsE0bRRE09BgmoUG0aRhUKW7Pp+vPOVomBb/3v4jKRlO7h1+KS2bNSjXe7ncBms3HaRT68bcPqhLqccHBdro3b11ud6jKsTFxfHxxx97uz3ne/vtt/0UkW9InV33SRn6hpRj5dW0MtQ0SEp34nDV7F5lF6rpf/s0ahDIZV0iit1fbIvy1KlTSzzxCy+8UPGohBC1j5aXGOu/tbq6PCZmGRPL/GTUbgugQbDdOyt0oP33sbiaBorf38OtmzhdBqZl+fQJav544N++89l56yrdsEjLcpGS6eLEuWx+OpVJliNvMrF2LRtxwxVt6dqhGRHNfdMS7Et2WwBjb+jMi2//wMYPj/Ln4ZcSHGgr8+v3HkrC5aldrckAP/zwAx9//DHBwcH+DkUIIYQPmJbCpZd9tQvhG8UmyjExMdUZhxCiBrkwaT2bkkNSsqPCrblKgWkqTDNvfCr8ljgHBHi74bp1C49uVrrFWFSMy2NwLjWX1Cw3KZlOUjJdpGa6yMj5fYbtQHsAF7dtQnSftlzSvimhDWr+GNOmjYIYE30xr7z3E299epxbr7+4TAm9y22w94dEunWoPWOT87Vs2RLDMCRRFkKIOsKl5zVOiOpVbKJ88803ExoaSkZGRnXGI4TwE00D3cxLjF2evNbc/KS1ebNGeMqxbm9ZWJbCY+WNxc2pPSsd1Em/nMli00dHcbrzfsaB9gBaNAmmXXgovbuE0LJpCC2a5H2128u3pE9NcFGbJtzYtz0795/igy9PM+jKdqUmy97W5D61qzUZoFWrVowcOZIBAwYQFPT7Wpvz5s3zEvJtkwAAIABJREFUY1RCCCEqQtMgV2a79otiE+WJEyeyefNmrrnmmgLrI+Z/PXToUHXGKYSopLy8IG/SKstSmNbvXz2GSa7T992cRc2mlOKLQ0m8t+9XWjYN4ZaBFxPRLIQmjYJqXDfqyurfoxUpGU4+O3iOs6m53HLdRYQ2LLpFvDa3JgN07Nix3EtDCSGEqJlMS+HySKLsD8Umyps3bwbg8OHD1RaMEKL8LkyAlQWWsjB/G4trmgrDstANhWHmzZioLFVgPV9R/ximxfbPT/LVkRS6dWjGLVEXlWv8bm2jaRojrv0D7SNCSdh7kr+/9T23DLyIzu2aFjq2trYmp6WlERYWxvTp04s9JjU1lRYtWlRjVEIIISrDbVjS7dpPSl2k0uVy8f777xfqgj1hwoQqC0qIuur3Rrq8/ygUKH5rvSt9vd/8scOGaWGYCs9va9LqhoXF78kvkgSLEuTk6mzc9TOnkhwM7NWG669oW+dakIuiaRpXdg2nfXgomz46yqs7/j979x4nV10f/v/1Obe57X2zmxBCQpBL5Ko0XEqBYCvkLoKAKAqttYC9UVt5VESxVNCKVLFasNaHtrWx/LCiSJsA1X6DVECB0kYgiA2EACG7m+x1ruf2+f1xZmZnNrvZ3ezszl7ezwfLmTl7ZuZzPrubmfd5fz7vz6845+QlvOP0pcU1t6O52nM1m/yJT3yCs846i0svvZTm5uoLAOl0mnvvvZef/exn/P3f/32dWiiEEGIylIJcfvYtDblQjBsoX3fddQwNDbFs2bLyPqWUBMpCjEEpRaijQNYPNYEfVYYuDXUOQ02oiSpGF//pM1DYloFpGtimwiyu+WsohWGAH2g8PyDvhnhS8Kpu/CCkf6hA71CB3sECfUN5egej+0GoidsmjmMQt01ijlXcRl9tzQnCICDhWMRjZnkbd8xykDYT9u7PcN9//h85N+CyC47hxKPbZuy1Z4vO1gQf3vRWHv75azz+3D5e7Rri0vOPobUxxs/naDYZ4O677+ab3/wmmzZtYuXKlaxYsYIwDNmzZw+vvPIKV199NXfffXe9mymEEGKCwlCTzcuw63oZN1Du7u5m27ZtM9EWIWa16oRbtP5uqKPA1w81fnFN4YIb4vlB+XsTNbJYVmmdXxTRUOmanMXk+EFINu8TYNA3kC8G+bp6G2oCrQlDKi4EVFwY0Jq4Y9JSXFc3EbOmlL10vYB0zqv6KrgBiZhFMm6RjNuk4tHthGNNeg3fIAjpGypwYKhA72AxEC5uBzJu1bEx26StKcYR7Ulsy6DgBhS8gGzep3eoQMENomW0xvk9cCyDhqTN0vYUSxelOLIjxZK26Dlr6bmXD/DDn+4mFbf5nfWrWDLHMqa1ZFsmm845mmOWNvHgT1/l6z98gbVnHsWTz8/NbDKAYRh8+MMf5gMf+ABPPvkkL7/8MkopLrzwwoMKewkhhJj9Cn5IEMqw63oZN1A+/vjj6enpoaOjYybaI+a4kUOLJ268MLD0fLq8bm8YRssOlb6lqA5mVXHd3+F2DT9H+VV15fcqAzyi4C/QhGEpI0xVEKhDXRzuXJwbXONIVjM8jHpKz6M1rh8tveR60frEI+9n8h6ZnEc651fdLkzDmn22ZdDS4JQD5+aGGI5llCtuu16IH4S4xaWpokx6MTjOerj+5N4wkjGLRMzCtgwsM1rL2Sxuo68ocz+YcTkwmGcg41b9LONOFAwftbiB0xpjtDXFaWuM0dYUm3DQ7wch8XiMfT2D5NyAvOuTLwTk3KC4JrXPQNplT9cQz73SC4ChFIvbEhxZDJyP7GigvSl2WBcZBjMuT77QxZPPd7F8cQOXX/AWUnNgaaeZcOLRbRzRnuJ7j77MD3+6G2BOZpMrxeNxLrjgAi644IJ6N0UIIcRhUioqLlnrz5ci0tOf4/Hnujjx2M4xjxk3UF63bh3r16/n+OOPx7KGD/+nf/qn2rRyih588EHuuecefN/nmmuukSHh4xiZFS3tC7UentsKxbmugCoGgFqjUeXgLfpWNIT4oAxixdDiqlczql/XKDamMrYevj3cUF3MWEZZ1eI8XIqNHPUkh2+kXc3AQJYoMatQhsJU0dZQxWHSocYLwmJAXDw/PbnANww1BS8K6ApuQL44d7jgBfhBWC6oFQQ6ul+sNh0EGkOBaQ4HcdaIIC6qdhiUvwquH90uvobrRRnL0s+ispr1ZLLaccekIRFlYxe3JXlLopSZtWlujJPLu5jF4eCqYli4oVR5v2EUbxe/zOK+bMFnIF2gP+3SX9wOpAu81p0m71YH46YRDUO3LQOnuI3ZJke0JWlYZtOQGPGVtInZJrmCTzbvk8lH22zBi7Z5n2zBL8/r9oMQtxCUb/uBJghCmlIORy5Kccox7bQ1RQFx+ySC4UOxTIPGlIPvJcY9dijr8kZPhjf2R187Xj7A07/sAaC1McYJy1s4/qgWlnc2HDJbnsl77Nzdx3Ov9LKnKw3Arx3fwbqzjsI0594ST9OptTHG72w4gcf+9000zMlsshBCiPlFa8jIsOtpseuNAf51+8scsSh1yOPGDZT/9m//luuuu25WLjXR1dXFl770Je6//34cx+HKK6/krLPO4thjj53Q4wteFHT4pSDGD/FKAUagy4FbZZhRCu1Ghh56lKiqFCiYhsIwFVYxmDBNhWkYhLoiaAqGs5Sl+ac9Qy6DQ/mqjGlpea5x6ahQVClo8oOwuI2GCYdBSKDDYlZWVwSIUdBMcTs8vHb4vg6rA+ThobgUM6ulfcMBeKnIVDhiW+5TpcrxrSqfryo/vur1Sq81Irgf7Wdh2yZBEEZBXDFoU4ry/F+lOKhtI+9HP5+K4Lb88wrLQaw3ySxnKaA0DYXWlH8PxuNYBnHHJO5YxIqBrdMULwaqHBSgll7HsU1itoljGTi2iWMXt8UgNBW3Dhk8tbak6OvPTOocKzWlHJa0jR585As+XhDiWCa2ZUx6qHRJY9KhMTn3h5Y2Jh1WrXBYtaIViH7vDwzmeXXfEC+91s9TO7t58vkuEjGL45Y1c8LyFt6ytAnHNsm7Pr/c089zL/fy8puDaA2LmuNc8PalnLSyjfameJ3PbvYyDYML3n5kvZshhBBCANGwaz+o/ci+he6pF7t56Gd76GxJcNWFxx3y2HED5UQiwe/93u/VrHG19Pjjj3P22WfT0tICwNq1a3nooYcOuTRGpU9942d09+Wms4kLVikILQemSqFU5W2GA/6K6sylGLccRJcCvorgtpTJVMXnhFKwPTI7rdBEQ4x1OcDWFRcHomC4lFke2TYFVcGmbRnETaMc4JpGlPl17KggU6y0HXHbLj3GVFhGNOx3tIsd5aWcgjCa8xyE+H6IYSjijkXcMQ87iJzN4jELCd/GZhiKjpYEHS0JVq/qpOAF7HpjgF/u6eel1/rZsesApqFY0p5k34EsQahpaXA45+QlnLyyjc7WxIKoaC2EEELMdqVRnHkv+nwKw59dK2cJKhQ5N5Bh1zUUhppHnnqNn+/s5vijmrnk/GNoSh06wTJuoHzOOeewZcsWLrzwwqpCIKXgtJ66u7ur5k53dnayY8eOCT/+nWcuJ5v3q4aNVgZjQFU2t6zil5hR9gPljKyuyIBWzmXV6PLrqIpAsDIwrMxnlwPIiucfTyngM0Zsy8OOqQgKK7dUBI5VwWmpvRX7K7OXFRlb+WA+/7S2HHp4ihhfrfpwSUcTv/G2owhCzStvDPCLl/eze+8g55y6lNNP6GTFksZ5/Tc4W38XrVkypD2TyXDnnXfy8ssv8+Uvf5kvfvGL/Pmf/zmp1OzsNyGEmEuUAtePRmqWpspNZInPgheQLUS1YAI/nGoJGjEJedfne9tfZtfeQc4+aTHv/LVlE0o+jRsof+tb38J1XT7zmc+U9yml2Llz59RaXANhGFZ9GJzwsOSiNactxfeDiqG2w8NuyzWiipnFyuCxVPF4NJV/JFHAWLqtqrZGKQCuHMZdmVkFWpoS9A9kD3re6Pbof14j/0grM6elIL10nqEO0WHp9UrtqWhA5fNU3dJQLKQVEH1VNkkzIqqvvLAw8sLDQf04WsdWj63WI751qOsVLS0p+geyY1zoqDijip/9yKHcYupDr8X09WF7o80Fpx0Bpx1R3lf6d2M+ms2/i45twtKmejeD2267jc7OTg4cOEAsFiOdTnPLLbfw13/91/VumhBCzGmh1gymXQazLlrrYp0Wg3jMJGZbxRorCkMZaKJiqrm8Rybn4wWSIa6HvqEC9/74VxwYKLDpnBWcfvzEC1SPGyhPJkM705YsWcLTTz9dvt/T00Nn59iVy0aKWQb2LB7K2tQQo5Bzxz9wgkYr5FW5v3SBoDS/eeTk7NH+uHU5btbl5yjP4S49YMT84/LFhoPadHB7h4diVwTjSlftH74YAUordDkrDm1tKRocVQ6oS8F66cIHVM991loTlOYmB8UiYrr69YbPM1IuohWEFcXGigG3rrhwcFDnVffvQRcSSv1WHFhQ+vlMttCYEGJh2blzJ5/73Od49NFHSSQS3HnnnWzatKnezRJCiDktk/foH3LxKuYNB1oThEFxiU8XpaKaF6ZpgNZ4flherUXMvD1dQ9z3n7sIteaqi45j5RGTu5g9ZqB811138ZGPfIRYLDbq9wuFAnfffTcf/ehHJ9fiGjrnnHP4yle+Qm9vL4lEgkceeaQq8y2qVf+d6jH2RyqDtvK+0YLa4j5z0stBTUz5NccI8sdjW+bB56Irll4qMlRUcA1gvEVzRg/uh/PT5ZEJIcXlo8ovO9wErasKxSmlolEGSmEU22sYpWdWxcJsIwqihVFBsWg7vK9UcVxXvfYhsvKlvpBMuhDzgmFUDwEPguCgfUIIISYm7wb0pQsU3PErUJcKtPqBrH1cT9m8z5Mv7OOJ57poaXC48p3HHVZB0zED5dNPP53LLruM8847j3e84x0sX74crTV79uzhJz/5Cdu3b+dP//RPp3QSU7V48WI++tGPcvXVV+N5HpdddhmnnnpqXdsk5r/RLwwO7yzN/cas3QUEhcIyoltjHjNiPLtSxeH26IMy80qDHpGZr5xTX1ndOww1phnNP5/oUlNCiPo544wz+MIXvkA+n+exxx5jy5YtnHXWWfVulhBCzCleEDKQccnkXBnJNwP8IGQw41YtJRp3TN66opXWxtETtyNl8h5PPt/FUzu7cf2Qk45uZcOvryARG3cQ9aiUHm1do9KLZTJs2bKFhx9+mJdffhnTNDn66KNZu3Yt73vf+2hoaDisF50tDhxIz+oP/h0djfT0DNW7GXOa9OHUlIbJt7Wl2Nc9GK1B7AXk3RDPDwjCcIwRCdH/VHn4eGn8+PAxI+fDz/ehSbN5bu1cMpv70bFNTlu1pN7NwPM8vv71r7N9+3aCIOC8887j93//98ccITZXyHv2/Cd9WBvSj4evVKjLcmxef7N/Qkt3irGN9Z6ttWbHrgO8vHewHBgPZb2qYyqnYC5tT3LiyjZOPLqVloaD38syOY/Hn9/H0y/24PkhJ61s47xTj6CzNXHI9qUSNiceO/a03UMGyvOdvOnOf9KHtTGyH5VShDrE9TW+H+AFYdXazapU0b2i4jqMndFGa3xN9Fx+iOfrqOhFODyUfS5TCtpaGujrz8z7CwLTTQLlhUves+c/6cPakH6cPKUUrh8wlHXJ5DyampKz9r1mLhntPVtrzSNPvc7PXuiiMWnT1hijpSFGc4NDS0OMluK2MWUzlPF44dU+Xnill70HokKlR3akOOnoVk48ug1DqXKAHIQhJ69s49xTj6Cj5dABcsl4gfLh5aGFEAtaNMdaEbMUMWsScx8PMdfcBrDNcha7vK60jgqlBcX1pYOgNCw8LA8XH7Xq+iGbMdq6b6WTq6gCf5ifyaN1tofX2LZtk472FDETgjBaH7tQXEMx1MNrfNeTY5k0pRwCrfG8EC8ICAJdtSKAmBuuv/76Ufd/7Wtfm+GWCCHE7KZUNAd5MOOSc/1ZfTFuPvCDkAf+azfPv9LLWW/t5KIzjzrkikUtjTHOOXkJ55y8hN7BPC/s7uOF3X088tTrPPLU65iGItSaU45p59xTj2BR8+TnIR+KBMpCiFmlcvkz01TRPO+KYLxyibaomNnwkmeqHOKqg4unlZZoo/T8pYx3VC0dhouvlaq2l7ZhqYJ5aR43peJpwwXWAGJ2FBzbhoFpReF4KcCMORaOZQAGONBUPI9QRxn0QEfZedcL8YOZy6gbhqIp6dDc4JQvIKiKtgUBxWA+xAui4nF+ce66XywmV7msnnzIqL+1a9eWb3uex8MPP8zJJ59cxxYJIcTskysGyHnXk4vBM6DgBvx//+//2P3mEO9cvYxfP2nxpJb1bWuKc+6pR3DuqUdwYCDP87t7yRV8zljVSdthFOqaCAmUhRBzSimQjgJjhWnUrmjaZJ9n5L/vVW+041QRL52HQuFYxSeyTVQSRsuoe0HIQLpQ00A05li0NcWJ28aoa7UrFJYZtQcMSm9D1YXjogx/qSCcH2pc1x93HruYPpdccslB9z/4wQ/WqTVCCDG7BKHmwECenATIM2Yo6/Kd//gVPf153n3eSk59S/uUnq+9Oc75py2tUevGNu6Yybvuuuugfbfddtu0NEYIIeYSrau/avecwxn1mGWQjFm0pBwaEuMtXjYxpqFoa4qzpC1BzDIm3XZdlWGPllczDYVtGiRsk+ZUjCVtSY7sSLGkvYFFzQkaEg6ONV0LyYlD0VrT3d1d72YIIURdKQV5L2Bfb5ZsQYLkmbJ/IM+3tr5I71CB973z2CkHyTNpzIzy3/zN3zA4OMjWrVtJp9Pl/Z7n8V//9V988pOfnJEGCiGEiALThqRDOusd9nxmBSRiNq1NMZzDCJAnY+Q89sakjdbQnykwkC7IB5RpNHKO8ksvvcSZZ55Zp9YIIcQsoGAw49JX45FZ4tBefXOQb219EaXgmnUnsHRRqt5NmpQxA+XTTjuNX/ziFxiGQUtLS3m/aZrceeedM9I4IYQQwxzTIO5YZAve+AePYChFa1OcxmJWeqYD1dLrtaRimErRN1SoewGz+apyjrJSive9732ce+65dWyREELUT6ihbzBPOutOoNynqJWXXuvne4++TEPC5qoLj5u2ecTTacxAec2aNaxZs4bzzz+fU089dSbbJIQQYgyNDc5hzatKJmyakg6zYUXAppSDYRocGMjJlf1pcMkll+C6LrlcrvzzHhoaqrroLYQQC4EXhOwfyFFwg3o3ZcHIF3x+/MwbPPNSD8s6G7jiHW+p2dSxmTZmoHz77bdz8803c/fdd4/6fVlmQgghZl7CNrFNE9ef+Ju+YSiaU7MjSIYou5yKWZgtSXoGsgTBxNplmgaGKbOcx3Pvvffy2c9+Fs+LRh6Uqr7v3Lmzzi0TQoiZoRSk8z69g7kJv8eIqdFas/PVPh762Wtk8h5nn7SYd19wHNlMvt5NO2xjBsorVqwAqodwCSGEqL+mlMP+gdyEj29I2NM+J/lwxB2TztYU+/tyeMHYgb9jmTQmbZJxm9bWJNl0gdxhDD9fKL7xjW/wL//yL5x00kn1booQQkxaaWWFw3nPUkrh+gHpnMdgRuphzJT+dIFtT+7hV68PcER7kit/61iWLkoRs02y9W7cFIwZKH//+9/nAx/4AI8//jhf+MIXZrJNQgghDiEZt7DSBn4QjnusaSgak86s/bAQswwWtyXo7stVZcmVgrhj05iySThmeY3nmGPR2RqnP23Ih6AxLFq0SIJkIcScopTCC0JcPyBf8AlDSCYs4raJaagJ/VufdwOGsi4515dpPTMkDDU/29nF9mf3AnDRGcs4862LMYz5MfprzEB5cHCQT33qU/z0pz8ddTkoqXothBD1YRqKhqRN/1Bh3GMbks6szCZXskyDxe1JevpyeH5AImbTmHIOWt+5RKFobYgqd/cO5gnkA1GVc889l+985zv81m/9FrFYrLxf5igLIWYLpaKMseuHFDyfbD7A9fyqf8/TORezWMQyNUrQrBT4gSZb8BnKuHhBMKvf6+abvfsz/PsTr/LmgSzHLWtmw9nLaW6Ijf/AOWTMQPkrX/kKP/7xjw+qei2EEKK+tIZU3GYw4x7yqrlpqmIBrxls3GEylaKzNUkQhuXAfrx2p+I2tm2yf0Q2eqH7+te/juu6/OVf/mV5n8xRFkJMRKjB9Xxsy8QyJ5bJnay8F5Ar+OTyPn4QHnIFhCAIyeRcMjkX01TEbYtUwsY0jWh/3pM5yDNAa013f47XutK81p1mT1eagYxLQ8LmsguO4a0rWlFqfmSRK40ZKK9atYpVq1axfPlyNm/ejO/7aK2x7blZtUwIIeYTxzJIxGwyOXfMYxqTzrR90JkOhgLDnFz22zENlrQnOTCYJ5OTecsAO3bsqHcThBBzSCkzm857DGVc/CDENBWpuE0q4RCzDaayrlJp3nCu4JPOeoed+Q0CTSbwyOS9ckZaTA+tNXu60uzpGuK17jSvdWcoeNEF6YaEzfLFDZx90mJOe0s78diY4eScN+6Z/fqv/zof/vCHefLJJwmCgDPOOIMvfOELLF68eCbaJ4QQYhRaQ1PSJpt3R/2wYJkGTYm5kU2eKkMpOloSOLbJgKzPTBiGfOtb3+JXv/oVn/zkJ9myZQsf/vCHMU2z3k0TQswiSilcL2Ao55LJeVXDnoNAM5hxGcq6OLZJY8IhEbMmdfFVo4vzhj0Krl/TaTIL/J/5aROEIb/Y1cvjz+1j/0BUrbqjJc5JK1tZvriRozobaGlw5mX2eDTjBsqf+cxneNvb3sYXv/hFgiDg29/+Nn/xF3/BPffcMxPtE0IIMYaYY+LYFgXXP+h7jSln3hTTmBANLSkHHWr60+PP3Z7P7rjjDnp7e/nFL36B1prHHnuMnp4eqS0ihACiDHLeDRjMjF/4SmsouAEFN1fOMifjNoZSVUlmrTWK4cRz3vXJ5Hw8mRYzJ3h+wLO/2s8Tz3UxkHFZ3JrgkvNWcuyyZhLzOGM8nnHPfPfu3Xz5y18u3//jP/5jNm7cOK2NEkIIMQEamlMO3SMCZds0aUwsvGkyWkcXDxa6J554gu9///tceumlNDY28s1vfpOLL754Qo9Np9NceeWVfO1rX2PZsmU8/vjjfO5zn6NQKLB+/Xo++tGPArBz505uvvlmMpkMq1ev5tZbb8WyLPbu3cuNN97IgQMHWLlyJXfeeSepVIrBwUE+9rGP8dprr9HW1sZdd91FR0fHdHaDEGIUgdYc6MuTc71JZ2Urs8yj0lUbMQfkCz5PvdjNz3Z2k837HNXZwIZfX86xRzYvmKzxoRjjHeD7PoXC8NX5XC4nHSeEELNEImZiW9XBYVMqutq/EFmmsbAy6aOwLAvDGH57dxwHyxo/I/C///u/vO9972P37t0A5PN5PvGJT3D33XezdetWnnvuOR599FEAbrzxRm655RYefvhhtNbcd999ANx66628//3v56GHHuLkk0/m7rvvBuCuu+5i9erVbNu2jcsvv5zbb7+9xmcthBhPwQ/ZdyBLtjD5ILlSqdjiQV9IkDxXDGRcfvT069z1rzv4f8/uZWl7kmvWn8DvbFjFcctaJNYrGjdQ3rBhA7/927/Nd7/7Xf71X/+VD33oQ6xdu3Ym2iaEEGIcCkVjcjh7bFsmDcmFl00usSVQ5vjjj2fLli0EQcDLL7/MLbfcwqpVq8Z93H333cenP/1pOjs7gago2IoVKzjqqKOwLIvNmzfz0EMP8cYbb5DP53nb294GwKWXXspDDz2E53k89dRT5c8Ipf0A27dvZ/PmzQBs2rSJn/zkJ3ieFF8TYiYoBZm8R3dvRoZCL2BBELJzdx9b/uMlvvzdHTzx/D6OO7KZazefyPsvPJ4Vixvr3cRZZ9xLzH/wB3/AkiVLeOyxxwjDkEsvvZTLLrtsJtomhBBiAlJxm4F0gSDUUZENFm6gqBQ4lonvh/VuSt3cfPPNfPazn+XAgQO8//3v59xzz+Xmm28e93Ejs7zd3d1Vw6M7Ozvp6uo6aH9HRwddXV309fXR0NBQzl6X9o98LsuyaGhooLe3d1KFQdvbGyZ8bL10dMgHzamSPqyNUj8GoebAQI6AgKamZJ1bNbe0tqTq3YSa6OrN8ORz+3h6ZxfpnEdzg8OFZy7nrJOW0N6cmPbXn839GLMPnTMeN1C+5ppr+Md//Efe85731KxRQgghascyFamETb4QkIwv3KIbMDxPOZtfuNnK7u5uPvvZz075ecIwrBp+p7VGKTXm/tK20ljD97TWVcPDJ+LAgfQhiw7VW0dHIz09Q/VuxpwmfVgbpX4MtZal8w5Ta0uKvv5MvZtx2Fwv4PndfTz7qx5e785gKMXxy5t5+3EdvGVpUzTySofTfo6zvR9TCRtoGvP7436iGhoaIpvNkkzKVSghhJiNtIaGpEPcCRd0NrnEsaevoJdhRAHhbF6a5Ld/+7c56qijuOKKK1i/fj2O4xzW8yxZsoSenp7y/Z6eHjo7Ow/av3//fjo7O2lra2NoaIggCDBNs3w8RNno/fv3s2TJEnzfJ5PJ0NLSMrUTFUKMyQ9CegZyFFwZar2QDGVdfr6zm2d+2UPeDVjUHOedq5dx2lvai0GhmIxxA+VEIsE73vEOTjjhhKpg+Wtf+9q0NkwIIcTEOaaBY04uQzdfWYbCMNS0ZB+bkg6madA3lJ+12c3t27fz2GOP8f3vf58vfOELXHTRRVxxxRUTmqdc6bTTTuOVV17h1VdfZdmyZfzbv/0b73nPezjyyCOJxWI888wz/Nqv/RoPPPAA559/PrZts3r1arZu3crmzZv5wQ9+wPnnnw/AmjVr+MEPfsD111/P1q1bWb16NbYtH9qEqDWlYDBT4M3eLEGwcKegLDT7erM8+XwXz73Si9aaVctbOevETo7qbJDCXFMwbqAs85GFEELMJaWCXtMRyFqmQWMS6WHBAAAgAElEQVTSxrYMDgzkZ2VhHMMwWLNmDWvWrGHXrl3cdNNN/Mu//As7d+6c1PPEYjH+6q/+ij/6oz+iUCiwZs0a1q1bB8Cdd97JJz/5SdLpNCeddBJXX301AJ/+9Kf5+Mc/zj333MMRRxzBF7/4RQBuuOEGPv7xj7Nx40YaGxu58847a3vSQggA+jMuKh9IkLwAaK35vzcGePL5Ll55cwjbMlh9QgdnnbiY1sZYvZs3Lyitxx5A9tJLL7F7925OO+20SRXcmCtkvtP8J31YG9KPUyd9WBsT6UeloLsvR2Ya5ikvbkuScKJrzFGRnDzZQvQ6jm1y2qolNX/NyfJ9n//8z//k/vvvZ8eOHWzYsIHLL7+cE044od5NmxJ5z57/pA8PXxhqDgxF85Fn+7zQuWC29+GvXu/nP556nf0DeRqTNme+tZPTj+8gEZtddUpmez+mEjYnHts55vfH7M3vfe97fP7zn2fFihXs2bOHv/7rv+bcc8+dlkYKIYQQtVIq6FXrQFlB1frUpqHobI3TlzYYzBRq+lpTce6553Lcccdx2WWX8Td/8zeHPUdZCDH7KQV5L+RAfw53Fo5wEbWXK/jc/+grNCQs3n3eSk46uhVTpl5NizED5W9/+9s8+OCDLF68mGeffZYvfelLEigLIYSYE6ajoJdSapS5XorWhhiOZZCeJZVl7733Xo4++uh6N0MIMd0UDGZd+oYKs3q0haitJ1/oouAFXLP+BJa0SbHl6XTIyw+l4dZvf/vb6evrm5EGCSGEEFNlmVFBr1pSijGfMxW3WdQ6/etRTkQqleLaa69l7dq17N+/n9/93d+lu7u73s0SQtRQqGH/QJ7egdlbWFDUXq7g87MXuli1okWC5BkwZqA88qq5aU7fchtCCCFELVmmgTnJdXrHo5TCPETsbdf49Q7Xrbfeyjvf+U5isRjNzc2sWrWKT37yk/VulhCiBpQCLwjp6s2QzrpIiLywPPF8F64Xsua0pfVuyoIw4Xd1KS0uhBBirlDUfvj1oTLKs8kbb7zBFVdcgWEY2LbNjTfeyJtvvlnvZgkhpkApheeH9A0V2HcgQ8GT+cgLTTbv8/MXunjrilYWSzZ5Row5R/mXv/wlp59+evl+Pp/n9NNPR2uNUor//u//npEGCiGEEJOlNcRtg0yuds9pGAZRCD67czhKKcJweGmYdDpddV8IMYcoyBcChrIuOdeXYdYL2BPP78P1Q9a8TbLJM2XMQPk//uM/ZrIdQgghRE3ZtlnTsNYyjRo+2/S56KKL+NjHPsbQ0BD33nsv3/3ud1m/fn29myWEmASNJpv3Gcy6uF7A2Iu5ioUgm/d4amc3Jx7dSucsqYexEIwZKB955JEz2Q4hhBCipmzDwDAUQY0yMJap5sSH1euvv54f/OAHhGHI448/znvf+16uuOKKejdLCDEOpcAPNOm8Rzrj4QUyvFpEnni+S7LJdTC7VqUWQgghasS0FKZhEIS1+bBpzYH5ySXvfve7efe7312+/9Of/pTf+I3fqGOLhBBjUUrh+tHw6kzOq9nFPTE/ZPIeP9/ZzUkr2+hokWzyTJrxEp3PPPMMl112GRdffDHXXHMNb7zxBgCDg4Nce+21rF+/nquuuoqenh4AXNflxhtvZP369VxyySXs2rULAK01n//851m3bh0bNmzgmWeemelTEUIIMYvVuqCXac6OqtZjee6557jyyiu5/vrr6e3tBWDv3r384R/+IR/5yEfq3DohxEhKQcEL6O7L8uaBDIMZV4JkcZAnnuvC80POP+2IejdlwZnxd/0bb7yR2267jQceeIDNmzdz2223AXDXXXexevVqtm3bxuWXX87tt98OwLe//W0SiQTbtm3jE5/4BDfddBMADz/8MLt27WLr1q387d/+LTfddBO+78/06QghhJiltIaYU7u3udle8frWW2/loosuYtmyZdxzzz386Ec/4l3vehe5XI4HHnig3s0TQlTIuT77enPs682QyXtSpEuMKpPzeOrFbk4+RrLJ9TCjQ69d1+WGG25g1apVAJxwwgn88z//MwDbt29ny5YtAGzatIm//Mu/xPM8tm/fzg033ADAGWecQW9vL3v37uXRRx9lw4YNGIbBypUrOeKII3j22Wc544wzZvKUhBBCzGK2VZuCXkqBMcuXSRwaGuJDH/oQQRCwdu1atm3bxq233srGjRvr3TQhBBBqyBU8BjPFAl31bpCY9R5/bh9+EHK+rJtcFzMaKDuOw8UXXwxAGIZ89atf5Z3vfCcA3d3ddHR0RI2yLBoaGujt7a3aD9DR0cG+ffvo7u6ms7PzoP1CCCFEiWXWpqCXUgpjdo+8JpGIsg2maVIoFPj617/OiSeeWOdWCbGwKQWuH5LJe6SzHn4gS7WJiUnnPJ56sYeTV7axqDle7+YsSNMWKG/bto3Pfe5zVfuOOeYY/uEf/gHXdfn4xz+O7/tcd911oz5ea41hGOV1m0fuD8Nw1P2T0d7eMKnj66Gjo7HeTZjzpA9rQ/px6qQPa2My/ai1Jh9ogmBqgbJhKBa1N2BbtZvzXGu6oiR3a2urBMlC1JOCghswmPXIF6RAl5i8x5/bRxBKNrmepi1QXr9+/ajrNmYyGT7ykY/Q0tLCPffcg23bAHR2drJ//36WLFmC7/tkMhlaWlpYvHgx3d3dLF++HID9+/fT2dnJkiVL6O7uLj9vaf9kHDiQntVzQjo6GunpGap3M+Y06cPakH6cOunD2phsPyoF+axLOudO6XUty6AxZhxyDLdhqLpegA3DkIGBgXLAXHkboKWlpV5NE2LeUyoaeeIHIXk3YCDj4nr+nFhSTsw+6azH0y/2cMox7bRLNrluZnx5qBtvvJEVK1Zw6623VmWA16xZww9+8AOuv/56tm7dyurVq7FtmzVr1vDAAw+wevVqnn76aWKxGEuXLuX888/ne9/7Hps2beL1119n9+7dnHLKKTN9OkIIIWYxrSHumKRzU3se01AoFHoWzyp86aWXOPvss8vB8VlnnVX+nlKKnTt31qtpQswbSkEQ6uGvIMQLQjwvxPNDAh3tE2KkIAxJ53zSWZd0zicIh39PKi+oaA2/fK2/mE2WStf1NKOB8gsvvMCPf/xjjj32WC655BIgyiT//d//PTfccAMf//jH2bhxI42Njdx5550AfPCDH+SWW25h48aNOI7DHXfcAcC6devYsWMH73rXuwC4/fbbicfliosQQohqtmWgFFPK7FiGwdRLgk2vF198sd5NEGL+UpAr+PSnXfwgRGs9q0clitoIQ01/usD+gTwHBvMcGMizfyDPYMbFtgxsy8SxDBy7+rZpGGQLPkNZl3TWYyjnkc1PbnWetx+3iLYmiW3qSWm9cAeFyNDr+U/6sDakH6dO+rA2Dqcfg1Czd396SnMEm1Ix2ptihwy26z30er6T9+z5bzb2oVKKvBcwMFQg53pzYih1a0uKvv5MvZsxZ2itGcy49A4V6Bsq0DtYIJ33eXN/mt7BQtV7RzJm0d4cpznlEIQa1wtw/RDPj7ZucWSBH4Qk4xYNCZvGpF3cOjQkbBqK9y0zqrWkKG4rFlZQStHa6GDO9iqS45jtv4uphM2Jx449dXfGh14LIYQQM8kyFaZhEITBlJ5jLnxAFkLURqla9WDGJZPzCOUfgDnP9QK6+3Ls682yfyAfBcaDBfrT1cGwYSjam+O0NsY5dlkzi5oTtDfFWNQcJxm363gGYqZJoCyEEGLeizkmrn/4gfJcv6ovhJi4MNQMZl2Gsq5Uq56j0lmPfb1Z9vVm6erNsq83x4HBfPn7jmXQ2hijozXOCctbaG2M0doYo60xRlPKob2tYVZnQsXMkEBZCCHEvFYq6DWUPfznMEw1/kFCiDmrVLE6m/cYzHh4weFfWBMT4/kB2UJANu+TK0Rf2YJPwQ2IOSYNcZtUwiKVsGmI2zi2UbU0rOeH9A7l6R0oRPOHi1+9AwWyheH5wC0NDovbkpx8TBtL2hIsbkvSnHKqnkuI0UigLIQQYt6zLPOwC3opBYZ8oBJi3lEK/EBT8ALSOY+C6y+YDHIQhPRnXPqK83Irv7TWNCYdmpLRvNqmlENj+bZN3DEJw2h9+qjKd1TYrFQJ3PMDMnmfbN4nk/eGb+ei25m8R67g409yfXvLVKTiNqm4RSbvM5CpXvavIWHT3hRj1YoWFjUnWNKeZHFrgkRMwh1xeOQ3RwghxLxnmwrDUAST/GAGUabJkDhZiHmhtLxTFBz75F3vsP5dmEtyBZ839md4vTvNG/szHBjIM5Bxqy4cWqYqDz9WSjGUdenpz5HOTb2AmWUaNCQsknGLxqTN4rYEyZhFIhbtS8Ss4fsxi5hjUnAD0nmvHFync15VoN3eHKetKU57U5z25hhtTXFitjm1hgoxggTKQggh5j3TMDCVQcDkh1MqFa2jLISYW0oDQbxgeM3j0hBff56udRyGmr09aV54eT+v96R5oyfD/oFobq5S0NGSYFlnA6cU5+O2FLcNCXvUochhqEnnvGjOdibaFrwA01DFLwOjdNuMtpZpkIpbJIvZX+cwAljbMmhISuEsUV8SKAshhFgANPHY4RX0ijLKEigLMZsppQh1iO+H+KGOlupxAzw/JAhDQq3nZeV6zw95Y3+GPV1D7OlK83p3GtePLgIk4xbLOlKc8pZ2lnWkWLooNemsq2EomlLR8Gs6puMMhJi9JFAWQggx72nNYQ/LM1AopdDz8VO2EHNUqfiWF4S4XkC+EOD6AWGo5/VSTvmCz2s9afZ0pXm1a4g392fL86o7WxOcemw7q45upzVl09IgBauEmAoJlIUQQiwIh1vQy7IMYP5+8BZiJg3HbQqIgtoggFBrhorDekccWD4aIAhDCm5AzvXx/ZAw1PPurzNf8KM1focK9A5G6/32Dkb30zkPiAoMHrEoyZkndrJicSNHdTaUi1a1tqRkaSMhakACZSGEEAtCVNDLIJjk3ESZnyzE5JXiXL80PzgM8fwwuh+E+GExyNWgi8Oic76mvz8zHBWPYj4kiz0/oD/t0p8ulLcDxW3fkEuuYmkjgMakTWtjjGOPbKKtKc6RHSmWdaSwLSleJcR0kkBZCCHEgmAaBpapmOzyqJZlzIsP50JMVnX2F6AisAWiEb+asHjtSWuNH2i8IMD1QryKodAT/RvS5f/NTUEYks56DGRcBovFrwYzLgMZl6HiNpOvDoRNQ9HS4NDcEOOtK5K0NcVpa4zR2hSjtSF2WMWwhBBTJ4GyEEKIBUITsy0K7uQiZUsyymKeiQLgaN59EGrCMMTXEAaaUIeEOqp2XP7S0bq7muGAV6Mp/lfcVtyfR7J5j66+HN19OXr6c2RyPl4Q4gdR4bDoti5my0MKXnDQRYGYbdKUsmlKOixpT9LcEKOlwaGluB2r4rQQor4kUBZCCLEgHG5BLxl6LWar0TK+pextWMz8ojVhMSgOQx0Fdn6IW6wGrcPS8fMtxJ04rTWZnE9/psD+/jzd/VFg3N2XK88JBkjELJqSNpZpYFkGybiFZRnYpoFlGtiWQdwxoyrRyahSdHPKIeZIRliIuUgCZSGEEAuGZRmTKuilFCjDmN5GCVFUGfhqdHnYchhS3OrhLLDWBEF1xjcsZ3UPzvYutDhY62iJqIIbkHcDCl60Hcq6DKSHh0NHQ6TdcuVoAMtUdLQkeMuRTXS2JqKvloRkfoVYYCRQFkIIsWBYxTWRgwlGDQqFJJRnt9Iw4ok5eI5tqZCUUsWftxHdjtbOHs7UFl8NpaKgVRcD1FJAm8l50bBbiLK4pSHKurhc0QSGJVcWugqqCl3Nn0BX62iYslfMake3A1w/5M2+PINDuWLxr+KFgOIFgSDU0XJQ5cdFayS7Xohbul0MjAteMOoQ6BKloDHp0JSyWbooxVtXtNJcXCt4UXOc1sYYhvzhC7HgSaAshBBiwTBNhTIUhBMMlMsBk6i3UEfDhqP5s9F80CDUeH4UQI0XhuqQQ86xRRXD4mLAjIrW0DZMhakUGqLgNdTDmdtiwI2GnA/9/Zk5O0e3cli2V557W3G72M+lgDUIdBTQB9F9v7gteFEhL9cLKPjDt6OANiz+rKbGsaJhzo5tVt1OJWzitknMMYlVbOMV95uSNo1JRwJhIcS4JFAWQgixYCilsE0T35/Yh3WlogyjqI0HH3yQe+65B9/3ueaaa7jqqqsm/NiuviwFN5hydrX0+PKw5oqMsqFU9DNX0c9eKVC+Kj+uNPw5CDTBiNuFAPoHc1XLHenKDHZFRrkywK7MQAfF4llBcemkUma11Nbh2xXFtor7dcXxUTY2POi+Xw5qQ7zS7eKSTVOdo2waqhywxmwD24q2qZiNY1cHtbZl4Fhm+XZ036C1JUU2W8A0FKahMIrb8pepsExDhj8LIWaEBMpCCCEWDK01jm2QK0zseEMpTMMgnGAGWoytq6uLL33pS9x///04jsOVV17JWWedxbHHHjuhxz/4X7vp6c8dHAQGw3N2S3N4Q105p3f49mSWKSopDcmejcWuSsG9YURTCkxzRGBpGJjmcMAZc0waTBvLVFhWVIAq+lLlYlR2sVCVbRrY1vD+ymNN08Ayou+VXrMWwWtrS4q+/kwNekYIIaZOAmUhhBALimNNPEVsmrKGcq08/vjjnH322bS0tACwdu1aHnroIf7wD/9wQo/vHcozlPXKgZljm+UsY2WwGG0rssNGcWRA5fdGHKuUGq4WXRFsV25HZjgNw6jKfDam4mRzhSiwVgrFcFYahvehhoPvaH/0fcOIhniXA9ti+0zTKN6m/PqltktmVQghpo8EykIIIRYU0zRQTGy912hpKImUa6G7u5uOjo7y/c7OTnbs2DHhx//BZW+vyfxWMbu1tqTq3YR5Qfpx6qQPa2M292PMPvSFcwmUhRBCLCimERX00hMYTm1ZSjLKNRKGYVUGVGs9qYzo4FAW9xCVjKdTuZmHqFwtw4anTvqwNqQfp076sDZmez+mEjbQNOb3JVAWQgixoFjFobrhBDLFplTGrZklS5bw9NNPl+/39PTQ2dk54cd3tibx/ZAQ0KXh0WGpqFZxOHPlsGcqhz4PR7qjVb3W5eOHh2yr4o7SI1VxAW6tQStQxYJcpedrao5jEVYX8SI6oHRceRg2lO9U/oaVlkIqzasOwhAdUrE+8vALln97S+smV9JUHyOEEGLSJFAWQgixoBjKwDSNCQ3jNaXkdc2cc845fOUrX6G3t5dEIsEjjzzCZz7zmQk/3i7O1R1NMYatq9bGOH7em/LzVJ9i9brNpVMMi5H3cKCu0aWQuzKQLl4BGA6qdbladqBL6xRTrN5d/fegyr/6qrxEWuU1h3IzRwT8lVW4hwP8EUtxVagM8hXF5djGWKpLGdEyX4EuXkCo9w9dCDGvSaAshBBigdE4lkHBPfRRCmSt1RpavHgxH/3oR7n66qvxPI/LLruMU089tSbPPZ/ipepzGc6Aq4rstlGVJT98w0H5cGGxQ/flRDv64AC/nBln+DUUldlxRUtLkrhVGgmgKP35lYqvlS4KRGs5F4P94jrPnhfiBUHVRYRSkD6ffj+EEDNHAmUhhBALitbgjFPAA6IP66bEyTW1efNmNm/eXO9miKLhAFKPuD/lZz44wDfBHCe4TyVssmlztKeryh4bSuFYxeeyzfLrQGmZsChAjrbRfHi0JgijufJeEGXQPT8sVjsfHu4uhBAlEigLIYRYcCxrlA/jI0TzVWXotRBzgdalvLTCNKJbHOLPtzR3PdQhQQg6DAk0BEFI3g0ouAGBDstrcQshFh4JlIUQQiw4VnHt2/AQla+VUhjjx9NCiDmoNIxbobAMwDCxAWyThoQNKIJi9tn3g4rgWRcz1DKsW4j5TgJlIYQQC85EKl+XKiDLB2EhFpZSEG0oRcxSxCyjKngOw6gIWmlYd6lAWqijudMFLyAIwqhqufz7IcScJYGyEEKIBcdQRrmS75jHGAZRkSP5pCvEQlcZPBvjFC9QKhrS7fkazw8peAEFz8cPZCi3EHOJBMpCCCEWII1jm7h+MOYRlmkgQbIQYrK0joZ0O5bCsQwaEhYQH30odzFDLf/SCDH7SKAshBBiwdEaYrZBOjf2MZYpw66FEFM39lBu8ANdXN4qIO+FFDw/WoNaS+ZZiHqTQFkIIcSCZFmHrmhtyRrKQohpUgqCTUNhGiZx26RJRWNYAl/j69ISVgGuFy1lFegwWo9aImghZoQEykIIIRYkyygW9BrjQ6dpytJQQoiZUw6eTRWtOW0ZELMolVMIwmLwHGiyeZ+860vBMCGmkQTKQgghFiTTNFAGMMY0ZUMyykKIWaAUCBtKYVgmtgWpuEWoNa4XkvcCsnkPzw8PueSdEGJyJFAWQgixIJmGwlQGwSiRcmlpKCGEmI20BoUiZpvEbJOWlIMXhLheiBUzGTQUgQTNQkxJ3caVvfDCC5x88snl+67rcuONN7J+/XouueQSdu3aBUSVAz//+c+zbt06NmzYwDPPPFN+zDe/+U3WrVvH2rVreeSRR2b8HIQQQsxttm2Oul8phSEjr4UQc4TWYBkGyZjFkR2NLF3UQHtzgphjItf8hDg8dcko53I5PvOZz+B5Xnnft7/9bRKJBNu2beOpp57ipptu4r777uPhhx9m165dbN26lVdffZXrrruOrVu38sILL/DDH/6QBx54gHQ6zXvf+17OPPNMWlpa6nFKQggh5hitwbENMqNUvlZKSUZZCDFnmYaiMWHTmLQpeCHZvEcm5+EHYb2bJsScUZfr5X/1V3/FNddcU7Vv+/btvOtd7wLgjDPOoLe3l7179/Loo4+yYcMGDMNg5cqVHHHEETz77LP85Cc/4cILLyQWi9He3s6ZZ57J9u3b63A2Qggh5ip7jIJdSskcZSHEPKAhZhm0NcY4siNFZ1uSVMLBtgxMQ00426xUFHw7lkkqbtOYdGhKxWhuiNHaGKO1KU57U5xFzQk6WhK0NMaIOVZUC0L+KZ2XTFPN+/fJGc8o//jHPyafz7Nu3bqq/d3d3XR0dJTvd3R0sG/fPrq7u+ns7Bx1/ymnnHLQ/slob284zLOYOR0djfVuwpwnfVgb0o9TJ31YG7Xsx2zOw9eKkTP5bNugY5H8vIQQ80NpTnPSsUjFrOFlqMJo6amCF1BwAwKt0VqjlMIyFE5xDrRtGViGgWkp1IjnHUtrgyIIoyrdvh+QKwS4XkAQRkXHDncGtVLRqB8ta03PKKWiIpjJmEUiZhGzTbxAs78vhxeMURVzjpu2QHnbtm187nOfq9p3zDHHkE6n+Yd/+IeDji/9UVbeNwyDMAzH3D+SMckJZQcOpGd1dcCOjkZ6eobq3Yw5TfqwNqQfp076sDZq3Y9BqBkYzB5U9CYVt9lvqUl9CDMMNScuwAohFraqZajMKBBuTNpAFNgGoS6u72wAI4JRzYQDXK01hlLELEXMMmhI2GjAD0L8QBMEGj8IcH2N5wWEWhMWA3U0qOISfoaKAnbHNrBMA9M0MBSEoa5aMssPQnw/LD/PbP6MP1cYhsIyDFJJm7hj4VjRz6P0OxGzFIvbEnT35XD9+RcsT1ugvH79etavX1+177vf/S5/93d/x1VXXVXed/HFF7NlyxYWL15Md3c3y5cvB2D//v10dnayZMkSuru7y8dX7u/p6Snv7+npYeXKldN1OkIIIeYh04w+DAZh9Rv8fB9OJoQQlaLAJwpsDVMV99U20Cw9nWUYWAZgA5TWiVaEYUigNUEYvbZpRFltY7SAHaCiFmMpp6aUIghC/FCTLfiksx6+Hxx29nq2sk2T1qYYhoIghFCHhLp48SCILhQEoUYXLxZoKjL4enijiFZ4UIaKLkIYCtMs9Xu0z7GMqr4f+XOwTIPF7Un29+fJFTzmkxkden355Zdz+eWXl++fcMIJPPDAAwCsWbOGBx54gNWrV/P0008Ti8VYunQp559/Pt/73vfYtGkTr7/+Ort37+aUU04hFotxyy238Du/8zvkcjmefPJJbrjhhpk8HSGEEHOcAizLOOhKuDXig4EQQojpUQrSlVJYSkVBdNX3x//HuHRIaYSqbSqakw5NSZu8GzCU9ci7/rzIMsdsk46WBNYhamwUb1XdLw1V18VhAZrS3HOj/DOIjqt+vom8F5pK0dGS4MAgZHLzJ1ieNesof/CDH+SWW25h48aNOI7DHXfcAcC6devYsWNHudDX7bffTjwe59RTT+Vd73oXl112Gb7v88d//McsXry4nqcghBBijilVvs7mq/dbklEWQog5T6FIOBbJmI3rB2TzHumcjzdHhwknYzaLmuOHHPWkR6SORwa6CkXxP4CaXTwwFCxqjmMaisGMW5PnrDelaz2uYg6ROcrzn/RhbUg/Tp30YW1MRz9mCz7dfdmqfYvbkiScyV1LljnK00ves+c/6cPakH48NI0m7wbFAmYhnh8cNKe5tSVFX3+mjq2spoDGlENbYwyY5RdyFfSnCwykC7Q0z65+HCmVsDnx2M4xvz9rMspCCCFEPZSWLyldNo6WhqrL6olCCCGmWSnLnHAsVIMi1FFxMT8oVgB3A8ziHN3ZcHFOKWhpjNOcciZeSa2eNLSkYphKoWd5TD8eCZSFEEIsaFaxqmpQjJSVUsjIayGEmP+01iiiOc22aZBwQKWgra0BxwDPD8gWAgquTxCGE65dMTwveGrtMw1FW3OChrg15+pmNKUcnLjD0FB+zg51l0BZCCHEgmaaUcVPipmDUhVQIYQQC4/W0VQax4oqPjckbMJQ4wYa1/XJFQIKfgBaowwVVec2TWwrWkrJNFV5VFK0dFWI64VVS2CNl6lWgGWaLGqJE7PNORckQ9SPTQ0xlrQl6UsXyOTcOXceEigLIYRY0JRSOKaJ74fl+zLyWgghBEQBnyqvB+3QlFLl7LJpKJRSjLp8FVAq4V1eAqs4zDsIh4NlVSyspZUqzz6OAuVouYoFtKgAAAsuSURBVKa5zjQUHc1xEo5J71CBIAjr3aQJk0BZCCHEgqa1xrYNKET3DaUwlFHzNUSFEELMfVpH601TsezS+I8BqBzmPa1NnHW0hlTcxrFN+gYLZOfIestyzVwIIcSC51Qs3DnW2pRCCCGEOHy2adDZmqC9KX7IbLmhoiHtplnfjLpklIUQQix4pmlEQ9+g+MYs2WQhhBBiOjSlHOIxi76hAkopLFNhGQrTNDAMhanAUAbKgLwXMJTxKLg+4QyP9JJAWQghxIJnFQt66VBjmWrOFRwRQggh5gqto+zy4tYkY87vLko6FknHwg1CMjmPTM7Dn6F5zhIoCyGEWPBMI1oiKkRjSiUvIYQQYtpNphaIYxrEGmM0pxxyBZ/BrIvrBdN6YVsCZSGEEAueoQxM08APwrrPiRJCCCHEwbSO5i+n4japhE3BDcgWfDI5jyAIaz5pSgJlIYQQAo1jGbierKEshBBCzHoaYrZJ3DFpaXDIeyHZnEeu4NdsaLYEykIIIRY8XXzDzeRKa2IKIYQQYrbTGhSKhG2SdEyCUFPwAtI5n7zrEQSHn2eWQFkIIYQALMtAGQrjEEtWCCGEEGJ2Kg3NTjgWyZhFEMTozxQYyrqHNZdZKpYIIYQQRAW9zOKyFEIIIYSYu7QGw1C0NcZpa4of1kVwCZSFEEIIoiWiTFMyykIIIcR80pR06GxNYpvmpB4ngbIQQghBVPnaNg1AAmUhhBBivtAa4rbJkvYkiZg94cdJoCyEEEIAoHFsC2q+wIQQQggh6s00FJ2tcZpSDhOp27mgi3nNheF1c6GNs530YW1IP06d9GFtTGc/JuMmSqkJvYGOJD/f6TUX+ncutHG2kz6sDenHqZM+rI3Z14+KRc0JkjGbgh8c+kitD6cGmBBCCCGEEEIIMT/J0GshhBBCCCGEEKKCBMpCCCGEEEIIIUQFCZSFEEIIIYQQQogKEigLIYQQQgghhBAVJFAWQgghhBBCCCEqSKAshBBCCCGEEEJUkEBZCCGEEEIIIYSoIIGyEEIIIYQQQghRQQJlIYQQQgghhBCiggTKMyydTrNp0yZef/11AO6//342bNjA5s2bue222/B9H4Du7m6uvfZa3v3ud3PllVeWjx8cHOTaa69l/fr1XHXVVfT09NTtXOppIv144MABLr744vLXb/7mb/L2t78dkH6Eif8uvv7661x11VVcfPHFfPCDH+SNN94AwHVdbrzxRtavX88ll1zCrl276nYu9TTRftyxYwfvec972Lx5M9ddd135d076Eb761a+yceNGNm7cyB133AHA448/zubNm7nooov40pe+VD52586dXHrppaxdu5abb7653L979+7lqquuYt26dXzkIx8hk8nU5VzE/CPv21Mn79m1Ie/bUyfv2VO3oN6ztZgx//M//6M3bdqkTzrpJP3aa6/pXbt26fPOO093dXVprbX+9Kc/rb/5zW9qrbW+5ppr9He+8x2ttdbf+c539A033KC11vrWW2/Vf/d3f6e11vr73/9+ef9CMpl+LAmCQH/gAx/QP/zhD7XW0o+T6cOPfexjesuWLVprrf/pn/5J/9mf/ZnWWutvfOMb+lOf+pTWWuuf//zn+vLLL6/DmdTXRPsxDEO9Zs0a/cQTT2ittf73f/93fd1112mtpR9/+tOf6ve+9726UCho13X11VdfrR988EG9Zs0avWfPHu15nv7Qhz6kt2/frrXWeuPGjfrZZ5/VWmt90003lX83r732Wv1v//ZvWmutv/rVr+o77rijPick5hV53546ec+uDXnfnjp5z566hfaeLRnlGXTffffx6U9/ms7OTgB++ctf8ra3va18/x3veAc/+tGP6O3t5cUXX+TKK68E4D3veQ9/8id/AsD27dvZvHkzAJs2/f/t3E9Ik38cB/D3I3tapYcpTMVYf4gwCMzDAi9OpHD1qGNlsEMeRIiIwqCBibcKoUMnT3WpoIgIhAllOwRRSpcUMvpziNKwMlP2BLOazu3zO+zn2NLF6hk+0vN+wQ77Mh/4vjf29vPwZS148uQJ4vG4CbsxT745ZhoYGMCmTZvS2Vk9xz/JMJlMYn5+HgDw8+dPbNy4EUAqQ5/PBwDYt28fIpEIPn/+vNZbMVW+Oeq6jlgshrq6uvT6yMgIFhcXLZ+j0+lET08PNmzYAFVVsXPnTkxOTmLbtm1wuVyw2WxobW1FOBzGp0+fEIvFUFtbCwA4cuQIwuEw4vE4nj17Bq/Xm7VOZBR72zh2dmGwt41jZxtntc7moLyG+vr64Ha70893796N8fFxTE9PI5FIIBwOY25uDlNTU6iqqsKlS5fQ1taGrq4uqKoKIHW0y+l0AgBsNhtKSkoQiURM2Y9Z8s1xWSKRwJUrVxAMBtNrVs/xTzI8c+YMbty4gfr6ely7dg3Hjx8HkJ0hkPry/PLly9puxGT55lhaWorNmzdjZGQEAHD//n3E43Houm75HHft2pUu0cnJSTx48ACKomRlUl5ejpmZmVWzmpmZga7rKCkpgc1my1onMoq9bRw7uzDY28axs42zWmdzUDbRjh07EAwGcfLkSRw7dgzV1dVQVRVLS0t4/fo16urqMDAwgP3796Onp2fVa4gIioqs/TbmynHZ8PAwtm/fjurq6pzXsHqOv8vw3LlzuHDhAoaHh3H+/HmcPn0aIgIRgaIo6WtYPUMgd46KoqC/vx9Xr16F3+9HNBqFw+GAqqrM8X9v375FZ2cnuru74XK5VmSiKAqSyeSq679mCGDFc6JCYG8bx84uDPa2cezsv2eVzrbeO7uOLCwsoKamBqFQCHfu3EFFRQVcLhecTieKi4vR2NgIIHXM6MWLFwBSd2mW7xguLS3h+/fvcDgcpu1hPciV47KHDx9C07Ssv2GO2XJlGIlE8P79exw4cAAA4PV6MTs7C13XUVFRga9fv6avMTc3lz6+ZFW/+yzabDbcvHkToVAIPp8PyWQSDoeDOQIYGxtDR0cHgsEgDh8+jMrKyqwf65mdnUV5efmK9eWsysrKEI1GkUgksl5PVGjsbePY2YXB3jaOnf13rNTZHJRN9OPHD3R0dGB+fh6Li4u4desWNE3D1q1bUVlZicePHwMAHj16hD179gAAGhoaEAqFAABDQ0Nwu91Zd2KtKFeOy54/f5511AZgjr/KlWFpaSnsdjtGR0cBpL4ci4uLUVZWhoaGBgwODgIARkdHYbfbUVVVZeY2TPe7z2Jvb2/6H+fr16/j4MGDKCoqsnyO09PTOHXqFC5fvozm5mYAwN69ezExMYEPHz4gkUjg3r178Hg82LJlC+x2O8bGxgAAg4OD8Hg8UFUVbrcbQ0NDAIBQKASPx2Panujfxd42jp1dGOxt49jZf85ynb22vx1GIiKNjY0yNTUlIiJ3794VTdOkqalJ+vv706959+6dtLe3S3NzswQCAZmYmBAREV3X5cSJE6JpmgQCgfR1rCifHEVEampqJBaLZa0xx5R8MhwfH5ejR49KS0uLBAIBefXqlYiIxGIx6e7uFk3TxO/3y8uXL03Zw3qQb45+v1+8Xq90dXVJNBoVEeZ48eJFqa2tFZ/Pl37cvn1bnj59Kq2trdLU1CR9fX2STCZFROTNmzfS1tYmXq9Xzp49KwsLCyIi8vHjR2lvb5dDhw5JZ2enfPv2zcxt0T+GvW0cO7sw2NvGsbP/ntU6WxERMXtYJyIiIiIiIlovePSaiIiIiIiIKAMHZSIiIiIiIqIMHJSJiIiIiIiIMnBQJiIiIiIiIsrAQZmIiIiIiIgoAwdlIiIiIiIiogwclImIiIiIiIgycFAmIiIiIiIiyvAfZehRZAf67c4AAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "def plot_with_std(x, y, stds, ax, title, y_label):\n",
+ " ax.fill_between(x, y - stds, y + stds, alpha=0.2)\n",
+ " plot(x, y, ax, title, y_label)\n",
+ "fig, (ax1, ax2) = plt.subplots(ncols=2)\n",
+ "title = 'Increase in mean and std Fortune 500 company %s from 1955 to 2005'\n",
+ "stds1 = group_by_year.std().profit.values\n",
+ "stds2 = group_by_year.std().revenue.values\n",
+ "plot_with_std(x, y1.values, stds1, ax1, title % 'profits', 'Profit (millions)')\n",
+ "plot_with_std(x, y2.values, stds2, ax2, title % 'revenues', 'Revenue (millions)')\n",
+ "fig.set_size_inches(14, 4)\n",
+ "fig.tight_layout()"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/api_request_deckgl -sigdelg.ipynb b/examples/api_request_deckgl -sigdelg.ipynb
new file mode 100644
index 0000000..aa6ebfa
--- /dev/null
+++ b/examples/api_request_deckgl -sigdelg.ipynb
@@ -0,0 +1,772 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Package loading and basic configurations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "%load_ext autoreload\n",
+ "%autoreload 2\n",
+ "\n",
+ "# load dependencies'\n",
+ "import pandas as pd\n",
+ "import geopandas as gpd\n",
+ "import numpy as np\n",
+ "\n",
+ "from envirocar import TrackAPI, DownloadClient, BboxSelector, ECConfig, TimeSelector\n",
+ "\n",
+ "# create an initial but optional config and an api client\n",
+ "config = ECConfig()\n",
+ "track_api = TrackAPI(api_client=DownloadClient(config=config))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Querying enviroCar Tracks"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The following cell queries tracks from the enviroCar API. It defines a bbox for the area of Münster (Germany) and requests 50 tracks. The result is a GeoDataFrame, which is a geo-extended Pandas dataframe from the GeoPandas library. It contains all information of the track in a flat dataframe format including a specific geometry column. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " id \n",
+ " time \n",
+ " geometry \n",
+ " GPS PDOP.value \n",
+ " GPS PDOP.unit \n",
+ " Speed.value \n",
+ " Speed.unit \n",
+ " GPS Altitude.value \n",
+ " GPS Altitude.unit \n",
+ " GPS Bearing.value \n",
+ " ... \n",
+ " Consumption.value \n",
+ " Consumption.unit \n",
+ " track.appVersion \n",
+ " track.touVersion \n",
+ " O2 Lambda Voltage ER.value \n",
+ " O2 Lambda Voltage ER.unit \n",
+ " MAF.value \n",
+ " MAF.unit \n",
+ " O2 Lambda Voltage.value \n",
+ " O2 Lambda Voltage.unit \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 5e8b930965b80c5d6b4d7cd1 \n",
+ " 2020-03-07T12:33:15 \n",
+ " POINT (7.64069 51.95733) \n",
+ " 1.090631 \n",
+ " precision \n",
+ " 28.999999 \n",
+ " km/h \n",
+ " 110.381939 \n",
+ " m \n",
+ " 124.858622 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 5e8b930965b80c5d6b4d7cd3 \n",
+ " 2020-03-07T12:33:20 \n",
+ " POINT (7.64118 51.95712) \n",
+ " 1.000000 \n",
+ " precision \n",
+ " 28.000000 \n",
+ " km/h \n",
+ " 108.260375 \n",
+ " m \n",
+ " 125.020801 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 5e8b930965b80c5d6b4d7cd4 \n",
+ " 2020-03-07T12:33:26 \n",
+ " POINT (7.64162 51.95690) \n",
+ " 1.257198 \n",
+ " precision \n",
+ " 28.000001 \n",
+ " km/h \n",
+ " 105.826028 \n",
+ " m \n",
+ " 121.203960 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 5e8b930965b80c5d6b4d7cd5 \n",
+ " 2020-03-07T12:33:31 \n",
+ " POINT (7.64210 51.95672) \n",
+ " 1.000000 \n",
+ " precision \n",
+ " 30.000000 \n",
+ " km/h \n",
+ " 104.395998 \n",
+ " m \n",
+ " 123.412759 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 5e8b930965b80c5d6b4d7cd6 \n",
+ " 2020-03-07T12:33:36 \n",
+ " POINT (7.64264 51.95650) \n",
+ " 1.026727 \n",
+ " precision \n",
+ " 31.409419 \n",
+ " km/h \n",
+ " 101.516865 \n",
+ " m \n",
+ " 122.170479 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 141 \n",
+ " 5de79e3883df6d628235f6cb \n",
+ " 2019-12-04T06:40:14 \n",
+ " POINT (7.60258 51.96919) \n",
+ " NaN \n",
+ " NaN \n",
+ " 0.000000 \n",
+ " km/h \n",
+ " 107.687455 \n",
+ " m \n",
+ " 224.190889 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 1.999969 \n",
+ " ratio \n",
+ " 9.928095 \n",
+ " l/s \n",
+ " 0.732361 \n",
+ " V \n",
+ " \n",
+ " \n",
+ " 142 \n",
+ " 5de79e3883df6d628235f6cc \n",
+ " 2019-12-04T06:40:19 \n",
+ " POINT (7.60253 51.96917) \n",
+ " NaN \n",
+ " NaN \n",
+ " 15.503841 \n",
+ " km/h \n",
+ " 107.607230 \n",
+ " m \n",
+ " 233.359496 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 1.682820 \n",
+ " ratio \n",
+ " 69.666618 \n",
+ " l/s \n",
+ " 0.458675 \n",
+ " V \n",
+ " \n",
+ " \n",
+ " 143 \n",
+ " 5de79e3883df6d628235f6cd \n",
+ " 2019-12-04T06:40:24 \n",
+ " POINT (7.60192 51.96912) \n",
+ " NaN \n",
+ " NaN \n",
+ " 43.862375 \n",
+ " km/h \n",
+ " 106.214225 \n",
+ " m \n",
+ " 283.664385 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 1.454498 \n",
+ " ratio \n",
+ " 81.895074 \n",
+ " l/s \n",
+ " 0.341717 \n",
+ " V \n",
+ " \n",
+ " \n",
+ " 144 \n",
+ " 5de79e3883df6d628235f6ce \n",
+ " 2019-12-04T06:40:30 \n",
+ " POINT (7.60088 51.96930) \n",
+ " NaN \n",
+ " NaN \n",
+ " 54.999998 \n",
+ " km/h \n",
+ " 106.318071 \n",
+ " m \n",
+ " 287.260781 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 1.707472 \n",
+ " ratio \n",
+ " 28.469685 \n",
+ " l/s \n",
+ " 0.469096 \n",
+ " V \n",
+ " \n",
+ " \n",
+ " 145 \n",
+ " 5de79e3883df6d628235f6cf \n",
+ " 2019-12-04T06:40:35 \n",
+ " POINT (7.59980 51.96951) \n",
+ " NaN \n",
+ " NaN \n",
+ " 56.767303 \n",
+ " km/h \n",
+ " 106.225117 \n",
+ " m \n",
+ " 287.144643 \n",
+ " ... \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " NaN \n",
+ " 1.737570 \n",
+ " ratio \n",
+ " 23.101950 \n",
+ " l/s \n",
+ " 0.482167 \n",
+ " V \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
4230 rows × 54 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " id time geometry \\\n",
+ "0 5e8b930965b80c5d6b4d7cd1 2020-03-07T12:33:15 POINT (7.64069 51.95733) \n",
+ "1 5e8b930965b80c5d6b4d7cd3 2020-03-07T12:33:20 POINT (7.64118 51.95712) \n",
+ "2 5e8b930965b80c5d6b4d7cd4 2020-03-07T12:33:26 POINT (7.64162 51.95690) \n",
+ "3 5e8b930965b80c5d6b4d7cd5 2020-03-07T12:33:31 POINT (7.64210 51.95672) \n",
+ "4 5e8b930965b80c5d6b4d7cd6 2020-03-07T12:33:36 POINT (7.64264 51.95650) \n",
+ ".. ... ... ... \n",
+ "141 5de79e3883df6d628235f6cb 2019-12-04T06:40:14 POINT (7.60258 51.96919) \n",
+ "142 5de79e3883df6d628235f6cc 2019-12-04T06:40:19 POINT (7.60253 51.96917) \n",
+ "143 5de79e3883df6d628235f6cd 2019-12-04T06:40:24 POINT (7.60192 51.96912) \n",
+ "144 5de79e3883df6d628235f6ce 2019-12-04T06:40:30 POINT (7.60088 51.96930) \n",
+ "145 5de79e3883df6d628235f6cf 2019-12-04T06:40:35 POINT (7.59980 51.96951) \n",
+ "\n",
+ " GPS PDOP.value GPS PDOP.unit Speed.value Speed.unit GPS Altitude.value \\\n",
+ "0 1.090631 precision 28.999999 km/h 110.381939 \n",
+ "1 1.000000 precision 28.000000 km/h 108.260375 \n",
+ "2 1.257198 precision 28.000001 km/h 105.826028 \n",
+ "3 1.000000 precision 30.000000 km/h 104.395998 \n",
+ "4 1.026727 precision 31.409419 km/h 101.516865 \n",
+ ".. ... ... ... ... ... \n",
+ "141 NaN NaN 0.000000 km/h 107.687455 \n",
+ "142 NaN NaN 15.503841 km/h 107.607230 \n",
+ "143 NaN NaN 43.862375 km/h 106.214225 \n",
+ "144 NaN NaN 54.999998 km/h 106.318071 \n",
+ "145 NaN NaN 56.767303 km/h 106.225117 \n",
+ "\n",
+ " GPS Altitude.unit GPS Bearing.value ... Consumption.value \\\n",
+ "0 m 124.858622 ... NaN \n",
+ "1 m 125.020801 ... NaN \n",
+ "2 m 121.203960 ... NaN \n",
+ "3 m 123.412759 ... NaN \n",
+ "4 m 122.170479 ... NaN \n",
+ ".. ... ... ... ... \n",
+ "141 m 224.190889 ... NaN \n",
+ "142 m 233.359496 ... NaN \n",
+ "143 m 283.664385 ... NaN \n",
+ "144 m 287.260781 ... NaN \n",
+ "145 m 287.144643 ... NaN \n",
+ "\n",
+ " Consumption.unit track.appVersion track.touVersion \\\n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ ".. ... ... ... \n",
+ "141 NaN NaN NaN \n",
+ "142 NaN NaN NaN \n",
+ "143 NaN NaN NaN \n",
+ "144 NaN NaN NaN \n",
+ "145 NaN NaN NaN \n",
+ "\n",
+ " O2 Lambda Voltage ER.value O2 Lambda Voltage ER.unit MAF.value \\\n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ ".. ... ... ... \n",
+ "141 1.999969 ratio 9.928095 \n",
+ "142 1.682820 ratio 69.666618 \n",
+ "143 1.454498 ratio 81.895074 \n",
+ "144 1.707472 ratio 28.469685 \n",
+ "145 1.737570 ratio 23.101950 \n",
+ "\n",
+ " MAF.unit O2 Lambda Voltage.value O2 Lambda Voltage.unit \n",
+ "0 NaN NaN NaN \n",
+ "1 NaN NaN NaN \n",
+ "2 NaN NaN NaN \n",
+ "3 NaN NaN NaN \n",
+ "4 NaN NaN NaN \n",
+ ".. ... ... ... \n",
+ "141 l/s 0.732361 V \n",
+ "142 l/s 0.458675 V \n",
+ "143 l/s 0.341717 V \n",
+ "144 l/s 0.469096 V \n",
+ "145 l/s 0.482167 V \n",
+ "\n",
+ "[4230 rows x 54 columns]"
+ ]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "bbox = BboxSelector([\n",
+ " 7.60000, # min_x\n",
+ " 51.9500, # min_y\n",
+ " 7.64800, # max_x\n",
+ " 51.97300 # max_y\n",
+ "])\n",
+ "\n",
+ "# issue a query\n",
+ "track_df = track_api.get_tracks(bbox=bbox, num_results=20) # requesting 20 tracks inside the bbox\n",
+ "track_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAARQAAAI/CAYAAAC28yYRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3df5TV9X3n8ed7GCA6xSqbga0oJUFq0gQEOxUopy42xagYMsZamwyNSTZwPDVtLKurBBJNZRo8upQ9p+e0FZvt6TKm1Ah302IMc7ZLc0oZ2iEzMhqJiCHo0HVIiZFFIwy894+5k4zDvff7vfd+v9977/f7epzjgTv3+733/VV4+fl+fn3N3RERiUJTrQsQkfRQoIhIZBQoIhIZBYqIREaBIiKRUaCISGSaa11AIe9+97t91qxZtS5DRArYv3//D929tdB7oQLFzI4AJ4GzwLC7t5nZQ8BHgXPAEPApdz9W4NyZwOPA5YADN7n7kVLfN2vWLHp7e8OUJiIJM7MfFHuvnFue69x9vru35V8/4u7z3H0+8PfAl4qc99f5Y98PXMNI+IhIClV8y+Pub4x52cJI6+MdzOyXgWZ3786f8/8q/T4RqX9hWygO7DKz/Wa2evSHZtZpZq8AHRRuofwS8LqZbTezPjN7xMwmVF+2iNSjsIGyxN2vBm4E7jKzawHcfZ27Xw50AZ8rcF4z8OvAPcCvAu8FPlXoC8xstZn1mlnv8ePHy7sKEakLoQJltLPV3YeAHYz0hYz1BHBrgVNfBfrc/WV3HwZywNVFvuMxd29z97bW1oIdyCJS5wIDxcxazGzK6O+B64HnzGzOmMNWAAcLnP6vwCVmNpoQvwF8t7qSRaRehemUnQ7sMLPR459w92fM7Ckzu5KRYeMfAHcCmFkbcKe7f9bdz5rZPcD/tpEP2A9sieNCRKT2rB73Q2lra3PNQxGpT2a2f8z0kXfQ1HsRiYwCRUQio0ARkcgoUEQkMgoUEYmMAkVEIqNAEZHIKFBEJDIKFBGJjAJFRCKjQBGRyChQRCQyChQRiYwCRUQiU5fP5cmK9617mp+cPX/7CAM6Fs1kQ/vc5IsSqYJaKDVSLExgZEfwrT1H6diyN9miRKqkQKmRYmEy1p7DJ8j1DSZQjUg0FCh1bs22/lqXIBKaAqXOnat1ASJlUKDUyLsmWOhj37fu6RgrEYmOAqVGDnbeFDpUfnLWmffAMzFXJFI97XpfJ2bdvzPwmIsmT+DAl29IoBqR4rTrfQOYPmVS4DFvvH1WLRWpawqUOrFv3TLC3AApVKSeKVDqyPc3Lg/Vr/LG22dZ2NmdQEUi5VGg1JmDnTdx0eQJgce9dvI0yzbtjr8gkTIoUOrQgS/fECpUDg2dUktF6ooCpU6FDZXXTp7WPBWpGwqUOnbgyzeE6qj9yVlXqEhdUKDUuT+5fX6o4xQqUg8UKHWufcEMVi6aGerYn5z1UBPkROKiQGkAG9rnhg4VCDfrViQOCpQGUW6oiNSCtoCsc7m+QdbtGODU6bO1LkUkkAKlzihApJEpUOpIx5a97Dl8otZliFRMgVIHcn2D3PPkswyfi2YriSMbl0fyOSLlUqDU2PrcAFt7jkbyWSv16A2pMQVKDS3btJtDQ6eq/hwFidQLBUoN5PoGWfO3/VRzh3PBxCa+8rF5tC+YEV1hIlVSoCSsmo7Xiy+YyIMrPqAQkbqlQEnQws5uXjt5uqxzlsyeSteqxTFVJBItBUoCcn2D/OG2fsq5w2kCNt0+X60RaSgKlJhVMoqjVok0KgVKjCoZxdmsVok0MAVKTMrtL5kzrYXuNUvjK0gkAVptHINyw2TlopkKE0kFtVAiVG7nq54EKGmjQIlIuZ2v06dMYt+6ZTFWJJI83fJEoNwwWTJ7qsJEUkktlCqVO/NV624kzRQoVZj3wDO88Xb4jZAUJpJ2oQLFzI4AJ4GzwLC7t5nZQ8BHgXPAEPApdz9W5PyLgBeAHe7+uSgKr7Ur1u5kuIypr5pfIllQTgvlOnf/4ZjXj7j7FwHM7A+ALwF3Fjn3IeAfKyux/izs7A4dJhrJkSypuFPW3d8Y87IFCo+WmtmvANOBXZV+Vz3J9Q2GnmOiMJGsCRsoDuwys/1mtnr0h2bWaWavAB2MtFDewcyagP8G3BtFsfXg7m39oY6bPmWSwkQyJ2ygLHH3q4EbgbvM7FoAd1/n7pcDXUChvpHfA55291eCvsDMVptZr5n1Hj9+PGRZyVq2aXeo41YumqlhYcmkUIEy2tnq7kPADuCacYc8Adxa4NTFwOfynbqPAp80s41FvuMxd29z97bW1taQ5Scr7EK/Hd8ZJNc3GHM1IvUnMFDMrMXMpoz+HrgeeM7M5ow5bAVwcPy57t7h7jPdfRZwD/DX7n5/JJXXsVOnz3L3tn5m3b+T9bmBWpcjkpgwLZTpwD+Z2bPAvwA73f0ZYKOZPWdmBxgJmc8DmFmbmT0eW8UNZmvPURZ2dte6DJFEmHs0z4KJUltbm/f29ta6jPNU8xByjfhIWpjZfndvK/Se1vIk5I23z4bu1BVpVJp6n6BDQ6fI9Q1WNWN2fW6Arp6jBSf9NBl8YqGm90vt6JanTNXc9gBMbIJDfxz+UaG5vkEe/MbzvP7Wmaq+t5CWSRPovGWulgRIWUrd8ihQIhTlY0VrSS0dKUWBkrD33L+zrEdm1DsDOrRSWvLUKZuwP7l9fq1LiJQzMvyteTUSRIESgzT3SYwGS8eWvbUuReqQAiUmS2ZPrXUJsdpz+IRaLHIeBUpMulYtZvqUSbF9fsukCWy+fT5HNi5n5aKZsX1PEM0ElrHUKRuzKEd+LrlwIg985ANV3VLl+gZZu/0Ab505F0lNozQTODs0yiOhVBt+ejRINihQpGyVtmT0SNX007CxlK19wQxeeOhGjmxcXlYH86GhU+pTyTAFigTqWrW4rGB57eRpjQBllAJFQutatbisESWNAGWPAkXKsqF9blmh8trJ07x37U5tiZkRChQp24b2uWX1q5zzkacFaHZt+ilQpCJdqxaXPRt4z+ET2mQq5RQoUrGuVYvZXOZCSI0CpZsCRarSvmAGRzYuZ860ltDnvHbytEIlpRQoEonuNUvLaq28dvI0V3zhaXXWpowCRSIz2loJ27cyfM65e1u/5qukiAJFIlfJfBWFSjooUCQWG9rnlnULpFBJBwWKxGb0FijsvjBbe45qrkqDU6BI7PatWxZ6FEhzVRqbAkUS0b1maejO2kNDpxQqDUqBIokpZ3atQqUxKVAkUeWGivpUGosCRRJXzrDynsMnNPmtgShQpCZGh5XD/AFcu/1A7PVINBQoUjPtC2bw8sblNDdZyeOi3qFf4qNAkZp79LarAo9RX0pjaK51AZI963MDdPUcLeuB8nsOn4itHomOAkVilesbZN2OAU6dPlvrUiQBChSJXK5vkC//3fP86M0ztS5FEqZAkcjk+ga576kDvD2sTtSsUqBI1XRbI6MUKFKVKB8GX0o5+6tI7ShQpGIdW/YmMvqyctFMNrTPjf17pHoKFKnIsk27OTR0qqrPuGBiE1/52DzaF8yIqCqpNQWKlCXXN8iav+3nXDmTSPLU0kg/BYqEkusb5J4nn2W4zCSZ2ASP3DZfrZCMUKBIoFzfIHdv6y/rHAVJNilQpKhc3yCPfOt7DL7+VlnnLZk9la5Vi2OqSuqZAkXOU81QsPpJsk2BIpFNTNt8u25xsk6BkiFxrbGZM62F7jVLI/1MaUwKlJRKYoFeE7BJrRIZQ4GSEkmu8J1x8QXc++ErFSRyHgVKg6rFgjyN3kgQBUqDqdUWARq9kTAUKA0kqcV4owzoUJBIGUIFipkdAU4CZ4Fhd28zs4eAjwLngCHgU+5+bNx584E/Ay7Kn9vp7tuiKz87oliMF+TiCyby4IoPqG9EKlZOC+U6d//hmNePuPsXAczsD4AvAXeOO+dN4JPufsjMLgX2m9m33P31qqrOmPW5gUjDRKt8JS4V3/K4+xtjXrbA+ZuYu/uLY35/zMyGgFZAgVKGajYw0m2LJClsoDiwy8wc+At3fwzAzDqBTwI/Bq4r9QFmdg0wCThcebnZsz43UPY5unWRWgkbKEvyLYxpQLeZHXT3b7v7OmCdma0FPgc8UOhkM/sF4H8Cd7h7weEJM1sNrAaYOVPb/Y0K0zrRcK7Ui1BPDhztbHX3IWAHcM24Q54Abi10rpldBOwE1rt7T4nveMzd29y9rbW1NUxZqRfmIeGbb5+vMJG6ERgoZtZiZlNGfw9cDzxnZnPGHLYCOFjg3EmMBNBfu/uT0ZScHWsC9iBZMnuqbmukroS55ZkO7DCz0eOfcPdnzOwpM7uSkWHjH5Af4TGzNuBOd/8s8NvAtcB/MLNP5T/vU+5e3m49GZTrGyRo6ppaJlJvAgPF3V8GznuatbsXvMVx917gs/nfbwW2VlljJgXtkNYyaUJClYiEF6oPRZK1sLM78JjOWzQMLPVHgVJnOrbs5bWTp0se09xk6juRuqRAqSO5vsFQa3Ueve28O1CRuqBAqSNBozqgkR2pbwqUOrE+NxA4qjN9yiSN7EhdU6DUiaAZsU0G+9YtS6gakcooUBrEpt+eX+sSRAIpUOpA0ALAyc1N6jeRhqBAqQNBtzsP3zovoUpEqqNAqbEwCwDVOpFGoUCpsbXbD5R8f+UibeUgjUOBUmNvnSk9WKyd1qSRKFBqKExnrEgj0Z/YGlJnrKSNAqVGlm3aHXiMOmOl0ShQaiDXNxj4WAx1xkojUqDUQJhFgOqMlUakQEnYws7uwEWAap1Io1KgJGhhZ3fg5klNptaJNC4FSkLC7MQGWgQojU2BkoD1uYFQO7Fp8yRpdAqUmOX6BkM9/W/OtBZtniQNT4ESszAjOtOnTKJ7zdL4ixGJmQIlRh1b9gaO6GgnNkkTBUpMwu5gr05YSRMFSkyCtiUAdcJK+ihQYhK0LYE6YSWNFCgxCNqFrbnJ1AkrqaRAiUHQ7Y6e/CdppUCJQdDtjvpNJK0UKAlrmTSh1iWIxEaBkrDOW7TwT9JLgZIw3e5ImilQRCQyChQRiYwCRUQio0ARkcgoUEQkMgoUEYmMAkVEIqNAEZHIKFASFrQSWaSRKVASFmbjJZFGpUBJWNBKZJFGpkCJgVYUS1YpUGIQtKJ4fW4goUpEkqVAiUHQiuIwD/4SaUQKlJhYrQsQqQEFSkw6Fs0s+b6GjyWNFCgx2dBeuh/l3ieDH1Eq0mgUKDWi0WNJIwVKjDR8LFkTKlDM7IiZDZhZv5n15n/2kJkdyP9sl5ldWuTcO8zsUP6fO6Isvt5pQ2rJmnJaKNe5+3x3b8u/fsTd57n7fODvgS+NP8HMpgIPAAuBa4AHzOySaotuFEHDx5qPImlT8S2Pu78x5mUL4AUO+zDQ7e4n3P1HQDdwQ6XfmTaajyJp0xzyOAd2mZkDf+HujwGYWSfwSeDHwHUFzpsBvDLm9av5n2WGUThpRdIobAtlibtfDdwI3GVm1wK4+zp3vxzoAj5X4LxC87sK/v0