-
Notifications
You must be signed in to change notification settings - Fork 0
/
models.py
557 lines (456 loc) · 25.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import torch
from torch import nn
from torch.nn.modules import rnn
import torchvision
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Encoder(nn.Module):
"""
ResNet based encoder for encoding images.
"""
def __init__(self, encoded_image_size=16):
super().__init__()
self.enc_image_size = encoded_image_size
resnet = torchvision.models.resnet101(pretrained=True) # pretrained ImageNet ResNet-101
# Remove linear and pool layers (since we're not doing classification)
modules = list(resnet.children())[:-2]
self.resnet = nn.Sequential(*modules)
# Resize image to fixed size to allow input images of variable size
self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
self.fine_tune()
def forward(self, images):
"""
Forward propagation.
:param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
:return: encoded images
"""
out = self.resnet(images) # (batch_size, 2048, image_size/32, image_size/32)
out = self.adaptive_pool(out) # (batch_size, 2048, encoded_image_size, encoded_image_size)
out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
return out
def fine_tune(self, fine_tune=True):
"""
Allow or prevent the computation of gradients for convolutional blocks 2 through 4 of the encoder.
:param fine_tune: Allow?
"""
for p in self.resnet.parameters():
p.requires_grad = False
# If fine-tuning, only fine-tune convolutional blocks 2 through 4
for c in list(self.resnet.children())[5:]:
for p in c.parameters():
p.requires_grad = fine_tune
class EncoderWide(nn.Module):
"""
Encoder with wider feature map that uses output of conv4_x layer in the original ResNet paper.
"""
def __init__(self, encoded_image_size=16):
super().__init__()
self.enc_image_size = encoded_image_size
resnet = torchvision.models.resnet101(pretrained=True) # pretrained ImageNet ResNet-101
# Remove linear pool and last 3 bottleneck layers
modules = list(resnet.children())[:-3] # number of channels at the last layer is 1024
# Additional bottleneck layer which makes number of output channels 2048
self.bottleneck = nn.Sequential(
nn.Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False),
nn.BatchNorm2d(512),
nn.Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False),
nn.BatchNorm2d(512),
nn.Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False),
nn.BatchNorm2d(2048),
nn.ReLU(inplace=True)
)
modules.append(self.bottleneck)
self.resnet = nn.Sequential(*modules)
# Resize image to fixed size to allow input images of variable size
self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
self.fine_tune()
def forward(self, images):
"""
Forward propagation.
:param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
:return: encoded images
"""
out = self.resnet(images) # (batch_size, 2048, image_size/16, image_size/16)
out = self.adaptive_pool(out) # (batch_size, 2048, encoded_image_size, encoded_image_size)
out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
return out
def fine_tune(self, fine_tune=True):
"""
Allow or prevent the computation of gradients for convolutional blocks after conv2_x block
:param fine_tune: Allow?
"""
for p in self.resnet.parameters():
p.requires_grad = False
# If fine-tuning, only fine-tune convolutional blocks after conv2_x block
for c in list(self.resnet.children())[5:]:
for p in c.parameters():
p.requires_grad = fine_tune
class EncoderFPN(nn.Module):
"""
Encoder with 2-level Feature Pyramid Network
"""
def __init__(self, encoded_image_size=16):
super().__init__()
self.enc_image_size = encoded_image_size
resnet = torchvision.models.resnet101(pretrained=True) # pretrained ImageNet ResNet-101
modules_conv4_x = list(resnet.children())[:-3] # This is output of conv4_x layer in the original paper. Number of channels at the last layer is 1024. Spatial dimension is image_size / 16
self.resnet = nn.Sequential(*modules_conv4_x)
module_conv5_xResNet = list(resnet.children())[-3] # This is conv5_x layer in the original paper. Number of input channels is 1024, number of output channels is 2048.
self.conv5_xResNet = nn.Sequential(*module_conv5_xResNet)
self.c1_1x1 = nn.Conv2d(1024, 2048, kernel_size=(1, 1), stride=(1, 1))
# Resize image to fixed size to allow input images of variable size
self.adaptive_pool = nn.AdaptiveAvgPool2d((encoded_image_size, encoded_image_size))
self.fine_tune()
def forward(self, images):
"""
Forward propagation.
