Skip to content

Latest commit

 

History

History
490 lines (372 loc) · 24.2 KB

experiments-dpr.md

File metadata and controls

490 lines (372 loc) · 24.2 KB

Pyserini: Reproducing DPR Results

Dense passage retriever (DPR) is a dense retrieval method described in the following paper:

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. Dense Passage Retrieval for Open-Domain Question Answering. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769-6781, 2020.

We have replicated DPR results and incorporated the technique into Pyserini. Our own efforts are described in the following paper:

Xueguang Ma, Kai Sun, Ronak Pradeep, and Jimmy Lin. A Replication Study of Dense Passage Retriever. arXiv:2104.05740, April 2021.

To be clear, we started with model checkpoint releases in the official DPR repo and did not retrain the query and passage encoders from scratch. Our implementation does not share any code with the DPR repo, other than evaluation scripts to ensure that results are comparable.

This guide provides instructions to reproduce our replication study. Our efforts include both retrieval as well as end-to-end answer extraction. We cover only retrieval here; for end-to-end answer extraction, please see this guide in our PyGaggle neural text ranking library.

Starting with v0.12.0, you can reproduce these results directly from the Pyserini PyPI package. Since dense retrieval depends on neural networks, Pyserini requires a more complex set of dependencies to use this feature. See package installation notes for more details.

Note that we have observed minor differences in scores between different computing environments (e.g., Linux vs. macOS). However, the differences usually appear in the fifth digit after the decimal point, and do not appear to be a cause for concern from a reproducibility perspective. Thus, while the scoring script provides results to much higher precision, we have intentionally rounded to four digits after the decimal point.

Summary

Here's how our results stack up against results reported in the paper using the DPR-Multi model:

Dataset Method Top-20 (orig) Top-20 (us) Top-100 (orig) Top-100 (us)
NQ DPR 79.4 79.5 86.0 86.1
NQ BM25 59.1 62.9 73.7 78.3
NQ Hybrid 78.0 82.6 83.9 88.6
TriviaQA DPR 78.8 78.9 84.7 84.8
TriviaQA BM25 66.9 76.4 76.7 83.2
TriviaQA Hybrid 79.9 82.6 84.4 86.5
WQ DPR 75.0 75.0 82.9 83.0
WQ BM25 55.0 62.4 71.1 75.5
WQ Hybrid 74.7 77.1 82.3 84.4
CuratedTREC DPR 89.1 88.8 93.9 93.4
CuratedTREC BM25 70.9 80.7 84.1 89.9
CuratedTREC Hybrid 88.5 90.1 94.1 95.0
SQuAD DPR 51.6 52.0 67.6 67.7
SQuAD BM25 68.8 71.1 80.0 81.8
SQuAD Hybrid 66.2 75.1 78.6 84.4

The hybrid results reported above for "us" capture what we call the "norm" condition (see paper for details).

Natural Questions (NQ) with DPR-Multi

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-nq-test \
                             --index wikipedia-dpr-multi-bf \
                             --encoded-queries dpr_multi-nq-test \
                             --output runs/run.dpr.nq-test.multi.bf.trec \
                             --batch-size 36 --threads 12

The option --encoded-queries specifies the use of encoded queries (i.e., queries that have already been converted into dense vectors and cached). As an alternative, replace with --encoder facebook/dpr-question_encoder-multiset-base to perform "on-the-fly" query encoding, i.e., convert text queries into dense vectors as part of the dense retrieval process.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.nq-test.multi.bf.trec \
                                                                --output runs/run.dpr.nq-test.multi.bf.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.nq-test.multi.bf.json --topk 20 100
Top20  accuracy: 0.7947
Top100 accuracy: 0.8609

BM25 retrieval:

$ python -m pyserini.search --topics dpr-nq-test \
                            --index wikipedia-dpr \
                            --output runs/run.dpr.nq-test.bm25.trec

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.nq-test.bm25.trec \
                                                                --output runs/run.dpr.nq-test.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.nq-test.bm25.json --topk 20 100
Top20  accuracy: 0.6294
Top100 accuracy: 0.7825

Hybrid dense-sparse retrieval (combining above two approaches):