ys9Vm1mtmvcePHw9ZVv0Lmo8ikiahAsXdj+V/HQJ2MNIfMtYTwK0FTn0VuHzM68uAY0W+4zF3b3P3ttbW1jBlNYSg+SgiaRIYKGbWYmZTRn8PXA88Z2Zzxhy2AjhY4PRvAdeb2SX5ztjr8z/LjI4te2tdgkhiwvShTAd2mNno8U+4+zNm9pSZXQmcA34A3AlgZm3Ane7+WXc/YWYPAf+a/6w/cvcTkV9FHdtzOFOXKxkXGCju/jJwVYGfF7rFwd17gc+Oef1V4KtV1JhaWkAoaaOZsjWkDltJGwVKDanDVtJGgSIikVGg1JCm3kvaKFBqSFPvJW0UKDHTSI5kiQIlZhrJkSxRoMRMIzmSJQoUEYmMAkVEIqNAEZHIKFBEJDIKFBGJjAJFRCKjQBGRyChQRCQyChQRiYwCRUQio0ARkcgoUEQkMgoUEYmMAiVmub7BWpcgkhgFSszufbK/1iWIJEaBEqNc3yBnztW6CpHkKFBiFNQ6aZk0IaFKRJKhQIlJmNZJ5y3azU3SRYESkzXbSrdOJjc30b5gRkLViCRDgRKDZZt2E9R18vCt8xKpRSRJCpSILdu0m0NDp0oeo9aJpJUCJUIdW/YGhgmodSLppUCJSMeWvew5fCLwuCWzp6p1IqmlQIlA2DCZM62FrlWLE6hIpDYUKFXK9Q2GDpPuNUvjL0ikhhQoVQoztb65yRQmkgkKlCqEnVr/6G1XxV+MSB1QoFQhTOtk5aKZ6oSVzFCgVChM62Tlopl6WLpkigKlQmu3Hyj5/uTmJoWJZI4CpUJvBTRPNHlNskiBEgNNrZesUqBUIGhbR7VOJKsUKBUI6j9R60SySoFSgaD+E5GsUqCUaX1uoOT7l1w4MaFKROqPAqVMW3uOlnz/gY98IKFKROqPAqUMHVv2Bh6j/hPJMgVKSOtzA4GrilcumplQNSL1SYESwvrcQOCtDqCZsZJ5CpQAYcNErRMRBUpJYcOkucnUOhFBgVJU2DAB7XciMqq51gXUo7B7xIL2OxEZS4EyTpjn6ozSfici7xTqlsfMjpjZgJn1m1lv/mePmNlBMztgZjvM7OIi5/6hmT1vZs+Z2dfM7F1RXkCUFCYi1SmnD+U6d5/v7m35193AB919HvAisHb8CWY2A/gDoM3dPwhMAH6nyppjEfYhXaAwESmm4k5Zd9/l7sP5lz3AZUUObQYuMLNm4ELgWKXfGZcwk9ZGKUxEigsbKA7sMrP9Zra6wPufAb553knug8CjwFHg34Afu/uuSouNQ65vMPRojsJEpLSwgbLE3a8GbgTuMrNrR98ws3XAMNA1/iQzuwT4KPAe4FKgxcxWFvoCM1ttZr1m1nv8+PEyL6Nya7YF71zfBGy+fb7CRCRAqEBx92P5X4eAHcA1AGZ2B3Az0OHuXuDU3wS+7+7H3f0MsB34tSLf8Zi7t7l7W2tra/lXUoH1uQGCdjZpbjJe3rhcQ8MiIQQGipm1mNmU0d8D1wPPmdkNwH3ACnd/s8jpR4FFZnahmRnwIeCFaEqvXphbHU1aEwkvzDyU6cCOkTygGXjC3Z8xs5eAyUB3/r0ed7/TzC4FHnf3m9x9n5l9HfgOI7dFfcBjcVxIuYL2hQVNWhMplxW+U6mttrY27+3tjfU73v/Fb5bcynHJ7Kl0rVocaw0ijcjM9o+ZPvIOmV3LE7QvrMJEpHyZDZRSWiZNqHUJIg1JgVJA5y0aHhapRCYDJWjnenXEilQmk4ESdmasiJQnk4FSitW6AJEGpkAZp0N7w4pUTIEyjtbriFROgSIikVGgiEhkFCgiEhkFiohERoEyTphVyCJSmAJlnLXbD9S6BJGGpUAZJ2gVsogUl8lA0WpikXhkMlC0mlgkHpkMFK0mFolHJgNFROKhQBGRyChQRCQyChQRiYwCRUQio0ARkcgoUEQkMgoUEYmMAkVEIqNAEZHIKFAK0J4oIpVRoBSgPVFEKqNAKUB7oohUJrOBErQnyrJNu5MpRCRFMhsoQXuiHBo6RceWvQlVI5IOmQ2UMHui7Dl8QqEiUobMBgrAyhDPMd5z+IRuf0RCynSgbGifS3OTBR6n2x+RcDIdKACP3nZVqOP2HD7B+txAzNWINLbMB0r7ghksmT011LFbe45q0ptICZkPFICuVYuZM60l1LH3PtkfczUijUuBkte9ZmmoUNGcN5HiFChjhA0VddCKFKZAGad7zVKmT5lU8pg9h08kVI1IY1GgFLBv3bJalyDSkBQoIhIZBYqIREaBUkBQp2uY2bUiWaRAKSCo0zXs7FqRrFGgVCDMSmWRLFKglGlys/6ViRSjvx1levjWebUuQaRuKVDKpNsdkeIUKONoiwKRyoUKFDM7YmYDZtZvZr35nz1iZgfN7ICZ7TCzi4uce7GZfT1/7AtmtjjKC4ja1p6jtS5BpGGV00K5zt3nu3tb/nU38EF3nwe8CKwtct5/B55x9/cBVwEvVFytiNS1im953H2Xuw/nX/YAl40/xswuAq4F/jJ/zml3f73S74xb0OZJGuERKS3s3xAHdpnZfjNbXeD9zwDfLPDz9wLHgf9hZn1m9riZhdvJqAaCNk/SCI9IaWEDZYm7Xw3cCNxlZteOvmFm64BhoKvAec3A1cCfufsC4BRwf6EvMLPVZtZrZr3Hjx8v5xoiE7R5kkZ4REoLFSjufiz/6xCwA7gGwMzuAG4GOtzdC5z6KvCqu+/Lv/46IwFT6Dsec/c2d29rbW0t7ypEpC4EBoqZtZjZlNHfA9cDz5nZDcB9wAp3f7PQue7+f4FXzOzK/I8+BHw3ksoTFuYZPiJZ1xzimOnADjMbPf4Jd3/GzF4CJgPd+fd63P1OM7sUeNzdb8qf//tAl5lNAl4GPh31RSRhQ3vpR5eKSIhAcfeXGRnuHf/zK4ocfwy4aczrfqCt0LEiki4aBxWRyChQRCQyCpSQ9MRAkWAKlJD0xECRYAqUkM6cUytFJIgCZYygtTprtqmVIlKKAmWMoLU659B+KSKlKFDGaF8wI7CVov1SRIpToIwTZkWx+lJEClOgjNO+YAZLZk8tecyD33g+oWpEGosCpYCuVaV3qXz9rTMJVSLSWBQoRbRMmlDrEkQajgKliM5bSq8uVj+KyPkUKEUE7c62dvuBhCoRaRwKlAq9FbRfpEgGKVBKUD+KSHkUKCWoH0WkPAqUEtSPIlIeBUoV1I8i8k4KlADqRxEJT4ESIKgfRUR+RoESQE8LFAlPgSIikVGgiEhkFChV0lwUkZ9RoFRJc1FEfkaBUiXNRRH5GQVKCEFzUXTbIzJCgRJC0FwUPV5DZIQCJYSguSjngGWbdidSi0g9U6CEtHLRzJLvHxo6pVCRzFOghLShPXgKvkJFsk6BUoagVgooVCTbFChl2NA+l+YmCzzu0NAprvjC0xr9kcxRoJTp0duuCnXc8Dnn7m39dGzZG3NFIvVDgVKm9gUz2Hz7/ND/4vYcPsGs+3fqIeuSCQqUCrQvmMHLG5czZ1pL6HO29hxV34qkngKlCt1rlpYVKuqwlbRToFRJoSLyMwqUCHSvWRpqSHmUQkXSSoESkQ3tczmycTlLZk8NdfyhoVMaAZLUUaBErGvV4tCjQHsOn9BcFUkVBUoMyhkFuvdJrVSW9FCgxChMh+2Zc9pPRdJDgRKz7jVLA6frP/iN5xOqRiReCpQEBE3Xf/2tMwlVIhIvBUoC2hfMYHKz/lVL+ulPeUIevnVerUsQiZ0CJSF6pKlkgQJFRCKjQBGRyChQEqL9UCQLFCgJ2dpztNYliMSuOcxBZnYEOAmcBYbdvc3MHgE+ApwGDgOfdvfXi5w/AegFBt395igKbyRBiwCDd6kVaQzltFCuc/f57t6Wf90NfNDd5wEvAmtLnPt54IUKa2xoub5B9hw+UfKYjjK2PhCpZxXf8rj7Lncfzr/sAS4rdJyZXQYsBx6v9LsaWdDiv+YmC/XMH5FGEDZQHNhlZvvNbHWB9z8DfLPIuZuB/8rIEzszJdc3yJmAqw67i75IIwgbKEvc/WrgRuAuM7t29A0zWwcMA13jTzKzm4Ehd98f9AVmttrMes2s9/jx4yHLqm9rtx8o+f7k5iZNeJNUCRUo7n4s/+sQsAO4BsDM7gBuBjrc3QucugRYke/U/RvgN8xsa5HveMzd29y9rbW1tewLqUdvBTRPNB1f0iYwUMysxcymjP4euB54zsxuAO4DVrj7m4XOdfe17n6Zu88Cfgf4B3dfGVn1DUytE0mjMMPG04EdZjZ6/BPu/oyZvQRMBrrz7/W4+51mdinwuLvfFFfRaaDWiaRRYKC4+8vAeT2H7n5FkeOPAeeFibvvBnaXXWFKqXUiaaSZsjWiHe8ljRQoNaId7yWNFCgxCppSrx3vJW0UKDEKmlKvHe8lbRQoMdrQPjdwx/ugyW8ijUSBErOgqfVBk99EGokCJWZhdrzX5kuSFgqUBARNYtPmS5IWCpQEaBKbZIUCJSErtYmSZIACJSHaREmyQIEiIpFRoIhIZBQoIhIZBUpCNNdEskCBkpCv7Xul1iWIxE6BkpCzBbfcFUkXBUpCJpieDyjpp0BJyMcXXl7rEkRip0BJSNsvTq11CSKxU6AkRPueSBYoUBKifU8kCxQoCVjY2V3y/ZZJExKqRCReYR70JRXK9Q1yz5PPMnyu9JBx5y1aOCjpoECJyfrcQOiNk7RfiqSFAiViub5B7nvqAG8Ph+sz0T4pkiYKlAjk+gZZt2OAU6fPlnXenGkt2idFUkWBUoH1uQGe2HeUgK6RkqZPmUT3mqWR1SRSDxQoIeT6Bvny3z3Pj948E8nnzZnWojCRVFKglFDprUwpKxfN1G2OpJYCpYA4gmRiEzxy23yN6EiqKVDGKWe4Nyy1SiQrFChj5PoGIwuTCyY28ZWPzVOLRDJFgTLGmm39VZ1/8QUTeXDFBxQiklkKlLxlm3ZT7vI9BYjIOylQgI4tezk0dCrUsbqVESku84GS6xtkz+ETgccpSESCZT5QwvSbLJk9la5VixOoRqSxZXo/lDD9JnOmtShMRELKbKAs27Q7sN+kuck0RV6kDJkMlDBhAvDobVclUI1IemQuUMKGyZLZU9UBK1KmTAVK2DBRv4lIZTIxyhN2b1fQ1gIi1Uh9oJSz2E9hIlKdVN/yKExEkpXaQFGYiCQvlYGiMBGpjdQFSjl7mihMRKKVukC5O+SeJktmT1WYiEQsVYES9AzhUSsXzdQ8E5EYpCZQOrbs5bWTpwOP0/6uIvEJFShmdsTMBsys38x68z97xMwOmtkBM9thZhcXOO9yM/s/ZvaCmT1vZp+P+gIg/J4mChOReJXTQrnO3ee7e1v+dTfwQXefB7wIrC1wzjDwX9z9/cAi4C4z++WqKi4g7J4mChOReFU8U9bdd4152QP8VoFj/g34t/zvT5rZC8AM4LuVfu9463MDofaC/c7R15l1/86i7xvQoRaMSFXCBooDu8zMgb9w98fGvf8ZYFupDzCzWcACYF+ZNZYUdoj4rTOlY8fzn1XOYzSaDD6xUCEkMipsoCxx92NmNg3oNrOD7v5tADNbx8itTVexk83s54CngLvd/Y0ix6wGVgPMnDkzVFHvKScwEzoAAAu7SURBVNHiSMI5LxxCl1w4kQc+ot3wJXtC9aG4+7H8r0PADuAaADO7A7gZ6HD3gkt5zWwiI2HS5e7bS3zHY+7e5u5tra2tgTV1bNlL8Nrh2vjRm2e4e1s/s+7fyfrcQK3LEUlMYKCYWYuZTRn9PXA98JyZ3QDcB6xw9zeLnGvAXwIvuPum6Mom1KhOPdjac1TBIpkRpoUyHfgnM3sW+Bdgp7s/A/wpMIWRW6B+M/tzADO71Myezp+7BPhd4Dfyx/Sb2U3RX0b929pzlCu+8DS5vsFalyISGytyp1JTbW1t3tvbW/KYUiM29W5ycxMP36pn/EhjMrP9Y6aPvEPDzpRdMntqReddcuFENt8+nyMbl3Nk43I23z6fCyYm+6/h7eFz3L2tn2Wbdif6vSJxa9gWCox0zI7vS0liNuz63ABdPUcT7RRumTSBzlvmqlUjNVeqhdLQgVJPcn2DrN1+IHC+SxQULlJLCpSElbPBU7W0PkmSpkCpkUK3ZEnSTF6JgwKlhnJ9g9z7ZD8J3AmVpLVKEhUFSh3I9Q2G3k0ubrpNkmqkcti40bQvmMGRjctZuWgmVuNaNMlO4qIWSp2Lu4NXrRUpl1ooDWxD+9xYJ+Bt7TmqlopERoHSINoXzOCFh2786W1TlMLseCcShgKlAY22WkbDZYKN9MpMMGPlopllB845UCtFIqE+lJQL2wczsQkO/fHyBCqSRqc+lAwbbc3MmdZS8rhaz5ORdFCgZET3mqU01Xq8WlJPgZIhm357fq1LkJRToGRI0OpkdcxKtRQo8lP3PqnhY6mOAkV+Sh2zUi0FSsZMbi79n7xjy96EKpE0UqBkzMO3ziv5/p7DJxQqUjEFSsaE2TZyz+ETWo0sFVGgZFCYJwYMn3M9/VDKpqn3GVXJc42065uApt5LAZWsWHb0aFUpTYGSURva5wau7ylla89RFnZ2R1iRpIECJcO61yytam+V106eZt4Dz0RYkTQ6BUrGja5GrvTRrm+8fVaPVJWfUqAIAF2rFle8zeShoVMaYhZAgSJjVLPNZL08IkRqS8PGEijsrm/NTcajt12lZy6nnIaNpSqj/SxBRifDaUg5uxQoElrY26CtPUe1HiijFCgS2ob2uaG3kdxz+IRaKhmkQJGylLONZJxPPJT6pECRsrQvmFHWCJBaKdmiQJGybWify+bb54f6w6NWSrYoUKQi7Qtm8HLIGbbqoM0OBYpUpWvV4sBFhnsOn0ioGqk1BYpUrXvN0sBjtIgwG5prXYCkw5LZU0u2REYXER4aOnXee2EmzUljUAtFItG1anHgMYXCBEZ2j9PiwnRQoEhkKt0CAUYWF2obhManQJHIhGmllHJo6JT6WhqcAkUitfn26h7I/sbbZ7VnbQNToEik2hfMqOrWZ5T2rG1MChSJXNeqxVXtVTvqtZOn1VppMAoUicXoHipRBMvoozs0ElT/tGObJCLXN8ja7Qd468y5qj/rgolNfOVj87QzXI2U2rFNgSKJizJcLr5gIg+u+IDCJUEKFKlbHVv2RrbWZ6Uek5oIBYrUtVzfYKS75uuWKF5Vb1JtZkfMbMDM+s2sN/+zR8zsoJkdMLMdZnZxkXNvMLPvmdlLZnZ/5ZchadW+YAZHNi5n+pRJkXzeW2fOcfe2fo0Q1UCoFoqZHQHa3P2HY352PfAP7j5sZg8DuPt9486bALwILANeBf4V+Li7f7fU96mFkl3FFhBGZfqUSexbt6ysc2bdv/O8n82Z1hJqlXUaxfIYDXff5e7D+Zc9wGUFDrsGeMndX3b308DfAB+t9Dsl/brXLI2spVJIuXNbCoUJjCwT0MS784UNFAd2mdl+M1td4P3PAN8s8PMZwCtjXr+a/5lIUfvWLeOiyRNi/Y7RuS3V3BK9dvK05saME3Y/lCXufszMpgHdZnbQ3b8NYGbrgGGgq8B5hR66UPAeKx9UqwFmzqx+MpQ0tgNfvoGFnd28dvJ0rN+ztecoW3uOVjxCdPe2/obq/M31DXLvk/2MHbFfMntq1Qs7R4Vqobj7sfyvQ8AORm5lMLM7gJuBDi/cGfMqcPmY15cBx4p8x2Pu3ububa2treGvQFJr37plkawLCqOaFst7itwW1ZuFnd3cve2dYQIjW3ResTaaawjslDWzFqDJ3U/mf98N/FH+7U3Af3L340XObWakU/ZDwCAjnbKfcPfnS32nOmVlrEL/V43b6C5yxfpQiqmk0zcJV6zdyXDA+EvY2quah2Jm72WkVQIjt0hPuHunmb0ETAb+Pf9ej7vfaWaXAo+7+035828CNgMTgK+6e2dQwQoUKSTXN8iabf0klSujIzn1FipRTgYcL8x2nJrYJqlSi2D5/vFTgf+HH6vafXJzfYOs+dt+ziX817PaQNEm1dJw2hfMoH3BDNbnBhJ5kFgl82JGWzXlBEsSndBxUwtFGl6ub5AHv/E8r791ptalFDUaLEmFYCUS6UOpBQWKVKMRAqbelNPvo1seyZTRW6Iw4p7qX8/eNcE42HlTpJ+pHdsk07rXLK16Y+1GNGdaS+RhAmqhiPDIt75X6xKqUk/7wChQJPOOvf5WrUsIVK8T5sZToEjmXXrxBQzWYahsvn1+Q60TAgWKCPd++Er+cFt/4VWrCUjTw+IVKJJ5o62Ae558luEYp6ZmYVMmjfKIMBIqL/3xTTQX2nAjImkPE1ALRQSo7xmsjUQtFMk8hUl0FCiSeV/b90rwQREodxuERqRAkcw7W4fr2RqVAkUyb4LF2BObMQoUybyPL7w8+CAJRYEimbehfS7vmqBWShQUKCLAwc6bInnAWLMVn/maphmxxWiDJZFx3nP/zoqm4dfTqt84aYMlkTJ8PwMtibjolkdEIqNAEZHIKFBEJDIKFBGJjAJFRCKjQBGRyChQRCQyChQRiYwCRUQio0ARkcgoUEQkMgoUEYmMAkVEIqNAEZHIKFBEJDIKFBGJjAJFRCKjQBGRyChQRCQyChQRiYwCRUQio0ARkcjU5XN5zOw48INa11HEu4Ef1rqIhGXxmiGb1x3mmn/R3VsLvVGXgVLPzKy32EOO0iqL1wzZvO5qr1m3PCISGQWKiERGgVK+x2pdQA1k8Zohm9dd1TWrD0VEIqMWiohERoFSgJldaWb9Y/55w8zuHndMh5kdyP/zz2Z2Va3qjUKYax5z7K+a2Vkz+62k64xa2Os2s6X59583s3+sRa1RCfnn++fN7O/M7Nn8NX861Gfrlqc0M5sADAIL3f0HY37+a8AL7v4jM7sReNDdF9aqzigVu+Yx73UDPwG+6u5fr0GJsSjx3/pi4J+BG9z9qJlNc/ehWtUZpRLX/AXg5939PjNrBb4H/Ed3P13q89RCCfYh4PD4v1ju/s/u/qP8yx7gssQri0/Ba877feApIBV/ocYpdt2fALa7+1GAtIRJXrFrdmCKmRnwc8AJYDjowxQowX4H+FrAMf8Z+GYCtSSl4DWb2QzgFuDPE68oGcX+W/8ScImZ7Taz/Wb2yYTrilOxa/5T4P3AMWAA+Ly7nwv6MAVKCWY2CVgBPFnimOsYCZT7kqorTgHXvBm4z93PJltV/AKuuxn4FWA58GHgi2b2SwmWF4uAa/4w0A9cCswH/tTMLgr6zOZIK0yfG4HvuPtrhd40s3nA48CN7v7viVYWn1LX3Ab8zUgrmHcDN5nZsLvnkiwwJqWu+1Xgh+5+CjhlZt8GrgJeTLLAGJS65k8DG32kk/UlM/s+8D7gX0p9oFoopX2cIrc7ZjYT2A78rrs3+h+ssYpes7u/x91nufss4OvA76UkTKDEdQP/C/h1M2s2swuBhcALiVUWn1LXfJSR/hXMbDpwJfBy0AdqlKeI/B+cV4D3uvuP8z+7E8Dd/9zMHgdu5WeroocbfSFZ0DWPO/avgL9PwyhPmOs2s3sZ+b/2OeBxd99co3IjEeLP96XAXwG/ABgjrZWtgZ+rQBGRqOiWR0Qio0ARkcgoUEQkMgoUEYmMAkVEIqNAEZHIKFBEJDIKFBGJzP8H5Ibx04l/LNEAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "track_df.plot(figsize=(8, 10))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Inspecting a single Track"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAD4CAYAAAAw/yevAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAas0lEQVR4nO3df4wc933e8fcjnlhnacZSlqQSRuTRDmRDsmAx9JWNovpq2YYcsYICqlDr9OQqcKurKLogXTRpDaJGg4JAZCdNCRe2wooxDN1J+SXRrU2FoprEVP0H7SxV0jqKUhk3PFmmbR4p2a5D1BLJT/+YWWl53L2dudvbndl9XsBi9+bXfXe49/C7n/nOjCICMzMrlit63QAzM7ucw9nMrIAczmZmBeRwNjMrIIezmVkBDfW6AXmsWLEi1q1b1+tmmJl1zOHDh89ExMrZ00sVzuvWraNWq/W6GWZmHSNputl0lzXMzArI4WxmVkCZwlnSSUnPSToiqZZOu1vSMUkXJY3Mse42SVPpstsbpq+XdKi+TUkbF/52zMz6Q56e860RsT4i6kE8BdwFPNNqBUk3AvcBG4GbgDskXZfO/jTwWxGxHvhU+rOZmbGAskZEHI+IF9ssdj1wKCLORcR54CCwub4J4KfT128DTs23LWZm/SZrOAdwQNJhSeM5tj8FjEqqSqoAm4A16bztwGckfRv4HeCTzTYgaTwte9RmZmZy/Gozs/LKGs63RMQG4HZgq6TRLCtFxHHgQeBpYD9wFDifzt4CfCIi1gCfAPa02MbuiBiJiJGVKy8bCmhm1pcyhXNEnEqfTwN7SWrImUTEnojYEBGjwCvAiXTWvcAT6es/ybNNM7N+1zacJS2TtLz+GriNpFyRiaRV6fNakgOIj6WzTgH/IH39Ad4MbTOzgZflDMFrgL2S6ss/GhH7JW0GPgusBPZJOhIRH5a0Gng4Ijal6z8uqQq8DmyNiFfT6fcBuyQNAf8PyFPLNjPrayrTnVBGRkbCp2+bWT+RdLhhiPIbfIagmVkBOZzNzArI4WxmVkAOZzOzAnI4m5kVkMPZzKyAHM5mZgXkcDYzKyCHs5lZATmczcwKyOFsZlZADmczswJyOJuZFZDD2cysgBzOZmYF5HA2Mysgh7OZWQE5nM3MCsjhbGZWQA5nM7MCcjibmRWQw9nMrIAczmZmBeRwNjMrIIezmVkBZQpnSSclPSfpiKRaOu1uScckXZQ0Mse62yRNpctub5j+R+n2jqTbP7Lwt2Nm1h+Gcix7a0Scafh5CrgL+P1WK0i6EbgP2Ai8BuyXtC8iTkTEP2lY7neBH+ZquZlZH5t3WSMijkfEi20Wux44FBHnIuI8cBDY3LiAJAH/GHhsvm0xM+s3WcM5gAOSDksaz7H9KWBUUlVSBdgErJm1zPuA70fEiWYbkDQuqSapNjMzk+NXm5mVV9ayxi0RcUrSKuBpSS9ExDPtVoqI45IeBJ4GfgwcBc7PWuzXmKPXHBG7gd0AIyMjkbG9ZmallqnnHBGn0ufTwF6SGnImEbEnIjZExCjwCvBGD1nSEEnd+o/yNNrMrN+1DWdJyyQtr78GbiMpV2SS9raRtJYkiBt7yR8CXoiIl/M02sys32XpOV8DfE3SUeAbwL6I2C9ps6SXgZuBfZKeApC0WtKTDes/Lul54MvA1oh4tWHeR/CBQDOzyyiiPGXckZGRqNVqvW6GmVnHSDocEZedK+IzBM3MCsjhbGZWQA5nM7MCcjibmRWQw9nMrIAczmZmBeRwNjMrIIfzYpmchHXrQIKhoeR53bpkuplZGw7nxTA5CePjMD2d/HzhQvI8PQ0f/WgS1CtWJI8rrmj+ujHUWz03Ltv4GBq6fBv+j8GsVHyG4GJYt+7NYC6aiQkYG+t1K8ws5TMEu+mll3rdgtbuuafXLTCzDBzOi2Ht2l63wMxKzuG8GHbuhEql160wsxJzOC+GsTHYvRuGh5OflyxJnqXetcnMSsXhvFjGxuDkSYiA8+eT50ceSQJbgmo1ebR6DW+GeqvnxmUb1ee34lEbZoXn0Rr9aq4RI9UqnDnT1eaYWXMerTFodu5sPe/sWfeezQrO4dyvxsaalzzqtm3rXlvMLDeHcz/btav1PPeezQrN4dzP2vWed+zoXlvMLBeHc7+bq/dc5DMZzQacw7nfjY3BsmXN5/3Mz3S3LWaWmcN5ELzlLb1ugZnl5HAeBGfP5ptuZj3ncB4Erc4YbHcmoZn1TKZwlnRS0nOSjkiqpdPulnRM0kVJl53d0rDuNklT6bLbZ837V5JeTOd9emFvxVqqX+w/63Qz67mhHMveGhGN5/xOAXcBv99qBUk3AvcBG4HXgP2S9kXECUm3Ar8KvCcifiJpVf7mWyZLljQPYveczQpr3mWNiDgeES+2Wex64FBEnIuI88BBYHM6bwvw2xHxk3R7p+fbFmvDPWez0skazgEckHRY0niO7U8Bo5KqkirAJmBNOu+dwPskfV3SQUl/t9kGJI1LqkmqzczM5PjV9gb3kM1KJ2s43xIRG4Dbga2SRrOsFBHHgQeBp4H9wFHgfDp7CLga+CXgN4A/li6/4HFE7I6IkYgYWblyZcbm2iXm6iF/6EPda4eZZZYpnCPiVPp8GthLUkPOJCL2RMSGiBgFXgFOpLNeBp6IxDeAi8CKPI23jOoX/W/mz/+8e+0ws8zahrOkZZKW118Dt5GUKzKpH+iTtJbkAOJj6awvAR9I570TWAr4IsOLYa7Lh5pZIWXpOV8DfE3SUeAbwL6I2C9ps6SXgZuBfZKeApC0WtKTDes/Lul54MvA1oh4NZ3+B8A7JE0BfwjcG2W68n+ZjI31ugVmlpPvhDIo5rp/YYk+A2b9xndCGXStwtk3nTUrJIfzoGjVO3av2ayQHM6DwtfXMCsVh/Og8FmCZqXicB4U7jmblYrDeVC452xWKg7nQeGes1mpOJwHhXvOZqXicB4U7jmblYrDeVC452xWKg5nM7MCcjibmRWQw9nMrIAczmZmBeRwNpic7HULzGwWh/OgqFZbz9u2rXvtMLNMHM6DYteu1vPOnnXv2axgHM6DYmzMvWezEnE4DxL3ns1Kw+E8SNx7NisNh/Ogce/ZrBQczoPGvWezUnA4DyL3ns0Kz+E8iNr1nu+91wFt1mMO50E1V+/5wgUYH3dAm/VQpnCWdFLSc5KOSKql0+6WdEzSRUkjc6y7TdJUuuz2hun/QdJ30m0ekbRp4W/HMmvXez53zj1osx7K03O+NSLWR0Q9iKeAu4BnWq0g6UbgPmAjcBNwh6TrGhb5vXSb6yPiyZxtt4XatQsqldbzL1yAe+6BFSsc0mZdNu+yRkQcj4gX2yx2PXAoIs5FxHngILB5vr/TOmxsDHbvbn+rqrNn4aMfhQce6E67zCxzOAdwQNJhSeM5tj8FjEqqSqoAm4A1DfM/Lumbkv5A0tXNNiBpXFJNUm1mZibHr7ZMxsbgi1+cuwcNEAEPPeQetFmXZA3nWyJiA3A7sFXSaJaVIuI48CDwNLAfOAqcT2d/HvgFYD3wXeB3W2xjd0SMRMTIypUrMzbXchkbS+rL7UTAjh2L3x4zyxbOEXEqfT4N7CWpIWcSEXsiYkNEjAKvACfS6d+PiAsRcRH4r3m2aR02OZn0nrN46aXFbYuZARnCWdIyScvrr4HbSMoVmUhalT6vJTmA+Fj68881LLY5zzatQyYnYd265KDfuXPZ1lm7dlGbZGaJoQzLXAPslVRf/tGI2C9pM/BZYCWwT9KRiPiwpNXAwxFRHxr3uKQq8DqwNSJeTad/WtJ6knr2SeBfduxd2dwmJ5PTtM+ezbeeBDt3Lk6bzOwSiohetyGzkZGRqNVqvW5GuU1OJieYZO0pN9qyBT73uc63yWyASTrcMET5DVl6ztYvJieTA38XLuRbr1pNxkSPjS1Ou8zsMj59e1DUe8xZgnl4GCYmktEZEXDmjIPZrMvccx4UO3a0L2VUKslJKQ5is55zz3lQTE/PPb9adTCbFYh7zoNgcjIZadHs4O+SJckYZ4eyWaG459zv6gcBmwWz5GA2KyiHcz9rdxAwwsFsVlAO5362bdvcBwGHh7vXFjPLxeHcjyYnk2swz3UGYKXis/3MCswHBPtNljMAlyzxyAyzgnPPud+0K2WADwKalYDDuZ9MTra/mFG16mA2KwGHc7+oD5mbS6Uy9123zawwHM5lVz/4d889c183w2cA2mKpXxf8iiuSZ9/KrCMczmVU/2OQkhuvZill+OJF1kmzP4PT08m4+enppKMgJQ+bN4/WKJvZozHaXY/bpQzrtDyfwVaXDbC23HMui/ncUspD5qxTGksX996b72YNLnPMi3vORTffW0r58p/WKbN7ynlv1jA+njz7s5iLe85FVv+jyBvMPvhnnTCfb2vNnDuX9Lbdg87FPeeiynNLqXpdb3g4OSXboWwLtZB7TTZz4YJ70Dm551w0WYfG1Q0PwyOPJOF88qQ/+NYZWe6cs2RJ0jGo39asHfegc3E4F0meMkalkvxBOJCtUxoP+rW7c06lklwG4OLFNz+DEclnslJpvd6FC8nQO8ljottwOBdB3tqea8rWafWOQX288lyGh1t//sbGknlLlrRev7796enkdzqgm3LNuZfyjsTwLaWskyYnk/LFSy8lveV2ZbSsI4Dq87PUrOuljsb1DHDPufvynt1XV/8a6Q+wdcLsnvJcwVyvK+f5tpalB13nUkdTmcJZ0klJz0k6IqmWTrtb0jFJFyWNzLHuNklT6bLbm8z/N5JC0or5v42Ca3aqK2Q/c8plDOuE+ZxIMjx8aV05j7GxpEMxVw26zqWOy0VE2wdwElgxa9r1wLuArwIjLda7EZgCKiQllP8BXNcwfw3wFDA9e/vNHu9973ujVCYmIqrViOSjl/8xPJxswyyviYnk8yMlz1u2RFQq+T5/lUpnPn/1tkDSniy/e8mSgfnsA7VoknfzLmtExPGIeLHNYtcDhyLiXEScBw4Cmxvm/x7wm0D/nXw/OQkf+1j+E0jAIzFsYWaXLKan4aGHsvWUG4fHderb2thY8lmOSIZ9Zi11DHgPOms4B3BA0mFJ4zm2PwWMSqpKqgCbSHrLSLoT+E5EHJ1rA5LGJdUk1WZmZnL86h7btg1eey3/ei5h2Hy0K1lkKaE1Gx7XaXlKHYM+LrpZd3r2A1idPq8CjgKjDfO+SouyRjr/nwPPAs8AD5H0livA14G3RYuySbNHqcoaWb861r/muYRhWXWiZNFYPqhvp5ufv7yljmq1b/8+WEhZIyJOpc+ngb3AxhzhvyciNkTEKPAKcAL4BeDtwFFJJ4FrgWcl/WzW7faFatVn91k+CylZzL6+cjd6yq3kLXWcPZucB/DAA11pXhG0DWdJyyQtr78GbiMpV2QiaVX6vBa4C3gsIp6LiFURsS4i1gEvAxsi4nvzeA/FVK22X+YHP1j8dlj5dapkcf/9SS250zXlhcpT6vj85wenzNGsO934AN5BUso4ChwDdqTTN5OE6k+A7wNPpdNXA082rP8/gefT9T/Y4necpN/KGhMT2csaW7b0urVWFP1QspiviYmkzQM2kokWZY1MNeeiPEoVzhERq1fn+2Pq47rawJsduhMT2YI469Cz2ct1ahhct01M5PvPqA/+ZhzOvXLDDfkCGiKWLSv9B27gNQZvtRpx5ZWX/hsvXXr5tKxBPPtRqSTBPjv8yyrrt86y/0eUcjj3Wp6vbH3UKxgInSxF9GvJIq+rrsq/P0q6H1qFs6+t0S31gx557kh89uzAD8TvqcYDcfVrPsye9sAD8x89kVWRRll0y6uvwlVXZV/+woVkNMeKFf3z99IssYv6KHXPuW7LlvxfX6vVXrd6MHSzFNHq0ax23E8li/nKU4su2UF2XNYokPlcc8Mljs7qRSmiXdA7iOeW5+9GKs2+czgX0cRExFvf6pBebJ0cFTHfHvDSpcm/3VyjNfzvmk3W4zfDw71uaSYO5yLrZU+6WXCVOTCKEMTuAS++LGUOqdetzMThXBZ5QrrVdTmahX2rQGoXVM16fEXR7SB2KaJY2g25c8/Z4dxReQfhNz6WLetcEOUJ605+Pc9yskZ9WqeD2KWI8pnr37Mk/zYO5zJZ6EX6u/lo1pvMGmpZer6teqsL3T8uRfSHVid5rV7d65Zl1iqclcwrh5GRkajVar1uRvfkvQFsUS1dmvzJvP763NOkZFqnzd5upZJcQOjJJ5Obm65dCzt39ud44UHw7nfD88+/+fMNN8CxY71rT06SDkfEZbf680koRTY2BmfOJHdFyXKVu6J67bVLQ7jVtE4Ec7MTNppdje1zn0tO4OjnEzkGxbFjl/abSxTMc3E4l0FjSA8PJ9PynGnYTn1bw8OwZcubQVatwpVXdu73dFK1evklJh3E1kcczmUy+wLleXrTrcJ8ePjSC/43BtmZM/CFL8wd1kuXdjbAZ7ez2fYrFdi1KwleB7H1q2aF6KI+BuaAYB7tDh5eeWXnf99cB/aynvacZ1iaR0hYH8OjNfpckQIsz3C4orTZrEdahbNHa5iZ9ZBHa5iZlYjD2cysgBzOZmYF5HA2Mysgh7OZWQE5nM3MCsjhbGZWQA5nM7MCyhTOkk5Kek7SEUm1dNrdko5JuijpsgHUDetukzSVLru9Yfp/lPTNdJsHJK1e+NsxM+sPeXrOt0bE+oYzWaaAu4BnWq0g6UbgPmAjcBNwh6Tr0tmfiYj3RMR64CvAp3K33sysT827rBERxyPixTaLXQ8ciohzEXEeOAhsTtf/UcNyy4DynEduZrbIsoZzAAckHZY0nmP7U8CopKqkCrAJWFOfKWmnpG8DY7ToOUsal1STVJuZmcnxq83MyitrON8SERuA24GtkkazrBQRx4EHgaeB/cBR4HzD/B0RsQaYBD7eYhu7I2IkIkZWrlyZsblmZuWWKZwj4lT6fBrYS1JDziQi9kTEhogYBV4BTjRZ7FHgH2XdpplZv2sbzpKWSVpefw3cRlKuyETSqvR5LckBxMfSn69rWOxO4IXszTYz629DGZa5Btir5PZBQ8CjEbFf0mbgs8BKYJ+kIxHx4XRI3MMRsSld/3FJVeB1YGtEvJpO/21J7wIuAtPA/Z17W2Zm5eaL7ZuZ9ZAvtm9mViIOZzOzAnI4m5kVkMPZzKyAHM5mZgXkcDYzKyCHs5lZATmczcwKyOFsZlZADmczswJyOJuZFZDD2cysgBzOZmYF5HA2Mysgh7OZWQE5nM3MCsjhbGZWQA5nM7MCcjibmRWQw9nMrIAczmZmBeRwNjMrIIezmVkBOZzNzArI4WxmVkCZwlnSSUnPSToiqZZOu1vSMUkXJY3Mse42SVPpstsbpn9G0guSvilpr6SrFv52zMz6Q56e860RsT4i6kE8BdwFPNNqBUk3AvcBG4GbgDskXZfOfhq4MSLeA/xv4JN5G29m1q/mXdaIiOMR8WKbxa4HDkXEuYg4DxwENqfrH0inARwCrp1vW8zM+k3WcA7ggKTDksZzbH8KGJVUlVQBNgFrmiz3MeDPmm1A0rikmqTazMxMjl9tZlZeQxmXuyUiTklaBTwt6YWIaFnOqIuI45IeJClh/Bg4CpxvXEbSjnTaZItt7AZ2A4yMjETG9pqZlVqmnnNEnEqfTwN7SWrImUTEnojYEBGjwCvAifo8SfcCdwBjEeHgNTNLtQ1nScskLa+/Bm4jKVdkkva2kbSW5ADiY+nPvwL8W+DOiDiXv+lmZv0rS8/5GuBrko4C3wD2RcR+SZslvQzcDOyT9BSApNWSnmxY/3FJzwNfBrZGxKvp9P8CLCcpkxyR9FCn3pSZWdmpTNWEkZGRqNVqvW6GmVnHSDrcMET5DT5D0MysgErVc5Y0A0w3TFoBnOlRc4rI++NS3h+X8v64XBH2yXBErJw9sVThPJukWrOvA4PK++NS3h+X8v64XJH3icsaZmYF5HA2Myugsofz7l43oGC8Py7l/XEp74/LFXaflLrmbGbWr8reczYz60sOZzOzAipkOEt6V3pKd/3xo8a7qKTLvF/SDxuW+VTDvE+kd16ZkvSYpLd0/110Tpb9kS73/nT+MUkHG6b/iqQXJf21pH/X3dZ33kL2h6Q1kv5S0vF0+rbuv4POWujnI523RNL/kvSV7rV8cXTg7+UqSX+a3qnpuKSbu/sOUhFR6AewBPgeyUDtxunvB77SZPmfB/4G+Kn05z8Gfr3X76ML++Mq4HlgbfrzqoblvwW8A1hKctnWG3r9Pnq4P34O2JC+Xk5yF56B3R8N8/818Gizv6kyP+azP4AvAv8ifb0UuKoXbS9kz3mWDwLfiojptku+aQj4KUlDQAU4tSgt641W++OfAk9ExEvwxuVdIbm8619HxP+JiNeAPwR+tWutXXy59kdEfDcink1f/1/gOMl/6P0i7+cDSdcC/xB4uGut7J5c+0PSTwOjwJ50+msR8YMutvcNZQjnj5BeZrSJmyUdlfRnkt4NEBHfAX4HeAn4LvDDiDjQnaZ2Rav98U7gaklfTe9Y88/S6T8PfLthuZfprzDKuz/eIGkd8IvA1xe1hd01n/3xn4HfBC52o4Fdlnd/vAOYAb6QlnkeTi+V3HWFDmdJS4E7gT9pMvtZkq8qNwGfBb6UrnM1Sc/w7cBqYJmke7rT4sXVZn8MAe8l6QF9GPj3kt4JqMmyfTF+cp77o77uW4HHge0R8aMuNHfRzWd/SLoDOB0Rh7vX0u6Y5+djCNgAfD4ifhH4W6Anx2kKHc7A7cCzEfH92TMi4kcR8eP09ZPAlZJWAB8C/iYiZiLideAJ4Je72ehF1HJ/kPSI90fE30bEGZK7ot+UTm+8b+O19E+ZZz77A0lXkgTzZEQ80bXWLr757I9bgDslnSQpeX1A0kS3GrzI5vv38nJE1L9N/SlJWHdd0cP512hR0pD0s5KUvt5I8l7OkpQzfklSJZ3/QZK6Yj9ouT+A/wa8T9KQkpvp/j2S9/1XwHWS3p72JD4C/PeutHbx5d4f6WdiD3A8Iv5Tl9rZLbn3R0R8MiKujYh1JJ+Nv4iIvvimyfz2x/eAb0t6V7rcB0kOHHZfr4+mtnqQHMg7C7ytYdr9wP3p648Dx0hGHxwCfrlhud8CXiC5ndYjwN/p9ftZ7P2R/vwbJB+kKZKv6/Xpm0hGJXwL2NHr99LL/QH8fZKyzjeBI+ljU6/fTy8/Hw3z30+fjNZY4N/LeqCWfka+BFzdi/fg07fNzAqo6GUNM7OB5HA2Mysgh7OZWQE5nM3MCsjhbGZWQA5nM7MCcjibmRXQ/wfHIvZ2zJ0wgQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "some_track_id = track_df['track.id'].unique()[2]\n",
+ "some_track = track_df[track_df['track.id'] == some_track_id]\n",