:param images: images, a tensor of dimensions (batch_size, 3, image_size, image_size)
:return: encoded images
"""
c1 = self.resnet(images) # (batch_size, 1024, image_size/16, image_size/16)
c2 = self.conv5_xResNet(c1) # (batch_size, 2048, image_size/32, image_size/32)
p2 = c2 # (batch_size, 2048, image_size/32, image_size/32)
p1 = self.upsample_add(self.c1_1x1(c1), p2) # (batch_size, 2048, image_size/16, image_size/16)
out = self.adaptive_pool(p1) # (batch_size, 2048, encoded_image_size, encoded_image_size)
out = out.permute(0, 2, 3, 1) # (batch_size, encoded_image_size, encoded_image_size, 2048)
return out
def upsample_add(self, c, p):
"""
p: map to be upsampled
c: map to be added to upsampled p
"""
n, ch, h, w = c.shape
upsampled = F.upsample(p, size=(h, w), mode='bilinear')
return upsampled + c
def fine_tune(self, fine_tune=True):
"""
Allow or prevent the computation of gradients for convolutional blocks after conv2_x block
:param fine_tune: Allow?
"""
for p in self.resnet.parameters():
p.requires_grad = False
# If fine-tuning, only fine-tune convolutional blocks after conv2_x block
for c in list(self.resnet.children())[5:]:
for p in c.parameters():
p.requires_grad = fine_tune
class Attention(nn.Module):
"""
Attention Network.
"""
def __init__(self, encoder_dim, decoder_dim, attention_dim):
"""
:param encoder_dim: feature size of encoded images
:param decoder_dim: size of decoder's RNN
:param attention_dim: size of the attention network
"""
super().__init__()
self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
self.full_att = nn.Linear(attention_dim, 1) # linear layer to calculate values to be softmax-ed
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
def forward(self, encoder_out, decoder_hidden):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
:return: attention weighted encoding, weights
"""
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden) # (batch_size, attention_dim)
att = self.full_att(self.relu(att1 + att2.unsqueeze(1))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding, alpha
class ConcatenatedAttention(nn.Module):
"""
ConcatenatedAttention module which uses concatenation of encoder and decoder
attention vectors instead of summing them up
"""
def __init__(self, encoder_dim, decoder_dim, attention_dim):
"""
@param encoder_dim: feature size of encoded images
@param decoder_dim: size of decoder's RNN
@param attention_dim: size of the attention network
"""
super().__init__()
self.encoder_att = nn.Linear(encoder_dim, attention_dim) # linear layer to transform encoded image
self.decoder_att = nn.Linear(decoder_dim, attention_dim) # linear layer to transform decoder's output
self.full_att = nn.Linear(attention_dim * 2, 1) # linear layer to calculate values to be softmax-ed
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1) # softmax layer to calculate weights
def forward(self, encoder_out, decoder_hidden):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:param decoder_hidden: previous decoder output, a tensor of dimension (batch_size, decoder_dim)
:return: attention weighted encoding, weights
"""
att1 = self.encoder_att(encoder_out) # (batch_size, num_pixels, attention_dim)
att2 = self.decoder_att(decoder_hidden).unsqueeze(1) # (batch_size, 1, attention_dim)
att2_expanded = att2.expand_as(att1) # (batch_size, num_pixels, attention_dim)
att = self.full_att(self.relu(torch.cat([att1, att2_expanded], dim=2))).squeeze(2) # (batch_size, num_pixels)
alpha = self.softmax(att) # (batch_size, num_pixels)
attention_weighted_encoding = (encoder_out * alpha.unsqueeze(2)).sum(dim=1) # (batch_size, encoder_dim)
return attention_weighted_encoding, alpha
class Decoder(nn.Module):
"""
Generic Decoder Class
"""
def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=2048, dropout=0.5, decoderType="LSTM", attentionType="default"):
"""
@param attention_dim: size of attention network
@param embed_dim: embedding size
@param decoder_dim: size of decoder's RNN
@param vocab_size: size of vocabulary
@param encoder_dim: feature size of encoded images
@param dropout: dropout
@param attentionType: Type of the attention module: "default", "concatenated"
@param decoderType: Type of the RNN: "LSTM", "GRU"
"""
super().__init__()
self.encoder_dim = encoder_dim
self.attention_dim = attention_dim
self.embed_dim = embed_dim
self.decoder_dim = decoder_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.attentionType = attentionType
self.decoderType = decoderType
self.attention = None
if attentionType == "default":
self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
elif attentionType == "concatenated":
self.attention = ConcatenatedAttention(encoder_dim, decoder_dim, attention_dim)
else:
raise Exception("attentionType must be one of: \"default\", \"concatenated\".")
self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
self.dropout = nn.Dropout(p=self.dropout)
self.decode_step = None
self.init_h = None
self.init_c = None
if self.decoderType == "LSTM":
self.decode_step = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True)
self.init_c = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
elif self.decoderType == "GRU":
self.decode_step = nn.GRUCell(embed_dim + encoder_dim, decoder_dim, bias=True)
else:
raise Exception("decoderType must be one of: \"LSTM\", \"GRU\".")
self.init_h = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of RNN
self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def init_weights(self):
"""
Initializes some parameters with values from the uniform distribution, for easier convergence.