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-multi-bf \
                                    --encoded-queries dpr_multi-nq-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 1.3 \
                             run    --topics dpr-nq-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.nq-test.multi.bf.bm25.trec 

Same as above, replace --encoded-queries with --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.nq-test.multi.bf.bm25.trec \
                                                                --output runs/run.dpr.nq-test.multi.bf.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.nq-test.multi.bf.bm25.json --topk 20 100
Top20  accuracy: 0.8260
Top100 accuracy: 0.8859

TriviaQA with DPR-Multi

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-trivia-test \
                             --index wikipedia-dpr-multi-bf \
                             --encoded-queries dpr_multi-trivia-test \
                             --output runs/run.dpr.trivia-test.multi.bf.trec \
                             --batch-size 36 --threads 12

Same as above, replace --encoded-queries with --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-trivia-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.trivia-test.multi.bf.trec \
                                                                --output runs/run.dpr.trivia-test.multi.bf.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.trivia-test.multi.bf.json --topk 20 100
Top20  accuracy: 0.7887
Top100 accuracy: 0.8479

BM25 retrieval:

$ python -m pyserini.search --topics dpr-trivia-test \
                            --index wikipedia-dpr \
                            --output runs/run.dpr.trivia-test.bm25.trec

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-trivia-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.trivia-test.bm25.trec \
                                                                --output runs/run.dpr.trivia-test.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.trivia-test.bm25.json --topk 20 100
Top20  accuracy: 0.7641
Top100 accuracy: 0.8315

Hybrid dense-sparse retrieval (combining above two approaches):

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-multi-bf \
                                    --encoded-queries dpr_multi-trivia-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 0.95 \
                             run    --topics dpr-trivia-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.trivia-test.multi.bf.bm25.trec 

Same as above, replace --encoded-queries with --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-trivia-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.trivia-test.multi.bf.bm25.trec \
                                                                --output runs/run.dpr.trivia-test.multi.bf.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.trivia-test.multi.bf.bm25.json --topk 20 100
Top20  accuracy: 0.8264
Top100 accuracy: 0.8655

WebQuestions (WQ) with DPR-Multi

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-wq-test \
                             --index wikipedia-dpr-multi-bf \
                             --encoded-queries dpr_multi-wq-test \
                             --output runs/run.dpr.wq-test.multi.bf.trec \
                             --batch-size 36 --threads 12

Same as above, replace --encoded-queries with --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-wq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.wq-test.multi.bf.trec \
                                                                --output runs/run.dpr.wq-test.multi.bf.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.wq-test.multi.bf.json --topk 20 100
Top20  accuracy: 0.7505
Top100 accuracy: 0.8297

BM25 retrieval:

$ python -m pyserini.search --topics dpr-wq-test \
                            --index wikipedia-dpr \
                            --output runs/run.dpr.wq-test.bm25.trec

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-wq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.wq-test.bm25.trec \
                                                                --output runs/run.dpr.wq-test.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.wq-test.bm25.json --topk 20 100
Top20  accuracy: 0.6240
Top100 accuracy: 0.7549

Hybrid dense-sparse retrieval (combining above two approaches):

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-multi-bf \
                                    --encoded-queries dpr_multi-wq-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 0.95 \
                             run    --topics dpr-wq-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.wq-test.multi.bf.bm25.trec 

Same as above, replace --encoded-queries with --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-wq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.wq-test.multi.bf.bm25.trec \
                                                                --output runs/run.dpr.wq-test.multi.bf.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.wq-test.multi.bf.bm25.json --topk 20 100
Top20  accuracy: 0.7712
Top100 accuracy: 0.8440

CuratedTREC with DPR-Multi

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-curated-test \
                             --index wikipedia-dpr-multi-bf \
                             --encoded-queries dpr_multi-curated-test \
                             --output runs/run.dpr.curated-test.multi.bf.trec \
                             --batch-size 36 --threads 12

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-multiset-base with for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-curated-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.curated-test.multi.bf.trec \
                                                                --output runs/run.dpr.curated-test.multi.bf.json \
                                                                --regex

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.curated-test.multi.bf.json --topk 20 100 --regex
Top20  accuracy: 0.8876
Top100 accuracy: 0.9337

BM25 retrieval:

$ python -m pyserini.search --topics dpr-curated-test \
                            --index wikipedia-dpr \
                            --output runs/run.dpr.curated-test.bm25.trec

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-curated-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.curated-test.bm25.trec \
                                                                --output runs/run.dpr.curated-test.bm25.json \
                                                                --regex

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.curated-test.bm25.json --topk 20 100 --regex
Top20  accuracy: 0.8069
Top100 accuracy: 0.8991

Hybrid dense-sparse retrieval (combining above two approaches):

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-multi-bf \
                                    --encoded-queries dpr_multi-curated-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 1.05 \
                             run    --topics dpr-curated-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.curated-test.multi.bf.bm25.trec 

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-curated-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.curated-test.multi.bf.bm25.trec \
                                                                --output runs/run.dpr.curated-test.multi.bf.bm25.json \
                                                                --regex

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.curated-test.multi.bf.bm25.json --topk 20 100 --regex
Top20  accuracy: 0.9006
Top100 accuracy: 0.9496

SQuAD with DPR-Multi

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-squad-test \
                             --index wikipedia-dpr-multi-bf \
                             --encoded-queries dpr_multi-squad-test \
                             --output runs/run.dpr.squad-test.multi.bf.trec \
                             --batch-size 36 --threads 12

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-squad-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.squad-test.multi.bf.trec \
                                                                --output runs/run.dpr.squad-test.multi.bf.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.squad-test.multi.bf.json --topk 20 100
Top20  accuracy: 0.5199
Top100 accuracy: 0.6773

BM25 retrieval:

$ python -m pyserini.search --topics dpr-squad-test \
                            --index wikipedia-dpr \
                            --output runs/run.dpr.squad-test.bm25.trec

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-squad-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.squad-test.bm25.trec \
                                                                --output runs/run.dpr.squad-test.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.squad-test.bm25.json --topk 20 100
Top20  accuracy: 0.7109
Top100 accuracy: 0.8184

Hybrid dense-sparse retrieval (combining above two approaches):

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-multi-bf \
                                    --encoded-queries dpr_multi-squad-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 2.00 \
                             run    --topics dpr-squad-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.squad-test.multi.bf.bm25.trec 

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-multiset-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-squad-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.squad-test.multi.bf.bm25.trec \
                                                                --output runs/run.dpr.squad-test.multi.bf.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.squad-test.multi.bf.bm25.json --topk 20 100
Top20  accuracy: 0.7511
Top100 accuracy: 0.8437

Natural Questions (NQ) with DPR-Single

DPR retrieval with brute-force index:

$ python -m pyserini.dsearch --topics dpr-nq-test \
                             --index wikipedia-dpr-single-nq-bf \
                             --encoded-queries dpr_single_nq-nq-test \
                             --output runs/run.dpr.nq-test.single.bf.trec \
                             --batch-size 36 --threads 12

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-single-nq-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.nq-test.single.bf.trec \
                                                                --output runs/run.dpr.nq-test.single.bf.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.nq-test.single.bf.json --topk 20 100
Top20	accuracy: 0.8006
Top100	accuracy: 0.8610

Hybrid dense-sparse retrieval:

$ python -m pyserini.hsearch dense  --index wikipedia-dpr-single-nq-bf \
                                    --encoded-queries dpr_single_nq-nq-test \
                             sparse --index wikipedia-dpr \
                             fusion --alpha 1.2 \
                             run    --topics dpr-nq-test \
                                    --batch-size 36 --threads 12 \
                                    --output runs/run.dpr.nq-test.single.bf.bm25.trec 

Same as above, replace --encoded-queries by --encoder facebook/dpr-question_encoder-single-nq-base for on-the-fly query encoding.

To evaluate, first convert the TREC output format to DPR's json format:

$ python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run --topics dpr-nq-test \
                                                                --index wikipedia-dpr \
                                                                --input runs/run.dpr.nq-test.single.bf.bm25.trec \
                                                                --output runs/run.dpr.nq-test.single.bf.bm25.json

$ python -m pyserini.eval.evaluate_dpr_retrieval --retrieval runs/run.dpr.nq-test.single.bf.bm25.json --topk 20 100
Top20	accuracy: 0.8288
Top100	accuracy: 0.8837

Reproduction Log*