+ "some_track.plot(color='red')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO29eZhbZ3n3/7klzT6e1ePdY2cZJ7HJZowDZCEbkLUJNClbqAuhoUBbaLhaQvJyFdryK7Sl7LQNJC+mPwgJIZBAAiExCQlLFtsJdmInXuLdY8++azRanvcP6cgajZZzjs6RjqTnc11zzYyWo2c0R1999X3u535EKYVGo9FoqgdfqQeg0Wg0muKihV+j0WiqDC38Go1GU2Vo4ddoNJoqQwu/RqPRVBla+DUajabK0MKv0ZQQEXlSRD5U6nFoqgst/JqqRUQuEJHfi8ioiAyJyO9E5A2lHpdG4zaBUg9AoykFItIC/Bz4CHAfUAtcCIRKOS6Nphhox6+pVlYBKKXuUUpFlVJBpdSvlFLbROQvEu7/64lPA6+IyGXGHUWkVUTuEpFeETkiIv8iIv6U6z8oIjtFZFhEHhWRFSnXvTVxvFER+QYgRf2rNRq08Guql11AVEQ2isiVItKedv15wGvAfOAfgQdEpCNx3UYgApwKnAu8DfgQgIhcD9wOvBPoAp4G7klcNx/4MfB/EsfdC5zv1h+o0WRDC7+mKlFKjQEXAAr4NtAvIg+JyMLETfqAryilwkqpe4FXgasT118JfEIpNamU6gO+DLw7cb8PA/+qlNqplIoA/x9wTsL1XwXsUErdr5QKA18BjhXnL9ZoTqCFX1O1JMT5L5RSy4DXAUuIizHAETW7g+GBxPUrgBqgV0RGRGQE+B9gQeJ2K4Cvplw3RDzOWZq4/6GUx1epv2s0xUILv0YDKKVeAb5L/A0AYKmIpObv3cBR4kIdAuYrpdoSXy1KqTWJ2x0CPpxyXZtSqkEp9XugF1huHDBx/OVoNEVGC7+mKhGR00XkkyKyLPH7cuA9wDOJmywA/lZEakTkRuAM4BGlVC/wK+BLItIiIj4ROUVE3pK4338DnxaRNYnjtibuD/AwsEZE3ikiAeBvgUXF+Hs1mlS08GuqlXHiE7jPisgkccF/Cfhk4vpngR5gAPg8cINSajBx3Z8TL//cAQwD9wOLAZRSPwG+CPxQRMYSx7wycd0AcCPwBWAwcfzfufpXajQZEL0Ri0YzGxH5C+BDSqkLSj0WjcYNtOPXaDSaKkMLv0aj0VQZOurRaDSaKkM7fo1Go6kyyqJJ2/z589XKlStLPQyNRqMpK7Zs2TKglOpKv7wshH/lypVs3ry51MPQaDSaskJEDmS6XEc9Go1GU2Vo4ddoNJoqQwu/RqPRVBmuCr+I/J2IvCwiL4nIPSJSLyInicizIrJbRO4VkVo3x6DRaDSa2bgm/CKylHgTqnVKqdcBfuI9y78IfFkp1UO8z8nNbo1Bo9FoNHNxO+oJAA2JToSNxNvSXkq8qRXEdzK63uUxaDQajSYF14RfKXUE+A/gIHHBHwW2ACOJnYkADhPfoGIOInKLiGwWkc39/f1uDVOj0WiqDjejnnbgOuAk4jsPNZFoT5tGxp4RSqk7lVLrlFLrurrmrD/QeIRjE8f43h+/h279odGUD25GPZcD+5RS/Yn9RR8A3gy0JaIfgGXEdzXSlCnffO6bbPjpBn7yyk9KPRSNRmMSN4X/IPBGEWlMbDF3GfGNK54AbkjcZgPwoItj0LjM1mNbAbj10VsJhoMlHo1GozGDmxn/s8QncbcC2xOPdSfwKeBWEdkDdAJ3uTUGjfts7d3K6q7VHBg9wAcf+qAWf42mDHC1V49S6h+Bf0y7+DVgvZuPqykOveO9HJs4xm3n38ZUeIo7fn0Hh0YP8fQHnmb2PuUajcZLlEWTNo15ZqIz3P3C3dx01k001zbnvf3eob1sO76Nd5zxDtOPMTI9wgM7H2B+43wA1i5ey4UrLkRE+PSmT3Nw9CAr2lbY/hs0Go276JYNFcav9/2ajzz8Ed774/cSjUVz3jYai3Ljj27kz+7/M8LRsOnH+MH2H3DzQzdz2+O3AXDOonMAuPzkywF47shzNkev0WiKgRb+CuPASLwL6892/Yx/+s0/5bztXS/cxQvHXiASi7BvZJ/px3h14FUAdg7sZFXnKubVzQPgrIVnUeuv1cKv0XgcLfwVxsHRg/jFzyUrL5lTYhkMBznvO+fxT7/5JwamBrjj13ewqHkRALsHd5t+jN1Du1nQtABBWLt4bfLyWn8t5y46l+eOauHXaLyMFv4K4+DYQZa1LOO8pefxysArzERnktf9++//neeOPMfnfvM53nHvOxidHuUH7/wBALsGd5l+jF2Du7hk5SU8+O4H+dzFn5t13fql69l8dDORWCTLvTUaTanRwl9hHBw9SHdrN2cuPJNwLJyMZV7qe4kv/PYLXLvqWpbMW8JvD/6W2y+8nYtXXkxbfRu7h8w5/pnoDPtH9tPT0cO1p13Lqs5Vs65fv3Q9U+EpdvTvcPxv02g0zqCreiqMg6MHOX/5+Zy54EwAtvdt5+HdD/OZJz7DvNp5fOOqb3Bo9BA/2P4Dbr/wdkSEVZ2rTAv/vuF9RFWUns6ejNevXxqv1H3uyHOctfAsZ/4ojUbjKNrxVxDRWJTDY4fpbu3mtPmnEfAFeHL/k3zmic/wtlPexs6P7aS7tZvzu8/nm1d/k1p/fCuEno4e01GP8QaR7vQNejp6aKtv0xO8Go2H0cJfQRybOEYkFqG7tZtafy2nzz+d7774XSKxCJ+/9PMsbF6Y8X49HT0cGj00Z9Xt9uPbWfKleCz05P4n6fl6Dz/e+ePkfTIhIqxful4Lv0bjYbTwVxAHRw8C0N3aDcCZC+I5/+nzT+fshWdnvd+qzlUoFHuH9866/Iu/+yK9E7189OGP8pGHP8KeoT1898Xv0l7fTmdjZ9bjrV+ynpf6XmJyZtKBv0qj0TiNFv4KIpPwA7z3de/N2ULByOtTSzoPjR7ihy/9kHMXncv2vu28MvAKN66+Ecge8xisX7qeqIrywrEX7P8xGo3GNbTwVxDpwn/5yZezdN5S3n/2+3Pe79SOUwHYM7QnednXn/s6AD9510+4cfWN3HTWTdzzp/dw8cqLkyt0s/GGpW8A9Apejcar6KqeCuLg6EFa61ppqWsB4gJ8+NbDee/XVt9GS10Lh8YOJS/7w+E/8Oblb2ZF2wruveHe5CeGJzY8kfd4i5oX0d3arYVfo/Eo2vFXEAfHDrK8dbmt+3a3dic/MQDsH9nPye0nA9jqtLl+6XqeOvAUoUjI1ng0Go17aOGvIAanBulqtLdNZarwz0RnODJ2hJVtK22P5eZzb6Z3opevPvtV28fQaDTuoIW/ghieHqa9od3WfbtbupNRz6HRQyhUQcJ/xalXcO2qa/nnp/6Z3vFe28fRaDTO4+Zm66eJyIspX2Mi8gkR6RCRx0Rkd+K7PaXSzGFkeoT2epvC39rNwNQAU+EpDozGO3wWIvwA//n2/2QmOsNtm24r6DgajcZZ3Nx68VWl1DlKqXOA1wNTwE+A24BNSqkeYFPid40DDAeHaatvs3VfoxLo0Ogh9o/sB2BFa2GbqZzacSq3vvFWvvfH7/HM4WcKOpZGo3GOYkU9lwF7lVIHgOuAjYnLNwLXF2kMFU0oEiIYCRbk+CFeGbR/ZD8+8bGsZVnB47rjojtYMm8Jt2+6veBjaTQaZyiW8L8buCfx80KlVC9A4vuCTHcQkVtEZLOIbO7v7y/SMMuXkekRgIIdvyH8y1qWUeOvKXhczbXNXLvqWrYd31bwsTQajTO4LvwiUgv8CfAjK/dTSt2plFqnlFrX1WWvUqWaGJ4eBrA9ubtk3hJ84ksKf6H5firLW5YzGBxkKjzl2DE1Go19iuH4rwS2KqWOJ34/LiKLARLf+4owhorHcPx2o54afw1L5i3h4NhBDoweKDjfT8VYW3B4LP9iMo1G4z7FEP73cCLmAXgI2JD4eQPwYBHGUPEMB+OO327UA/G4Z+/QXg6PHXbc8UN84lij0ZQeV4VfRBqBtwIPpFz8BeCtIrI7cd0X3BxDtVBo1APxKp6nDz5NTMWcFf6E409tCaHRaEqHq716lFJTQGfaZYPEq3w0DlLo5C7Apy/4NCe1nUR9oJ53nvFOp4aWrA7Sjl+j8Qa6SVuFYEQ9djN+gDMXnsmZC890akhJ6gP1LGhaoB2/RuMRdMuGCmFkeoSGQAN1gbpSDyUjy1uWa+HXaDyCFv4KYXja/qrdYrC8dbmOejQaj6CFv0IopEFbMdCOX6PxDlr4K4SR6RFvO/6W5YyFxhgLjZV6KBpN1aOFv0IYDg4XNLHrNsmSTh33aDQlRwt/hTAyPeL5qAd0Lb9G4wW08FcIw9PDtNV5N+pZ1LwIgL5J3aFDoyk1WvgrgJiKMTo96mnHv6Ap3oRVC79GU3q08FcAY6ExFMrTk7vNtc3UB+q18Gs0HkALfwXgxKpdtxERuhq7tPBrNB5AC38FMD4zDkBLXUuJR5KbBU0LtPBrNB5AC38FMBOdAfBsuwYDLfwajTfQwl8k/nvzf/POe53reJmKIfw1vsK3SnQTLfwajTfQwl8kNu3bxNMHn3bl2OFoGIBaf60rx3eKBU0L6J/qRylV6qFoNFWNFv4i0TveSzQWdeXYScfvwObobrKgaQHTkWkmZiZKPRSNpqpxeweuNhG5X0ReEZGdIvImEekQkcdEZHfiu3dLURykd6KXqHJH+MOx8nH8oGv5NZpS47bj/yrwS6XU6cDZwE7gNmCTUqoH2JT4vaJRShXH8ZdBxg9a+DWaUuOa8ItIC3ARcBeAUmpGKTUCXAdsTNxsI3C9W2PwCuMz4wQjQfccf5lk/F2NXYAWfo2m1Ljp+E8G+oH/KyIviMh3RKQJWKiU6gVIfF+Q6c4icouIbBaRzf39/S4O0316x3sBdMavHb9G4wncFP4AsBb4L6XUucAkFmIdpdSdSql1Sql1XV1dbo2xKPROJIS/yjP+ribt+DUaL+Cm8B8GDiulnk38fj/xN4LjIrIYIPG94lXAcPwxFXOllLFcMv76QD0tdS1a+DWaEuOa8CuljgGHROS0xEWXATuAh4ANics2AA+6NQavYDh+iIu/05RLxg+JRVxTWvg1mlIScPn4fwN8X0RqgdeADxB/s7lPRG4GDgI3ujyGkmM4fojHPX78jh6/XDJ+iAv/sYljpR6GRlPVuCr8SqkXgXUZrrrMzcf1GqmOPxqL4rDul03GD3Ba52n8fNfPUUohIqUejkZTleiVu0VglvC7MMFbLhk/wNrFa+mf6ufo+FGeO/IcO/t3lnpIGk3VoYW/CMyKelwo6TQy/oDP7eSucNYuXgvA5qObue6H13H7r28v8Yg0mupDC38R6J3oRYjHGm45/hpfTVlEJ2cvPBtBuOuFuzg2cSy5iYxGoykeWvhdZio8xcj0SHKzcVccfyxcFvk+QFNtE6fPP52f7foZEN82UlMa9g3vY9XXV7H56OZSD0VTZLTwu8wzh58BYN2S+By3a46/DCp6DIy4B7Twl5JN+zaxe2g3H334o66UGWu8ixZ+l/n1vl/jFz8Xr7wYcC/jLxfHD3DuonMB8ItfC38J2dq7FYDnjz7Pxhc35rm1ppLQwu8yT+x/gnVL1tFW3wa4m/GXC5effDlt9W1ce9q1WvhLyNberVy04iLOWngWd794d6mHoykiWvhdZGJmgueOPMelJ12KX+LF+9We8QOcvehshj81zPol6wlFQ4QioVIPqeqIxCJsO76N1y9+PW9Y8gZ2De4q9ZA0RUQLf4KYinHJxkv46Ss/deyYvz34WyKxSFz4fQnh1xl/kpa6FkDn/KXg1YFXCUaCrF28lp6OHvom+xidHi31sBzlS7//Ejc9cFOph+FJtPAn6J/s58n9T/L8kecdO+ajex6l1l/Lm5e/WTv+DGjhLx1Gvr928VpWda4CYPfQ7lIOyXG+v/37yeoxzWy08Cc4OHoQgFDUfuzw5P4n2Te8D4h/gvjRjh9xxalX0FjT6L7jL6OM30ALf3HZO7SXpw48BcSFvyHQwGmdp9HT2QPA7sHKEf7JmUm2Hd/GWGhM7/GcAS38CQzhn45M2z7GDffdwJ/e96fEVIzfHfwdR8aP8O417wZw1/GXWVWPgRb+4vLZ33yWt/7vW/njsT9y3477eNPyN+H3+Tml/RQEqSjHv6V3S9Jkpa6c18Tx/hr/IpF0/DYnGsdCYwwGBxkMDvL9bd/n2SPP0hBo4NrTrgXQGX8GtPAXl97xXmaiM1z03YsYC41x/433A9BQ08Dy1uVlOcE7FZ6iPlCPT2Z7WGP9DMDR8aPJTzWaONrxJyg06jk0egiIN0r7q4f/im9v/TbXrLqG5tpmwGXHrzN+jQn6Jvuo8dUwFhrjz8/+c960/E3J61Z1rrLt+O9+4W7+5al/cWqYlljzrTV84pefmHP5M4efoc5fB8SFXzMbLfwJDo4VFvUYbxxfetuXuPLUK/nQuR/icxd/Lnm9zvjnooW/uPRN9vG+s97Hf1/933z57V+edV1PRw+7BnfZ2iHu6899na89+zWnhmmacDTM/pH9fOv5b/HKwCvJy5VS/OHwH3jbKW8DtPBnQgt/gkIdv3H/d5zxDu7/s/v55tXf5IyuM5LX64x/Llr4i0c0FqV/qp9l85bx4XUfpqOhY9b1qzpXMTI9wmBw0NJxQ5EQL/W9RP9Uf8EN9x585UEmZyZN335kegSIm6lPb/p08vIDowc4NnGMt5/ydhprGjkyfqSgcVUirgq/iOwXke0i8qKIbE5c1iEij4nI7sT3djfHYJZCM/6Dowfxi5/FzYszXq8z/rnUB+oJ+AJa+IvAUHCImIqxoGlBxuuNks5U52yG7X3bicQiQGHloC/3vcz1917P3S+YX0E8FBwC4PT5p/PTV37KkbG4wD+5/0kA3rLyLSyZt0Q7/gwUw/FfopQ6Ryll7MR1G7BJKdUDbEr8XlKC4WByA3DbUc/YQZa1LEsKfDo645+LiNBS16KFvwgY53c24V/dtRqAHf07LB13y9EtyZ8LmRze0rtl1nczGMJ/87k3A/DI7keAeJuU+Y3zWd21mqXzlmrhz0Apop7rAKMj1Ebg+hKMYRaHxw4nfy4k6ulu7c56vc74M9NS18JoqLJWjHqRfMLf3dpNU00TL/e9bOm4W3q30FrXik98Ba0DMBaU2RH+C7svpLu1m4d3P4xSiif3P8nFKy/GJz7t+LPgtvAr4FciskVEbklctlAp1QuQ+J7xTBSRW0Rks4hs7u/vd3WQRszTXNtcUNSTU/h1xp8R7fiLQz7h94mP1V2rebnfuvCvW7KOlW0r2TV0wvFbbfNsCP+O/h1MhadM3ccQ/s7GTq7uuZrHX3ucVwZe4eDoQS5ecTFAUvjtTFpXMm4L//lKqbXAlcDHROQis3dUSt2plFqnlFrX1dXl3gg5Ifw9HT22HH80FuXw2GHt+G2ghT8/MRXjvpfvIxgOWrrfr/b+ioGpASC/8AOsWbDGkvCHIiG2H9/O6xe/nlWdq9g1uIuj40d5z4/fQ/2/1PPa8GumjhNTMV449gLLWpYRUzG2H99u6n6G8Hc0dHB1z9VMhif52CMfA0i2QV8ybwnBSFB/qkzDVeFXSh1NfO8DfgKsB46LyGKAxPc+N8dghgdeeYB5tfM4peMUWxn/sYljRGKR0jn+Ms34QQu/GTa9tol33f8uPvX4p0zf5/DYYd7+/7+drzzzFSAu/D7xzanmSWVN1xqOTRxLCmo+nj/6POFYmPVL17OqYxWvDrzKpRsv5d6X7iUcC5ueL9gztIeJmQk+eM4HgRPuPx9DwSEEobWulUtOuoQFTQt4Yv8T9HT0JOcslsxbAuiSznRcE34RaRKRecbPwNuAl4CHgA2Jm20AHnRrDGb4xe5f8PNdP+czF32GltoWW1GP8YmhpI6/DKt6QAu/GYxJy2889w2ePfyspfu81PcSEBf+rsaurMUHEBd+wHTO/8juR/CLn8tOvoxVnauYDE/y6uCrfPvabwNwfOK4qeMYQv+OM95BR0OHJeFvq2/D7/PTWNPIob87xMinRnj5oy8n95/Wwp8ZN1s2LAR+kvgHBIAfKKV+KSLPA/eJyM3AQeBGF8eQl9s23UZPRw8ff+PH+cQvP2E56vnAgx/gvpfvA/IIf8LxG6VvTlLWGX+tFv58PLLnES7ovoB9w/u46gdXcdOZN/GbA79h/8j+Obf1iY/PX/p5frn3lwDJ6KZvqi9nzAMnKnte7n+ZC1dcmHdcD+9+mAu6L6Ctvi1ZDrrh7A3cdNZNfOhnH+LYxDFTf98LvS9Q669lTdcazl10LluPmRT+6aFZn2Bq/bVzXgfzG+cDJCMvTRzXhF8p9RpwdobLB4HL3HpcK0RjUV7qe4nbL7idWn8t9YF6y1HPUweeoru1m5vOvCn5wslE0vE7HPUopQjHwjrjr1D2Du1l1+AuPvaGj3H5yZfz94/9PV977mu8Yckb2HD2hqSzNXjm8DN88lefBOLtQ14bfi1ZrpxP+Ltbu2mubTbl+A+NHmLb8W382+X/BsRr5v/t8n/jL1//l9QF6mivbzct/HuH93Jy+8nU+Gs4c8GZ/M+W/yGmYnP676QzFBzKGV0BNAQagMKaL1YiVd2krW+yj5iKsXhefNFVnb/OctQzFZ7ispMu446L7sh5u2TG73DUY3yCKFvHX9dCMBIkHA2XbVzlJr/Y8wsArjz1Sno6e3j4vQ8zOTNJU21TxtsfGDnAGd88g2AkyIazN7DxjxvZNbiLvsk+3rDkDTkfS0RY3rKcY5O5BfvHO37MQ7seAuCqnquA+Pn39+f/ffI2C5sX5j2OQWpF3Oqu1QQjQQ6MHOCk9pNy3s+M8NcH6gEt/OlUdcuG3ol4u1ZjtW1doI5wLGypFG1yZpLGmsa8t3PL8c9EZ4DyFn6A8ZnxEo/Em/zh8B9Y1rJsVnfJbKIPsKJtBZ+9+LMsal7Ex94Qr3B5uf9lU44f4kKZy/wMBYe44Uc38L0/fo8zF5yZ9VPuouZFph3/wdGDdLecEH4wt5BMC799qlv4E326DcdvnCRmXb9SiqnwFE012V+IBm45/nAsDFC2btkQ/krb9s8pxkPjyZzaLP9w/j9w5NYjnL3obPziZ2vvVsZCY6aFP5dIGv14vnXVt9j64a1zoiYDs8I/HZnm+OTxpOM3+ltp4XeX6hb+dMefaONqdoI3HAsTVVHt+AugoSaewRay81klE4wETZ1f6fjER62/lp7OHv5ny/8AJ6p2cpFP+I35mMXzFhPwZU+KFzUtMlXVY6yaX966HIjX5C9sWsjOgZ057xdTMYaDw3mFvy4Qf01r4Z9NdQt/wvEval4EnDhJzDp+Y4WhKeF3y/FHE46/TCd3DfFwo9qpEpgKT9kSfoPVXauZmJngPa97D39y2p/kvb1Z4Tc+qWVjUfMixmfG83bbNPaxSK2IW921Oq/jH50eRaHyCr/xBqiFfzbVLfwTvXQ0dCQF3+rHQuOkzpW5GmjHnxkt/LmZCk8lK1Ps8M7T38nlJ1/OndfemTWWSaUuUJfz05cV4Qc4Ppnb9WdaA3PG/DPYObAzZ5uF1FW7+WgINGjhT6PqhT+1jbLVqMcTjr/MM3431zdUAoU6/ved9T4ee/9jyZ3g8uGk4wfy5vyG8C9rWZa8bHXXasZCYzkXXVkRfjtl2pVOdQv/eG9yYhdcjnq048+Idvy5KVT4rZJPJI2eN04K/8KmhclP23BigjdXzj88HZ9k1sJvj+oW/jTHn6zqMen4J8PxqEdn/PbRwp+bYNje5K5d6v1Fdvxjc7vaGr9rx+8eVSv8SimOTRzLGPWYPUkMx2+qnFM7/owYwu9G87pKwGuOfyw0RsAXyDvvML9xPj7xmXL86cLf1Rjvxts/mb0du1FW2lbflvP4EP+bghFrnU0rHdPCLyJLReTNInKR8eXmwNxmKDjETHSmeFGPzvgzUk6O//eHfp/c3q8YxFSMYCRY0OSuVeoCuVevj4XGaKlryTtR7Pf56WrsylnSqZTKKPwtdS3U+Gron8ou/FZMl3b8czHVskFEvgi8C9gBGMqlgKdcGpfrpNfwg/WoR2f8hVNOwn/ND67h8pMv574b7yvK4xliVWzHH4qGUEplFHdD+M2wsHlhzqqesdAYU+Epls5bOutyEaGrqSun4zccfOrcQDa08M/FbK+e64HTlFIVs8omfdUuWI96LJVz6ow/I+Ui/KPTowxPD/Po3keL1lfIirFwilTzk0lUrQh/Z0Mng8HBrNfnyum7GrtyOv5gOIhf/Kb+D/WB+uRksNcZCg7x+GuPc8PqG5LlrLlaadvFbNTzGlCeypIFI3s0JqFAV/WUgnIRfqPscCw0xm8P/rYoj1lK4c9mfiwJf2Mng1PZhd8Q4/aG9jnXdTXlFv7pyHRy1Xc+ysXx/+zVn9Hz9R7edf+7+NmrP+Ox1x5j4X8sZNvxbY4/Vk7HLyJfJx7pTAEvisgmIKmKSqm/dXxERcJoCtZa15q8zM2ox2gxqzP+2ZSb8EO8D/0lJ11COBpmLDRGZ2OnK49pbLXoJeEfDY3OMku56KjvyLmblzFB216fQfgbu9g3vC/rfa3MfTTUlMcCrs/+5rN0NnQyHZnm8dceB+IaY+x14CT5HP9mYAvxXbP+Gfh94nfjq2wxToTUj7OWo55EOafZE9Avfu340yg34V/TtYaHdz8MwH/8/j847Run2dq1zQylcPzJRYxZ/qax0Ngss5SLzsZ41JNtBW5Ox58v6okETeX7UB6OP6Zi7OzfyTWrruGiFRfx+L7HeXj3w1x28mWm/04r5BP+84Ex4AGl1Mb0LzMPICJ+EXlBRH6e+P0kEXlWRHaLyL0iUhLFyij8NqKexppGU0vhIR736Ix/NkYEVg7CX+Or4f1nvZ9XBl6hf7KfF469wGBwkOeOPOfKYxrCbzbScAIno56Ohg4isUjWltu5SjK7mroYC41lfS0Gw0HzUU+etQle4MDIAYKRIKu7VnP5SZfzysAr7BvZx9U9V7vyePmE/27iu2g9IiKbRORTIih2OtwAACAASURBVDJnV608fBxIXYL3ReDLSqkeYBi42eLxHME4EVKdsp2ox4ob045/LmXj+McOsqxlGa9b8DoAdg/tZu/wXgCe2P+EK49Z9hl/QzwCyxb3JB1/lqgHsm+ZOB2ZNv1Juxwcv9GUbnXXai47+cQGhcZGN06TU/iVUs8opT6rlLoQ+DPie+R+UkReFJG7ReTPct1fRJYBVwPfSfwuwKXA/YmbbCReMVR0piPT1AfqZ7l1Owu4LAm/G45fZ/xFwag3N/LWXYO72DtUXcI/E51hOjJtaXIXyDrBOzI9gl/8GfsIdTUlFnFliXuCEQuO3wPCPzkzye7B3VmvN4T/jPlncNbCs5jfOJ8zF5yZcx/vQjC9gEspNaiUukcp9edKqXOAbwI9ee72FeAfAGNLq05gRCllvMoPA0sz3VFEbhGRzSKyub8/e9ZnF0P4U/H7/PjFbzrqmQxPmlpAkjy+dvxzSK7cdfgN0WkM4V/ZthK/+Hn28LOMhkZprm3mD4f+4IqweE34x0PxyMZK1AM5HH9wmPaG9oxRab7Vu8GwtYx/JjpjaWc9p/nKM19h7Z1rs77+dwzsYHHzYtob2vGJj7v/5G6+cdU3XBuPKeEXkTYR+VsR+U8R+ZqIfA3YoJT6fI77XAP0KaVSJ4EzheEZZ36UUncqpdYppdZ1dXWZGaYlMgk/nFjAYgZPOP4yz/jLwfFHYhGOjB2hu7WbGn8NJ7efzC/3/hKAd615F6FoiGcOP+P44xqLlIo6uZtj4xKzfXoMjKgnWy3/8PRwxpgHTDp+C1EPmJ+7s0o0FuXhXQ/nbCN9YPQAEzMT9E32Zbx+R/+OWdtYXnvatVy0wr3mCGYd/yPASmA75qt6zgf+RET2Az8kHvF8BWgTEaOMdBmQvROTi2QT/nxL1lPRGX/hlIPw9473ElXR5Mfuns4e9o/sB2DD2RsAeP7I844/bqkXcKVjtjOngeH4s0U9w9PDGSt6wJzjtxL1AK7163nstce45p5r2NKbXRKNuYpMjeeUUnOE323MCn+9UupWpdT/NVvVo5T6tFJqmVJqJfBu4NdKqfcBTwA3JG62AXjQ7uALIavw++ssrdw1s2rXQGf8cykH4T80NnuXqJ6OEwnn2sVraalrSW4h6CTJqp4i9urJFfUYjt9sOaepqCeL429vaMcv/qyO38rkrvEG4VbOb/x9ufo45RL+/SP7mZiZ8KTw/6+I/KWILBaRDuPL5mN+CrhVRPYQz/zvsnmcgsi2JN3VqMclx+8Xf3KBWLlRDsJv1PAvb4nvC2tM8C5qXkRTbRPLWpZxeNxF4fdIOafVqKfGX0NLXUvuqCeL4/eJj87GzuyO32IdP7gn/BMzEwBZYxw4EVmlC39MxfjrX/w1tf5aLll5iSvjy4TZXj0zwL8Dd3Aik1fAyWburJR6Engy8fNrwHorg3SD6ch0soonlXxbz6XilYy/XN0+lIfwG/XmRpWK4fhPaT8FiO8e5Zbjrw/UF/VN3Unhh7jrzyr8ORw/5F7EFQxbz/jdFv5cC86yOf6vPfs1Htn9CN+66lucNv80V8aXCbPCfytwqlIqc1FtGeJE1DMVnrJe1eOw8M9EZ8o234fyEH7jhW2UHRqO/+T2uO9ZNm8ZL/W95PjjFrsXP+QuabYj/J0NnRmjHqUUI9MjuYW/qStrHb/Vck5wT/iNZo3ZHH80Fk0+B+nC//hrj7Omaw1/te6vXBlbNsxaiZeJ9+upGHJW9Vgo57Ts+B2OesKxcNlW9ED8I70gnhb+9J3Wlrcup7u1mzcvfzMAS1uWcmzimON/Q7F334LcFTC2HX+Gyd3xmXGiKppzI5V5tfOSb7qpKKUsL+CC0kU9I9MjyVLSoxOzhX9gaoClLUtNr/53CrOOP0q8SdsTVEiTtpxVPSaiHqWUvYxfO/45+H1+Twv/xMwEjTWNycjFJz72f3x/8sW6rGUZMRXj2MSxWZuGF8pUZKqoE7uQv5zTJz5L53xnYyf7RuY2W0s2aMuS8UP8jdZ4003FeH2WS8af+qkl3fEPTA1wSscprowrF2aF/3fAT9MuM/+270FyRT3ZeoukYiwI8YTjL+OMH+Jxj5eFf3Jm7kK9VIdmiP3hscPOCn8Jop6AL0DAF8i6gKu5ttmSO80W9eRq12DQVNOUnOBOxeha6pWoZyKcW/iN7H9l28o5wj8YHEyudygmZqOe9wJbU8o4Z4Cb3BuW+xQa9RhOpNQZv5UVjF7F68I/EZ7I2FbAIFX4naQUwg/ZWxxYXakO8ahnODg8x/CMTI8AJhz/zFzHb9Tjl0vUYzj+sxaeRd9kX3LRZTgaZmR6hPmN810ZVy7MCv8NwEYROUNE/hL4KPA294blPoVGPXYW17jh+EvlGJwk4At4erP1fOs1Kk34sxU4TIatrVuBuONXqKTQG+TqxW/QVJvZ8Rtj84zjT6nqydQWIin8C84CTmwCZXwS8qzwJ0ow3w38mPibwNuUUqNuDsxtCq3qsSX8Ljj+gamBkpw4TuJ5xz+T2/G317fTEGhwXPhLMbkL2deyZIq88mE4+jnCn6MXv0FjTSOhaGiOKTCiHrOfdI1PBm5X9cRULGOsler44UTOb1xeitdvvh24tjO7l04H4AeeFRGUUme5OTg3KTTqMYTf8spdh53twNQA5y4619FjFhuvC3++iENEWNqylCPj2Vdu2sGTUY9Fx28UHhgrzA1MOf7Ecz4VnmJe3bzk5XajHuMNw2lSK4/6JvvmCPnA1AANgQZO7TgVKAPhB64pyiiKjFKKmehMVsdvJuox3uVL7fgHpyoj6vGy8E/MTCR7x2TDjUVcU+Gpoq7aNcgq/DOTlko54cQ6DSPXNhiZHkGQWYKejvHamgxPzhZ+r03uzkywuHkxvRO99E32zWm9MDA1QFdTF0vmLQFIGgTPCr9S6kCxBlJMcpWD1QVcjHocdvxT4SmCkWBlRD3Ku8JvpifTspZljm/CPhWeojHgLce/eN5iS8fKtkDPWAOTa1Wy8Zyn5/zJjN9Dk7undJySFP50+qf6md84n/mN8xEkeZtSCn95NngpEOMEyNSyodZfm+x4aeYYVipqnHb8pTxxnKQcHH9zTfaMH2Bh08KcvVoMBqYGeHTPo6Yet2STu1nMj52M31hcmP7/nQpP5X0zTTr+tMoeI+ox+9oL+AL4xOeq8BuruDOdA8Y8nN/np7Oxc47we7mcs6LIJdo1vhpTIpTsimlh1azTjl8Lf3GYDE/mnNyF+P9gKjyVsQrF4J7t93Dq107liu9fwdberTmPp5QiGPHY5K6Ncs5sjt/Mm1pqxp+K1ahHRFzbhSumYkyGJ1nRumKWm08ltQBjQdOCZF3/YHCQ5trm5KK5YqKFP40afw0xFcu7W49xIltZPKUdf2b84t2Vu0opU1GP8T/I1nse4I5f38Gi5kUAPLEv93aNxjnqqcldi23IISXjT5vcNSP8qRl/KlYnd8G97ReNN6XWulbmN87PLvwN8fOjq7Er2XG0lBV5WvjTMBx8+mRUOsb1xoltBqcdvyEyRtfIcsXLjj8YCaJQphw/ZO/QGIlFODR2iD8940/p6ejhyQNP5jxeKVoyG2QSSaNFiZOOP9+xsmX8Vh0/uCf8RgzVXNvM/Mb5c5rKKaVmbVC/oGnBrKhHC38Ryef4Ya5DSSfp+K1EPdrxZ8TLwm+U6uUTKaPqJ1s3yaPjR4nEIqxsW8nFKy/m6QNP5zQBpdh9yyDTWhbjDdCq4zdeT9kmd3ORLeO3M7/WEGhgOuq88Kd2bs0UkRk6YsQ5qa2mtfAXGUccf6z0jn9gagBBctZClwNeFv5UR5cL4wWcTfiNrRpXtq3kLSvewmholG3Ht2V/XBstQZwikzs2nodiZvzG9XMcv4einlThz7Rtq/G7oTVdTV0MBYeIxCKVKfwiUi8iz4nIH0XkZRH5XOLyk0TkWRHZLSL3ikjRW0s66vhLnPF3NHTg9/kdO2Yp8HLLhqTjN5nxmxL+lW8B4Mn9Txb8uG6QUfiNNyK7GX/UesZvvMnMyfjDQQSx1JW2KMKfYQ2Q8btRQbigaQEQP09Ss/9i46bjDwGXKqXOBs4BrhCRNwJfBL6slOoBhoGbXRxDRiol4x8IDpR9vg/OO/4tR7ckt0ssFEN08jn+tvo2fOLLKfyC0N3azbKWZSxsWphz8xa7DtsJMq1ed8Pxmy3nzOT4G2oaLHUJdVv4m2qbcjr+1KgH4vvzjs+Ml+z165rwqzjGWuaaxJcCLgXuT1y+EbjerTFkw0nHb0n4XXD85Z7vg/PC/94H3svf/sKZrSLMZvx+n5+Oho6cwr9k3pKkADTVNuXMnO06bCdw0vFnq+OfnJnMuzjNmLzNlPFb7UjrNce/o38HUJoafnA54xcRv4i8CPQBjwF7gRGlkss0DwNLs9z3FhHZLCKb+/uz72Vph/TcLRWrGX8p6/gHpwa18GdgPDTObw/+Nm9JrhnMZvxAxqoOg/0j+1nZtjL5e51/rju0+7hOU+evIxwLzzpX7Y6nkHJOn/hoCDRkrOqxukFNXaDOlV49qcJf66/N7/ib4o7/Nwd+A5zYxrPYuCr8SqmoUuocYBnxDdbPyHSzLPe9Uym1Tim1rqsrd58Uq+Ry/NlO1HQ84/hLlBE6idPCH4qGGAwO8urAqwUfy0rWnmlz8FcHXmVH/465wp+n/XepJ3eBWeOzO55MUY+V3euaapsy1vFbLXOt8dXkfU3bITUKzPQ/TXf8RtTz6N746u1zF5emwWJRqnqUUiPAk8AbgTYRMdRyGXA02/3cItmyIcOKuWTUYzLjtzS566DjV0oxMKUz/kwYLut3h35X8LHMZvyQ2fH/xYN/waUbL+XQ2CFbjr9UUQ/M7m1jdzyZyjlD0ZDp0tDGmsbMGb9Fx1/jr8n7mrbDnKgn7X+arjUdDR34xMfhscOsbFtJR0OH42Myg5tVPV0i0pb4uQG4HNgJPEG8pz/ABuBBt8aQDTOTu/mEKBKLIEjOJlPpOOn4J8OThKIhHfVkwHBZTjRNM5vxw1zhD0fDvND7Ascnjydr+A3KwvFH3HH8VtYoNNXMdfx2Mn63HP/EzASC0BBoyJzxR2Y7fr/Pn8z11y5e6/h4zOKm418MPCEi24DngceUUj8HPgXcKiJ7gE7gLhfHkBEnJnft7HXrF+ccv7GxRVt9myPHKyVObrYeU7HksRxx/BacriH8SsXTy50DOwlFQyxvWQ7AitYVyduadfylWLmbacN1u44/UzmnlZbmGR1/2HrUU+uvdc3xG/sQZ6zqydAJ2JjgXbuodMJvPqC2iFJqGzAnwErs5rXercc1Q67unGYndyOxiKV8HxJRj0OO3+ggaqWW2as46fiN56WzoZM9Q3vi+xUUEIdNzExQ568z9b+e3zifSCzCWGiM1vrWZCO2e2+4l0f3PspFKy5K3rYuUEdoKrfjz9e22C0ybZ5SMsdf25SxO6fVRYtuOn4jBqzz183p7Js+uQuJCd7+ynX8nmU6Mk2NrybjwifTjj8atlTRA846fuONSQv/bIwXWq42uVYw05nTIH0R19berTTXNnPesvP47MWfnfXiz+f4J2YmShLzwIlzKlXEJmcmEcRWxAKZhd/M3+eU43cz4zc+BRnxnfGJD+ZO7kKK49fCX1xyZYTl4vjtlJN6lYA4KPyJF5rRBdPY29UuqS/sfKQ3atvau5WzF56d0bWbyfhLMbELWYQ/MR4ri6Ygc5VcoRl/MBL0TMafagwMcU99nEyO/8wFZ/K6Ba9jYfNCx8djFi38aVhZwFXKjN9OVZFXCfgCjr0hGi+0xc3xnaKMvV3tYsXxpzZqi8aivHjsxayuzkzGX4oafsju+O18AskU9RhCbjfjD0VC1oXfTcdfc8LxG+MzyOT477jwDl748AuOj8UK1Sn80cIdfzgW1hm/Qzga9aQ5/qHgUEHHsxK5GHMJg1OD7Bnaw2R4knMXZa7Tzre3s51NT5wil+O3it/nR5DCqnrSMv6Z6Ay1PmvnvVuOf3R6lNb6VuCEuKf+XzM5fhGxrB1OU53Cn8PxW1nAVdKMv5KiHhcyfuNjtBNRj1nn3VoXF4DR0Ci9E70ArGhbkfG2mSpAUrGz6YlTGOfUHOG3+UaU/v9NZvw26/jDsbBlw+OW4x8NjSYr64wx5XP8XqAqhT/XR0XTC7hK7PgrLepx2vEbE2gFRz0WBNjYbGN0epTR6VHgxJtBOmXn+At4Iwr4ArNeT1areqbCU7MmTGeiM9aF31eDQjneBXZkeiT5P05GPXkcvxeoSuE3NbnrUsYfU7FZJ7FddNSTGeOF1lTTREtdS8GOfyw0xrzaeaZuW+OvoSHQwFhojNFQQvjrswh/IF76l+1cKKXjzxr1OOT4rdbxK9SsNQUz0RnLrz2zc3dWUEoxMj2SdPzJqCfF8ecqHS8lVSv82d6BrbRssOP4AUeah+moJzOGWNUF6mivby844++f6k9O2pqhtb6V0ZA5xw/ZhaiSHH+Nv6agjD/1PkopwlEbUY/JuTsrBCNBIrHICeHP5PijIQK+gOf2zKha4XfE8dvI+AFH4p5KjHqc+CSUmqm2N7QX5PhDkRBjobFkR0UztNS1xIXfhOM3HiMTdqtonCC5gCs6ewGXkxm/T3ymXHD6hutRFUWhLL/23HD8xur5ZNST+HtS3zBDkZDn3D5o4Z9Dtj1C07Gb8QOO5IyVFPU4+UkoNVNtr28vKOM3FmIZ8wVmaK1rTWb89YH6rP+fTBUgBkopS5PKTuNkOSckMv60Ov7GmkZTawLSN2Oxe9674fjT26ZkK+f0Wr4PWvjnYGUBl52MHxxy/BUW9UD+N1szOOn4jVW/VqMeI+PPFvNAbsc/E50hqqLey/gLmNxNd/xmN5E3HtOYF7C7Yt0Nx5+M8/KUc2rH7xGcWMBVSMbvhOOvtKgHHBL+NMdfSMZvrMC1EvW01rUmo55sMQ/kdvyl7MwJc4U/GosW5PhrfDVzFnCZPZbRfjnd8Vue3NWOfxbVK/x+Bxx/KTP+CnT8TjwvqY6/o6GjoKjHcPxWop6WupZk1GPX8ZeyFz/MFf5nDj9DVEU5a+FZto6XLeoxg/E8GWMxjuMFxz9H+DM5/qh2/J4hl+M3VhqaacusM35ncMPx1/praa9vJxQN2d5yr38y4fitRD11KVFPhTj+n+36GQFfgCtOvcLW8QqJetKfJy9l/MkJ/MQbfMYFXBHt+D1Dvo0c0hecZKLkGb+OejKSdPyBeMYP9lfv9k32EfAFLO150FrfyvjMOMPB4bJ1/MY5lSr8F624KOcbWb7j2Rb+NMefjHo8VNWTr5xTO34PoJQiFM3d5KnGn7+vR8kz/gqMepwQ/mQdv78u2bPdbs5v1PBb6UhprN49PHY4t/B72PH7xEfAF2AmOsNrw6+xo38H16661vbx5izgsjBRnO6ibU/uuuH4p0ep8dUktSTTAi47DeWKgZtbLy4XkSdEZKeIvCwiH09c3iEij4nI7sR3azsqFEgkFiGmYrmF35e/r4ettswOOn4d9WRm1uSu4fht5vx9k32WJnbhxMf+yfBk7qjHhOMvVTknxM+rmegMv9r7KwCuWXWN7WNlatlgNeqZ4/g9sHLXWLVrGINMjj/XYtFS4qbjjwCfVEqdQXyT9Y+JyGrgNmCTUqoH2JT4vWjk2mjdwJTjj9nYiMWFqp5Sd/lzAqejHsOxGhtZ2416+qf6LU3swuwFWwU7/hJFPRA3PzPRmeQ8R+p+wVYpJONPOv7E82R7cteNqp7QyKwYMOMCrmqLepRSvUqprYmfx4lvtL4UuA7YmLjZRuB6t8aQiVz77RqUg+M3JpetbozhRZx2/MYLzYh67Dr+/klr7RrgRNQD2VftgsmMv0RRD5xw/NORafziL8hgpJdzToWnaAwUlvF7oaontSUzZCnnrObJXRFZSXz/3WeBhUqpXoi/OQAZLZWI3CIim0Vkc39/v2NjMSX8JjP+Ujp+Ox0KvYrxhuiU4zdeaE5M7lp2/HWFO/6JmQmgtI4/VfgL3fA9k+O3m/Hbntx1qY4/1fEbj6EndwERaQZ+DHxCKTVm9n5KqTuVUuuUUuu6uqy5rlyYdfz5RKjkjt/GG49XcdrxG2JhCK+dyd3pyDTjM+OWHf+sqMeu4y/x5C7EBTccC9va5jCd9Dr+YNj8MdPjEy+t3E1tyQzxDVbSd1arSscvIjXERf/7SqkHEhcfF5HFiesXA4Xthm0Rxxx/LGy9nNPhqp5KKOUE5zN+Qyz8Pj9t9W22hD9Zw29xcndW1GM3409EPYU67UJIdfxOCL/xv43EIkRV1PQx0zN+r9Xxp5f6pu+lXHWOX+Lh813ATqXUf6Zc9RCwIfHzBuBBt8aQiUrJ+Csp6nFc+FMcVkdDhz3hT7RrKCjqKcDxN9Y0ZtykvVjMinoChb0Bpdbxm3n9peL3+fGLf87KXS9V9aSS0fF7UPjdLAk5H3g/sF1EXkxcdjvwBeA+EbkZOAjc6OIY5mDmxEv/aJqJUmf8dqqKvEqyZYNDcx+pL7TOhk4Gg4OWj2OnQRvEu0n6Jb7Tml3Hb6XqxS0M4VcoZ6KehJEyRNHKMWv9tXMy/lI7/nA0zFR4as7/uNZfO8fxe7GO3zXhV0r9FshWcnKZW4+bD9NRj8cdfziqo55MpGeqnY2dyfbKVjAmWFOjGzOISHLnL7uO3wmXXSiG8EdV1NHJXTs7Uhm7lYF3Vu4a7RpyRT1KqerM+L2I6agnxwmilCKqoqXP+CvM8Tud8UM86hmcsu74rUYSqRiCn8vxB3wBfOLL6PidqKQpFCcz/tRiCTvPa6qL9srK3fR2DQapUU84FkahPBn1VJ3wGydQIY7fOIl1xu8Mrjp+m1GP0djNjgC31rVS56/L6/TS8+DkYztQSVMohvBbqcDJRqrjN/P6S6fOP9fxl7qqJ7n7VtqnutRPJ17daB2qUPidcPx2++Q4vXJXRz1zSXf8nQ2djIXGLDu9Qhx/S12LqYZm6RUgqY/tFeF3InZKnTMzs3I+01jSq3rs9uNPXVVbCNkW2dX5T/xPU1uEe42qFf5c/4xycPw66slMah0/xDN+sL6Iq9CoJ1fMY5DN8XtN+J10/Hae11QXXXA/foeinmAk8yfCusCJ/6mXHX/5N3qxiBOO3ziJS5nx66gnM5nKOQEGpwYtlWYaL2w7ovfJN30yuQ4gF+kVIAbTkWnLk8pOU+OP9+oJRoIFzzekZvwlr+pxKOpJRoFpn4bq/HWMz4wD3nb8WvgzkM/x222Q5nRVTymX9DuJ8YbodK8eiEc9gOWcfzoyTcAXsNWj5uKVF5u6Xa6oZ2HTQsuP6ySzHH+W3erMklrOaauqJyU+Se5DYfHTrvF/LIbjN6rIvOz4qzbqKaRlQ9Lx6zp+R3C6H/8s4U9EPVYXcRUjbsk6uevAhGqh1Pq8E/UYb0IQ///aaU4oIqbW55gll+NPz/hL/b/MRFUKv9G2Nxv5ThDjOl3V4wxuRj1Jx2+xpDMYDrpeS18Ok7vBsANRT8rKXVtVPSm5+Ux0xrbhMbMi3yzGG1j6c5MaSyUdvwejnqoU/vpAfU7HkO8E8ULGr6t6MpMe9SQzfqtRT7R0jt8rwj8dmSYcCzvi+BWKmIrZrupJndy1a3jM9OAySzLqSXf8gQxVPTrqKT1mXlT5ThBPZPwVGPU48bykO/6WuhYCvoA3ox6PO35j9bITwg/x142tqp6U+KSQT7pOOv5s6zxS38y14/cQpoTfrOPX/fgdwSnHr5Sak/GLSHL17pajWxgLmesMXozVs7kcvxdaNigUMNfVWiX1/2tHDGc5/gI+6Trt+DNN/qcuNrPz6aZYaOHPQF7H74GMX/fjn0u2Ur/Ohk52DuzkvO+cx1ef+aqpYxVjgjWT44+pmCcae6U+h060bID4/9duHX8y448V6PgdnNzN9IaYMerxoOOvunJOMy+qssj4dT/+OWTLVDsaOnj64NMAvDr4qqljlaqqx06duxukiqsTTdpgtvBbyvh9s6t6Csr4HSznzPS8GP9To0EbaMfvCUqZ8Tu5iCQctT/J5TUcE/4sMYJR0gnw2vBrpo5VjLglk+MvZMWwkzjp+JMZfyxMKBqixldjaa+B1OepkE+6jjr+SHbHr1DxWMvDjr8qhT/fP6LGV0NMxYipWMbr7bZsaK5tBk70+SiEQsravIbTUU+6wzJKOgH2jewzdaxiNErL5PgrWfgNx2/1eOl1/J5w/FmiwNR9Frzy6S0TVSn8Zhw/ZF/lZ7dJmyH8xpLuQtBRz1yyOSyjpHPt4rUcmzjGVHgq77GKFvWUgeN3YgcusC/86a2ObU/uOu34M0U9KfssVGU5p4jcLSJ9IvJSymUdIvKYiOxOfG936/GzYbaqB7JHMnYdf62/loAvkCyTs4tS8Y+SleL4jUlvx6KetBfa6fNPp6Ohg1vW3gLA/pH9eY9VlKqewFzHn60VQLFxJeqJhm1tTGJs/G5UbXnF8Wd6Q0zdI9h4nRuGz0u46fi/C1yRdtltwCalVA+wKfF7UTEj/PkcaLJfiEXnISI01zYXLPx2OxR6FRHBJz7XHP8Hz/0gh/7uEGctPAuAfcP5455gOFhwj5p8eNnxp57bjk7u2lgYZ7xRzERnCq/jd8jxZzMGxt8WioQYC41RH6i31e/JbVwTfqXUU0D6qpnrgI2JnzcC17v1+NlwIuqx6/gB5tXOKzjqsfvG42VS+7nYJZvj94mPxppGTm4/GTA3wVusBVyRWGTWXJJXhN/Nck47GT/Ehb+gyV2nq3oyOH7D3U/MTDAeGmde7TxHHs9pip3xL1RK9QIkvmftkysit4jIZhHZ3N+fv8WtWZyIeuxm/ICjjr9Soh6IC3+hZa6Ge87mCBc0LaCxptHUBG+xFnDB7H13K1H40xdwWa1ySZ0w9Yrjz9bDyGinPRoaZXxmvOTttbPh2cldpdSdSql1Sql1sXFRwwAADPlJREFUXV1djh231I7fCeG325Pcyzjq+LMIi4hwUttJeYU/Gos60qMmH8mJwJS4x2gF4CXhd2rlbjgWtje561TUUwTHb2zAMxYaY3xmnHl12vEDHBeRxQCJ731FfnxnHH8BUcu8unmFO34d9WTETBXFSe0n5Y16iuW6jRhgPHQi+kt2ffRAywYDL5RzQvyN3TNVPVkmdw2HPxYaYyw0pqOeBA8BGxI/bwAeLPLje8Lxp77Q7VCpUY/bjh/gpLaT8lb1FEt82xviRW3Gxt2pj+0lx19wxp9SzpneRM8Mxv/Tc44/V9QzPRrP+KvN8YvIPcAfgNNE5LCI3Ax8AXiriOwG3pr4vWhEY1EisUj5Z/zRyqrqgfx7IJjBmDTP9WLrauzKu/l6scS3rb4NqHzhT+/OadvxR0PeWbmbxfG31qdFPR51/K7VGSml3pPlqsvcesx8mN0EwlXHX+Ncxl9JUU9zbXPB1U5G62VjwVYmjOuGp4ez7sFbyH67VigH4a/z11ne7SqdQqMer2X8xhxQJsffVNOEIMmoR0/uegCz+326nfEXXM5ZgVFPR0OH5Z756QwHh/GJL+eLzYhXhoPDWW+TbXclpzGEf3j6xFiK9aaTD0NcnXgOUss57VT1pGb8hQh/ra/WEcefbRMWiBcQtNS1xKt6dDmnNzDrpvJtzFxoxj8VniqodLESo57Ohk7L2yOmMxQcor2+PWcDMMPx53qTKZbrbq/PnvF7ZeWuE89BwY4/JeMvZAMipxx/vsqr1vpWRqZHmAxPVl/G70XMvqCTUY9LGT9gql9MNiox6uls7LS8PWI6Q9NDOWMeOCG2qS47nWKVVBp5cLrw+8Vf8tWebgi/3XLO1IzfC3X8+d6cW+paODp+FEA7fi9gWvhTPppmotCVu0BBOX8lRj2OOf6G3O2frDh+t6t6Ar4AzbXNc4S/1DEPpEQ9DjwHsxZwRW0s4EppfBaJRUqe8eeKeiAu/IfHDid/9iJa+DNgZnJXkOTGKlZwokNnJUY9HQ0dTIYnM25FaJahoAnHbyHjL4YAt9W3zfr04RXhN0yFE2MxXk/G5Kxdx2+YpVLX8Wfbb9egta41Kfw66vEAVh1/rsldux/FU3t52KUio55Ez/xCJnjNCL8xoZrrcYo5wdpe3z7L8Rdjy0czODm5a7xWjH0o7Gb8xmumHBz/ZDj+t+qoxwM46fjtiq4Twl+RUU9il6xCcv7h4DAd9bmFP+AL0FLXYi7qKcIEa1t92+yoJ+p+jyAzuJHxG+e8nbbMqfcvpI5foQruCZXP8afGO9rxewDHHH/MvuM3ToRCVu9WYssGM9l7LqKxKCPTI3kdv/FYuSZ3ix31eDnjd0P47dbxO+H4ofCtT804/kw/e4mqEn7jo2Y+R2XK8dt0HU5GPZWU8RtRj90J3tHQKAplWvi9UM4JiYw/6L2M3+/z4xOfI5O7xmsl6fht1vEXLPy+3K9rs5jJ+A101OMBjB4t3a3dOW/n9YxfRz1zMbNq16C9vt1UOWcxGqWlZ/xeEX6IC6wnHH9axm97crcEjl9HPR5g99Bu5jfOT07wZcPNjN+Rcs4KjHoKndw17pevnBPMO/5i7JXaVt/GWGgsuRmLVyZ3wQXhD9sT/qTjD5eH458l/Nrxl549Q3vo6ejJe7vGmkYgHh9kopCMv6m2CSiwnLPCtl6E+HNe66+1HfVYdfz5hL/WX5tzBbBTtNW3oVCMhcaSj+0V4e9u7WZl28qCj2MYFLuTuwFfAEEKn9wtkuM3Fub5xe+Z/2U63tsM0kX2DO3h4pUX571dS10LK1pX8Mfjf8x4fSQWsS38tf5aav21zpRzVlDUIyLxRVw2ox4jJzc9uRscRimVsQFZtk023CDZryc4TFt9W3znrxL34jd47kPPOfKpstByThGh1l+bLIgoteM3s3LX+F5ogzu3qBrHHwwHOTR2iFM7TjV1+3MXn8vW3q0ZryukXwgU3pq5EqMeKKxtgyXH39BOOBZO1lqnU0zXnd6T30uOv6GmwZHWET7xIUjyU66dv68uUOdYVY9hnOySr6WHIfxezfehioTf2G7PrPCvXbSWXYO7MpZdFuL4ofAN1ysx6oHCOnQmM/56cxk/ZF+9W0zxTW/N7CXhd5KAL2C7qgeY9Sm5kJW74EzUkysKNKp6vJrvQxUJ/56hPQCmMn6AtYvXAmSMe8JR+9u/QeGOvxKjHiisX89QcIh5tfNM/V+MN4dsbzLZdldyg3ThD0a8M7nrJDX+GttRD8TfLByr43dgcjdXHKcdfxZE5AoReVVE9ojIbcV4TEP4TTv+hPBninsKdfxORD1+8Xs2P7RLIRn/0HT+Bm0GqZuxZKIUjt8YSyU7/kKinlTHX3DG74Djz2UMUjN+r1J04RcRP/BN4EpgNfAeEVnt9uPuGdpDR0OHaXFYPG8xi5oXZRT+QjP+QjdcD8fCFRfzQDzjHwoOoZSyfF8zfXoMjHMgm+Mvasaf0pNfKeWpyV0nmRX12CiTTc34C67qKdTx55n8b6xpxC9+T0c9pajqWQ/sUUq9BiAiPwSuA3Y4/UAf+flHeOrgUwAcGj3E6i5r7y9rF6/lRzt+xPNHn591+b7hfaxfut72uJprm3n6wNOs+dYaW/c/NnGs4iZ2Ie7EZ6IzrPnWGsufZvaP7Oe8peeZfhyAv/nF3/CZJz6T8ViF/H+tMK9uHoLwhd9+ge9s/Q5QnPUDxabGV5OMKO1m/MbWqYVm/O974H3Jsmo7HBo9xPLW5VmvN3bh8nLUUwrhXwocSvn9MDDnFSsitwC3AHR3515pm43u1u6k2K/uWs271rzL0v1vfeOtyZr+VFZ3rebG1TfaGhPALWtvKSgqWt21mnWL19m+v1d5x+nv4MVjL9r6KL66azXvfd17Td12WcsyPn7exzkyfiTrsayeK3bxiY/PXfw5tvVtA+DsRWdz/enXF+Wxi8ltF9zG7w79ju6WbuY3zrd8/79749/x8O6H6WzoZFXnKltjeP2S1/OBcz5Q8Nanq7tWc8UpV+S8zb9e9q+cufDMgh7HTcTOx+qCHlDkRuDtSqkPJX5/P7BeKfU32e6zbt06tXnz5mINUaPRaCoCEdmilJrjEksxuXsYSP2ctAw4WoJxaDQaTVVSCuF/HugRkZNEpBZ4N/BQCcah0Wg0VUnRM36lVERE/hp4FPADdyulXi72ODQajaZaKUmvHqXUI8AjpXhsjUajqXaqZuWuRqPRaOJo4ddoNJoqQwu/RqPRVBla+DUajabKKPoCLjuISD9wwObd5wMDDg6nEtHPUX70c2QO/Tzlp5jP0QqlVFf6hWUh/IUgIpszrVzTnEA/R/nRz5E59POUHy88Rzrq0Wg0mipDC79Go9FUGdUg/HeWegBlgH6O8qOfI3Po5yk/JX+OKj7j12g0Gs1sqsHxazQajSYFLfwajUZTZVS08JdiU/dyQET2i8h2EXlRRDYnLusQkcdEZHfiu7nNiSsEEblbRPpE5KWUyzI+JxLna4nzapuIrC3dyItHlufosyJyJHEuvSgiV6Vc9+nEc/SqiLy9NKMuLiKyXESeEJGdIvKyiHw8cbmnzqWKFf5SbepeRlyilDonpZ74NmCTUqoH2JT4vZr4LpC+n1625+RKoCfxdQvwX0UaY6n5LnOfI4AvJ86lcxKdd0m81t4NrEnc51uJ12SlEwE+qZQ6A3gj8LHEc+Gpc6lihZ+UTd2VUjOAsam7JjPXARsTP28EKm/j1xwopZ4ChtIuzvacXAd8T8V5BmgTkcXFGWnpyPIcZeM64IdKqZBSah+wh/hrsqJRSvUqpbYmfh4HdhLfZ9xT51IlC3+mTd2XlmgsXkMBvxKRLYlN7QEWKqV6IX7yAgtKNjrvkO050efWbP46EVPcnRIRVv1zJCIrgXOBZ/HYuVTJwi8ZLtO1q3HOV0qtJf4x82MiclGpB1Rm6HPrBP8FnAKcA/QCX0pcXtXPkYg0Az8GPqGUGst10wyXuf48VbLw603ds6CUOpr43gf8hPhH8OPGR8zE977SjdAzZHtO9LmVQCl1XCkVVUrFgG9zIs6p2udIRGqIi/73lVIPJC721LlUycKvN3XPgIg0icg842fgbcBLxJ+bDYmbbQAeLM0IPUW25+Qh4M8TFRlvBEaNj/HVRloe/Q7i5xLEn6N3i0idiJxEfPLyuWKPr9iIiAB3ATuVUv+ZcpW3ziWlVMV+AVcBu4C9wB2lHo8XvoCTgT8mvl42nhegk3i1we7E945Sj7XIz8s9xKOKMHEXdnO254T4x/NvJs6r7cC6Uo+/hM/R/yaeg23ERWxxyu3vSDxHrwJXlnr8RXqOLiAe1WwDXkx8XeW1c0m3bNBoNJoqo5KjHo1Go9FkQAu/RqPRVBla+DUajabK0MKv0Wg0VYYWfo1Go6kytPBrNBpNlaGFX6PRaKqM/wfYGcnAmQj44QAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "ax = some_track['Speed.value'].plot(color='green')\n",
+ "ax.set_title(\"Speed\")\n",
+ "ax.set_ylabel(some_track['Speed.unit'][0])\n",
+ "ax"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Plot histogram for fuel consumption value "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([[]],\n",
+ " dtype=object)"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEICAYAAACktLTqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAU10lEQVR4nO3df7TcdX3n8eerRMqPqwQErxCwoZVau0RFb11/7NobsacIKpxT3VopDS6e7J71Z40t0XpW67E23VWL3f7Yw4Karkh0ERcU7ErR1HUXWRNUIqKFgxEDGLCSaBArqe/9Y76xQ7hJ7p2Zm7n55Pk4Z86d78/P+zO5ec1nPt+ZuakqJElt+ZlxFyBJGj3DXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7NAdJ3pLkknHX0S/J5iQvGHcdWlgMdw0tySuSbEiyI8k9ST6V5F+Nu65hJZlOsqV/XVW9q6peNa6apNky3DWUJG8ELgLeBUwCTwD+Ejh7nHVJBzvDXQNLchTwDuDVVXVlVT1QVQ9V1Seq6veS/GySi5Lc3d0uSvKz3bHTSbYkWZXk3m7E/8q+c5+Z5GtJfpDkriRv6tafn+Tzu9VRSZ7Y3f9gkr/sXj3sSPJ/kjy+a/v+JF9PclrfsZuTvLlr6/4kH0hyWJIjgU8BJ3Tn2ZHkhCRvT/KhvuNfkuSWJNuSrE/y5N3O/aYkNyfZnuQjSQ6b4XE8IcmDSY7pW3daku8meVSSX0jymST/0K27LMniPfybfDDJO/uWH/bqo2vrY0nuS/LNJK+bzb+1DjyGu4bxbOAw4ON72P4HwLOApwFPBZ4JvLVv++OBo4AlwAXAXyQ5utt2KfDvqurRwKnAZ+ZQ17/p2jkW+EfgBuCmbvkK4L277X8u8OvALwC/CLy1qh4AXgjcXVUT3e3u/oOS/CJwOfAG4DjgWuATSQ7drZYzgJOBpwDn715sd94bgN/oW/0K4IqqeggI8MfACcCTgZOAt8/60fjnen8G+ATwFXqP+enAG5L8+lzPpYXPcNcwHgt8t6p27mH7ucA7qureqroP+EPgvL7tD3XbH6qqa4EdwJP6tv1yksdU1f1VddMc6vp4VW2sqh/Re+L5UVX9dVX9E/AR4LTd9v/zqvp2VX0P+CPgt2bZzm8C11TVdV0Ivxs4HHhO3z5/VlV3d+f+BL0nupl8eFe7SQK8vFtHVd3etfGP3eP4XuBXZ1ljv18Bjquqd1TVj6vqDuC/dW2pMYa7hvEPwLFJFu1h+wnAt/qWv9Wt++nxuz0x/BCY6O7/BnAm8K0kf5fk2XOoa2vf/QdnWJ54+O58ey817s3D+ldVP+nOtaRvn+/03e/v3+6uAJ6d5ATgeUAB/xsgyeOSrOump74PfIjeq5C5+jl600zbdt2At9C7VqLGGO4axg3Aj4Bz9rD9bnqBsssTunX7VFVfrKqzgccB/xP4aLfpAeCIXfslefwca57JSXuocV9fmfqw/nUj7pOAu+ZaQFVtAz5NbxrnFcDl9c9f2frHXS1PqarHAL9Nb6pmJg97fOhNfe3ybeCbVbW47/boqjpzrvVq4TPcNbCq2g78R3pz5eckOaK7APjCJP+J3nz0W5Mcl+TYbt8P7e2cAEkOTXJukqO66Y7vA//Ubf4K8C+SPK27OPn2EXTl1UlO7C5ovoXe1A30RvyP7S4cz+SjwFlJTk/yKGAVvTn+/ztgHR8Gfofeq5YP961/NL0pq21JlgC/t5dzfBk4M8kx3RPfG/q2/T/g+0kuTHJ4kkOSnJrkVwasVwuY4a6hVNV7gTfSu4B5H73R4WvojbbfCWwAbgY20buo+c6Zz/QI5wGbu2mIf09vtEpV/T29d+j8LXAb8Pk9nmH2Pkxv1HxHd3tn19bX6T1B3dFNYzxsuqaqvtHV9V+A7wIvBl5cVT/eV4NJntC9A+cJfauvBk4BtlbVV/rW/yHwdGA7cA1w5V5O/d/pPQFu7vq064mK7prDi+nN+3+zq/kSehe11Zj4xzp0MEuyGXhVVf3tuGuRRsmRuyQ1yHCXpAY5LSNJDXLkLkkN2tOHT/arY489tpYuXTruMnjggQc48sgjx13G0OzHwtJKP6CdvrTSj40bN363qo6baduCCPelS5eyYcOGcZfB+vXrmZ6eHncZQ7MfC0sr/YB2+tJKP5J8a0/bnJaRpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGLYhPqA5j6eprRnauVct2cv4czrd5zVkja1uSRsmRuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDdpnuCd5f5J7k3y1b90xSa5Lclv38+hufZL8WZLbk9yc5OnzWbwkaWazGbl/EDhjt3Wrgeur6hTg+m4Z4IXAKd1tJfBXoylTkjQX+wz3qvoc8L3dVp8NrO3urwXO6Vv/19XzBWBxkuNHVawkaXZSVfveKVkKfLKqTu2Wt1XV4r7t91fV0Uk+Caypqs93668HLqyqR/z16yQr6Y3umZycfMa6desG6sCmu7YPdNxMJg+HrQ/Ofv9lS44aWdujtGPHDiYmJsZdxtDsx8LTSl9a6cfy5cs3VtXUTNtG/d0ymWHdjM8eVXUxcDHA1NRUDfqXyOfyXTD7smrZTt6zafYPyeZzp0fW9ii18pfd7cfC00pfWunH3gz6bpmtu6Zbup/3duu3ACf17XcicPfg5UmSBjFouF8NrOjurwCu6lv/O927Zp4FbK+qe4asUZI0R/ucg0hyOTANHJtkC/A2YA3w0SQXAHcCL+t2vxY4E7gd+CHwynmoWZK0D/sM96r6rT1sOn2GfQt49bBFSZKG4ydUJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoOGCvckv5vkliRfTXJ5ksOSnJzkxiS3JflIkkNHVawkaXYGDvckS4DXAVNVdSpwCPBy4E+AP62qU4D7gQtGUagkafaGnZZZBByeZBFwBHAP8Hzgim77WuCcIduQJM3RwOFeVXcB7wbupBfq24GNwLaq2tnttgVYMmyRkqS5SVUNdmByNPAx4DeBbcD/6JbfVlVP7PY5Cbi2qpbNcPxKYCXA5OTkM9atWzdQHZvu2j7QcTOZPBy2Pjj7/ZctOWpkbY/Sjh07mJiYGHcZQ7MfC08rfWmlH8uXL99YVVMzbVs0xHlfAHyzqu4DSHIl8BxgcZJF3ej9RODumQ6uqouBiwGmpqZqenp6oCLOX33NQMfNZNWynbxn0+wfks3nTo+s7VFav349gz6eC4n9WHha6Usr/dibYebc7wSeleSIJAFOB74GfBZ4abfPCuCq4UqUJM3VMHPuN9K7cHoTsKk718XAhcAbk9wOPBa4dAR1SpLmYJhpGarqbcDbdlt9B/DMYc4rSRqOn1CVpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDRoq3JMsTnJFkq8nuTXJs5Mck+S6JLd1P48eVbGSpNkZduT+PuBvquqXgKcCtwKrgeur6hTg+m5ZkrQfDRzuSR4DPA+4FKCqflxV24CzgbXdbmuBc4YtUpI0N8OM3H8euA/4QJIvJbkkyZHAZFXdA9D9fNwI6pQkzUGqarADkyngC8Bzq+rGJO8Dvg+8tqoW9+13f1U9Yt49yUpgJcDk5OQz1q1bN1Adm+7aPtBxM5k8HLY+OPv9ly05amRtj9KOHTuYmJgYdxlDsx8LTyt9aaUfy5cv31hVUzNtGybcHw98oaqWdsv/mt78+hOB6aq6J8nxwPqqetLezjU1NVUbNmwYqI6lq68Z6LiZrFq2k/dsWjTr/TevOWtkbY/S+vXrmZ6eHncZQ7MfC08rfWmlH0n2GO4DT8tU1XeAbyfZFdynA18DrgZWdOtWAFcN2oYkaTCzH6bO7LXAZUkOBe4AXknvCeOjSS4A7gReNmQbkqQ5Gircq+rLwEwvCU4f5rySpOH4CVVJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUoKHDPckhSb6U5JPd8slJbkxyW5KPJDl0+DIlSXMxipH764Fb+5b/BPjTqjoFuB+4YARtSJLmYKhwT3IicBZwSbcc4PnAFd0ua4FzhmlDkjR3w47cLwJ+H/hJt/xYYFtV7eyWtwBLhmxDkjRHqarBDkxeBJxZVf8hyTTwJuCVwA1V9cRun5OAa6tq2QzHrwRWAkxOTj5j3bp1A9Wx6a7tAx03k8nDYeuDs99/2ZKjRtb2KO3YsYOJiYlxlzE0+7HwtNKXVvqxfPnyjVU1NdO2RUOc97nAS5KcCRwGPIbeSH5xkkXd6P1E4O6ZDq6qi4GLAaampmp6enqgIs5ffc1Ax81k1bKdvGfT7B+SzedOj6ztUVq/fj2DPp4Lif1YeFrpSyv92JuBp2Wq6s1VdWJVLQVeDnymqs4FPgu8tNttBXDV0FVKkuZkPt7nfiHwxiS305uDv3Qe2pAk7cUw0zI/VVXrgfXd/TuAZ47ivJKkwfgJVUlq0EhG7gerpSO8mDsXm9ecNZZ2JR04HLlLUoMMd0lqkOEuSQ0y3CWpQYa7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkOEuSQ0y3CWpQYa7JDVo4HBPclKSzya5NcktSV7frT8myXVJbut+Hj26ciVJs7FoiGN3Aquq6qYkjwY2JrkOOB+4vqrWJFkNrAYuHL5U7bJ09TV73b5q2U7O38c+g9q85qx5Oa+k0Rp45F5V91TVTd39HwC3AkuAs4G13W5rgXOGLVKSNDepquFPkiwFPgecCtxZVYv7tt1fVY+YmkmyElgJMDk5+Yx169YN1Pamu7YPdNxMJg+HrQ+O7HRjM5/9WLbkqPk58Qx27NjBxMTEfmtvvrTSD2inL630Y/ny5RuramqmbUOHe5IJ4O+AP6qqK5Nsm02495uamqoNGzYM1P6+pijmYtWynbxn0zAzVQvDfPZjf07LrF+/nunp6f3W3nxppR/QTl9a6UeSPYb7UO+WSfIo4GPAZVV1Zbd6a5Lju+3HA/cO04Ykae6GebdMgEuBW6vqvX2brgZWdPdXAFcNXp4kaRDDvHZ/LnAesCnJl7t1bwHWAB9NcgFwJ/Cy4UqUJM3VwOFeVZ8HsofNpw96XknS8PyEqiQ1yHCXpAYZ7pLUIMNdkhpkuEtSgw78j2NqvxrlJ4L3pf8L0PzCMmluHLlLUoMcueuAsD9fMfTzFYMOVI7cJalBhrskNchwl6QGGe6S1CDDXZIaZLhLUoMMd0lqkO9zl/ZiFO+v7/+k7Vz4HnsNw5G7JDXIcJekBhnuktQgw12SGmS4S1KDDHdJapDhLkkNMtwlqUGGuyQ1yHCXpAYZ7pLUIL9bRlqgDsa/G7u/+rz79/20+D0+jtwlqUGO3CUd9Mb1Kgnm71XDvIzck5yR5BtJbk+yej7akCTt2chH7kkOAf4C+DVgC/DFJFdX1ddG3Zak0dvbKHbQ76bX/jcfI/dnArdX1R1V9WNgHXD2PLQjSdqDVNVoT5i8FDijql7VLZ8H/Muqes1u+60EVnaLTwK+MdJCBnMs8N1xFzEC9mNhaaUf0E5fWunHz1XVcTNtmI8Lqplh3SOeQarqYuDieWh/YEk2VNXUuOsYlv1YWFrpB7TTl1b6sTfzMS2zBTipb/lE4O55aEeStAfzEe5fBE5JcnKSQ4GXA1fPQzuSpD0Y+bRMVe1M8hrgfwGHAO+vqltG3c48WVDTREOwHwtLK/2AdvrSSj/2aOQXVCVJ4+fXD0hSgwx3SWrQQR/uSU5K8tkktya5Jcnrx13TMJIckuRLST457lqGkWRxkiuSfL37t3n2uGsaRJLf7X6vvprk8iSHjbum2Ujy/iT3Jvlq37pjklyX5Lbu59HjrHG29tCX/9z9bt2c5ONJFo+zxvlw0Ic7sBNYVVVPBp4FvDrJL4+5pmG8Hrh13EWMwPuAv6mqXwKeygHYpyRLgNcBU1V1Kr03GLx8vFXN2geBM3Zbtxq4vqpOAa7vlg8EH+SRfbkOOLWqngL8PfDm/V3UfDvow72q7qmqm7r7P6AXIkvGW9VgkpwInAVcMu5ahpHkMcDzgEsBqurHVbVtvFUNbBFweJJFwBEcIJ/5qKrPAd/bbfXZwNru/lrgnP1a1IBm6ktVfbqqdnaLX6D3eZymHPTh3i/JUuA04MbxVjKwi4DfB34y7kKG9PPAfcAHuimmS5IcOe6i5qqq7gLeDdwJ3ANsr6pPj7eqoUxW1T3QGxQBjxtzPaPyb4FPjbuIUTPcO0kmgI8Bb6iq74+7nrlK8iLg3qraOO5aRmAR8HTgr6rqNOABDpwpgJ/q5qTPBk4GTgCOTPLb461K/ZL8Ab2p2cvGXcuoGe5AkkfRC/bLqurKcdczoOcCL0mymd43cT4/yYfGW9LAtgBbqmrXK6gr6IX9geYFwDer6r6qegi4EnjOmGsaxtYkxwN0P+8dcz1DSbICeBFwbjX4gZ+DPtyThN7c7q1V9d5x1zOoqnpzVZ1YVUvpXbT7TFUdkKPEqvoO8O0kT+pWnQ4ciH8P4E7gWUmO6H7PTucAvDDc52pgRXd/BXDVGGsZSpIzgAuBl1TVD8ddz3w46MOd3oj3PHoj3S93tzPHXZR4LXBZkpuBpwHvGnM9c9a98rgCuAnYRO//2wHxsfcklwM3AE9KsiXJBcAa4NeS3Ebvj/GsGWeNs7WHvvw58Gjguu7//H8da5HzwK8fkKQGOXKXpAYZ7pLUIMNdkhpkuEtSgwx3SWqQ4S5JDTLcJalB/x/6fALTkFt1CQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "some_track.hist(column='Consumption.value')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Interactive Map\n",
+ "The following map-based visualization makes use of folium. It allows to visualizate geospatial data based on an interactive leaflet map. Since the data in the GeoDataframe is modelled as a set of Point instead of a LineString, we have to manually create a polyline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "scrolled": true
+ },
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ ""
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import folium\n",
+ "\n",
+ "lats = list(some_track['geometry'].apply(lambda coord: coord.y))\n",
+ "lngs = list(some_track['geometry'].apply(lambda coord: coord.x))\n",
+ "\n",
+ "avg_lat = sum(lats) / len(lats)\n",
+ "avg_lngs = sum(lngs) / len(lngs)\n",
+ "\n",
+ "m = folium.Map(location=[avg_lat, avg_lngs], tiles=\"Stamen Toner\",zoom_start=12)\n",
+ "folium.PolyLine([coords for coords in zip(lats, lngs)], color='red').add_to(m)\n",
+ "m"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Example: Visualization with pydeck (deck.gl)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "The pydeck library makes use of the basemap tiles from Mapbox. In case you want to visualize the map with basemap tiles, you need to register with MapBox, and configure a specific access token. The service is free until a certain level of traffic is esceeded.\n",
+ "\n",
+ "You can either configure it via your terminal (i.e. `export MAPBOX_API_KEY=`), which pydeck will automatically read, or you can pass it as a variable to the generation of pydeck (i.e. `pdk.Deck(mapbox_key=, ...)`."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ " \n",
+ " "
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/plain": [
+ "'C:\\\\Users\\\\DELL\\\\Documents\\\\GitHub\\\\envirocar-py\\\\examples\\\\tracks_muenster.html'"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import pydeck as pdk\n",
+ "\n",
+ "# for pydeck the attributes have to be flat\n",
+ "track_df['lat'] = track_df['geometry'].apply(lambda coord: coord.y)\n",
+ "track_df['lng'] = track_df['geometry'].apply(lambda coord: coord.x)\n",
+ "vis_df = pd.DataFrame(track_df)\n",
+ "vis_df['speed'] = vis_df['Speed.value']\n",
+ "\n",
+ "# omit unit columns\n",
+ "vis_df_cols = [col for col in vis_df.columns if col.lower()[len(col)-4:len(col)] != 'unit']\n",
+ "vis_df = vis_df[vis_df_cols]\n",
+ "\n",
+ "layer = pdk.Layer(\n",
+ " 'ScatterplotLayer',\n",
+ " data=vis_df,\n",
+ " get_position='[lng, lat]',\n",
+ " auto_highlight=True,\n",
+ " get_radius=10, # Radius is given in meters\n",
+ " get_fill_color='[speed < 20 ? 0 : (speed - 20)*8.5, speed < 50 ? 255 : 255 - (speed-50)*8.5, 0, 140]', # Set an RGBA value for fill\n",
+ " pickable=True\n",
+ ")\n",
+ "\n",
+ "# Set the viewport location\n",
+ "view_state = pdk.ViewState(\n",
+ " longitude=7.5963592529296875,\n",
+ " latitude=51.96246168188569,\n",
+ " zoom=10,\n",
+ " min_zoom=5,\n",
+ " max_zoom=15,\n",
+ " pitch=40.5,\n",
+ " bearing=-27.36)\n",
+ "\n",
+ "r = pdk.Deck(\n",
+ " width=200, \n",
+ " layers=[layer], \n",
+ " initial_view_state=view_state , mapbox_key='pk.eyJ1Ijoic2lnZGVsZyIsImEiOiJjazh3dHk2YnQwMGFtM2tuNWtieDN2cmUzIn0.n8h9TtiewMdFuEJPO_q8Rg'\n",
+ ")\n",
+ "r.to_html('tracks_muenster.html', iframe_width=900)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 4
+}
diff --git a/examples/api_request_deckgl.ipynb b/examples/api_request_deckgl.ipynb
deleted file mode 100644
index 504d207..0000000
--- a/examples/api_request_deckgl.ipynb
+++ /dev/null
@@ -1,727 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Package loading and basic configurations"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {},
- "outputs": [],
- "source": [
- "%load_ext autoreload\n",
- "%autoreload 2\n",
- "\n",
- "# load dependencies'\n",
- "import pandas as pd\n",
- "import geopandas as gpd\n",
- "\n",
- "from envirocar import TrackAPI, DownloadClient, BboxSelector, ECConfig\n",
- "\n",
- "# create an initial but optional config and an api client\n",
- "config = ECConfig()\n",
- "track_api = TrackAPI(api_client=DownloadClient(config=config))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Querying enviroCar Tracks"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The following cell queries tracks from the enviroCar API. It defines a bbox for the area of Münster (Germany) and requests 50 tracks. The result is a GeoDataFrame, which is a geo-extended Pandas dataframe from the GeoPandas library. It contains all information of the track in a flat dataframe format including a specific geometry column. "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " id \n",
- " time \n",
- " geometry \n",
- " GPS PDOP.value \n",
- " GPS PDOP.unit \n",
- " Speed.value \n",
- " Speed.unit \n",
- " GPS Altitude.value \n",
- " GPS Altitude.unit \n",
- " GPS Bearing.value \n",
- " ... \n",
- " Consumption.value \n",
- " Consumption.unit \n",
- " track.appVersion \n",
- " track.touVersion \n",
- " O2 Lambda Voltage ER.value \n",
- " O2 Lambda Voltage ER.unit \n",
- " MAF.value \n",
- " MAF.unit \n",
- " O2 Lambda Voltage.value \n",
- " O2 Lambda Voltage.unit \n",
- " \n",
- " \n",
- " \n",
- " \n",
- " 0 \n",
- " 5e8b930965b80c5d6b4d7cd1 \n",
- " 2020-03-07T12:33:15 \n",
- " POINT (7.64069 51.95733) \n",
- " 1.090631 \n",
- " precision \n",
- " 28.999999 \n",
- " km/h \n",
- " 110.381939 \n",
- " m \n",
- " 124.858622 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 1 \n",
- " 5e8b930965b80c5d6b4d7cd3 \n",
- " 2020-03-07T12:33:20 \n",
- " POINT (7.64118 51.95712) \n",
- " 1.000000 \n",
- " precision \n",
- " 28.000000 \n",
- " km/h \n",
- " 108.260375 \n",
- " m \n",
- " 125.020801 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 2 \n",
- " 5e8b930965b80c5d6b4d7cd4 \n",
- " 2020-03-07T12:33:26 \n",
- " POINT (7.64162 51.95690) \n",
- " 1.257198 \n",
- " precision \n",
- " 28.000001 \n",
- " km/h \n",
- " 105.826028 \n",
- " m \n",
- " 121.203960 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 3 \n",
- " 5e8b930965b80c5d6b4d7cd5 \n",
- " 2020-03-07T12:33:31 \n",
- " POINT (7.64210 51.95672) \n",
- " 1.000000 \n",
- " precision \n",
- " 30.000000 \n",
- " km/h \n",
- " 104.395998 \n",
- " m \n",
- " 123.412759 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 4 \n",
- " 5e8b930965b80c5d6b4d7cd6 \n",
- " 2020-03-07T12:33:36 \n",
- " POINT (7.64264 51.95650) \n",
- " 1.026727 \n",
- " precision \n",
- " 31.409419 \n",
- " km/h \n",
- " 101.516865 \n",
- " m \n",
- " 122.170479 \n",
- " ... \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " ... \n",
- " \n",
- " \n",
- " 283 \n",
- " 5dc986e844ea856b702e3e0b \n",
- " 2019-10-28T16:34:55 \n",
- " POINT (7.59523 51.96505) \n",
- " 1.700000 \n",
- " precision \n",
- " 47.999999 \n",
- " km/h \n",
- " 109.652212 \n",
- " m \n",
- " 276.419653 \n",
- " ... \n",
- " 3.122268 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 284 \n",
- " 5dc986e844ea856b702e3e0c \n",
- " 2019-10-28T16:35:00 \n",
- " POINT (7.59425 51.96512) \n",
- " 1.497088 \n",
- " precision \n",
- " 48.297297 \n",
- " km/h \n",
- " 110.122771 \n",
- " m \n",
- " 276.271049 \n",
- " ... \n",
- " 2.853618 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 285 \n",
- " 5dc986e844ea856b702e3e0d \n",
- " 2019-10-28T16:35:05 \n",
- " POINT (7.59327 51.96518) \n",
- " 1.688911 \n",
- " precision \n",
- " 49.000001 \n",
- " km/h \n",
- " 110.573987 \n",
- " m \n",
- " 275.808021 \n",
- " ... \n",
- " 4.657916 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 286 \n",
- " 5dc986e844ea856b702e3e0e \n",
- " 2019-10-28T16:35:10 \n",
- " POINT (7.59225 51.96525) \n",
- " 1.300000 \n",
- " precision \n",
- " 51.000000 \n",
- " km/h \n",
- " 111.140661 \n",
- " m \n",
- " 275.411387 \n",
- " ... \n",
- " 3.445271 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- " 287 \n",
- " 5dc986e844ea856b702e3e0f \n",
- " 2019-10-28T16:35:15 \n",
- " POINT (7.59123 51.96531) \n",
- " 1.423253 \n",
- " precision \n",
- " 50.000001 \n",
- " km/h \n",
- " 111.891658 \n",
- " m \n",
- " 276.124438 \n",
- " ... \n",
- " 3.248333 \n",
- " l/h \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " NaN \n",
- " \n",
- " \n",
- "
\n",
- "
9944 rows × 54 columns
\n",
- "
"
- ],
- "text/plain": [
- " id time geometry \\\n",
- "0 5e8b930965b80c5d6b4d7cd1 2020-03-07T12:33:15 POINT (7.64069 51.95733) \n",
- "1 5e8b930965b80c5d6b4d7cd3 2020-03-07T12:33:20 POINT (7.64118 51.95712) \n",
- "2 5e8b930965b80c5d6b4d7cd4 2020-03-07T12:33:26 POINT (7.64162 51.95690) \n",
- "3 5e8b930965b80c5d6b4d7cd5 2020-03-07T12:33:31 POINT (7.64210 51.95672) \n",
- "4 5e8b930965b80c5d6b4d7cd6 2020-03-07T12:33:36 POINT (7.64264 51.95650) \n",
- ".. ... ... ... \n",
- "283 5dc986e844ea856b702e3e0b 2019-10-28T16:34:55 POINT (7.59523 51.96505) \n",