"""
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def load_pretrained_embeddings(self, embeddings):
"""
Loads embedding layer with pre-trained embeddings.
:param embeddings: pre-trained embeddings
"""
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
"""
Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
:param fine_tune: Allow?
"""
for p in self.embedding.parameters():
p.requires_grad = fine_tune
def init_hidden_state(self, encoder_out):
"""
Creates the initial states for the decoder's RNN based on the encoded images.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:return: hidden state, cell state (None is returned for cell state if RNN is GRU)
"""
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out) if self.decoderType == "LSTM" else None
return h, c
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
"""
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths; why? apparent below
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# Initialize RNN states
h, c = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
# At each time-step, decode by
# attention-weighing the encoder's output based on the decoder's previous hidden state output
# then generate a new word in the decoder with the previous word and the attention weighted encoding
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
h[:batch_size_t])
gate = self.sigmoid(self.f_beta(h[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
if self.decoderType == "LSTM":
h, c = self.decode_step(
torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
(h[:batch_size_t], c[:batch_size_t])) # (batch_size_t, decoder_dim)
elif self.decoderType == "GRU":
h = self.decode_step(torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1), h[:batch_size_t]) # (batch_size_t, decoder_dim)
else:
raise Exception("Cannot perform forward pass. decoderType should be one of \"LSTM\", \"GRU\"!")
preds = self.fc(self.dropout(h)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
alphas[:batch_size_t, t, :] = alpha
return predictions, encoded_captions, decode_lengths, alphas, sort_ind
class Decoder2layer(nn.Module):
"""
Generic Decoder Class for 2 layer RNN
"""
def __init__(self, attention_dim, embed_dim, decoder_dim, vocab_size, encoder_dim=2048, dropout=0.5, decoderType="LSTM", attentionType="default"):
"""
@param attention_dim: size of attention network
@param embed_dim: embedding size
@param decoder_dim: size of decoder's RNN
@param vocab_size: size of vocabulary
@param encoder_dim: feature size of encoded images
@param dropout: dropout
@param attentionType: Type of the attention module: "default", "concatenated"
@param decoderType: Type of the RNN: "LSTM", "GRU"
"""
super().__init__()
self.encoder_dim = encoder_dim
self.attention_dim = attention_dim
self.embed_dim = embed_dim
self.decoder_dim = decoder_dim
self.vocab_size = vocab_size
self.dropout = dropout
self.attentionType = attentionType
self.decoderType = decoderType
self.attention = None
if attentionType == "default":
self.attention = Attention(encoder_dim, decoder_dim, attention_dim) # attention network
elif attentionType == "concatenated":
self.attention = ConcatenatedAttention(encoder_dim, decoder_dim, attention_dim)
else:
raise Exception("attentionType must be one of: \"default\", \"concatenated\".")
self.embedding = nn.Embedding(vocab_size, embed_dim) # embedding layer
self.dropout = nn.Dropout(p=self.dropout)
self.decode_step_1 = None
self.decode_step_2 = None
self.init_h_1 = None
self.init_c_1 = None
if self.decoderType == "LSTM":
self.decode_step_1 = nn.LSTMCell(embed_dim + encoder_dim, decoder_dim, bias=True)
self.decode_step_2 = nn.LSTMCell(decoder_dim, decoder_dim, bias=True)
self.init_c_1 = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial cell state of LSTMCell
elif self.decoderType == "GRU":
self.decode_step_1 = nn.GRUCell(embed_dim + encoder_dim, decoder_dim, bias=True)
self.decode_step_2 = nn.GRUCell(decoder_dim, decoder_dim, bias=True)
else:
raise Exception("decoderType must be one of: \"LSTM\", \"GRU\".")
self.init_h_1 = nn.Linear(encoder_dim, decoder_dim) # linear layer to find initial hidden state of RNN
self.f_beta = nn.Linear(decoder_dim, encoder_dim) # linear layer to create a sigmoid-activated gate
self.sigmoid = nn.Sigmoid()
self.fc = nn.Linear(decoder_dim, vocab_size) # linear layer to find scores over vocabulary
self.init_weights() # initialize some layers with the uniform distribution
def init_weights(self):
"""
Initializes some parameters with values from the uniform distribution, for easier convergence.
"""
self.embedding.weight.data.uniform_(-0.1, 0.1)
self.fc.bias.data.fill_(0)
self.fc.weight.data.uniform_(-0.1, 0.1)
def load_pretrained_embeddings(self, embeddings):
"""
Loads embedding layer with pre-trained embeddings.
:param embeddings: pre-trained embeddings
"""
self.embedding.weight = nn.Parameter(embeddings)
def fine_tune_embeddings(self, fine_tune=True):
"""
Allow fine-tuning of embedding layer? (Only makes sense to not-allow if using pre-trained embeddings).
:param fine_tune: Allow?
"""
for p in self.embedding.parameters():
p.requires_grad = fine_tune
def init_hidden_state(self, encoder_out):
"""
Creates the initial states for the decoder's RNN based on the encoded images.
:param encoder_out: encoded images, a tensor of dimension (batch_size, num_pixels, encoder_dim)
:return: hidden state, cell state (None is returned for cell state if RNN is GRU)
"""
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h_1(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c_1(mean_encoder_out) if self.decoderType == "LSTM" else None
return h, c
def forward(self, encoder_out, encoded_captions, caption_lengths):
"""
Forward propagation.
:param encoder_out: encoded images, a tensor of dimension (batch_size, enc_image_size, enc_image_size, encoder_dim)
:param encoded_captions: encoded captions, a tensor of dimension (batch_size, max_caption_length)
:param caption_lengths: caption lengths, a tensor of dimension (batch_size, 1)
:return: scores for vocabulary, sorted encoded captions, decode lengths, weights, sort indices
"""
batch_size = encoder_out.size(0)
encoder_dim = encoder_out.size(-1)
vocab_size = self.vocab_size
# Flatten image
encoder_out = encoder_out.view(batch_size, -1, encoder_dim) # (batch_size, num_pixels, encoder_dim)
num_pixels = encoder_out.size(1)
# Sort input data by decreasing lengths; why? apparent below
caption_lengths, sort_ind = caption_lengths.squeeze(1).sort(dim=0, descending=True)
encoder_out = encoder_out[sort_ind]
encoded_captions = encoded_captions[sort_ind]
# Embedding
embeddings = self.embedding(encoded_captions) # (batch_size, max_caption_length, embed_dim)
# Initialize RNN states
h_1, c_1 = self.init_hidden_state(encoder_out) # (batch_size, decoder_dim)
h_2 = torch.zeros(size=(batch_size, self.decoder_dim)).to(device) # initialize states of second layer of RNN with zeros
c_2 = torch.zeros(size=(batch_size, self.decoder_dim)).to(device)
# We won't decode at the <end> position, since we've finished generating as soon as we generate <end>
# So, decoding lengths are actual lengths - 1
decode_lengths = (caption_lengths - 1).tolist()
# Create tensors to hold word predicion scores and alphas
predictions = torch.zeros(batch_size, max(decode_lengths), vocab_size).to(device)
alphas = torch.zeros(batch_size, max(decode_lengths), num_pixels).to(device)
# At each time-step, decode by
# attention-weighing the encoder's output based on the decoder's previous hidden state output
# then generate a new word in the decoder with the previous word and the attention weighted encoding
for t in range(max(decode_lengths)):
batch_size_t = sum([l > t for l in decode_lengths])
attention_weighted_encoding, alpha = self.attention(encoder_out[:batch_size_t],
h_2[:batch_size_t])
gate = self.sigmoid(self.f_beta(h_2[:batch_size_t])) # gating scalar, (batch_size_t, encoder_dim)
attention_weighted_encoding = gate * attention_weighted_encoding
if self.decoderType == "LSTM":
h_1, c_1 = self.decode_step_1(
torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1),
(h_1[:batch_size_t], c_1[:batch_size_t])) # (batch_size_t, decoder_dim)
h_2, c_2 = self.decode_step_2(h_1[:batch_size_t], (h_2[:batch_size_t], c_2[:batch_size_t]))
elif self.decoderType == "GRU":
h_1 = self.decode_step_1(torch.cat([embeddings[:batch_size_t, t, :], attention_weighted_encoding], dim=1), h_1[:batch_size_t]) # (batch_size_t, decoder_dim)
h_2 = self.decode_step_2(h_1[:batch_size_t], h_2[:batch_size_t]) # (batch_size_t, decoder_dim)
else:
raise Exception("Cannot perform forward pass. decoderType should be one of \"LSTM\", \"GRU\"!")
preds = self.fc(self.dropout(h_2)) # (batch_size_t, vocab_size)
predictions[:batch_size_t, t, :] = preds
alphas[:batch_size_t, t, :] = alpha
return predictions, encoded_captions, decode_lengths, alphas, sort_ind