- "284 5dc986e844ea856b702e3e0c 2019-10-28T16:35:00 POINT (7.59425 51.96512) \n",
- "285 5dc986e844ea856b702e3e0d 2019-10-28T16:35:05 POINT (7.59327 51.96518) \n",
- "286 5dc986e844ea856b702e3e0e 2019-10-28T16:35:10 POINT (7.59225 51.96525) \n",
- "287 5dc986e844ea856b702e3e0f 2019-10-28T16:35:15 POINT (7.59123 51.96531) \n",
- "\n",
- " GPS PDOP.value GPS PDOP.unit Speed.value Speed.unit GPS Altitude.value \\\n",
- "0 1.090631 precision 28.999999 km/h 110.381939 \n",
- "1 1.000000 precision 28.000000 km/h 108.260375 \n",
- "2 1.257198 precision 28.000001 km/h 105.826028 \n",
- "3 1.000000 precision 30.000000 km/h 104.395998 \n",
- "4 1.026727 precision 31.409419 km/h 101.516865 \n",
- ".. ... ... ... ... ... \n",
- "283 1.700000 precision 47.999999 km/h 109.652212 \n",
- "284 1.497088 precision 48.297297 km/h 110.122771 \n",
- "285 1.688911 precision 49.000001 km/h 110.573987 \n",
- "286 1.300000 precision 51.000000 km/h 111.140661 \n",
- "287 1.423253 precision 50.000001 km/h 111.891658 \n",
- "\n",
- " GPS Altitude.unit GPS Bearing.value ... Consumption.value \\\n",
- "0 m 124.858622 ... NaN \n",
- "1 m 125.020801 ... NaN \n",
- "2 m 121.203960 ... NaN \n",
- "3 m 123.412759 ... NaN \n",
- "4 m 122.170479 ... NaN \n",
- ".. ... ... ... ... \n",
- "283 m 276.419653 ... 3.122268 \n",
- "284 m 276.271049 ... 2.853618 \n",
- "285 m 275.808021 ... 4.657916 \n",
- "286 m 275.411387 ... 3.445271 \n",
- "287 m 276.124438 ... 3.248333 \n",
- "\n",
- " Consumption.unit track.appVersion track.touVersion \\\n",
- "0 NaN NaN NaN \n",
- "1 NaN NaN NaN \n",
- "2 NaN NaN NaN \n",
- "3 NaN NaN NaN \n",
- "4 NaN NaN NaN \n",
- ".. ... ... ... \n",
- "283 l/h NaN NaN \n",
- "284 l/h NaN NaN \n",
- "285 l/h NaN NaN \n",
- "286 l/h NaN NaN \n",
- "287 l/h NaN NaN \n",
- "\n",
- " O2 Lambda Voltage ER.value O2 Lambda Voltage ER.unit MAF.value MAF.unit \\\n",
- "0 NaN NaN NaN NaN \n",
- "1 NaN NaN NaN NaN \n",
- "2 NaN NaN NaN NaN \n",
- "3 NaN NaN NaN NaN \n",
- "4 NaN NaN NaN NaN \n",
- ".. ... ... ... ... \n",
- "283 NaN NaN NaN NaN \n",
- "284 NaN NaN NaN NaN \n",
- "285 NaN NaN NaN NaN \n",
- "286 NaN NaN NaN NaN \n",
- "287 NaN NaN NaN NaN \n",
- "\n",
- " O2 Lambda Voltage.value O2 Lambda Voltage.unit \n",
- "0 NaN NaN \n",
- "1 NaN NaN \n",
- "2 NaN NaN \n",
- "3 NaN NaN \n",
- "4 NaN NaN \n",
- ".. ... ... \n",
- "283 NaN NaN \n",
- "284 NaN NaN \n",
- "285 NaN NaN \n",
- "286 NaN NaN \n",
- "287 NaN NaN \n",
- "\n",
- "[9944 rows x 54 columns]"
- ]
- },
- "execution_count": 2,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "bbox = BboxSelector([\n",
- " 7.601165771484375, # min_x\n",
- " 51.94807412325402, # min_y\n",
- " 7.648200988769531, # max_x\n",
- " 51.97261482608728 # max_y\n",
- "])\n",
- "\n",
- "# issue a query\n",
- "track_df = track_api.get_tracks(bbox=bbox, num_results=50) # requesting 50 tracks inside the bbox\n",
- "track_df"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPwAAAI/CAYAAABTSLRUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3df5RV5X0u8OcZxiHeKVZJhlmKUlKkpqsBBztX4OKy2HS8KrlmjDHUQBKbFq6rSW8prY2EudEkTIPVEu5dWddE0qyki0lCjXLSFiTMasvtCmVIh8zIaGKDWCROLJCQFC6x4sD3/nH22ONwzux3n7N/7+ez1izO2WfvPe8GnrPf/e53vy/NDCJSDE1JF0BE4qPAixSIAi9SIAq8SIEo8CIFosCLFEhz0gUI4i1veYvNnj076WKIpNKBAwd+ZGZtk62TqcDPnj0bg4ODSRdDJJVIvui3jqr0IgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIFkahDLPOgpjWDrwNELlq9cNAsbuuclUCIpEp3hY1Qr7ACwdeAo5j+wK+YSSdEo8DH66v4fTPr5qVfPoWvTnngKI4WkwMfonJnvOoeOn4mhJFJUCnyMppBO671t/c6ISyJFpcDH6O6FVzmt9+/nTNfzEgkFPkYbuudh5aJZTuueevUcFvb2R1wiKRqnwJM8QnKE5DDJQW/Zp0ge9JbtJnlFjW3PeesMk/yriuVvJbmf5PMkt5FsCeeQ0m1D9zwc2bjMad1jp88q9BKqIGf4m8ysw8w6vfcPm9l8M+sA8DcAPl5ju1e87TrM7PaK5Q8B+IyZXQ3gJwB+O3DpM8z1TK/QS5jqrtKb2amKt60A/JugPSQJ4NcBfN1b9GUA3fWWJYs2dM/DkjnTndZV6CUsroE3ALtJHiC5enwhyV6SPwCwArXP8G8iOUhygOR4qN8M4KdmNua9fwnAzDrKn2l9qxYHOtOrIU8a5Rr4G8zsOgC3AvgwyRsBwMzWm9lVAPoAfKTGtr/gXQa8D8BmknOCFJDkau8LY/DEiRNBNs2EoA15Cr00winwZjbq/XkcwHYA109YpQ/AnT7bvgBgD4AFAH4M4FKS4335rwQwWmP7x8ys08w629raXIqbOQq9xMU38CRbSU4bfw3gZgDPkJxbsdq7ADxXZdvLSE71Xr8FwBIA3zUzA/D3AN7jrfpBAN9o5ECyTqGXOLic4dsBfIvk0wC+DWCHme0CsJHkMyQPovwl8PsAQLKT5Be8bX8ZwKC37d8D2Ghm3/U++yiAtSSfR/ma/s9DO6qMChr62ffviLhEkjc0h/7dadHZ2WmDg4NJFyNypaFRrNk27LRuM4HnP+12X1/yjeSBitvmVamnXQp1L5iJzcs7nNYdy873taSABsBImZ7SCPoGjrp3ahAJQIFPgRVb9mHv4ZNJF0MKQIFPUGloFH+wbVhnc4mNAp+Qrk17QhnswrV7rgigwMdusnHtgloyZzr6Vi0OZV9SDAp8jBb29uPY6bMN7aMJwKblHeheULhHDyQECnwMwrhWv/iiJnz63fMVdGmIAh+xRlrgNVa9hE2Bj1A9DXPt01qwf31XRCWSolPgI1LP9brO6BI1BT4Cb1u/E/9+zv2KXa3tEhcFPkRBHnoZt1kt7hIjBT4kQRvndK0uSVDgQxC0cU5VeEmKAt+goI1zapiTJCnwdaqnM42u1yVpCnwdgjbOaVQaSQuNeFOHIGG/ZOoUhV1SQ4EPKMjAkXNntOLgJ26JsDQiwSjwAVy9LljY+9cuja4wInVQ4ANwHTByyZzpCrukkgIfsqnNTbir021seZG4KfAhe3XsPNZsG8Y1PU+hNFR19iyRxCjwERkP/oot+5IuisjrFPiI7T18UqGX1FDgY7D38ElV7yUV1NMuJvc9PuzcrbY0NIoH/+pZ/PSV1+r6XeqvL7VoMsmA8jBjKwGs0JdC7rhMJqnAh6A0NIq124ZxPumC1ElfAPmgwMcsrNlkkjS1uQkP3anhsLNI00XHLA+968ZvJ179sZ1qaMwhBT5kU5vz8Vc6dt7UjyCH8vG/M0UeunN+0kUI1d7DJ7Gwtz/pYkhIdFsuZOPXvuuePIhXXmu8Ga+1ZQp675jne00d5Rzzx06fxfwHdulR3xxQo11BlIZGG/4S0ki76aZWeqmp3i+AS6ZO0Zk+pRR4cVLPnPXqzZc+ui0nTjZ0z8ORjcswd0ar8zZbB46qMS+DFHh5Xf/apVgyZ7rz+sdOn8Uvrtuh+/UZosDLG/StWhwo9OetPIpvT2kkwlJJWBR4uUDQ0APlKr466aSfAi9V9a1ajM3LOwJts/fwSXRt2hNNgSQUCrzU1L1gJo5sXIb2aS3O2xw6fkaNeSmmwIuv/eu7sHKR+0i8x06fVehTSoEXJ0Fv3Sn06aTASyD9a5cGCr1u26WLAi+BBblfP37bTi346aDAS12CtuJruO50UOClbkFb8fcePqkOOglT4KVh+9d3OYd+68BRXdMnSIGXUAQJ/dptwxGXRmpR4CU0+9d3OTXmnQdUtU+IAi+h6lu12KmTTtDn7yUcCryEbkP3PKczvVrt46dBLKUhpaFRrN8+gjNnzwXeNqpBN6U2BV4C6ymNoG/gKLIzOJqMU+DFSSNnckkPp8CTPALgNIBzAMbMrJPkpwC8C+VG1+MA7jGzH07YrgPAowAu8bbtNbNt3mdfAvBrAP7NW/0eM9P9mhSKcsx7iVeQM/xNZvajivcPm9n/BACS/wPAxwHcO2GbnwH4gJkdInkFgAMkv2lmP/U+v8/Mvl5v4SVapaFRrP3LYZyPqO4eZNBMCUfdVXozO1XxthW48JLOzL5f8fqHJI8DaAPw04nrSrrUM3R1EO3TWnIx+WbWuAbeAOwmaQA+b2aPAQDJXgAfQLlaftNkOyB5PYAWAIcrFveS/DiAvwVwv5m9GrD8EoEoq/AXX9SET79b01EnxWkiCpIzzWyU5AwA/QB+z8z+oeLzdQDeZGYP1Nj+cgB7AHzQzAYqlv0ryl8CjwE4bGafrLLtagCrAWDWrFm/+uKLLwY7QnHWaBX+0osvwoO3/4rCnJBIZp4h+SCA/2dmj1QsmwVgp5m9vcr6l6Ac9j+pdb1OcimAPzKzd072uzXzTHTqOatf1AQ8fFeHAp4SLoH3rdKTbAXQZGanvdc3A/gkyblmdshb7V0AnquybQuA7QD+YmLYSV5uZi+TJIBuAM84HZWErqc0Ejjsm5cr6Fnkcg3fDmB7OZdoBvAVM9tF8gmS16B8W+5FeC30JDsB3GtmvwPgvQBuBPBmkvd4+xu//dZHsg0AAQzjwhZ+iUgj99Q1g2y2aTLJgugpjeAr+482dItt7oxWtaynWChVesmeMMI90ZI509G3anF4O5REKPAZF0eXV12v54cCnyFxP7SiOeDzR4FPubgfWlHI802BT7G4H1pR2PNPgU+phb39OHb6bOS/R11di0WBT6EVW/ZFFnYFvNgU+BQKqxqvcMtECnzK1Duwo8ItLhT4lHE9u6uBTeqhwKeIy+QM6gQjjdC49CniN8LMykWzFHZpiAKfEgt7+33XURVeGqXAp4DLbTiXmVxE/CjwCSsNjTo11OlJNQmDAp8wl6mTdXaXsCjwCeopjeC8zzqXTJ2is7uERoFPkMu47wc/cUsMJZGiUOATUhoa9V3HZZ51kSAU+ITc9/jk1+7NTdRtOAmdAp+Q13wu3h+569p4CiKFosAnwKU6rx51EgUFPgF+1Xldu0tUFPgE+FXnde0uUVHgY9a1ac+kn7e2TImnIFJICnyMSkOjOHT8zKTr9N6hs7tER4GP0RqHbrRqrJMoKfAx8avKA2qsk+gp8DFYsWWfb1W+iWqsk+gp8BFzffx103s7YiiNFJ0CHzGX6/a5M1p17S6xUOAj5DJsVROhOdclNgp8RLo27XGaPUZVeYmTAh+BntKIbyMdUB7JRlV5iZMCHwGXgS3mzmjVSDYSOwU+ZC5TRbVPa9F1uyRCgQ+Z3y24JgL713fFVBqRN1LgY6ZGOkmSAh8iv+q8GukkaQp8iPyq82qkk6Qp8DFh0gUQgQIfmxV6Ek5SQIGPiZ6EkzRQ4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAU+Ji7zyYlETYGPid98ciJxUOBj4jefnEgcFPgQaV44STsFPkR+88K5jIYjEiUFPkR+z7q7TEghEiUFPmR6DFbSTIEPmd9jsD2lkZhKInIhBT5kfo/BugxhLRIVBV6kQJwCT/IIyRGSwyQHvWWfInnQW7ab5BU1tv0gyUPezwcrlv+qt8/nSf5vkrm5/NXtOUmrIGf4m8ysw8w6vfcPm9l8M+sA8DcAPj5xA5LTATwAYCGA6wE8QPIy7+NHAawCMNf7uaXOY0gdv9tzIkmpu0pvZqcq3rYCsCqr/VcA/WZ20sx+AqAfwC0kLwdwiZkNmJkB+AsA3fWWJW00FLWkVbPjegZgN0kD8HkzewwASPYC+ACAfwNwU5XtZgL4QcX7l7xlM73XE5eLSIRcz/A3mNl1AG4F8GGSNwKAma03s6sA9AH4SBQFJLma5CDJwRMnTkTxK0QKwynwZjbq/XkcwHaUr8cr9QG4s8qmowCuqnh/pbds1Hs9cXm13/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxDcm7Fau8C8FyVzb8J4GaSl3mNdTcD+KaZvQzgFMlFXuv8BwB8o8FjEREfLtfw7QC2e3fNmgF8xcx2kXyC5DUAzgN4EcC9AECyE8C9ZvY7ZnaS5KcA/JO3r0+a2XiH8t8F8CUAFwN4yvsRkQj5Bt7MXgBwbZXl1arwMLNBAL9T8f6LAL5YY723BymsiDRGPe1ECkSBFykQBV6kQBR4kQJR4BOgoa4kKQp8AjTUlSRFgY9Ibp71lVxR4CPiN9SVSBIU+Ij4DXUlkgQFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBT4ipaGqY3KKJEqBj8jabcNJF0HkAgp8BEpDozifdCFEqlDgI3Df45Of3TXZpCRFgQ9ZT2kEr/mc3jXZpCRFgQ9RaWgUWweOTrpOcxM12aQkRoEPkUtD3SN3XTDEv0hsFPiQLOzt922om9rcpLO7JEqBD8HC3n4cO33Wd72H7pwfQ2lEalPgG9S1aY9T2JfMma6zuyROgW9AT2kEh46f8V1v7oxW9K1aHEOJRCanwDfAr0UeKIe9f+3S6Asj4kCBr5PLZBLt01oUdkkVBb5OfpNJNBHYv74rptKIuFHg69BTGvFdZ9N7O2IoiUgwCnwd/K7d1SIvaaXAR0At8pJWCnzIVmqKKUkxBT4gv+t3TTElaabAB+Ry710krRT4APzO7poiWtJOgQ/A7+yuKaIl7RR4Ry4963T9LmmnwDvoKY349qxbMmd6TKURqZ8C76OnNOLUUKd775IFzUkXIM1WbNnne2YHdO9dskOBr6Fr0x6nZ92bm6hrd8kMVemrcA07oEEpJVsU+AmChF0PyUjWqEpfwXUwSqAcdjXUSdboDO8JEvaVi2Yp7JJJOsOj3BrvGvbNyztUjZfMKvwZvjQ06nTrDVDYJfsKH/h1Tx70XacJCrvkQ+Gr9K/4TPXaPq1Fg1FKbhT6DO/3QIxGnpW8KXTg/a7dNfKs5E2hA+9H1+ySNwp8DXogRvKosIHXYJRSRIUNvAajlCJyCjzJIyRHSA6THPSWPUzyOZIHSW4neWmV7a7xthn/OUVyjffZgyRHKz67LdxDq58Go5S8CnKGv8nMOsys03vfD+DtZjYfwPcBrJu4gZn9s7dNB4BfBfAzANsrVvnM+OdmtrPOYwidBqOUvKq7Sm9mu81szHs7AOBKn03eAeCwmb1Y7++Mi67fJa9cA28AdpM8QHJ1lc8/BOApn338JoCvTlj2Ee+S4IskL3Msi4jUyTXwN5jZdQBuBfBhkjeOf0ByPYAxAH21NibZAuB2AI9XLH4UwBwAHQBeBvBnNbZdTXKQ5OCJEycciysi1TgF3sxGvT+Po3wNfj0AkLwHwDsBrDAzm2QXtwL4jpkdq9jnMTM7Z2bnAWwZ32eV3/2YmXWaWWdbW5tLcUWkBt/Ak2wlOW38NYCbATxD8hYAfwzgdjP7mc9u7saE6jzJyyve3gHgmSAFj1JpaDTpIohEwuUM3w7gWySfBvBtADvMbBeAzwKYBqDfu632OQAgeQXJ11vcvS+JLgBPTtjvn3q3+g4CuAnAHzR+OOFweWRWJIt8H481sxcAXDA0q5ldXWP9HwK4reL9GQBvrrLe+wOVNEZ+j8yKZFVhe9q1tkxJuggisSts4Hvv0L12KZ7CBl6PvkoRFTbwIkWkwIsUiAIvUiAKvEiBKPAiBaLAixSIAi9SIAq8SIEo8CIFosDX4DeMtUgWKfA1aBhryaNCB95vOOr5D+yKpRwicSl04P2Goz716jks7O2PqTQi0St04F2Goz52+iy6Nu2JvjAiMSh04AG3SSMPHT+j0EsuFD7wG7rnoclhbqlDx89gxZZ90RdIJEKFDzwAbHpvh9N6ew+f1Ii2kmkKPMqj3yyZM91p3TXbhiMujUh0FHhP36rFmDuj1WldneUlqxT4Cv1rlzqF/r7HdZaXbFLgJ+hfuxTt01omXUfD1ktWKfBV7F/flXQRRCKhwIsUiAJfhZ6Uk7xS4Kvwe1LOpXeeSBop8HVw6YMvkkYKvEiBKPABqTovWabAB6TqvGSZAj+BWuglzxT4CTSWneSZAi9SIAp8BVXnJe8U+ArqcCN5p8AHoBZ6yToFXqRAFHhHqs5LHijwjlSdlzxQ4B1pHDvJAwXekcaxkzxQ4B29dl5neck+BT4AneUl6xT4Cn4t8TrLS9Yp8BVcWuLXPXkwhpKIREOBn8DvLP+KBqWXDFPgJ9jQPQ/NPtPJahZZySoFvopH7rp20s/3Hj4ZU0lEwqXAV9G9YGbSRRCJhAJfg9+1vFrrJYsU+Br8WuzVWi9ZpMDXSa31kkUK/CRaW6YkXQSRUCnwk+i9Q4/ESr4o8JNQa73kjQIvUiAKvEiBOAWe5BGSIySHSQ56yx4m+RzJgyS3k7zUdVtv+XSS/SQPeX9eFs4hxUf34iVrgpzhbzKzDjPr9N73A3i7mc0H8H0A6wJsCwD3A/hbM5sL4G+995mie/GSNXVX6c1st5mNeW8HAFwZcBfvAvBl7/WXAXTXW5ak6F68ZI1r4A3AbpIHSK6u8vmHADwVcNt2M3vZe/2vANodyxIrv3vxqtZLlrgG/gYzuw7ArQA+TPLG8Q9IrgcwBqAv6LbjzMxQ/mK4AMnVJAdJDp44ccKxuOHxuxevar1kiVPgzWzU+/M4gO0ArgcAkvcAeCeAFV5onbcFcIzk5d5+LgdwvMb2j5lZp5l1trW1OR5WePzuxataL1niG3iSrSSnjb8GcDOAZ0jeAuCPAdxuZj8Lsq338V8B+KD3+oMAvtHIgURpavPkf01dm/bEUxCRBrmc4dsBfIvk0wC+DWCHme0C8FkA0wD0e7fcPgcAJK8gudNnWwDYCKCL5CEAv+G9T6WH7pw/6eeHjp/RKDiSCaxRE0+lzs5OGxwc9F8xArPv3+G7zpI509G3anEMpRG5EMkDE259X0A97Ry5TCa59/BJVe8l1RR4Ry6DWwLl6v3VH9up23WSSgp8AH6DW44bO29Ys21Y1/WSOgp8AN0LZgaaJ15VfEkbBT6gDd3zAoVeVXxJEwW+Dhu652Hz8g7nv7zxKn5PaSTScon4UeDr1L1gJl7YuAxzZ7Q6b7N14KjO9JIoBb5B/WuXYsmc6c7rr9mmKaclOQp8CPpWLQ5UxV/Y2x9peURqUeBDEqSKf+z0WV3PSyIU+JC5VvG3DhyNoTQib6TAR6Bv1WKn0KsBT+KmwEekb9VitE9rmXQdDZ4hcVPgI7R/fdekn2vwDImbAh8xzU8naaLAR+yO6zRdlaSHAh+xJw68lHQRRF6nwEdM1+mSJgp8hPyeh/cfTkMkXAp8REpDo9h7+OSk66wI8JitSBgU+IisdXhIZkP35JNciIRNgY9AT2kEflfuQQbREAmLAh8Bv37yzU3U2V0SocAnwHUwTJGwKfAxm9rc5DtfnUhUFPiY+U1bJRIlBT5mOrtLkhT4mGmcekmSAh+zQ8fPaHgrSYwCnwANbyVJUeAj4NKpRsNbSRIU+Ai4zDR73+Man17ip8BHxK9zjZ6alSQo8BHpXjATU5v11yvpov+REVInG0kbBT5C6mQjaaPAixSIAi9SIAq8SIEo8CIFosCLFIgCL1IgCrxIgSjwIgWiwIsUiAIfIb+ppkTipsBHpKc04jvVlEjcmpMuQB6t2LLPN+yaSFKSoMCHqDQ0ij96/GmMnTffdTWRpCRBgW9QaWgUn/jrZ/GTn70WaDtNNSVJUODr0FMawVf2H4XDibwqTSQpSVHgHZSGRrF++wjOnD3X8L6WzJmus7skRoGfRGloFB994iBeHQtnALqVi2Yp7JIoBb4Gl5Z2V00ANi3v0Ag4kjgFfoIgLe0udFaXNFHgK5SGRrFmWzjjxSvokkYKfIW1DYb90osvwoO3/4qq7pJaCrxnxZZ9CNo0p4BL1ijwCNbvfcmc6ehbtTjiEolEw+nhGZJHSI6QHCY56C17mORzJA+S3E7y0irbXUXy70l+l+SzJH+/4rMHSY56+xwmeVt4h+WuNDTqNJtrE4DNyzsUdsm0IGf4m8zsRxXv+wGsM7Mxkg8BWAfgoxO2GQPwh2b2HZLTABwg2W9m3/U+/4yZPVJ36UPgct0+d0Yr+tcujb4wIhGr+/FYM9ttZmPe2wEAV1ZZ52Uz+473+jSA7wFIzQVv16Y9vtftzU1U2CU3XANvAHaTPEBydZXPPwTgqcl2QHI2gAUA9lcs/oh3SfBFkpc5liUUXZv24NDxM77r+c0CK5IlroG/wcyuA3ArgA+TvHH8A5LrUa6699XamOTPAXgCwBozO+UtfhTAHAAdAF4G8Gc1tl1NcpDk4IkTJxyLOznXsC+ZM10t8JIrToE3s1Hvz+MAtgO4HgBI3gPgnQBWmFnVrmkkL0I57H1m9mTFPo+Z2TkzOw9gy/g+q/zux8ys08w629ranA+smtLQKK7+2E6nsM+d0aoGOskd38CTbPUa3ECyFcDNAJ4heQuAPwZwu5n9rMa2BPDnAL5nZpsmfHZ5xds7ADxT3yG46SmNYM22Yacus2qkk7xyaaVvB7C9nF00A/iKme0i+TyAqQD6vc8GzOxeklcA+IKZ3QZgCYD3AxghOd4c/jEz2wngT0l2oNw+cATAfw/xuN6gpzTidOsNUCOd5Jtv4M3sBQAXtFyZ2dU11v8hgNu8199CjeHbzOz9gUpapyBhB9RIJ/mW61Frg4R9vGONGukkz3LbtTZI2HXNLkWRyzO8a3dZoHzrTWGXoshl4F2fadeDMFI0uQt816Y9Tusp7FJEuQp8aWjUuQedwi5FlKtGO9eq/N7DJzH7/h1VP2ttmYLeO+aptV5yiTV6xKZSZ2enDQ4OVv1sYW8/jp0+G3OJyp0MVmj8OkkBkgfMrHOydXJxhl+xZV8iYQfK3QS3Dhx9/a6AvgAkzXIR+DRNy1z5BaDLA0mbXDXapc2Zs+ewZtuw850Dkagp8DE4dPwMZt+/Az2lkaSLIgWnwMdo68BRBV8SlYtr+JWLZgV6Im7itXVpaBTrnjyIV14LZ9JIP5WNfLU0EXjfQjX+Sbhyc1uupzSCr+7/Ac6ZYQqJuxdeFWlYgj522wi1/IsLl9tyuQl80uL6AlDLv9SiwCcgzAkpg1JNoNgU+ASFOb98PfS8QPG4BF6t9BHpW7UYm5d34KKE/obHnxfQHQGppMBHqHvBTBz6k2XYvLwDFyeU/K0DR7Gwtz+R3y3poyp9ykTV+Nc+rQX713eFvl9JD1XpM2hD9zwc2bgMRzYuw5I500Pb77HTZ1W9FwU+zfpWLcaRjctCawuIq9+ApFcuetrlXfeCmZPed4+zE5Bkm87wOTB+GeByCbBiy74YSiRppcDnSN+qxVi5aNak66Rp7ACJnwKfM+plJ5NR4HMozNZ9yRcFPof8utSWhkZjKomkjQJfQEk93CPJU+ALav4Du5IugiRAgS+oU6+ew+z7d+BXPr5LVfwCUeBzyu/23LjxkXUV/mJQ4HNqQ/c8tE9rCbTNePiv/thOBT+nFPgc27++C6xju7HzhjXbhtUrL4cU+Jz7zPKOurfde/iknqXPGQU+57oXzMTmBkJ/7PRZnelzRIEvgO4FM3Fk4zLnhryJ1P8+PxT4Ahl/qq6eIbc0P14+aIirggsyrHZzE/HIXddqTPyU0hBX4mu8uu/ywM14672GysouBV4AlB+4aW5yu4m3deCo7tNnlAIvr3vkrmud19UDONmkwMvruhfMDPQsvW7XZY8CL2/Qt2qxc+h1uy57FHi5wPg0WS7/OXSWzxYFXqrqXjATL2xchkumTpl0PZ3ls0X34cXX7Pt31LXdkY3LQi6JTEb34SUU9Q6KWe8XhURHgRdfjcwz/1aFPlUUeHEytbm+/yoGaJ76FFHgxclDd85vaHvNU58OCrw46V4ws+7Ha8cdO31WZ/uEKfDibEP3vIYG0xi3deCohslOiG7LSV1WbNkX2j34lYtmaU68ELjcllPgpSFhzk1/8UVN+PS75+t5+zop8BKrMMOvs35wCrwkIsgoOn4uagIevqtDZ30HoQWe5BEApwGcAzBmZp0kHwbw3wCcBXAYwG+Z2U+rbHsLgP8FYAqAL5jZRm/5WwF8DcCbARwA8H4zOztZORT4bAnzOh9Q+P2EHfhOM/tRxbKbAfydmY2RfAgAzOyjE7abAuD7ALoAvATgnwDcbWbfJfmXAJ40s6+R/ByAp83s0cnKocBnT9ihr+Ra7b963Q6MVflvnre+/pH2pTez3WY25r0dAHBlldWuB/C8mb3gnb2/BuBdJAng1wF83VvvywC66y2LpFffqsWYO6M1kn1vHTjqe1+/VtiBYvb1dw28AdhN8gDJ1VU+/xCAp6osnwngBxXvX/KWvRnAT6zjwnIAAAoxSURBVCu+MMaXSw71r10aWeiB/wh+taG0a4V9XNH6+jc7rneDmY2SnAGgn+RzZvYPAEByPYAxAH1RFND7glkNALNmNdbTS5LTv3ZppNV7ADh0/Axm378DS+ZMd37gxwDMf2AXDn7ilsjKVY+uTXtw6PiZC5a3T2vB/vVdde/X6QxvZqPen8cBbEe5qg6S9wB4J4AVVr0xYBTAVRXvr/SW/RjApSSbJyyv9rsfM7NOM+tsa2tzKa6kVN+qxQ13z3Wx9/BJzL5/h/PIuqdePYfZ9+9ITRV/9v07qoYdKHdPbuSZBN9GO5KtAJrM7LT3uh/AJ72PNwH4NTM7UWPbZpQb7d6BcqD/CcD7zOxZko8DeKKi0e6gmf2fycqiRrt8KA2N4r7Hh/Ha+aRLUl3YjXm1ztaNqFZGl0Y7lyp9O4Dt5XY2NAP4ipntIvk8gKkoV/EBYMDM7iV5Bcq3327zWvA/AuCbKN+W+6KZPevt96MAvkZyA4AhAH/ucqCSfd0LZqJ7wczUBn/Fln2BxwAIs9NRlNTxRhJXGhrF2m3DSFnuJz3Tz39gF069ei7G0rxRlGd4kUhVnvHXPXkQr6TklJ+Wa/qJ2qe11L2tAi+pMR78cVmpJsep0VZ6Vekl89J6Jg7T5uX+XYpVpRfJgTDvGijwIjFzOVtHRYEXicCbphDP9d6WdDEuoMCLNKiZwPOfzsaTdwq8SABpPXO7UuAl845sXBZ5S31enp3XMNUiBaLASy74TWvdqLzc61fgJReS7NeeJQq8SIEo8CIFosBLLkR9DZ8XCrzkwsFP3BJp6BnZnuOlwEtuzLvy5xvafsmc6VWXE8C/5OQ+vDreSG64jojbPq0Fx06ffcP7Rp4xzxIFXnLhbet3Oq03d0Yr+tcujbYwKaYqvWTewt5+/Ps5hynTgEKHHVDgJeO6Nu15Q/W8lkumTsnNdXgjFHjJrJ7SiNN473NntKZuZpmkKPCSWS4DXL5pCgtfja+kwEsmuU63lOVn16OgVnrJHNdJIDYv74ihNNmiM7xkyoot+5zCvmTO9MQGikwzBV4yxbVzTdC54YpCVXpJtdLQKNZvH8GZs+7Pu9fqIisKvKRYaWgUa7YNB9rmkqlTdHafhKr0klpBw75kznTdb/ehwEsuNDdRZ3YHCrzkwiN3XZt0ETJBgZdU6tq0x3ndJOdqyxo12kkqufSRX7loFjZ0z4uhNPmhwEsm5WUmmLipSi+p41ednzujNZ6C5JACL6njV53X02/1U+BFCkSBl0xRt9nGKPCSKn6TNqpzTWMUeEmNt+ZkhtY0U+AlFXpKI/Afd1YapcBLKnx1/w+SLkIhKPCSCufM//y+ctGsGEqSbwq8pMIU+k/XqG60jVPgJRXuXnhV0kUoBAVeUmFD9zy0T2tJuhi5p8BLarhMGSWNUeBFCkSBFykQBV4yozQ0mnQRMk+Bl9Twu88edBRbuZACL6mh++zRU+AlU1xnjZXqFHhJFb9qvW7dNUaBl1RRtT5aCrykytvW70y6CLmmYaolcfXMECv1UeAlUfXMECv1c6rSkzxCcoTkMMlBb9ldJJ8leZ5kZ43trvG2Gf85RXKN99mDJEcrPrstvMOSrFgbMOx6Jr4xQc7wN5nZjyrePwPg3QA+X2sDM/tnAB0AQHIKgFEA2ytW+YyZPRKgDJIz5wOsu2TOdDXqNajuKr2ZfQ8A6DBwgecdAA6b2Yv1/k7Jl57SiPO6mjAyHK6BNwC7SRqAz5vZY3X8rt8E8NUJyz5C8gMABgH8oZn9pI79Ssas2LIPew+fdFr3TVOI53p1tRcW19tyN5jZdQBuBfBhkjcG+SUkWwDcDuDxisWPApiDcpX/ZQB/VmPb1SQHSQ6eOHEiyK+VFAoSdgAKe8icAm9mo96fx1G+Br8+4O+5FcB3zOxYxT6Pmdk5MzsPYEutfZrZY2bWaWadbW1tAX+tpE2QsEv4fANPspXktPHXAG5GucEuiLsxoTpP8vKKt3fUsU8RCcjlDN8O4FsknwbwbQA7zGwXyTtIvgRgMYAdJL8JACSvIPl6dynvS6ILwJMT9vun3q2+gwBuAvAHIRyP5IjGuAsfzWE88LTo7Oy0wcHBpIshAZSGRvHRJw7i1bEgN+DKYd+/viuiUuUTyQNmVrVPzDj1tJNIBG2cq3Rk47KQSyPjFHgJhfrDZ4MCL3Xr2rQHh46fCXWfmv89Wno8VuoSRdjbp7Vo/veIKfBSl7DDvnLRLDXSxUBVeknMxRc14dPvnq8+8jFS4CU2CnjyFHiJ3MpFs/RYa0roGl4ip7CnhwIvdXnTFOdxECRFFHipy3O9tzmF/pKpU2IojbjSNbzUbfxZ9VoDUV4ydQoOfuKWuIslk1DgpWHdC2aq5T0jVKUXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFykQBV6kQBR4kQJR4EUKRIEXKRAFXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCoRmlnQZnJE8AeDFhIvxFgA/SrgMUdBxZUu14/oFM2ubbKNMBT4NSA6aWWfS5Qibjitb6j0uVelFCkSBFykQBT64x5IuQER0XNlS13HpGl6kQHSGFykQBX4CkteQHK74OUVyzYR1VpA8SHKE5D+SvDap8rpyOa6Kdf8zyTGS74m7nEG5HhfJpd7nz5L8v0mUNSjH/4s/T/KvST7tHdtvTbpTM9NPjR8AUwD8K8r3NyuX/xcAl3mvbwWwP+myhnFcFZ/9HYCdAN6TdFlD+ve6FMB3Aczy3s9IuqwhHtvHADzkvW4DcBJAS6396Aw/uXcAOGxmb+jsY2b/aGY/8d4OALgy9pI1pupxeX4PwBMAjsdbpFDUOq73AXjSzI4CgJnl6dgMwDSSBPBzKAd+rNZOFPjJ/SaAr/qs89sAnoqhLGGqelwkZwK4A8CjsZcoHLX+vX4JwGUk95A8QPIDMZcrDLWO7bMAfhnADwGMAPh9Mztfcy9JV1XS+gOgBeWui+2TrHMTgO8BeHPS5Q3juAA8DmCR9/pLyFCV3ue4PotyTawV5S6phwD8UtJlDunY3gPgMwAI4GoA/wLgklr7ag7yFVMwtwL4jpkdq/YhyfkAvgDgVjP7cawla8xkx9UJ4Gvl2iHeAuA2kmNmVoqzgHWa7LheAvBjMzsD4AzJfwBwLYDvx1nABkx2bL8FYKOV0/88yX8B8DYA3662I1Xpa7sbNarzJGcBeBLA+80sK/9pxtU8LjN7q5nNNrPZAL4O4HczEnZgkuMC8A0AN5BsJvmfACxEuWaWFZMd21GUr+9Bsh3ANQBeqLUjdbypgmQryn+Rv2hm/+YtuxcAzOxzJL8A4E78x5N7Y5aBBzT8jmvCul8C8Ddm9vW4yxmUy3GRvA/ls+F5AF8ws80JFTcQh/+LV6B8+XU5ytX6jWa2teb+FHiR4lCVXqRAFHiRAlHgRQpEgRcpEAVepEAUeJECUeBFCkSBFymQ/w8mmGO+lQWCQwAAAABJRU5ErkJggg==\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "track_df.plot(figsize=(8, 10))"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Inspecting a single Track"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAADoCAYAAAAEyyhFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dfZRcdZ3n8fcnSSsdZAxCoqYhBlxABJYEWgaOwDHuWaLxgYDDyu64zuzuIYsHXaIMnjDuIuPoCGQdPatnHaL4x64wwhoSkWASVhhQd4DtkA5pSMKGB5EKYwLSoqQP6XS++8e9FSvVdatuVVe66+HzOienu3/3oe5NV9f3/r6/J0UEZmZmpaZN9QWYmVnrcXAwM7NxHBzMzGwcBwczMxvHwcHMzMaZMdUX0AzHHntszJ8/f6ovw8ysrWzatOmliJhdaVtHBIf58+czMDAw1ZdhZtZWJP0ya5vTSmZmNo6Dg5mZjePgYGZm4zg4mJnZOA4OZmY2Tkf0VpqotZsLrNywg13DI8yd1cu1i09h6cK+qb4sM7Mp0/XBYe3mAtfdtZWR0TEACsMjXHfXVgAHCDPrWl2fVlq5YcfBwFA0MjrGyg07puiKzMymXtcHh8LwSMXyXRnlZmbdoKuDw9rNBZSxbe6s3km9FjOzVtLVwWHlhh1UWgdPwLWLT5nsyzEzaxldHRyyUkeBG6PNrLt1dXB4c29PxfJZGeVmZt2iq4ODMhocssrNzLpFVweHV/aOViwfzig3M+sWXRsc3FPJzCxb1wYH91QyM8vWtcEha/CbeyqZmXVxcDAzs2y5goOk5yRtlTQoaSAtu0zSE5IOSOqvcuzVkobSfZeXbfuMpO3ptpvTsvmSRtLXGpT0dxO5QTMzq189s7IuioiXSn4eAi4Fbsk6QNLpwBXAOcA+YL2keyJip6RFwMXAmRHxuqQ5JYc+HREL6rg2MzNroobTShGxLSJqTV16KvBIROyNiP3AgyQBBeBTwI0R8Xp6vt2NXouZmTVX3uAQwEZJmyQtq+P8Q8AFko6RNBNYAhyfbjs53faIpAclvafkuBMkbU7LL6h0YknLJA1IGtizZ08dl2RmZrXkTSudHxGFNPVzn6TtEfFQrYMiYpukm4CNwGvAIFBcPGEG8BbgXOA9wJ2STgReBOZFxMuSzgbWSjotIl4tO/cqYBVAf39/pV6pVc3q7WF4ZPxgN0+dYWaWs+YQEYX0625gDUkbQi4RcWtEnB0RFwKvAE+lm14A7orEo8AB4NiIeD0iXk6P3QQ8TVLLaCpPnWFmlq1mcJB0pKSjit8DF5Gki3IpNjRLmkfS3nB7umktsCjddjLwBuAlSbMlTU/LTwROAp7J+3p5ZU2R4akzzMzy1RzeCvxc0hbgUWBdRKyXdImkF4DzgHWSNgBImivp3pLjV0t6EvgxcFVEDKfl3wNOlDQE/AD4s4gI4ELgcUmDwA+BKyPiN02410NkzciaVW5m1k1qtjlExDPAmRXK15CkmMrLd5E0PBd/rtigHBH7gE9UKF8NrK51XRPltJKZWbauHSHttJKZWbauDQ5ZM686rWRm1sXB4drFp9AzbXwO6bV9+1m7uTAFV2Rm1jq6NjgsXdjHm44Y3+QyOhas3FBr4LeZWWfr2uAA2e0LheER1x7MrKt1dXCotuLbdXdtdYAws67V1cHh2sWn0NszveK2kdExp5fMrGvVM2V3xymu+Lb8jsGK23dlrBZnZtbpurrmAEmA6HO3VjOzQ3R9cAB3azUzK+fggLu1mpmVc3BIZXVrdbuDmXUjB4eUZ2k1M/sDB4eUZ2k1M/sDB4eUZ2k1M/sDB4dU1mjpaqOozcw6lYNDatG7ZtdVbmbWyRwcUg9s31NXuZlZJ3NwSBUyuqxmlZuZdbJcwUHSc5K2ShqUNJCWXSbpCUkHJPVXOfZqSUPpvsvLtn1G0vZ0280l5ddJ2ilph6TFjd5cPbI6Jbmzkpl1o3om3lsUES+V/DwEXArcknWApNOBK4BzgH3Aekn3RMROSYuAi4EzI+J1SXPSY94NXA6cBswF/rekkyNirJ4bq1fUWW5m1skaTitFxLaIqDW3xKnAIxGxNyL2Aw+SBBSATwE3RsTr6fl2p+UXAz+IiNcj4llgJ0lwMTOzSZI3OASwUdImScvqOP8QcIGkYyTNBJYAx6fbTk63PSLpQUnvScv7gF+VnOOFtOwQkpZJGpA0sGfPxBuNZ/ZU/q/IKjcz62R500rnR0QhTf3cJ2l7RDxU66CI2CbpJmAj8BowCBTTQzOAtwDnAu8B7pR0Yt4Lj4hVwCqA/v7+CWd/3tgznb2jByqWm5l1m1yPxRFRSL/uBtZQR5onIm6NiLMj4kLgFeCpdNMLwF2ReBQ4ABwLFPhD7QLguLTssMoaCf2KR0ibWReqGRwkHSnpqOL3wEUk6aJcShqa55G0N9yebloLLEq3nQy8AXgJuBu4XNIbJZ0AnAQ8mvf1GpU1ElrgNR3MrOvkqTm8Ffi5pC0kH9LrImK9pEskvQCcB6yTtAFA0lxJ95Ycv1rSk8CPgasiYjgt/x5woqQh4AfAn6W1iCeAO4EngfXpMYe1pxIkC/5U6rYa4DUdzKzrKKL9O2v29/fHwMDAhM8zf8W6iuUCnr3xQxM+v5lZK5G0KSIqjlNzV5wSs7ymg5kZ4OBwCK/pYGaWcHAo4TUdzMwSDg4lvFSomVnCwaGE00pmZgkHhxIeCGdmlnBwKOGBcGZmCQeHEh4IZ2aWcHAosXRhX+b6Dbu8IpyZdREHhzJ9GamlrJSTmVkncnAos+hds+sqNzPrRA4OZR7YXnnhoKxyM7NO5OBQJqttwW0OZtZNHBzKZLUtuM3BzLqJg0MZtzmYmTk4jOM2BzMzB4dx3OZgZubgMI7bHMzMHBzGcZuDmVnO4CDpOUlbJQ1KGkjLLpP0hKQDkiquQZrud7WkoXTf5SXlN0gqpOcclLQkLZ8vaaSk/O8mepP1cJuDmRnMqGPfRRHxUsnPQ8ClwC1ZB0g6HbgCOAfYB6yXdE9E7Ex3+XpE/NcKhz4dEQvquLamKbjNwcys8bRSRGyLiFpTlZ4KPBIReyNiP/AgSUBpSWs3FyrOygpuczCz7pI3OASwUdImScvqOP8QcIGkYyTNBJYAx5ds/7SkxyV9T9LRJeUnSNos6UFJF1Q6saRlkgYkDezZ05yUz8oNOyrOyiqS6bzNzLpF3uBwfkScBXwQuErShXkOiohtwE3ARmA9MAiMpZu/DbwTWAC8CHwtLX8RmBcRC4HPAbdL+qMK514VEf0R0T97dnMai7NSR0EynbeZWbfIFRwiopB+3Q2sIWlDyCUibo2IsyPiQuAV4Km0/NcRMRYRB4DvFM8ZEa9HxMvp95uAp4GT899S47JSR7N6eybj5c3MWkbN4CDpSElHFb8HLiJJF+UiaU76dR5Je8Pt6c9vL9ntkuI5Jc2WND39/kTgJOCZvK83EdcuPoWeaeNbHV7bt9/LhJpZV8lTc3gr8HNJW4BHgXURsV7SJZJeAM4D1knaACBprqR7S45fLelJ4MfAVRExnJbfnHaPfRxYBHw2Lb8QeFzSIPBD4MqI+M1EbzSPpQv7eNMR4ztwjY6Flwk1s65SsytrRDwDnFmhfA1Jiqm8fBdJw3Px54oNyhHxbzPKVwOra13X4TK8d7Riubuymlk38QjpMlntDtMkp5bMrGs4OJS5dvEp9PZMH1c+FsF1d211gDCzruDgUGbpwj6+eukZTNf4humR0TG3PZhZV3BwqGDpwj4ORKXhcG57MLPu4OCQIavt4c0e82BmXcDBIYPHPJhZN3NwyOAxD2bWzRwcqsga81AYHnHtwcw6moNDFdWm6Xa3VjPrZA4OVWSNeQB3azWzzlbPSnBdpzhN9/I7Bitud7dWM+tUrjnUsHRhH32eUsPMuoyDQw6eUsPMuo2DQw6eUsPMuo2DQ07VptQoDI/w3hvvdw3CzDqGg0MdqnVtLQyPOMVkZh3DwaEO1bq2QpJiWn7HoGsRZtb23JW1DsWurSs37KBQpRtrsRZReoyZWTvJVXOQ9Fy63vOgpIG07DJJT0g6IKm/yrFXSxpK911eUn6DpEJ6zkFJS0q2XSdpp6QdkhZP5AabbenCPn6x4v2Z3VuLRkbHuObOLa5BmFlbqiettCgiFkREMRAMAZcCD2UdIOl04ArgHJJ1qD8s6Z+V7PL19JwLIuLe9Jh3A5cDpwEfAP67pOxczhSplWKCpKvr8jsGWfiljQ4SZtZWGk4rRcQ2AFXo3lniVOCRiNib7vsgSUC5ucoxFwM/iIjXgWcl7SQJLv/Y6LUeDnlTTACv7B1l+R2DDPzyN3x56RmTcXkNWbu5wMoNO9g1PMLcWb1cu/gUgJpli941mwe27zlkH6fTzNqbIqN75iE7Sc8CrwAB3BIRq0q2/QPwFxExUOG4U4EfAecBI8BPgYGI+IykG4A/B14FBoBrIuIVSd8CHo6I76fnuBX4SUT8MOv6+vv7Y2Bg3MtPmrWbC1x311ZGRsdq7vuNjy9oiQ/O8kCw6F2zWb2pcMg99EwTKJmmvFpZuZ5pYuVlZ7bEfZpZNkmbSrJBh8hbczg/IgqS5gD3SdoeEZnppKKI2CbpJmAj8BowCBQ/fb4N/DVJwPlr4GvAv895PUhaBiwDmDdvXt7DDovih+A1d25hrEawvebOLYcc02x5nv7LA0FheITbHn6e8isfPTD+XiqVVdrnhrufcHAwa2O5gkNEFNKvuyWtIUnz1AwO6TG3ArcCSPob4IW0/NfFfSR9B7gn/bEAHF9yiuPSsvLzrgJWQVJzyHMth1Pxg7BWDaI45UbpMRNRGgze3NvDa/v2H3yqLwyPcO3/2nLIk35WIGj2f+DwSOW1MMysPdQMDpKOBKZFxO/S7y8CvpT3BSTNSYPKPJL2hnPT8rdHxIvpbpeQNHAD3A3cLulvgbnAScCjeV9vKtWaxbWoOB5i5YYdVfPzlVI/pbn98hpApQ/kSk/6Ux5Jzazl1WxzkHQisCb9cQZwe0R8RdIlwDeB2cAwMBgRiyXNBb4bEUvS438GHAOMAp+LiJ+m5f8TWEDyWfUc8B+LwULSF0hSTPuB5RHxk2rXONVtDuVOWLEu9wdwzzTxpiNmMLx3lDf39iBx8PvSWkAlorkf9OXna7TNAeDomT1svv6iJl6dmTVbtTaHXA3Sra7VggPUFyCmQnkg6O2ZzsfO7hvX6wjG91Ya+OVv+P7Dz2eeu2e6WPknbpA2a3XNaJC2Oj1744eA+noyHQ6VnvSzAkHWh3lp+drNBVZvqj5mw4HBrP05OBxm9YyHaESlVFAxTVXt6b/RD++VG3ZUDXR9s3odGMw6gIPDJFi6sI+lC/uaXouopwbQrJ5R1QJcb8/0g8HIzNqbg8MkKq1FVOp6Wq68FjCVI5GLgS3LdImvXnqGaw1mHcLBYZIVaxFF5eMUir2VWmkairWbC1UH+PX2THdgMOswDg5TrDxYtJpijaHayG8HBrPO48V+rKob7n7CDdBmXcjBwTKt3VyoOg2GG6DNOpeDg1VUbGfI4gZos87m4GDj5Gln+Nq/8kA3s07m4GDj1BrodvTMHgcGsw7n4GCHyDPQ7YsfOW0Sr8jMpoKDgx3kgW5mVuTgYAdVSyf19kx3O4NZF3FwMKB2Osk1BrPu4uBgNdNJHuhm1n0cHKxmOskD3cy6j+dW6mLFSf+cTjKzcg4OXSrP2hJOJ5l1r1xpJUnPSdoqaVDSQFp2maQnJB2QVHEN0nS/qyUNpfsur7D9Gkkh6dj05/dJ+m36WoOSrm/05ixbrYFuTieZdbd6ag6LIuKlkp+HgEuBW7IOkHQ6cAVwDrAPWC/pnojYmW4/HrgIKF+t/mcR8eE6rs3qUKtnUl8LrSVhZlOj4bRSRGwDkFRtt1OBRyJib7rvgyQB5eZ0+9eBzwM/avQ6rD55eib9YsX7J/GKzKwV5e2tFMBGSZskLavj/EPABZKOkTQTWAIcDyDpYqAQEZWm/jxP0hZJP5FUca4GScskDUga2LNnTx2X1N2qrc/gVJKZFeWtOZwfEQVJc4D7JG2PiIdqHRQR2yTdBGwEXgMGgbE0UPwlSUqp3GPAOyLi95KWAGuBkyqcexWwCqC/vz97+lA76D+v3Vp1fQb3TDKzolw1h4gopF93A2tI2hByiYhbI+LsiLgQeAV4CngncAKwRdJzwHHAY5LeFhGvRsTv02PvBXqKjdXWmLWbCyz80ka+/3B5084fuGeSmZWqWXOQdCQwLSJ+l35/EfClvC8gaU5E7JY0j6S94dyIGAbmlOzzHNAfES9Jehvw64gISeeQBLCX67orOyhPl1XA6SQzO0SetNJbgTVpw/MM4PaIWC/pEuCbwGxgnaTBiFgsaS7w3YhYkh6/WtIxwChwVRoYqvkT4FOS9gMjwOURVVadsapqdVkFr89gZuPVDA4R8QxwZoXyNSQppvLyXSQNz8WfL8jxGvNLvv8W8K1ax1httbqsAgi8PoOZjeO5lTpUrS6rkASGPz13nmsNZjaOp8/oULXSSbN6e7jho6c5MJhZRQ4OHahWOukbH1/goGBdqzjh5K7hEeZ6NoBMDg4dxmszmP1BeSBY9K7ZrN5UOFirLgyPHPx78d/Fodzm0GG8NoNZovigVBgeIUgCwW0PPz/u72NkdIzldwzy3hvvZ+3mwtRcbAtyzaFDeG0G62aVUkWVHpSq9Yl3LeJQrjl0gNInpCxOJ1mnqlRDqPX3kGVkdIyVG3Y0/yLbkINDB/DaDNbNKr3/R0bHmJ4xY3TVeaRJgotTTE4rtT2vzWDdpFL6aFfG+38sgt6e6YcEjt6e6Xzs7D4e2L6n6t+NU0ygTpiZor+/PwYGBqb6MiZdrXmTvDaDdZJK7/fenukc0TONV/aOn224r6TtoVK31bzzjnXyA5akTRFRcSVP1xzamHsmWTfJSh+9cca0ijWE4gd61od6sbxWR45urUW4zaENrd1c4L033u+eSdaxiu/xE1asO5j/z0of/XZklK9eegZ9s3oRyZN+3vf/0oV9/GLF++mb1Vt1v2J319OuX981bRFOK7WZPFVhp5OsnTWSPpro+z1viqnoE+fO48tLz5jQa7aCamkl1xzayNrNBa65c4t7JllHy0ofRSTv71LNer8vXdh3sPaRx20PP9/xNQgHhzZRfLIZq1LTq6c6bdYqylNIWenSiaSP8iimmL7x8QXjglC5gI4fD+EG6TZRayyDU0nWjsrTOYXhEUTlkcxz04Gch/vhp3j+5XcMVt2vMDzCCSvWdezkfa45tImsxjhwKsnaV9YUF+UD1Sb7Pb50YR+fOHdezf1KR2R3WprJNYcWVxz0k5VMmi45lWQtL2ua7KyHniCpDU/ltNrFBufvP/x8zX1HRse45s4tfPaOwY6pSTg4tLBaPSh6e6Y7MFjLq5Q6Ko4bmDurt2IbQ6ukSb+89Ay+vPSMQ4Jb1oNasT2wU8ZF5EorSXpO0lZJg5IG0rLLJD0h6YCkil2h0v2uljSU7ru8wvZrJIWkY9OfJem/Sdop6XFJZzV6c+2uWjuDG5+tXWT1Plq5YQfXLj7lsPVAaqZiY/WzN34oV4+mTpjAr56aw6KIeKnk5yHgUuCWrAMknQ5cAZwD7APWS7onInam248HLgJK620fBE5K//0x8O30a1epNmeSoCWeqszK1TP30a7hkUNGKbfLymzXLj4l15iIdm+wbjitFBHbAJQx82HqVOCRiNib7vsgSUC5Od3+deDzwI9KjrkY+B+RjM57WNIsSW+PiBcbvdZ2U2s1t7k5+2KbTaas9NGsmT0VB68V38eT0QOpmcoD2jQps4t5aYN16bHtIG9wCGCjpABuiYhVOY8bAr4i6RhgBFgCFNNSFwOFiNhSFmD6gF+V/PxCWnZIcJC0DFgGMG9e7V4F7cRzJlmry7u4Tq25j9pVaUDLM7q6mGZqp+CQtyvr+RFxFknK5ypJF+Y5KK1d3ARsBNYDg8CYpJnAXwLX13/JB8+9KiL6I6J/9uzZjZ6mpXjOJGsH9S6uc7gHr0210tHV1fIo7bZORK6aQ0QU0q+7Ja0haUN4KOextwK3Akj6G5KawDuBE4BireE44DFJ5wAF4PiSUxyXlnW0vHMmdcoflLWHemoI0zPSK5M1eG0qld5ftQe8dkox1aw5SDpS0lHF70kakIfyvoCkOenXeSTtDbdHxNaImBMR8yNiPknAOCsi/gm4G/hk2mvpXOC33dDe4NXcrNXUW0MoLq5Tqhvft5V6YJUqjolo9RpEnprDW4E16RP+DJIP9/WSLgG+CcwG1kkajIjFkuYC342IJenxq9M2h1HgqogYrvF695K0TewE9gL/ru67ahN5+k5DZy82Yq2jvJawd9/+umoItRbX6RZ51okYi2j5GoSn7J4i9axC5W6rdrjVO2V1pQbmTmpHaJZabYgwtQ9/XgmuRZQ+mVXr/lbUjVVyO7yyprGoldYs5RpCfnnGRLRqO4RrDpOkniczgf/grOmyFtH56qVn8Nk7BqumNsv39/syv+I6LLUeBqdLHIiY1L991xxaQN4nM6eRbKLqqR0U+99nzXE0q7eHI984wzWECSj+f9V6OGy1uZkcHA6T8j/QWnlHcBrJ8ssKANUmuas2jcXXP76gYq3iho+e5mDQBHkaqUu1wqA5p5UOg0rV96wFTKaiKmmtLeuDv3R7Vnoo68OnOFlctRlQa72uNUcrpZidVppk1RYwKQ0Qzt92r0ae/EufPrPSQ43UDoq11U4fqNYq2mVuJtccmqCeFNJUL2Bik6PaU3ijT/7FtqgTVqyrWAstPmW6dtBe6qlJNLvbq2sOh1E9a+C6sbk71Hr6b/TJvygrABQ/7F07aC/lNYlqj+uTWYtwcGhArfEKWSkkNzZ3lkZ6BVVbGrNazbN0mvZqAaAd10ew/HMzweQ1Vjs41Kn8qbBartAppPZWT2oob68gmNiTP4x/0iy/NtcO2lvegXOHeyEhtznUKc9weHAKqd1VaxdYurAv832Qt1dQtXO7XcCK74E8nzUAR8/s4Ysfqb/bsdscJsDjFTpXtQ/hiaSG8vQKKr6Gn/ytkuJ7IG9j9St7R5veFuHgUEU9jc0er9B6Gk0L1frwh+qpoTx5fwcAy6Oexupmt0U4OFTh8Qqtr9HxArVqBrUaht0ryCZL6XtpwV9tZHhk/HrcRVkPNY3Iu0xoV6m1XGexsbkTlzxsJ1mL0RQDRtaHP9RuNK60YEv5h38nL31prWft5gKv7dtfdZ/SXm0T5ZpDmbzLdbqxeXI02i4wkbQQ1G4XKO7jYGCTZeWGHYyOVe9A1My2TgeH1PwV63Lt58bm5jpc7QITTQsVX8Mf/tYqaqWMjp7Z09T3q9NK5A8MTh00V7W0EFSvGUB2FboYZJwWsk5SLWXU2zOdL37ktKa+nmsOOTmV1JjD1V0UJj5S2DUDaydZg+Nm9fYclqnVcwUHSc8BvwPGgP0R0S/pMuAG4FTgnIioOApN0tXAFSSdfL4TEd9Iy/8auBg4AOwG/jwidkl6H/Aj4Nn0FHdFxJcaursm2rtvP2s3F8b9AvIOWMqzXzsOfpqq7qLFc4DHC1h3mOypUeqpOSyKiJdKfh4CLgVuyTpA0ukkgeEcYB+wXtI9EbETWBkR/yXd7z8B1wNXpof+LCI+XMe1HXaVBpnkmV457371nKsZb45mBKup7i5afB0HAOsWk/l+b7jNISK2RcSOGrudCjwSEXsjYj/wIElAISJeLdnvSCqPLWsppfluqJ0Tr2e/PPvUytGX7vfeG+/nhBXreO+N91fcXus8efZxd1GzzpW35hDARkkB3BIRq3IeNwR8RdIxwAiwBDiYfpL0FeCTwG+BRSXHnSdpC7AL+IuIeKL8xJKWAcsA5s2bl/NyKuvLOS0GHPqBl2d65bz75dmn1pM45KuB5DlPnn3cXdSsc+WtOZwfEWcBHwSuknRhnoMiYhtwE7ARWA8MkrRbFLd/ISKOB24DPp0WPwa8IyLOBL4JrM0496qI6I+I/tmzZ+e8jcoqPcEqY9/SHgPVestU+7nRc000gNRznrzrClS75lo1A0g+/H+x4v08e+OH+MWK9zsQmLWIXMEhIgrp193AGpI2hFwi4taIODsiLgReAZ6qsNttwMfS/V+NiN+n398L9Eg6Nu/rNaJS+uJPz51X84Mtz4df3v3y7NOsANKsYOW0kFnnqplWknQkMC0ifpd+fxGQu/eQpDkRsVvSPJL2hnPT8pMi4v+lu10MbE/L3wb8OiJC0jkkAezlem6qEZXSF/3veEvNlAfU7j2QN31Sa588DbQTXSymnn2cFjLrXDXXc5B0IkltAZJgcntEfEXSJSRpn9nAMDAYEYslzQW+GxFL0uN/BhwDjAKfi4ifpuWrgVNIurL+ErgyIgqSPg18CthP0k7xuYj4P9WucarXkJ5M9fYggsoTA3Zq11ozy6/aeg5e7KcD+UPdzPLwYj9dxqkcM5soz61kZmbjODiYmdk4Dg5mZjaOg4OZmY3TEb2VJO0h6Q5bybHASxnbOkEn318n3xt09v118r1B59zfOyKi4hQTHREcqpE0kNVVqxN08v118r1BZ99fJ98bdP79gdNKZmZWgYODmZmN0w3BIe/04u2qk++vk+8NOvv+OvneoPPvr/PbHMzMrH7dUHMwM7M6OTiYmdk4bRscJJ0iabDk36uSllfY733p9ickPVhS/gFJOyTtlLRicq++uibc2/ck7ZY0NLlXns9E7k/S8ZIekPRkWn715N9Btgne2xGSHpW0JS3/q8m/g+om+t5Mt02XtFnSPZN35fk04W/vOUlb023tPVV0RLT9P2A68E8kAzpKy2cBTwLz0p/nlOz/NHAi8AZgC/Duqb6PZtxb+v2FwFnA0FRf/2H43b0dOCv9/iiSlQU74ndHsjrtm9Lve4BHgHOn+j6adX8l2z8H3A7cM9X30Oz7A54Djp3qa2/Gv7atOZT5F8DTEVE+SvrfAHdFxPNwcJlTSJY53RkRz0TEPuAHJKvRtaJ6742IeAj4zeRd4oTUdX8R8WJEPJZ+/ztgG9Cq85PXe28R6RK5JMGhB2jlHiN1vzclHQd8CPjupF1l4+k1s+kAAAJQSURBVOq+v07SKcHhcuDvK5SfDBwt6R8kbZL0ybS8D/hVyX4v0LofMPXeW7tp+P4kzQcWkjxht6K67y1NuQwCu4H7IqJV7w0a+919A/g8yQqQra6R+wtgY1q+bFKu8jBp+8V+JL0B+ChwXYXNM4CzSZ4AeoF/lPTwJF7ehDRybxHx1CRe4oRM5P4kvQlYDSyPiFcn6ZJza/TeImIMWCBpFrBG0ukR0XJtRw3+3Z0M7I6ITZLeN1nX2ogJvDfPj2S54znAfZK2pzX5ttP2wQH4IPBYRPy6wrYXgJcj4jXgNUkPAWem5ceX7HccUDjsV1q/Ru6tbYIDDd6fpB6SwHBbRNw1eZdblwn97iJiWNIDwAeAlgsONHZ/ZwEflbQEOAL4I0nfj4hPTNpV59fQ7y8iCpCkmiStIUlht2Vw6IS00r+mctUP4EfA+ZJmSJoJ/DFJjvr/AidJOiF9QrgcuHtSrrY+jdxbO6n7/iQJuBXYFhF/O0nX2YhG7m12WmNAUi/wL4Htk3K19av7/iLiuog4LiLmk/zN3d+igQEa+/0dKekoAElHAhfRmoE9n6luEZ/IP+BI4GXgzSVlVwJXlvx8LUnPgiGSFESxfAnJk9rTwBem+l6afG9/D7wIjJI85fyHqb6fZt0fcD5JXvdxYDD9t2Sq76dJ9/bPgc3pvQ0B10/1vTT7vVmy/X20aG+lCfz+TiTp+bgFeKIVP1fq+efpM8zMbJxOSCuZmVmTOTiYmdk4Dg5mZjaOg4OZmY3j4GBmZuM4OJiZ2TgODmZmNs7/B5m1qDwavlChAAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "some_track_id = track_df['track.id'].unique()[5]\n",
- "some_track = track_df[track_df['track.id'] == some_track_id]\n",
- "some_track.plot()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- ""
- ]
- },
- "execution_count": 13,
- "metadata": {},
- "output_type": "execute_result"
- },
- {
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEICAYAAABYoZ8gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO29eZgjZ3Xv/znapW519/QyPfs+3ncPtsEGHAzErCbg+LKEJSEhEJJAwk0ISe6FH7+Q4EtuIIQEwhrCDr4Q+xICBuMFb2PPeJ/Fs+8zvW9St/b3/lFVanW3pFZLVSqp9X6ep5/ullTVb1dJ3zr1fc97jiil0Gg0Gk3r4HF7ABqNRqOpL1r4NRqNpsXQwq/RaDQthhZ+jUajaTG08Gs0Gk2LoYVfo9FoWgwt/BqNi4jIfSLyu26PQ9NaaOHXtCwicoOIPCwiEyIyKiIPicgL3B6XRuM0PrcHoNG4gYh0AD8G3gd8HwgALwaSbo5Lo6kHOuLXtCrnASilvqOUyiqlZpRSdyulnhGRd5nR/+fMu4H9InKTtaGIdIrIV0TkrIicFpG/ERFvwfO/IyL7RGRMRH4mIhsLnnuFub8JEfkcIHX9rzUatPBrWpcDQFZEvi4irxKRFfOevxY4DPQCHwV+KCLd5nP/BmSAbcCVwCuB3wUQkVuAvwTeCPQBvwK+Yz7XC/wQ+Gtzv4eB6x36/zSakmjh17QkSqlJ4AZAAV8ChkTkLhHpN18yCHxGKZVWSn0PeB54jfn8q4EPKqXiSqlB4NPAm83t3gv8nVJqn1IqA/wtcIUZ9b8a2KOUukMplQY+A5yrz3+s0cyihV/Tspji/C6l1DrgEmANhhgDnFZzKxgeN5/fCPiBsyIyLiLjwL8CK83XbQT+seC5UQw7Z625/cmCv68Kf9do6oUWfo0GUErtx7BwLjEfWisihf77BuAMhlAngV6lVJf51aGUuth83Ung9wue61JKhZVSDwNngfXWDs39r0ejqTNa+DUtiYhcICIfEpF15u/rgbcAj5ovWQn8sYj4ReQ3gQuBnyilzgJ3A/9bRDpExCMiW0XkpeZ2XwA+IiIXm/vtNLcH+E/gYhF5o4j4gD8GVtXj/9VoCtHCr2lVpjAmcHeKSBxD8J8DPmQ+vxPYDgwDnwBuVUqNmM+9AyP9cy8wBtwBrAZQSv0IuB34rohMmvt8lfncMPCbwCeBEXP/Dzn6X2o0RRDdiEWjmYuIvAv4XaXUDW6PRaNxAh3xazQaTYuhhV+j0WhaDG31aDQaTYuhI36NRqNpMZqiSFtvb6/atGmT28PQaDSapmL37t3DSqm++Y83hfBv2rSJXbt2uT0MjUajaSpE5Hixx7XVo9FoNC2GFn6NRqNpMbTwazQaTYuhhV+j0WhaDC38Go1G02Jo4ddoNJoWQwu/RqPRtBha+DUazZJ47Ogojx0ddXsYmhrQwq/RaCpm75lJ3vHVnfz5HU+7PRRNDWjh12g0FTExnea939xNIp3j2Mg05yYSbg9JUyVa+DUaTVHiyQyf/K/9TKcyAHzu3oOcGZ/h47cY7YV3Hh0pt7mmgdHCr9FoivLYsVG+cP9h7t0/BMCTJ8a5Yn0Xb7t2I9GQj0ePaJ+/WdHCr9FoihJLGJH+s6cnyOUU+85OcvGaDrwe4QWbutl5REf8zYoWfo1GU5R40hD+505PcGwkTjyV5eI1nQBct6WbI8NxBie1z9+MaOHXaDRFiSVnI/7nzkwCcNGaDgCu3dwDwKM6rbMp0cKv0WiKYgn/xEyanz13Dp9H2N7fDsDFazpoD/p45PCwm0PUVIkWfo1GUxTL6gG4e+85tvdHCfq8APi8Hm7Y1su9+4fQfbubDy38Go2mKLFklq6In4DXQzqruNi0eSxuunAl5yYT7DFtIE3zoIVfo9EUJZbMsCIS4ILVUYAFwv9rF6xEBH6xb8CN4WlqwFHhF5E/EZE9IvKciHxHREIisllEdorIIRH5nogEnByDRqOpjngyQ1vQyyVrjUweK6PHorc9yJXru7hn36Abw9PUgGPCLyJrgT8GdiilLgG8wJuB24FPK6W2AWPAu50ag0ajqZ5YMkNbwMdNF6xk3Yrwgogf4OUX9fPs6QkGdFpnU+G01eMDwiLiAyLAWeBlwB3m818H3uDwGDQaTRXEEhmiIR83XdjPgx9+GW1B34LXvPzCfgB+/MzZeg9PUwOOCb9S6jTw98AJDMGfAHYD40opK13gFLDWqTFoNJrqiacyRcW+kO0r27luSzefvecgI7FknUamqRUnrZ4VwC3AZmAN0AbcvITt3yMiu0Rk19DQkEOj1Gg0pTA8/vLCLyJ8/JZLiCcz3P7T/XUamaZWnLR6Xg4cVUoNKaXSwA+B64Eu0/oBWAecLraxUuqLSqkdSqkdfX19Dg5To9EUYyqRIbqI8AOc1x/ld27YzPd3neJRXb+nKXBS+E8A14lIREQEuAnYC9wL3Gq+5p3AnQ6OQaPRVEEmmyOZyS0a8Vt84KbtbOqJ8Cffe4qxeMrh0WlqxUmPfyfGJO4TwLPm3/oi8GHgT0XkENADfMWpMWg0muqIJ7MAFQt/W9DHP73lKoZjSf7sjmf0at4Gp7KzWiVKqY8CH5338BHgGif/rkajqY2pZBqA9qC34m0uXdfJh155Pp/8r/08fWqCK9Z3OTU8TY3olbsajWYBVsTfHvQvabvbdqxHBB44oBMyGhkt/BqNZgFWZc62JUT8AN1tAS5d26mFv8HRwq/RaBZgVeZsr9DjL+Ql2/t48uQ4k4m03cPS2IQWfo1GswAr4m8PVSH85/WRzSkePqRr9TcqWvg1Gs0C8lZPYOnCf+WGLtqDPu4/oIW/UXE0q0ej0TQntVg9fq+HF23t4cdPn+HU2DQv2trL+27cavcQNTWgI36NRrOAWMKa3K0uNnznizZx/qooR4bifOYXB0iks3YOT1MjWvg1Gs0CYqkMAZ+HgK86ibh+Wy93vO9FfPyWi0lmcuw+PmbzCDW1oIVfo9EsIJ7MVGXzzOfaLT34PMKDBRO9uZzi0SMjpLO5mvevqQ4t/BqNZgGxRGbJOfzFaA/6uHJDFw8eNIT/yFCMN3/xUd78xUf59M8PVLSPmZS2iexGC79Go1lALJld8qrdUtywrY/nzkzw+LFRbvncQ+w/N8nl6zr52kPHGJya7dy188gI33jk2JxtnzgxxlX//8/5xqPHbRmLxkALv0ajWYBh9dQe8QPcsL0XpeDtX9lJ0O/hJx94Mf/45itJZ3N87peHAMP++ciPnuXjP95LMmNE+IOTCd77jd3MpLN85VdHyOV04Te70MKv0WgWEKugCUulXL6uk2jQRyar+PxvXc26FRE29bZx2wvW853HTnBgYIpf7h/kyFCcdFax7+wUAB/83lPEkhne+9KtHBuZ5hFd6982tPBrNJoFVNJ9q1J8Xg//43UX8bm3XskLNnXnH//gy7fTGQ7w+9/YzefuPURXxLCWnjk1zuBUgocPj/AHN27lgy/fTlfEz7d3nrBlPBot/BqNpgixZGXdtyrlth3rufmS1XMeWxkN8YXfuopTY9M8dXKc99+4jd72AE+fnOCRw0Z0/5Lz+gj5vbzpqnX8bM85hqYq7+sbS2b40gNH8taRZhYt/BqNZgF2Rvzl2LGpm79742VctaGLN1+znsvWdfHMqXEeOTxCNOTj4jWdAPzmjnVkcop79g1UvO+7njrDJ36yjzufOuPU8JsWLfwajWYOuZwinsrWRfgBbr16HT/8g+uJhvxctq6TQ0Mx7n1+kOu29OD1CADn90fp7wjyqyUUftt1fBRAW0RF0MKv0WjmEE8Z5RrstHoq5fJ1XSgFA5NJrt/ak39cRLhhWx8PHxquOLtn9/ExAj4PT50cZ++ZSaeG3JRo4ddoNHOwum9FbErnXAqXruvM//yibb1znrthew9j02n2nl1cxIemkhwfmeb3XryZgM/Dtx/T6wAK0cKv0WjmkMoYpRSCvvoLf297kLVdYXrbg2xf2T7nuevNC8GvDi5u9+w2bZ6XXdDPay9dzXcfO8kb/vkh/vneQyilUErxtYeO8tzpCfv/iSZAl2XWaDRzSOcM4fd7xZW//94bt4JSiMz9+yujIS5YFeXBQ0OLlnnedcyweS5Z28FHXn0hnRE/T58c51M/e56JmTSZrOKrDx3lrddu4G9/41In/52GRAu/RqOZQyZreOh+rzuGwNuv21jyuRu29fLvjx5nJpUlHCh9R7Lr+BiXr+sk6PPSF/Xy0dddjFKKj961hy8+cCT/Oqv8dKuhrR6NRjMHq2qmz+NOxF+Omy7sJ5XJ8dM9Z0u+JpHOsufMBFdv7J7zuIjwsdddzO/esJk/uHErF6/pyHcaazW08Gs0mjlYwu9WxF+O67Z0s7m3rWyKplX64dK1nQue83iEv37tRfz5zRcQDfl0xK/RaDQAaZetnnKICG+5Zj2PHxvjwMBU0dcMmBU/V3WGyu6rPehnSkf8Go1GAxnL6nFpcncxbr16PQGvp2TUPzBhCH9/R7DsfqIhH7Fk2vbxNQNa+DUazRzSucaN+AG62wL8+iWr+NGTp4su5hqYNOr59EXLC39b0Jtfs9BqNOaZ1Wg0rpHOuJvOWQkv3NLDxEya0+MzC54bmErQ3RZYdB1Ce9CvPX6NRqMByOSsrJ7GlYfz+o3FXQcHF/r8g5MJ+jvK+/tgWD2pbK4lq3c27pnVaDSukDIndwO+xo34t6+MAnBgILbguYHJ5KL+PpBvJt+KUb8Wfo1GM4f85G4DR/ydET8ro8GimT0Dkwn6o4tH/Hnhb8HMnsY9sxqNxhXyefy+xpaH8/qjHBqcG/FnsjmGYxVG/CFD+Kd0xK/RaFqdfB5/A67cLWR7fzsHB2JzMntG4ilyClZW4vHriF+j0WgMZvP4G1sezuuPMpPOzsnsGZi0cvgrsHpC2uPXaDQaoHDlboNH/GbZ5kKf/1yFi7dAe/wajcZlJqbT3PyZB3jyxJjbQykoy9zY8rC938jsOVjg8w+YzdiXEvG3YtmGxj6zGk2LsOfsBPvPTfHlB4+6PRTSmcZeuWvRGfbT3zE3s2dwMoFHjIYuixEN+gFt9diOiHSJyB0isl9E9onIC0WkW0R+LiIHze8rnByDRtMMnBydBuDnewYYi6dcHUsml0OEfKPzRua8/igHC3L5ByYT9EWDFY095Pfg9QhxHfHbzj8CP1VKXQBcDuwD/gK4Rym1HbjH/F2jaWlOmMKfyub4j6dOuzqWdFY1fLRvsbWvnSNDMZQy7lKMxVuL2zxgVPpsD/q0x28nItIJvAT4CoBSKqWUGgduAb5uvuzrwBucGoNG0yycGJ1hY0+ES9d28r3HT+aFzA3S2VzDp3JabF3ZTjyVzRdmG5hMsLKCxVsW7UGfzuO3mc3AEPA1EXlSRL4sIm1Av1LKap9zDugvtrGIvEdEdonIrqGhIQeHqdG4z4nRaTZ0R7htxzr2n5vi8FDctbFksrmGT+W02NrbBsDhIcPuGZyqbPGWRauWZnby7PqAq4DPK6WuBOLMs3WUEdYUDW2UUl9USu1QSu3o6+tzcJgajfucHJ1mfXeES8yuUcdH3BP+VDNZPWZK5+GhGBPTaUbjKdauCFe8vbZ67OcUcEoptdP8/Q6MC8GAiKwGML8POjgGjabhmUoYgrWhO8LaLkO0zhQpN1wvMtlcw+fwW6yMBmkP+jgyFOeJk0Yq7BXruyrevi3Ymu0XHRN+pdQ54KSInG8+dBOwF7gLeKf52DuBO50ag0bTDJwcNUR+Q3eE3vYgfq9wejzh2ngyueaJ+EWErX1tHB6K8eTxMTwCl6+rXPjbQ76WzOP3Obz/PwK+JSIB4Ajw2xgXm++LyLuB48BtDo+hpZhJZfF6hECDF9jSzGJl9GzojuDxCKs6Q65G/KlsrmHbLhZjS187O4+MoBRcsKqDtmDlshZt0YjfUeFXSj0F7Cjy1E1O/t1W5i1fepSetgBfedcL3B6KpkKsHP713REA1nSGOTvhstXTwCWZ57O1r40fPXma8Zk0b7xq7ZK21R6/pik5N5HgvueNaZJYMsPTp8a5Z/8gvzqoM6GahROj03SG/XSGjZWka7vCnHHR6klnFf4GbsIyn619xgTvdCrLVRuWth60PeRjOpUlW6R373JGC3+T8+VfHeF3/u1xxqdTPHtqAqUg4PXwtz/Z33Jv5mbFSuW0WNMV5txkIl8ls96ks7mGbsIyHyuzB1i68LdoobbmObuaopwYnSan4NEjozx9ahyAv3rNhew7O8mdLq8A1cwlnc0xPr2wHMPJIsKfzSkGzYJj9SadzRFoksldgI09ETwC3W0BNvZEFt+ggKhZqK3VyjY0z9nVFOXkmOEFP3x4mKdPjrOxJ8Lbr9vIBauifP6+w66uANXM5bP3HOTFt9/LqbHp/GOpTI5TYzOs657NPV/dZaw8dWuCN5NVTTW5G/R52drXzjWbuhFZ2rjbrUJtWvg1zYQlIg8fHuHpk+Ncvq4Lj0f4vRdv4eBgjPsOaK+/UfjFvkGmkhn+8kfP5S/Iu4+PkcrmuLrAosjn8k+44/Onc6ppVu5afPVdL+ATv3HJkrdr1faLzXV2NXOYmE4zlciwqiPEocEYZyYSXG4uXnnd5Wvo7wjyxfuP8PWHj/Gmzz/MkEvWgQaGppLsOzvJ+f1RHjgwxB27TwFw/4EhfB7hRdt6869d3eluxJ/O5Ag0UcQPRkZUTwWlmOejPX5N03HSjPZvvXpd/rHL1xlL/gM+D+960WYeOTLCR+/aw+7jY9y7Xy+SdouHDw8DcPutl7Fj4wpu/+nzJNJZHjgwxNUbV+QFCCAa8tMR8rln9eSaa3K3FqIt2n5xWZ/dnUdG+MXeAbeH4RinTH//lRf30xn24/UIF6/pzD//tus28OpLV/EPt11OT1uAR4+MuDXUludXB4fpivi5dG0nH3rl+QzHknz+vsPsPTvJS89fWItqTVfYvYg/q/C3yALA2Yi/tQq1Ob1y11X+9YEjnByd5uUXFS0AWncmZtJ89M7nuHx9F799/eaq9qGU4md7zvHyC/vz/v7G7jZeeVE/J8emCQe8+dd2hPz8y9uuBuCefYM8cmQEpdSSJ8A0taGU4qFDw7xoaw9ej3Ddlm6uWN/FZ395EICXbC8u/G6VbWimssy1oj3+Zchl6zo5NBRz1b/7/q6TXPnxu/nID5/l1s8/zH88dYZv7TxR9f6eODHOe7/5BHc9fYZTYzNEgz46wj7+7o2X8o13X1tyu+u29nB2IpEvD6CpH4eH4pydSHDDNkPgRYT33bgVpYwWgRet7liwzZou98o2ZJqoOmettAd8iMCkDcI/MZPOr8JudJb12b18XRdKwZ7TE66N4f7nh0ikc/zoyVMMTiV5xUX9HBqMMTFT3a3lOTPT477nhzg5Os267ggigs/rKfthfeGWbgBt97jA3XvPAfDi7bMTuK+4sJ9L13bymktX4SkSXa/uDDMxk2Ymla3bOC3STVarpxY8HqML12SVn8dCPvjdJ7npH+5vCnt5WQv/peZE5zOn3BP+vWcneel5fez661fw6Edu4l0v2gTA0yfHq9rf0JQh/L86OMTx0WnWVVh7fGtfO73tQR45rIW/nuRyiu8+dpJrNnfna/GAITj/8f7r+djrLy66XVfEyC+vNkCohXQ21zIRPxiWaK1Wz8nRae4zM7R+/5u7uXvPOZtG5wzL+uz2tgdZ2xXOr2itN/FkhmMjcS5a00F70Ec44OWydZ2IwJMnqhT+mJGSOTad5tBgrGLhFzG85UeOjLhWCqAVeejwMCdGp3nbtRsWPOf1SMn5FqtujzvCr5qmHr8dREM+JhO1HefvPHYCAe58//Ws7Qrz748cL/q6Q4Mx3vHVx7j+k7/ktn99xLUFlsta+MHw+d2K+Pefm0IpuLDAw42G/Jy3MsqTZtOIpTI4mSQaNHxJgPUrKl+i/qpLVjMwmeRPv/+0Fv868e2dJ1gR8XPzJauWtJ2bwp/JNU/rRTswIv7qj3M6m+P7u07xsgtWsr0/ypa+tpIXknv2DfDAgSF6o0EeOzqa78VQb5b92b1sXRcnRqcZiy+skeI0e89OAnDRmrmTd1du6OLJE+NVXe2HYkk29ka4zGw2UWnED/Cay1bz4Zsv4K6nz/ChHzytyzk4zNBUkp/vHeDWq9cR9HkX36AAt4RfKWVG/MteGvJ0hH1MzlRv9dyzb4DhWJK3mnd1HSF/yTmD4ViSkN/Dp269DIBHj7pjvS77s2staHrGhQnevWcm6Qz7WWOuxLS4ckMXEzNpjg4vva/q0FSSldEQLz3PyBBZt4SIH+B9N27lz379fO586gz/ct/hJf99TeU8emSETE7xusvXLHlbt4Q/Y1Z0bZV0TjDuwqdqyOPfe2YSEXjpeSsB80JSYs5gOJaitz3I9pXtrq6tWfbCf4kl/FVOptbCvrOTXLg6usDHvdKsy1KNzz80laSvPchvXbeBP3n5eVywKrrkffzBjVt5wxVr+Pu7n9ereR3kudMTBLweLli1MF1zMVwT/qwh/K1l9cxG/PFkZsmficlEhvagD695sbQi/mJ31MOxJH3RICLCNZu72XlktPZ/oAqW/dntCPnZ3NvGnjOTdf272Zxi/7lJLlrdueC5bX3tBH0e9p9b2piyOcVIPEVfNMjKaIgPvHx70VTAxRARPvmmy9jU08YX7tdRv1M8c2qCC1ZHq2qDGQ25I/wpc+6ntSZ3DY9fKcVdT5/ht//tcZ44Ufkc3FQiQ4d5vgA6wn4yOcVMemEq7tBUkl6zptB1W3o4PT7jSu7/shd+MFqzHRmO1fVvHh2Ok0jnFvj7YKTy9bYHGYktbd5hNJ4im1Os7Fh6Mar5hPxeLl3byblJ9zo9LWdyOcVzZya4dO3CC38leD1iZJvUPeK3hL8lpAEwsnpyCuKpLAPm5+HOJyvvZTGVSOdr/lj7A4rOGwzHZoX/WnNtzc6j9Y/6W+Lsbu1r59jIdF07Uu05Y8wpXLi6uBXT2x5gZIkTzlZ1zb4qqhAWo78jyLmJRMtP8iYzRrE0Ozk+Os1UIlO18EP5SUKnSJtWTysJf4dpq00l0vlg7MfPnCVdYebbVCIzR/it6H9+Zk82pxiNp+hrDwBw3sooKyJ+V3z+lji7W/raSGVynB6rX+rU48dGaQ/6OL+/uPB3twUYiS+tTLKVw98XtUv4QyQzuZoyGpYD39l5gnd89TGesnEe6FkzmeCSGoS/M+yvu9VjiV2rrNyFuRG69Zkciad48NBwRdvHkpk51VWtC8n8i/ZoPEVOQa/5+fV4hMvWdS3Z8rWDlhB+qxnz4aH62T2PHR3l6o0rSk6S9VRh9VgR/8poaJFXVkZ/h7GfganWtnvufd6I9u/Zt/Sl9nfsPsUffedJUpm50eGzp8YJ+DycV+LCXwluCH8+q6eFhN+K0KcSaYanUly1oYuOkK9iu8ewego8futCMi/itz6/vQV37D1tAcbi9V+r0RLCv6XOwj8aT3FgIMY1m7tLvqbHtHqWYrMMmgLdGw3UPEaAVWaa6TmXOj01Aol0Nn+rfc++pWc4feXBo/zfp8/w8R/vmfP4s6cnuHBVdRO7Fm5G/K1k9UQLhHo4nmR1V5ibL1nFPfsGK/p8LrB68tbR3Dvp4SJ37J2R+p9jWILwi8haEXmRiLzE+nJyYHbS3RZgRcTP4aGl581Xw+PHjMmaa8sJf1uAVCa3pMqhQ1NJ2oM+IgF7qmn3m3cOA00ywfvY0VH+5sd7K/ZeK2Hn0VGSmRwv3NLD3rOTnJ2o3A48OzHDvrOTbOyJ8M1HT/Cdx4yqq9mc4rnTk/laUdXiqtXTIo1YYK5Qj8RS9LYFOK8/ylQyU9Hxn0pk8uWdocDjn7etJfyFEf+KSIBYMrPgjtFpKjq7InI78BDw18CfmV//3cFx2c6WvnaO1Cnif+zoKEGfp+wHv6fNOPmjS5jgNRZv2ePvA/nsoGYQ/jPjM7znG7v48oNH+dTPnrdtv/c/P0TQ5+GvXnMhAL9cQg73vfsNi+gLv3U1Lzmvj/9553PsPj7Kp372PLFkhhcXqbO/FNyIBq3J3YCvdaweK1ofiaWYmEnT0x5kjdX3eJGeCMlMllQ2Nyedc/YOonjE39s+e8e+wizGNz5T38oClV7W3wCcr5R6tVLqdebX650cmN1s6W3jSBUrZavhsaOjXLmhq+wy/W7z5A9X4PM/eHCY4yNxIwfYRuEP+b10RfwMTDZ2L950NscffvsJ0pkcr7pkFV984IhtpW/vPzDItVt6uHhNBxu6I/xyEbsnl1McHJhCKcUv9w+ytivMBaui/NObr2RNV5h3fe1xvnD/Yd567QZ+/eKl1eeZT2fYTzKTI1EkH9wpMq0Y8ZuifXzE0Iee9kDFfY8tO6fQ6gn5vQR9ngUR/9BUkqDPM2ciuCti6MDEdH0v8JWe3SOAf9FXNTBbV7YzNJWsuQrfYkwl0uw5M8E1m3vKvq7XjPhHYuVF9+FDw7z9qzt565d2cmJ02raMHotVHaGGz+X/v0+f4YkT4/ztGy/l0//tCi5YFeV//Wx/zfs9OTrN4aE4Lz2vDxHhxvP7eOjwcFlf99EjI7zi0w/wP+/cw0OHhnnZBSsRETojfr70jh3kcoodG1fwsdcVL7e8FEplhzhJK6ZzhvxeAl4PR0eMhVQ9bUZVX2BR66+Y8INx7uZrjVWuoXAlv1V+e6zOwl/WLBaRfwIUMA08JSL3AHmlUkr9sbPDs48tvW0AHBmKc8X6Lsf+zoGBGDk1WyOoFD1mxF/O6hmOJfnA955ibVeYcxMJMjllWw6/xcqOEIMNLvz3PT9Eb3uQ11++BhHh+m29eT+9Fv7DzNp4pdmac2NPG4l0jslEJl8yYT7WRfIbjxpld192wcr8c+f1R7n3z26kM+yvaVLXorBsw8oOezK5FiPdgit3wRDuo+Yiz972AL3tQfxe4cwiiQ9WVc/24Nz3S2EZCIvh2MI79hVmxD82XV+rZ7FZwl3m993AXQ6PxVG2rjQzewZjjgq/FcEvlnLZ3Wac8HKLuD7xn/uYmElz5/uv58GDw3ziJ/vyKZh2saojyPMu5BFXSi6nePDQMDeaUTkYC8+mU9kF+W0MZf8AACAASURBVNNLQSnFHU+c4rotsw1SLO91JJYsKfzjZmT2vhu38tjRUV64de6dnV2ptuBOvZ5Mzsrjb52IH4wI/Vje6gni8Qj9HSHOLmL1xJYQ8Q9NJRdU07Ui/vEGE/7rgf8CfqGUmqrDeBxjg/nhPuXwIi4rgu9uL59yGfJ7aQ/68hM+xdh9fIxXXNTPhas7OL8/SnvINyfCtIP+jhBDU0myOZUvMtVI7D07yWg8xYvPm21bmF9/MJmg3UzVXSqPHxvj+Mg0f/yy7fnHrAn3kXiKLSXmZSdm0ojAf3/l+Y4fLzeEP5VpvTx+MITbcvisAGBNZ3jRiH+yhPBHQ34m5on5cCzFlRvmBp2Wxz/eYB7/V4DLgZ+IyD0i8mERubwO47Idv9dDJOB13OO3IvietsVz7bvbAiWtnlQmx6mx6bxF5fEIb7lmg+0Rf39HiJyi7AXITR44aGTOXL9tVviteY5aspF+sOskbQEvr7p0dgK2pyDiL8XETJpoQSVGJ3Ez4m8ljx9mJ3gDBZOvq7tCFXj86Tnbz+5vbmlmo1xDck4qJ0BbwIvfK3X3+MueXaXUTqXUx5RSLwZuA04AHxKRp0TkqyJyW11GaRO1dtqphOGYkWsf8i/eeKOnPVBy9e7JsWlyCjb1tNk9xDkURs+NglKKz993mHufH+SBA0NcuLpjjoVijXmwymykdDbHT549y6svXT1nTYR1sS6XaTU+ncpHaU7jivC34OQuzEbsvW2BvKW4xpxby5Wp8WVN7s63HDvCc+ss5cs1zBN+EaErEmg4qyePUmoE+I75hYhcDdzs0LgcIRry1dxUeTFGYql85LgYPW1BTo0VL8l6zEw93dTrrPCv6phdvXvZOkf/VMU8fmyM2386m7Xz+y/ZMuf5Wi9W49Np4qksl82bgF9hzbuUEf6JmXRJ/99urKX/dbV68umcrWX1WBF7T4Ewr+kMkc4qhmPJkpPr1gLM9vkef8jw+JVSiEjRxVsWKyL+uls9FQm/iHQB7wA2FW7TTFk9YE9T5cUYiScrsnnAiDCfKdEI3urOtdlh4e+3FnFNNY7V893HThAN+njvjVv57uMnFnSwMlYvexmscsxx88PaNi9K83s9dEX8ZYvnjc+k8xNyTuPzGrZDPYvotXrEXxi0re40F3FNJEoK/1QiTdjvXXC8OsI+0llFMpMj5PcW1OlZqA1d4UDDZfVY/AR4FHgWaNou3dGQ3/EDPBJLVdwOsafd8PhzObWgocqxkTgdIV9+ZZ9T9LQH8XqEgQap1zMxk+Y/nz3LrVev4/2/to33/9q2oq/r7wgtGvGnMrmiaZX5KK1IRlBPW2n7zRqftaqzHtS7bEOrpnNaayasCX4wPH6As+MzJTMB59fpye+voGxDyD8bpBSbo+uK+Dk+Ut9mLJVe1kNKqT9VSn1NKfV168vRkTlAR9jvvNUTTxW9qhejuy1AJqeK3oUcG55mc2/bgraNduP1CD1tgYaZ3L3zqdMkMznecs2Gsq9bGQ2W9fi/9/gJrv6bnxf1TssKf3uw7LGYmE7TVSerB4z3rBvC32rpnHmPv+Czu6Yg4i/F/Do9FvnFd+Zn2wpSijVRWhEJNGzJhm+IyO+JyGoR6ba+HB2ZAxgev3MfopzZaKFSj9/y+4rl8h8djjvu71u4UQysFD/YdYpL1nYsWse+vyNUspy0Uoov/+ooU4kM9z6/sASDlXtd7ANbrkGOUqquHj9AZ7i+XbjytXpaTviNc1rowXdF/IT93rJlG6aSmTklmS1m52eM99rgZIJoqHiBxa6In7Hp4j16naLSs5sCPgU8grGYazezi7vKIiJeEXlSRH5s/r5ZRHaKyCER+Z6I1CdFAtPjd9AvnZhJk82pObeL5eguMZmYSGc5MzHjeEaPRZcLk0vFmJhO8+zpCX79osVr3FgRf7EPy67jYxwcNFZh/mLvQuGPp4p7/GDc6pdK54ynsmRyqm4eP9T/opxpwUYsMCvUhUGbiCya0jmVSOe3nbO/eRH/4FSyZCp2V8So1FusR69TVCr8HwK2KaU2KaU2m19bFt3K4APAvoLfbwc+rZTaBowB7658uLXREfKTyjpX9Cqfw19pVk++bMNcoTk5Oo1Szk/sWnSGAw0R8VsNrq/etGLR1/Z3hJhJZ5kqUtb62ztP0B708frL13D/gaEFJW/z9VWKWj0BxqbTeQEsxDpG9Yz4reyQepE2UxdbLavHKqVg9aiwWN0Z4uxiVk+R99H80swDk4mSlXVXuFCvp1LhP4RRr2dJiMg64DXAl83fBXgZcIf5kq9jVP6sC9aV2Smf34oUK434S63aO1qnVM7ZcTSG1bPr+Chej1RUUsPySufXGRqfTvGfz57lDVeu4fWXryGWzLDz6NyepqWyemA2l3+0yNyANV/QGa7bTSqRgJfpVP0iwXQ2h98rjs8tNRpXru/im+++lhdumVuCoz3oY6bM8Z/faN2iIzy3NPPAZPmIH+pbtqFS4Y9jFGn7VxH5rPVVwXafAf6c2UygHmBcKWUp7ylgbbENReQ9IrJLRHYNDdnTCDta0GLNCZYa8UfMRV7zP9hWzZDNdbJ6OsP+ui8gKcbu42NcvKajokYzs7n8c++WHj82RiqT45Yr1nL9tl6CPs+CzlqxZAYRQ1TnY+VxF8vssUrn1jPijywiPHaTyeZaqiSzhYhww/beBRe8gM9LskyTlFiilMc/G/ErpYxeGkUmdqGwXk/jRfwPAZ8AHmbW4z9QbgMReS0wqJTaXc3AlFJfVErtUErt6OurraGFRakGCXaRj/grFP6wKTzzvb0To9N0hv101slL7gr7iaeytna2Ksa5iQTZEqsg09kcT50c56oNi9s8QP62eX5Kp/X7hu4I4YCXG7b1LpjgjSUztAd8RaPanjKLuKy7onp6/BG/l1Q25/i5sUhnVculcpYj6POU7I6VzSniqWzRiD/k9xLweZiYSTM+nSaVzeU73s3HjQqdlQr/W4HdBWmcKeDti2xzPfB6ETkGfBfD4vlHoEtErCO1Dqiso7ENzLZYczbi765wSX/Q58HrEaZTcy9EI7GU7XX3y2EJmZN2z76zk9xw+y/58TNnij6/98wkiXSOHRX4+0B+Qc38RVyDkwk8MivgF6/t5MTo9JwPb6xECh4URPxFFnGNu+DxR0w7ql52j2H1tF7EX4qgz0MyU/zYx0qUa7DY0B3hyFA8n31WyupZ0cAR/63Av4vIBSLye8AfAK8st4FS6iNKqXVKqU3Am4FfKqXeBtxr7g/gncCdVY28CqKOe/wpVkT8FedAiwgRv5d4cu4bazSeymf81APrgujkG+8zvzhAJqc4Nlx8qmjXcWNid8fGyrKE24M+2oO+IhG/UQjLOgfrVoRRam5D+XgqU9Tfh8LSzA0S8QcsO7A+q3czWaWFv4CAz1PS6pksUaDN4sLVHew7O5lfb1LK6ul0oTRzRWdYKXUEQ7x/CLwJeKVSaqLKv/lh4E9F5BCG5/+VKvezZKIlmiDbxUg8uWTBDge8CzzcselUxXcNdpBv/+bQIpLnTk/wsz1Gq8Sh2Fyh/v7jJ7ny43dz+0/3s7YrvCCrohzFFnENTCXmRFbrzFW2p8ZnLzilMjHA+BD7PFI84p9O4/cK4QoK8NnFrPDXL+JvtVTOcgTLePylum9ZXLS6g9PjMxwYMCral7J6gj4vkYC3rlk9i3XgehajA5dFN+AFdooISqnLKvkjSqn7gPvMn48A11Qz2FpxOqtnOJaaU+SpEiIBL9PphRH/1RvrKPwOR/yf+cVBOkI+OsL+fM0Si3v2D+AR4S0vWL/k5uQ97YEFAj0wmWRt1+wHbK3Z+OJ0QR+GeJkGLh6P0F2ibIOxeCtQ14wXa6K7XhO86ZyO+AsJmB6/VWytEGsFeLHJXYALV0cBuP+AkZxSKuIH4zNYT6tnsfSJ19ZlFHWiLeBDxDmPfzSe4rz+pTUGCQd8zBTcxudyirHpNN1t9bMTnPb4Hzw0xG071nNkKL5A+A8PxdmxaQX/3y2XLHm/neHAguqmg5OJOc0uVneGEYHTBasvY8lM2U5ZRtmGYsKfojNcXcevarEi/niR9QpOkM7k9ORuAUGz1lMqmyPom3unl2+7WCriX9MBwM6jo3SG/WVLtUdDfmLJBvH4lVLHy33Va5B24fGIUe3QwayeSnP4LebnaU8lMmRzKj/TXw86HYz4szlFIp2juy1AXzTIUMGq2HQ2x7HhOFur7KI1v5xtMpNlJJ6ac0sd8HlYGQ3Oi/izJT1+sMo2LLR6JmbSdavFb5G3euq0qjOTa810zlLkhb+I3WN9btuKpAWD0Yazt91YlVtq8ZZFe8iXv4OoBy13hp1aCZnJ5sxIfWnCMF/4rYVD9ZzcjYb8iMxmrdiJVR6hPegzhH9qtszCidFpMjlVvfC3zS1nO5SvgDj3Q7a2Kzwn4i+16Ca/30jxzmjj0/Wt0wOzVs90sj7Cn8oq/DY0il8uWMJfzOe3KgCUi+QvXG1E/Yt1zmsP+vJZQvWg5c6wU81YrKv1UoUh7J87uZvv2VtH4fd6xLggOiD8lmBFAj762oMk0rn8sTps1tPZurI64e+K+ElmcvnjZy3mmv8hW7siku+1rJSRe90WLP1hLbWSeWKmvpU5wY2snhz+FivXUI5AmYjfuhgEy1woLbunnL8PRsRfrPyIU7Sc8DvVfrFUC7bFMCZ3Z0+4G8IPVqE2+7N6ZguiefNrE6zI/PCQsUJ5S191K5S7zNIJVknbwRKlb9d2hTk7MUPOtJ2yOUV7sLSAd5mF0ea33JuYTudTX+tFvbN6Mlmls3oKsHz9YhH/rPCXDiIuqjDij+qI31mcivjzlkYZC6EYxuTu7Id6zBT+enr8YJZtcDriXyD8MVZGgyXzoBcjX9wqPrfm+cKIP0w6qxicShbU4i/9Ye2MBFBqbvZXJptjKpmpaw4/FFg9dRL+lF7ANYfyEb9xToL+MhG/KfyrKrF6dMTvHB1hZzz+coW/ytEIHj9Y9XrsPy6xZJGIPzYr/NX6+7CwuNXAVBK/VxasgbBy+U+PT5fskVpIfrK7YF2DlRBQb48/5PcgwpzMLyfJ5LTwFzLr8S+88CbSi1s921a286lbL+OWK9aUfA0Y78fpVLZkSRO7abkz7JzHb7wxykWSxWgLeJlJZ/MTnmPxFAGfp2gBMSfpigSc8fgtq8f0+IH8BO/hwRhbV1ZfiK5rXjlbo/RtaEEbSyuX/9TYzOwFukwhOMvHL/T5rZ+rvTuplvzq7nrl8Wd0rZ5CFov4Az5P2XUdIsJv7li/aDaYZRHXK+pvWeG3u9tNtRF/OOBDqdnoYTSeoqetvouEwOj05ExWj5nyFvTSGfbj9wpDU0mGYykmE5maIn7LDpv1+ItXQFybj/hnZudiykT8xaolxiu4U3CKcMBXv5W7uVzLtV0sR1mPP50rG+0vBSvLTAu/Q0RDfrI5ZXu3G2tiplwkWYz5WRuj8VTd/X0wJkrHp1MLJjRrxRLMSMCHxyP0tBkpnYeHjIyebVVm9MBCgR6YTBRdFt8W9NEV8XO6IOIvNwmf32/BhXA2Z7v+wt8W9Na3Vo/O6smzWFZPuVTOpWAlG9RrgrflhH+2Tra9B3h2+fZSI/65WRuj0/Ut0GbRFfGTUxCzWWDm3wlZi7j2npkEqCniD/m9hP3e/IT4wGRiQQ6/xdquMKfGZso2WrewGq1MFGQ5WZP3kSVaeXYQ9tevGYuuzjmXch5/Mp21LeJvz0f89Vm923JneLZCp70HuJbJXZityT8WT7HCBeG3Ji0nbJ7gtQTL+j+tRVx37z3HtpXtrDFtmGqxGlXPpLJMJjL5cs3z2dLXzqHBWIXCX9rqcSfir18zlnRWaaungECZBVzJjH1Wj/V+dKqO2Hxa7gw71YwllsoQ8HmWHC3Nr8UyGk/RXeeUQSgQfpt9/vi849LXHuT4yDSPHR3l1Zcs3lR9MboiASZmUpwxG2KXSpuzKiVaK3jLefXW5Pocqyc5O1dRbyIBb/6Ow2nS2RwBPbmbp9zK3WQmWzaHfyloj99hnGrGUq7iYznC/tnqi+lsjslExpWIv1T/31qJJzNzapn0RYPEkhlyCm6+ZHXN+19hRvyLrQK2VlDuOjaKR1i0tLK1iMsinnIv4p+/uttJMlk9uVvIYhF/qEwO/1LIZ/UkMozFU7z+cw9y0Czn7AQtd4ajDqVNxRKZqqLBwpWZluj2uOTxw9zcdTuYnlcQzcrl39QTyZetrYUVEaNezyFzsrjUKmBrIc3TJydoCxZvu1hIZyQw5yKYt6xciPjbgr66RPy5nGI6na17KnEjY0X0xSZ3E2n7Iv72goh/37lJnjk1wV1PF+9WZwctJ/zzJ1PtIpbMVhUNFlZftMo1uOnx2x7xpzJzjosl/K+6dLUtKaudZoXOw4Nx+jtKrwLuiwbpiwZJZXMV3ZkZEX/B5G4yg88jBFyIhos163GCeCqDUktPUFjOlJ3czeTKrtpdCtZnZCqRya9s/9XBYVv2XYyWE36nGlvEk5mqPjD5huupzGydHhfSOa2x2133fTqVnRMlX7Kmk7VdYd501Vpb9r/CrDF0aHBq0QwhK+qvRPjnr2SeThmRcL3XV4CxyG9+e04nmO0oVf85pkbFutAXTee0MY/f6xHaAl5iyVnhf+bUuO3JFhYtJ/yWt2t3xF+uj2s5CmuxWCWG3Yj4Qz4vIti+QjQ2b+5jQ0+Eh/7iZWxbWbvNA4bVk1Ow7+zUomsCLjZ9/krOU1dkbu2i+f9HPQkHfMyks7avsZhPtSnJyxmPR/B7peTkrl15/GDW5E9kGDSFP6fgkSMjtu2/kJYTfqdqn8SS1Qr/7IXIrcqcYLzBI34v03ZH/ElnPWPLokplc4tH/KbwVyJsnWZpZmuF93QqQ8Ql4beOX6KI3WAnVsKDjvjnEvR5S3j89kX8MFuobWgqyaqOEG0BLw8eGrJt/4W03KVdRBxZEBNLZGivwuMP+jx4xLCekpkcIu4IP0Ak6LM94p/v8dtN4SrnSq2eSsbTFTY6JyXSOcKm1VKq05LTtOVTfrP5O0QnmKyytPhyJ+DzlPD47ZvcBWgP+ZlKZsjNKNZ0heiKdPDQIR3x20axBue1Eq8y4hcRImYtlrPjM6yMBl1bOdkWsL80wHyP325WFPQmXszq2djTRiTgrSjin5/lNJ3KOCq65QjXqeG65fF3aKtnDkGz4fp87FzABVZN/jSDUwn6okFu2NbL0eH4gr7SdtCSZ9juLIlczujqtNTKnHPGk85wbjLBqs7aVrLWQiTgs30SsVoLrFKs9QftQV/Jcg0WXo/wT2+5kg3dkUX3W5jltLozTDyZZU2XOxZIfpGfwymd2uopjhHxO1urB4z38OBUgqGpJNds7uamC1cyY2PKaCEtKfwRv8/WyNa6e6i2cqNVk//sRIJtNdSuqRW7i4GlszlSmZyjVo9VQnlrX1tFGTc3Xdi/pP1amT1uRvz16sI1m9XTkrJQkmIRfzprdHKz1eMP+RiNpxmbTrMyGmJjTxvv/7Vttu2/kJa0esIBez3+auv05Mdjzjmcm0iwqrN8px4niQTs9fjn1+lxgs688Nt7weyMWCUsDKsnNm8hWj1xKgV5PrFEBo84e76akaDPuyDiz7ddtCmPH4yIf9hsUmStd3GKlry0R2y2eiop/LXYeKy2gKtdFP62oJczZi0bO8g3YXFQMH1eD+++YTMvu2Clrfu1LCSrbMN0KuPa5G49rZ72ClY1txqBIhF/0rzLt9OGKbzTspoWOUXLCr+dK1SrrcU/Ox4fT58aB3A94m+kO6FK+R+vvcj2fRZaPbmcMiep3bV66jG5q/39hQSLZPVYEb9dtXpgbuBYrKGQnbSo1eOztRFLzVZPwJv3V1e7OLnbZnMVSGui2K1IuRYiAS9+rzA+k86/V9yL+M1V1Q5H/JOJ6lafL3eKRfwJByL+wjlCp62elhT+iN/eSUw7rB4LN62eSNCXLz9sB/nmJS5NitaCiOTLNsw2YXEp4g/WK+JP172ncDMQLJLVk/f4bV7AZdHrsNXTksJv++RuqrZ+rIXC7/QtXjnaAl5SZiaOHcRdrGFvB4bwp/IXw2rTdWsl4lCZkflM6Yi/KIEiK3edmNy1jn13W8DxtTwtKfz2T+7WJnBWTf7e9qAjObuVYnf2SD0md51kZTSUn3QH9+5cfF4PAZ/HcasnVmWhweVO0YjftHpCdlo9Zt9dpyd2oYWFP5NTtkW2sRqXulsXDDdtnsJx2NV3d9bjb04xWdUZ4txEwtVG6xZ2ByvFmEqkq75rXc4UW8CVcCidE+pz19+Swm/3Evh4MlNRV6fS4zG2czOjBwoqhdpUqG3axQbldtDfEWJwKpFvgO3m/xHxO1uaWSmls3pKUDSrx8F0Th3xO8Rs8xN7BC6WNAqRVZv/bHm4bkf8VsRh1yKuvEVi47L2erKqI0g6qzg1ZqxtcDXiD/qYsen9WoxEOkcmp7TVU4SiefwOTu46ndEDrS78Nkb8tdwiW5G2+xG/eVxsi/izhPyepu3hap2PI0NxwN0VrRGHm7HoOj2lsVbuWiW6oTCP3773REfYzws2reC6LT227bMULXl5tywZ26yeKpuw5McTaIyIv83miD+edLYks9P0dxjn47DZz9fNcsUhvzefO+4Ek7oyZ0msqD6dVQR8xl39bB6/fUGN1yP84L0vsm1/5WjOUKxGCrte2cFUojbht26v17i4eAsK74Tsi/ib1d+HIhG/i/9LyO/NTyg6ge6+VZpifXdnrZ7mfH+3pPCHbRa4eDJTU4739dt6+fvfvJwXbOq2ZTzVko/4bbIUYk0e8fe2BxGB0+MzrjVatwj5PPkJRSewrB4rpVAzS8C3sO+udRGwM6unnjg2ahFZLyL3isheEdkjIh8wH+8WkZ+LyEHz+wqnxlAKu2ufGN2Zqhc4v9fDrVevw+NxtziW/RG/s7X4ncbv9eRXULrVaN3CaatHl2QuzWzEXyD8afsnd+uJk6POAB9SSl0EXAe8X0QuAv4CuEcptR24x/y9rtg9uetmI247ydeEsSnijzvcb7cerDJ9frcvYCG/h0TaOatndnK3+d/HdlMs4k9ksgR8nqatZOqY8CulziqlnjB/ngL2AWuBW4Cvmy/7OvAGp8ZQirzVY1MEZTTibm6BA2NyKeT32BbxJ9LNL/z9DSP8Xkebrc9G/NrqmY/l48+P+Js12oc6efwisgm4EtgJ9CulzppPnQOKtkQSkfeIyC4R2TU0ZG+n+dmsHhsnMZvYyy6kLeCzrTTATDpb9aK2RmFVp2H1uF1htF5ZPcvhztVurLmduR5/rmkndqEOwi8i7cD/AT6olJosfE4ZibGq2HZKqS8qpXYopXb09fXZOiY7s3qyOUUyk2t6gbOIBL22VeicSWXzd1fNimX1uH1hD/kMq6cwl9xOYgmj0YzX5XmmRsSawJ2b1ZO1tRZ/vXF05CLixxD9bymlfmg+PCAiq83nVwODTo6hGF6PEPB5bJnctWq1N7ulYWF3xG/nAhc3mLV63P0/gv6FdoOdTCXS2uYpQdGIX1s9xRFj1uMrwD6l1D8UPHUX8E7z53cCdzo1hnJEbCrNnK9Hs0yE367jAobH3+x3QlYuv+sRv3kcnbJ7dEnm0hS76CYz2aa2epw809cDbweeFZGnzMf+Evgk8H0ReTdwHLjNwTGUJOK3R+Csu4bwcvH4g758R7FaSGdzpLOq+YW/YSZ3jRjNqcyeqWRaC38JrIg/Od/jb2Krx7EzrZR6EChlGN7k1N+tlHDAa0vRq9mSvc0tcBaRgJehqWTN+7Ei02b3+PvNiN/t82vVfXcq4o8lMnSaDeY1cynq8adzttbirzfNe8mqEbsai0+nlofAWbQFfPnl+7VgzX00u8cfDfr4tfP72OHyquq81eNQSmcsmSGqM3qKUszjT2SyOuJvRuxqv2hZPW57wHYRCdpzXBIp40PS7FaPiPC1377G7WE4bvUshwwsp5iN+PXkbtNjV0ej5Ta5a5fHP7NMrJ5GwenJ3Xgq67qd1agUXcDV5JO7LS38dqxQXW4C1xbwkczkyGRriyzzx6XJI/5GYTbid0b4jdXny+Ou1W6CxUo2pHM6j78ZCft9NkX8yyuPP2JTOQvr2Da7x98oBPOTu/ZbPamMkYGlI/7izGb1zF3ApSP+JiQS8NpSqyeeby+4PKIlK22x1tW7yyWrp1EI5XPJ7Y/4l1tKst14PILfK0VKNjSvfDbvyGvEroVKM8ssq8eK+GtdvautHnux3l9OWD3WudYRf2ms9osWzZ7H37wjr5FwwEsqkyObq632yXQ6azTpaOKrfyFWX4FaI/78BVELvy2EfM5l9eQTFLTHX5LChuvprKEbOo+/CbGr6chyS4OzykvXmsufz+MPtOxbzFaczOqx+i/oiL80QZ8nb7Pl2y7qiL/5sPzMWid4p1OZZTOxCxA1W+/VKvwJbfXYyqzwOxHxLy+70gmCvtlGOMl8o/XmPV4tK/wRvz1duJZTLX6AzrAh/JMz6Zr2o7N67MVrTjA6sXJ3Ou/xL5/3sd1EQ/58MDTbaL155bN5R14jbXZZGqnm7zJVSEfY+PBP1Cr86Sx+r+B3sUH5ciPkc6YZS9yqN7UMusg5RTTkywdDiWVQjqRlP5WdYaMgVa2R7fQyE36rJvtkonbhb+YPRiMS9HudsXqslGQd8ZekI+TPt6ecrUPVvPLZvCOvkRVthsCN1yr86eyyyn/2eoRo0FdzxL8cavE3GiG/J+8v28lyW4ToBNGQLx8MWZ+NjnDzNq5pWeHvMiP+8elavexMfr5gudAR9jM5o7OdGg2nGq7P1ptaPgGM3XSEZyP+CVMzOrXwNx9dESviT9W0n+Vm9YDxJrfD49cRv72E/B5HrJ54ypiPWS5rUZwgGjLKlWdzKv/Z6Gri/gUte6ZDfi9Bn8eGAqxeIAAACmFJREFUiH/5RbYdBbe11TKTzmmP32acmtydTmZ0tL8IHebcVyyRyQu/jviblK6In/FpHfHPpzPsr3nSO5HSEb/dhPwOCf8yfA/bjdWWcjKRZmImjdcjTb3graWFf0UkUFPEn8spw9JYZtFShw3CbxyX5v1gNCJOWT1a+BfHmsi1hL8z7EekVGfZxqelhb8z7K8pq8dK61puH5pO7fE3JEGHJnfjqYzrzeQbnXzEP5PJC38z09LC3xXx52foq2G5psF1hPzEU9mamrHMpHQev92EfF6SOuJ3BcvjnzIj/mZO5YRWF/5woKasnuVagbIzbPmZ1ad0JtJZwrpAm60YVo8z6Zx6crc8HfmFjRkmdcTf3HRF/IxNp1GqutLM0+nlmf/cYUO9Hm312I9jk7tJHfEvhlXKZHImra2eZqcz4ieVyVU9YZa3epZZjZPOcG1lG5RSWvgdIOT3kMg4kcef0QXaFqHdnAOZSlgef3Mfr5YW/hXmAoxq7R7L6lmOK3eh+kJtyUwOpSCko0hbCfm8ZHOKdA1zL8WYTmWXXfBiNz6vh7aAl4mZNJOJjI74m5ku8+RVm9I5O7nb3Ff/+eT9zCrLNuha/M7gRDMWpZSe3K2QaMjPuckZsjmVL/nSrLS08HdGahV+QxiXW756Z40Rv+636wxWNcgZG4U/abYfXW7BixN0hH2cGpsBmnvVLrS48FtX7YlarZ5lJvz5iawqPf7l1oC+UQiaF1I7Uzqtu9ZmXoVaL6IhPydHp4HmrswJrS78ZsQ/VrPVs7w+NGG/F79Xao74dR6/vYQdsHp0o/XK6Qj58lqhI/4mJj+5W6Xw5y2NZSb8IkJHqPqyDdrjdwYn+u7ORvxa+BfDalIEWvibmpDfQ8DnqTqrZzqVwesRAsuwvWAtZRtmUoYwLbcLottYHr+dZRvi+e5b+lwtRkdBCqc1P9isLD/FWgIiQle4+rIN06ksEb+3qYs1lSIa9le9cldP7jqDE1k9y9WudAId8S8jjNLM1U9iLteotqaIX3v8jhDyOWj1aI9/Uaw052YvyQxa+Guq17Oc8587Qj6mqvX4dVaPI+StHicmd/W5WhSrQmezl2QGLfw1RfzTqcyyq8Vv0Rn2V5/Oqa0eR3DC6oknl+ciRCewUji7mtzmAS38VQu/UopDgzH6okEHRuU+Vt/dagrYaeF3hmB+ctdOq8dK59TnajGsiL/Zc/hBCz9dkeqsnkcOj3BsZJo3XLHGgVG5T0fITzqrqvKTrQVcQd2821ZC+QVcDkzu6ov0olgef7NP7IJLwi8iN4vI8yJySET+wo0xWGzsiZBI5/jJs2eXtN23HjtBZ9jPqy9d7dDI3KWn3VjjsPPoyJK3TaSzhPwePJ7m9kEbjdnJXRutnlSGoM+DbxmmJNtNR4HH3+zU/WyLiBf4Z+BVwEXAW0TkonqPw+K2Heu5bF0nf/mjZzk3kahom+FYkrv3nONNV61btpkrr7l0NdtXtvMn33uKU2PTS9pWl2R2Br9X8IjNWT26Fn/FWBbPchB+N2Z0rgEOKaWOAIjId4FbgL0ujAW/18Nn/tsVvOazD/Laf3qQFRUszIgnM6Szirdeu74OI3SHtqCPf3371dzyuYd4/eceoqet8mqEA5MJnR7oACJCyO/lmzuP87M952zZ57nJRN7C0JQnuowifjc+nWuBkwW/nwKunf8iEXkP8B6ADRs2ODqgLX3t/MtvXcUPdp1c/MUmb1nVwbaVUQdH5T5b+tr58jt38O+PHl/SJO/2/nau3dzj4Mhalz962XaePT1u2/6297fzwi36XFVCJODjwzdfwMsvXOn2UGpGqm07WPUfFLkVuFkp9bvm728HrlVK/WGpbXbs2KF27dpVryFqNBrNskBEdiuldsx/3I0ZndNAoUeyznxMo9FoNHXADeF/HNguIptFJAC8GbjLhXFoNBpNS1J3j18plRGRPwR+BniBryql9tR7HBqNRtOquJJ6oZT6CfATN/62RqPRtDp61YZGo9G0GFr4NRqNpsXQwq/RaDQthhZ+jUajaTHqvoCrGkRkCDhe5ea9wLCNw6kXetz1pVnHDc07dj1u59molOqb/2BTCH8tiMiuYivXGh097vrSrOOG5h27Hrd7aKtHo9FoWgwt/BqNRtNitILwf9HtAVSJHnd9adZxQ/OOXY/bJZa9x6/RaDSaubRCxK/RaDSaArTwazQaTYuxrIW/kZq6l0NE1ovIvSKyV0T2iMgHzMc/JiKnReQp8+vVbo91PiJyTESeNce3y3ysW0R+LiIHze8r3B5nISJyfsExfUpEJkXkg414vEXkqyIyKCLPFTxW9PiKwWfN9/szInJVg437UyKy3xzbj0Sky3x8k4jMFBz3LzTYuEu+L0TkI+bxfl5Eft2dUVeBUmpZfmGUfD4MbAECwNPARW6Pq8RYVwNXmT9HgQMYjeg/Bvx3t8e3yNiPAb3zHvtfwF+YP/8FcLvb41zkfXIO2NiIxxt4CXAV8Nxixxd4NfBfgADXATsbbNyvBHzmz7cXjHtT4esa8HgXfV+Yn9GngSCw2dQbr9v/QyVfyznizzd1V0qlAKupe8OhlDqrlHrC/HkK2IfRm7hZuQX4uvnz14E3uDiWxbgJOKyUqnZluKMopR4ARuc9XOr43gL8uzJ4FOgSkdX1Gelcio1bKXW3Uipj/vooRve9hqLE8S7FLcB3lVJJpdRR4BCG7jQ8y1n4izV1b3gxFZFNwJXATvOhPzRvjb/aaJaJiQLuFpHdIvIe87F+pdRZ8+dzQL87Q6uINwPfKfi90Y83lD6+zfSe/x2MuxOLzSLypIjcLyIvdmtQZSj2vmim4z2H5Sz8TYeItAP/B/igUmoS+DywFbgCOAv8bxeHV4oblFJXAa8C3i8iLyl8Uhn3xA2ZM2y2/nw98APzoWY43nNo5ONbChH5KyADfMt86CywQSl1JfCnwLdFpMOt8RWh6d4Xi7Gchb+pmrqLiB9D9L+llPohgFJqQCmVVUrlgC/RgLeRSqnT5vdB4EcYYxywLAbz+6B7IyzLq4AnlFID0BzH26TU8W3497yIvAt4LfA286KFaZWMmD/vxvDKz3NtkPMo875o+ONdiuUs/E3T1F1EBPgKsE8p9Q8Fjxf6s78BPDd/WzcRkTYRiVo/Y0zePYdxnN9pvuydwJ3ujHBR3kKBzdPox7uAUsf3LuAdZnbPdcBEgSXkOiJyM/DnwOuVUtMFj/eJiNf8eQuwHTjizigXUuZ9cRfwZhEJishmjHE/Vu/xVYXbs8tOfmFkORzAiCD+yu3xlBnnDRi3688AT5lfrwa+ATxrPn4XsNrtsc4b9xaMrIangT3WMQZ6gHuAg8AvgG63x1pk7G3ACNBZ8FjDHW+MC9NZII3hIb+71PHFyOb5Z/P9/iywo8HGfQjDE7fe418wX/sm8/3zFPAE8LoGG3fJ9wXwV+bxfh54ldvvl0q/dMkGjUajaTGWs9Wj0Wg0miJo4ddoNJoWQwu/RqPRtBha+DUajabF0MKv0Wg0LYYWfo1Go2kxtPBrNBpNi/H/AKeTAr4MHBJ1AAAAAElFTkSuQmCC\n",
- "text/plain": [
- ""
- ]
- },
- "metadata": {
- "needs_background": "light"
- },
- "output_type": "display_data"
- }
- ],
- "source": [
- "ax = some_track['Speed.value'].plot()\n",
- "ax.set_title(\"Speed\")\n",
- "ax.set_ylabel(some_track['Speed.unit'][0])\n",
- "ax"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Interactive Map\n",
- "The following map-based visualization makes use of folium. It allows to visualizate geospatial data based on an interactive leaflet map. Since the data in the GeoDataframe is modelled as a set of Point instead of a LineString, we have to manually create a polyline"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- ""
- ],
- "text/plain": [
- ""
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import folium\n",
- "\n",
- "lats = list(some_track['geometry'].apply(lambda coord: coord.y))\n",
- "lngs = list(some_track['geometry'].apply(lambda coord: coord.x))\n",
- "\n",
- "avg_lat = sum(lats) / len(lats)\n",
- "avg_lngs = sum(lngs) / len(lngs)\n",
- "\n",
- "m = folium.Map(location=[avg_lat, avg_lngs], zoom_start=13)\n",
- "folium.PolyLine([coords for coords in zip(lats, lngs)], color='blue').add_to(m)\n",
- "m"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Example: Visualization with pydeck (deck.gl)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "The pydeck library makes use of the basemap tiles from Mapbox. In case you want to visualize the map with basemap tiles, you need to register with MapBox, and configure a specific access token. The service is free until a certain level of traffic is esceeded.\n",
- "\n",
- "You can either configure it via your terminal (i.e. `export MAPBOX_API_KEY=`), which pydeck will automatically read, or you can pass it as a variable to the generation of pydeck (i.e. `pdk.Deck(mapbox_key=, ...)`."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- " \n",
- " "
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/plain": [
- "'/home/hafenkran/dev/envirocar/envirocar-py/examples/tracks_muenster.html'"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "import pydeck as pdk\n",
- "\n",
- "# for pydeck the attributes have to be flat\n",
- "track_df['lat'] = track_df['geometry'].apply(lambda coord: coord.y)\n",
- "track_df['lng'] = track_df['geometry'].apply(lambda coord: coord.x)\n",
- "vis_df = pd.DataFrame(track_df)\n",
- "vis_df['speed'] = vis_df['Speed.value']\n",
- "\n",
- "# omit unit columns\n",
- "vis_df_cols = [col for col in vis_df.columns if col.lower()[len(col)-4:len(col)] != 'unit']\n",
- "vis_df = vis_df[vis_df_cols]\n",
- "\n",
- "layer = pdk.Layer(\n",
- " 'ScatterplotLayer',\n",
- " data=vis_df,\n",
- " get_position='[lng, lat]',\n",
- " auto_highlight=True,\n",
- " get_radius=10, # Radius is given in meters\n",
- " get_fill_color='[speed < 20 ? 0 : (speed - 20)*8.5, speed < 50 ? 255 : 255 - (speed-50)*8.5, 0, 140]', # Set an RGBA value for fill\n",
- " pickable=True\n",
- ")\n",
- "\n",
- "# Set the viewport location\n",
- "view_state = pdk.ViewState(\n",
- " longitude=7.5963592529296875,\n",
- " latitude=51.96246168188569,\n",
- " zoom=10,\n",
- " min_zoom=5,\n",
- " max_zoom=15,\n",
- " pitch=40.5,\n",
- " bearing=-27.36)\n",
- "\n",
- "r = pdk.Deck(\n",
- " width=200, \n",
- " layers=[layer], \n",
- " initial_view_state=view_state #, mapbox_key=\n",
- ")\n",
- "r.to_html('tracks_muenster.html', iframe_width=900)"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "envirocar",
- "language": "python",
- "name": "envirocar"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.6.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 4
-}
diff --git a/examples/debug.log b/examples/debug.log
new file mode 100644
index 0000000..baf5d0b
--- /dev/null
+++ b/examples/debug.log
@@ -0,0 +1,176 @@
+[0416/094942.360:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.361:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.361:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.361:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.361:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.361:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/094942.362:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.149:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.150:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.151:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/135949.151:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.091:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.092:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.093:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142003.093:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.865:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.866:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142114.867:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.668:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.669:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/142924.670:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143145.899:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.816:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.817:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143206.818:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.978:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/143403.979:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.956:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.958:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/153413.959:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.929:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.933:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.933:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.934:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.934:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.934:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.934:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0416/161528.934:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.016:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.017:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report
+[0417/112959.018:ERROR:crash_report_database_win.cc(469)] failed to stat report